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Abstract. In this paper we state the graph property for incompressible
continuouse tori invariant under goedesic flows of Riemannian metrics on the
two-dimensional torus. Also our method gives a new proof of Birkhoffs theorem
for twist maps of the cylinder. We prove that if there exist an invariant
incompressible torus of geodesic flow with irrational rotation number then it
necessarily contains the Aubry-Mather set with this rotation number.

1. Introduction

One theorem of Birkhoff states that any continuous simple closed incontractible
curve which is invariant under a twist symplectomorphism of the cylinder
# = S1 x 1R is the graph of a continuous function on S1 (see [HI, H2]). The purpose
of this paper is to use a variational approach for this problem which allows one
to prove an analogous theorem for geodesies on the two-dimensional torus.

Let T*T2 be the contangent bundle of the 2-torus T2 = [R2/Z2, Θ:Γ*T2->T2

the natural projection. Let ω2 = dω1 be the natural symplectic structure on T*T2,
where ω1 is the canonical 1-form on Γ*T2. Let H:T*T2-*[R be a smooth
hamiltonian function on T*T2, ht the corresponding hamiltonian flow. Throughout
this paper we assume that H is strictly convex on the fibres of T*T2 and is
symmetric,

H(x,px) = H(x,-px) for all xeT2, pxeT*J2.

Let M = {(x9px)eT*J2:H(x,px) = h} for a fixed ft >maxH(x,0). It is easily seen
xe¥2

that M is diffeomorphic to T3. Let ι:L<~ >M be a topological 2-torus in M, i is a
continuous embedding. We will call L incompressible if zs|::π1(L)->π1(M) is a
monomorphism.

Theorem 1.1. Let / Lc—>M be a continuously embedded incompressible invariant
2-torus of the hamiltonian flow ht. If L has no closed orbits of the flow then L is a
continuous cross-section of the cotangent bundle Γ*T2.



14 M. L. Bialy

In the case when L is smooth (C3) this theorem was proved in [B-P2] (see
also [B]). Let us note that in that case the flow ht on L is necessarily transitive.
In this paper we are free from this restriction.

Let us outline our approach to this theorem. Let H be the function which is
homogeneous of degree two on the fibres of T*T2 and coincides with H/h on M,
ht the corresponding hamiltonian flow. It is clear that the trajectories of the flows
ht and ht in M coincide up to parametrization, and L is invariant under the flow
ht. Therefore we will assume throughout the rest of this paper that H is
homogeneous of degree 2 on the fibres of T*T2. It follows from the conditions
mentioned above that the Legendre transformation of H determines a symmetric
Finsler metric F on T2. In addition, projections on T2 of the trajectories of the
flow ht in M are geodesies of this Finsler metric. The metric F defines a Z2-periodic
Finsler metric on the covering plane [R2.

Definition 1.2. (see [Hed]). A geodesic on T2 = (R2/Z2 is called an ^4-geodesic if
each of its liftings to the covering plane minimizes the F-length between any two
of its points.

Our method is based on Aubry-Mather theory for twist symplectomorphisms
of the cylinder (see [A], [M]) which was applied in [B-P1], [Ba] for geodesies on
the two-dimensional torus. More precisely, we show that the projections on T2

of the trajectories lying on L are ^-geodesies. To show this we use a classical
property of Poincare rotation number and arguments of contact geometry. Then
the results of [B-P1] yield the proof of our main theorem.

The paper is organized as follows. In Sect. 2 we construct a cross-section for
the flow on L. In Sect. 3 we prove a theorem about intersections of geodesies with
the same rotation number. In Sect. 4 we study the linking number of legendrian
curves. We complete the proof of the main theorem in Sect. 5.

2. Cross-Section for the Flow on L

First of all we will obtain the following "niceness" condition of the topological
embedding of L into M.

Lemma 2.1. If Lis a continuously embedded invariant 2-torus of the flow in M, then
L is locally flat in M. That means that for each point of L there is a neighbourhood
U in M such that (U, Ur\L) is homeomorphίc to (IR3, ίR2).

Proof. Let s grad H denote the hamiltonian vector field in M. For each point of
L there is a neighbourhood U in M such that UΉL is homeomorphic to IR2 and
there exists a diffeomorphisms / of Cl(U) to the standard 3-cube I3 =

Then /(C/((/)nL)n/2 is a simple continuous arc in I2. It follows from
Jordan-Schόnflies arguments that this arc is locally flat in /2, and hence /((7nL)
is locally flat in /3. This completes the proof of the lemma. Π

Remark 2.2. It follows from Lemma 2.1 and a theorem of Brown (see [R]) that L
is bicollared in M, i.e. there exists a neighbourhood of L in M homeomorphic to



Geodesic Flows on Two-Dimensional Torus 15

L x (— ε, ε). Then it is easily seen that in this neighbourhood L can be approximated
by a smoothly embedded torus, homotopic to L (this follows for instance from
Theorem 6.3 of [Mu]).

Let q1moάlί q2modl be the standard coordinates on T2 = 1R2/Z2, /?1?p2

conjugate momenta. Let B be an incompressible 2-torus in M defined by

B = {xeT*J2:Hp2(x) = 0, Hpί(x) > 0} n M.

We will use the following proposition from [B-P2].

Proposition 2.3. I f L i s incompressible invariant torus in M then L is homologous to
B in M.

Let us also define an incompressible 2-torus S in M by S = {xeM:θ(x)ee},
where e is a closed ^4-geodesic on T2 which is the shortest in the free homotopy
class (0, l)eZ2. Let e+9 e~ be the closed orbits of the flow ht in M corresponding
to e, e+9 e_ <=S. Let σ:T*T2->T*T2 be the involution taking a point (x,px) to
(x, — px). Since H is symmetric, then σ(L) is an invariant torus of the hamiltonian
flow.

Theorem 2.4.
i. The intersection set y = LnS is a simple closed curve.

ii. This curve y is two-sided on L and trajectories of the flow ht on L pass from
one side ofy to the other. In addition, y is not null-homotopic on L nor on S.
iii. The invariant tori L and σ(L) do not intersect.

Proof. It follows from Proposition 2.3 that LnS^0, since L and S are not
homologous in M and both of them are incompressible. The hamiltonian vector
field sgrad/f in M is everywhere transversal to S outside the closed orbits e+, e_
and (LnS)n(e + u<?_) = 0. This implies that LnS is a one-dimensional topological
submanifold consisting of a finite number of simple non-intersecting closed curves.
Each of them is two-sided in L and trajectories of the flow on L pass from one of
its sides to the other, since S is two-sided in M and trajectories of the flow on L
are transversal to S. It follows from Poincare-Bendixson arguments that each of
these curves is not null-homotopic on L, since the flow ht has no fixed points on
L (see [Be], [C-L ]). Therefore each of these curves is not null-homotopic also on
5, since L is incompressible. Let us show that LnS consists of only one simple
closed curve y. Let us fix an orientation ω3 on M defined by dH Λ ω3 = ω2 Λ ω2

and some orientation s on S. The closed orbits e+, e_ divide S into two connected
domains 5+ and S_. In addition, the transversal orientation ω2 by the hamiltonian
vector field coincides with 5 on 5+ and with — s on S_. Also 5_ = σ(S+).

Lemma 2.5. Let y \ y 2 be two curves from LnS lying in S+ (or S_). Then y1, y2

coincide.

Proof. Let y1 c S+(S_) be a smooth simple closed curve sufficiently closed to
y1. Let r.y1-^ be a continuous function such that hτ(x)xey2 for all xey1. It is
easily seen that there exists a smooth function f r y 1 -> R such that hΐ(x}xey2 for all
xey1, where y2 is a smooth simple closed curve close to y2. In addition, y1, y2 lie
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in S+ (S_) and do not intersect. We have then

j ω1 = J ω1 and hence Jω2 = 0,
yi T2- Γ

where Γ c S+(S_) is the domain bounded by the curves y1, y2. This contradicts the
fact that ω2 does not vanish on S+ (S_). This completes the proof of the lemma. Π

It follows from Lemma 2.5 that Lr\S consists of at most two different curves
y + and γ_, γ + c S+, y_ c: S_. Let L1, L2 be the two domains of L bounded by the
curves y+, y _ . It is easily seen that for each point P from L1 there is a T > 0 such
that hτPeLl and the segment htP, ίe[0, T] crosses y+ and y_ only once. Let δ
be a simple closed curve consisting of the segment htP9 ίe[0, T] and a simple arc
lying in L1 joining the ends of this segment. Then δ is not null-homotopic and is
not homotopic to y+ on L. On the other hand the intersection number δ°S equals
zero, since γ+ cS+ and y_ cS_. Hence (5 is necessarily homotopic to y±. This
contradiction yields the proof of i. Now it is very simple to show iii. Indeed if
Lnσ(L) ̂  0, then ynσ(y) φ 0. But y and σ(y) lie in the different domains S+9 «S_.
This completes the proof of the theorem. Π

3. Intersection of Recurrent Geodesies with the Same Rotation Number

Let h:y ^y be the return map of the flow ht on L. It follows from Theorem 2.4
that h is a well defined homeomorphism of the circle y. Let ω be the Poincare
rotation number of h, which is irrational, since ht has no closed orbits on L.

Definition 3.1. A point P in M is said to be recurrent if P belongs to the ω-limit
set of the trajectory htP.

Let yω be the set of all recurrent points of y, Lω the set of all recurrent points
of L. It is clear that yω is the minimal set of the homeomorphism h and Lω consists
of the trajectories passing through yω.

Let T*R2 be the cotangent bundle of the covering plane 1R2 with coordinates
qί9 q2, and η: T*ίR2 -> 1R2 be the natural projection. Let ξ: Γ*[R2 -> Γ*T2, ζ: R2 ->T2

be the natural covering maps, 7\, T2 be the unit shifts of T*1R2 along the axes ql9

q2 respectively, Tiξ = ξTi (i= 1,2). Let u^ lift L to the covering space T*[R2. It
follows easily from Proposition 2.3 that ^ ~ 1(L) is homeomorphic to R2, also ξ ~~ 1(L)
is invariant under the flow with the hamiltonian function H°ξ. Let y0 be some
lifting of y to ξ~l(L\ yM = (T1)"y0 (neZ). It is easily seen that y t (ieZ) is
homeomorphic to R and y£ n y7 = 0 for ΐ Φ j, also Γ2yi = yt. We may assume without
loss of generality that the trajectories of the flow on ξ~ 1(L) cross yn in such a way
that n increases. Otherwise we will change the direction of the ί^-axis. Let en be
the different liftings to IR2 of the ^-geodesic e on T2 (see Sect. 2), en = η(yn). Let
Ω be the F-length of e on T2. Let us recall now some facts about ,4-geodesics on
T2 from [Red] (see also [B-P1], [Ba]).

3.2. Each ^4-geodesic on the covering plane has no self-intersection points. Two
different yl-geodesics on the covering plane intersect in at most one point and
do not intersect if they are asymptotic.
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3.3. For each A-geodesic g on the covering plane there are two parallel lines
defined by (x,ql + βq2 = <5, (ί = 1, 2) such that g lies in the strip between them and
crosses each arc connecting them. The ratio s = — β/a is called the type of this
A-geodesic.

Let Ks be the set of all A-geodesics of the type s, where s is assumed to be irrational.
We assume also that each A-geodesic g(t) from Ks is parametrized by F-length
such that <h(#(ί))-» + °o when t-* + oo. Let Γs be the set of all A-geodesics from
Ks such that the corresponding trajectories of the flow ht in M are recurrent.
Let φ:R-»£0 be the F-length parametrization of the A-geodesic e0 such that
^faOpW)-* + °° when t-> + oo, en(t) = (T^nφ(ί) the F-length parametrization of en.
Each A-geodesic g on IR2 of the type 5 intersects en at unique point, gr\en = en(un(g)).

Definition 3 .4. (see [A]). A pair of functions/4", /~:R->R is called a pair of
/^-functions if
a. /+, /" are strictly increasing and f±(x -f Ω) = f ± ( χ ) + Ω for all xeR.
b. /+ is continuous from the right and / " i s continuous from the left and

The following theorem from [B-P1] (see also [Ba]) will be crucial in the main
result of this section.

Theorem 3.5. Suppose s is irrational. Then
i. Ks is ordered, that means that two different A-geodesicsfrom Ks do not intersect.

ii. There exists a pair of h-functions f + ,f~ such that for each A-geodesic g from
Γs, un(g) = f*(nsΩ + α) for some αeR and *e{ + ,— }. Conversely, for each αeR
and *e{ -f , — } one can find g from Γs such that un(g) = f*(nsΩ + α).
iii. ///+(α) T^/~(OC) then the A-geodesics g + , g~ corresponding to the configurations

f+(nsΩ + a\f~(nsΩ + α) are asymptotic.
iv. I f f + = f ~ (/* are continuous) then KS = ΓS and through each point of R2

passes some A-geodesic from Ks.

Now we are able to state the main result of this section. Let Gω be the subset
of M consisting of all the points P such that P is recurrent and the geodesies
ζ~1θ(htP) in R2 belong to Γω (ω is defined in the beginning of the section).

Theorem 3.6. Either Gω coincides with Lω and then each trajectory of Lω projects
to an A-geodesic on T2. Or Gωr\L = 0 and there exists a pair of geodesies on T2

θ(htP) and Θ(ht0)for PeLω, OeGω such that some of their liftings to the covering
plane R2 cross infinitely often.

Proof. The sets L, Lω, Gω are invariant under the flow ht. If Ln Gω Φ 0 then Lω

and Gω coincide, since each trajectory lying in Lω n Gω is everywhere dense in Lω

and Gω. Now let us assume that LωnGω = 0. Then for each point PeLω each
lifting to R2 of the geodesic θ(htP) does not belong to Γω. Let l(t) be some lifting
to R2 of θ(htP). Let us note that l(t) necessarily intersects some ^-geodesic g from
Γω. Indeed, otherwise l(t) lies in the gap between two asymptotic A-geodesics g+,
g~ from Γω (see Theorem 3.5). But then it follows from Theorems 2.4, 3.5 that /(ί)
is asymptotic to g + , g~ and hence the trajectory htP is not recurrent. Thus I
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transversally intersects with some ^-geodesic g from Γω. Let OeGω be such that
g is the lifting to (R2 of the geodesic Θ(ht0). We will assume without loss of generality
that θ(0) = Θ(P). Since PeLω then for each ε > 0 there is a sequence tk -» -f oo such
that frίkP belongs to the ε-neighbourhood U of P in M. This implies that if ε is
sufficiently small then the geodesic ζ(/) = θ(htP) will cross again ζ(g) = Θ(ht0) on T2

at some points close to θ(htnP). On the covering plane that means that l(t) crosses
^-geodesies gmknk = (T1)

mk(T2)
nkg. Here (mk,rcfe)eZ2 is the homotopy class of the

closed curve on T2 consisting of the segment θ(htP\ £e[0, ίk], and a small arc lying
in Θ(U) joining the ends of this segment.

Lemma 3.7. There are two infinite subsets Kl9 K2 of Z+ such that

nk/mk<ω for fceX1? nk/mk>ω for keK2.

Proof. This fact is the main property of the Poincare rotation number and follows
easily from the fact that the homeomorphism ή:y->y is topologically conjugate
to the rotation on the minimal set γω. This completes the proof the lemma. Π

It follows from Theorem 3.5 that the geodesies gm.n. and gm.n. lie on different
sides of g for all ieKί9 jeK2. And hence / intersects g infinitely often. This completes
the proof of the theorem. Q

4. Linking of Trajectories

In this section we apply methods of contact geometry to prove the following

Theorem 4.1. The sets Lω and Gω coincide.

The proof will be given later. Let Q be the manifold of all oriented contact
elements of T2 with the natural contact structure q (see [Ar, p. 354]). Let Φ :M -> Q
be the map taking weM to the oriented contact element at the point θ(w) generated
by the vector θ^s grad f/(w). It is easily seen that Φ is a diffeomorphism. Let Φ ~ 1(q)
be the induced contact structure in M. Planes of this contact structure are generated
by the hamiltonian field in M and a vertical field v tangent to the fibres of the
bundle Θ:M-+J2 (see [B-P2]). Let us identify M with Q via the diffeomorphism
Φ. Let N — T2 x IR, τ:JV -> M be the natural covering map taking a point (x, φ)eN,
xeT2, φe(R to the oriented contact element in TXJ

2 having the oriented angle
φ mod 2π with the vector d/dq^. Let us note that qί mod 1, q2 mod 1, φ mod 2π are
coordinates in M and the torus B in M is defined by φ = 0. Since L is homologous
to B in M we have that each lifting of L to AT is a 2-torus homologous to T2 x {0}
in N. Let Θ:N->Ύ2 be the natural projection. In a natural way we
identify the configuration space T2 with B in M and T2 x {0} in N. Let us lift the
contact structure q from M to N.

Defintion 4.2. A smooth curve is called legendrian if it is tangent to the contact
structure.

Definition 4.3. Two simple closed non-intersecting curves in N are said to be
unlinked if there is a locally flat topologically embedded torus in N homologous
to T2 x {0} separating these two curves.
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Let σ:N-*N be the map taking (x, φ) to (x, φ + π) for all xeT2, φeR. The map
σ covers the involution σ of M.

Theorem 4.4. Lei C1? C2 be two smooth simple closed legendrίan curves in N, such
that the restrictions 0|Cl, Θ|C2 are diffeomorphisms. Let us assume also that the curves
θίCΊ), 0(C2) are transversal on J2. If the curves σmCl and σnC2 are unlinked for all
integers m and n, then

The proof will be given later. Let us introduce the following notations. Let
NE = T2 x [- E, E], NE+ = T2 x [ + E, + oo), W£~ = T2 x (- oo, - E]. Let Ct, C2

be two oriented smooth simple closed curves in N. Let us choose E sufficiently
large to have Cί9 C2 c NE. Let Σί+, Σl~ (i = 1,2) be 2-chains such that

dΣί+ = Ci(modNE+) and Si:4" = Q(mod]V£-) for i = 1,2.

Then we define the four numbers

It is easily seen that these numbers are well defined and coincide with the linking
number in T2 x R when C l 5 C2 are homologous (see [B-P2, Sect. 3]).

Lemma 4.5. Let λ be a locally flat topological torus in int (NE) homologous to
T2 x {0}. Then

i. λ divides NE into two connected components N +, N_ such that

A Γ + n Λ Γ _ - A , dN±=λv(J2 x{±£}).

ii. £αc/z of N + , Λ f _ is homeomorphic to NE.
iii. // C l 9C 2 are ίwo smooth unlinked simple closed curves such that

Proof.
i. Easily follows from Jordan-Brouwer arguments and the fact that λ is

homologous to T2 x {0}.
ii. Since λ is locally flat then λ is bicollared in NE (see [R]). Then it follows from
[E] that N+9 N_ are homeomorphic to NE.
iii. If C1 lies in N+ then it is easily seen that there exists a 2-chain Σί+ not
intersecting C2 (see Remark 2.2). Hence /+(C1 ?C2) = 0 and analogously
ί~(C2, Cx) = 0. This completes the proof of the the lemma. Π

For a smooth oriented closed curve α on T2 let us denote by leg(α) the closed
curve in M formed by the oriented contact elements ά which are tangent to α and
positively directed (recall that M and Q are identified).

Proof of Theorem 4.4. Let αt = 0(0), Q,m = σw(Q) for i - 1,2 and meZ. Since 0|Ci

is a diffeomorphism then Ct is the graph of a smooth function φj α^-^lR:

Q = {(x, φ)eN:xeαi and φ = φ^x)}.
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Also the curve Cί>m is the graph of the function φi>m = φ{ + mπ. Since C{ is a
legendrian curve, one can assume also that Q are oriented in such a way that
leg (at) = τ(Ci). That means that φ^x) mod 2π equals the oriented angle between
the vectors d/dq^ and άf in TXJ

2. We can assume also without loss of generality
that α1°α2 ̂ 0.

Lemma 4.6. The numbers ί+, Γ satisfy the following relations

ϊ+(C1§m, C2,Π) - Γ (C ltW, C2fB) = a^a29

f +(Cι,m, C2,n) = Γ(C2,Π, Cljm), ί+(C2,κ, C1>m) = Γ(C1>m, C2>n).

Proof. The proof easily follows from the definitions given above. Let us prove the
first one for example. Let Σίtm+ and Σl m~ be 2-chains defined by

Σ^+ = {(x, φ)eNE:xeal9 Ψίjx) ^φ^E},

Σ 1 »- = {(x, φ)6JV£:x6α1? - E £ φ £ φltM(x)}

and oriented in such a way that dΣltm+ = C1^m(modNE+\ dΣ1*"1' =
Cljm(mod NE~). Then (ΣltM+ - Σ^m~γC2ίn = a^a2. This implies the relation. Π

Let D = alr\a2 For each point AeD let Δ(A) = φ2(A) — q>i(A) and μ(A\ v(A)
be such that Δ(A) = μ(A)π + v(A)9 where μ(A)eZ, v(^)e(0,π). Let μ+ =maxμ(^l),

AeD

μ_=minμ(,4). Let Dμ= {AeD:μ(A) = μ} and dμ = cardDμ, d = cardD, where
AeD

μe[μ_,μ+]nZ. To prove the theorem we have to show that cardD = al°a2. Let
us consider two cases

1. α1°α2 = 0. In this case it follows from Lemma 4.6 that

ϊ+(c l fm, c2iΛ) = r (cltm, c2j = /+(c2,M, c1§ j = /-(C1>m, c2j.
Since C1>m and C2>M are unlinked then it follows from Lemma 4.5 that these numbers
equal zero. On the other hand it is easily seen that

i+(C l ιμ+,C2)= Σ (
AeDμ +

hence Dμ+ = 0 and then D = 0.

2. Λ! °α2 > 0. In this case the following lemma allows us to reduce the problem to
the case a1°a2 = 1.

Lemma 4.7.

i. There exists a covering map T2->T2 such that any liftings al4l, a2^ of the al9

a2 to the covering torus satisfy aί^°a2^ = 1.
ii. 7/card(α1nα2)>α1°α2 then for any covering map T2->¥2 some liftings α l s |c5

a2^. satisfy card(α1:Jίnfl2:lί)> α l ίK

oα2: j ί.
The proof is given in the appendix. Using this lemma we may assume without

loss of generality that aί°a2 = 1. Then it follows from Lemma 4.5 and 4.6 that the
numbers l+(Cltfl9C2) are equal to 0 or 1 for each μe[μ_,μ+]nZ. On the other
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hand one can easily check that

l+(C^C2)= Σ (-l)H (4.8)
μ^i£μ+

for each μe[μ+,μ_]nZ. We know that dμ+ > 0 and hence from the first equation
where μ = μ+ we obtain dμ+ = 1.

Lemma 4.9. L ί̂ D = u Ai9 i = 0,..., d, where Ai are indexed in accordance with the
orientation on the curve al9 Ad = AQ. Then \μ(Ai + 1) — μ(A^\ ^ 1.

The proof is given in the appendix. From this lemma and (4.8) where l+(C± tfl9 C2)
equals 0 or 1 we have that dμ = 1 for each μe[μ_,μ+]nZ. But this implies that
the function μ(A^ is strictly monotone. Hence d=l. This completes the proof of
the theorem. Π

Proof of Theorem 4.1. If Lω Φ Gω then it follows from Theorems 2.4 and 3.6 that
the sets L, Gω, σ(L), σ(Gω) are disjoint. Also there exists a pair of points 0eGω,
PeLω such that some liftings to the covering plane 1R2 of the geodesies Θ(ht0) and
θ(htP) cross infinitely often. Let ε>0 be sufficiently small to have that the
ε-neighbourhoods t/ε(L), t/e(GJ, Uε(σ(L))9 l/ε(σ(GJ) are disjoint and Uε(L) is
homeomorphic to Lx(—ε,ε) . Since 0eGω, PeLω then there exists sequences
ίk-> 4- oo, Sj-> + oo such that htkPeUε(P)9 hSjOeUε(0). Let us consider two smooth
closed curves z l 5 z2 in M consisting of the trajectory segments htP9 ίe[0, ίfc], /zs0,
se[0,Sy], and small arcs joining the ends of these segments in l/ε(P) and Uε(0)
respectively. In addition, we may assume without loss of generality that zί9 z2

have no self-intersections and the tangent vector to zl9 z2 at each point is close
enough to the hamiltonian vector at the point. Then θ(zί)9 Θ(z2) are smooth closed
curves on T2 such that leg (θ(zί)) c Uε(L)9 Ieg(θ(z2))c: Uε(Gω). Hence it is easily
seen that all liftings of the curves zl9 z2, σ(z1)9 σ(z2) to the covering space N are
smooth non-intersecting closed curves and any two of them are unlinked. In
addition we may assume that Θ(z1) and 0(z2) are transversal and have only
transversal self-intersections. It follows from Theorem 4.1 of [B-P2] that Θ(z1)
and Θ(z2) have no contractible loops on T2, and hence using Proposition 5.2 of
[B-P2] we may assume that θ(zί) and Θ(z2) are smooth simple closed curves on
T2. On the other hand, it follows from Theorem 3.6 that some liftings of θ(zί) and
Θ(z2) to the covering plane (R2 cross more than once and hence card (θ(zί) n 0(z2)) >
\θ(z1)°θ(z2)\. But this is a contradiction with the result of Theorem 4.4. Π

5. Proof of the Main Theorem

It follows from Theorem 4.1 that each recurrent trajectory on L projects to an
A-geodesic on T2. Let us show now that each trajectory on L projects to an
,4-geodesic. Let Pey — yω, and htPr\y = uPΛ, neZ (see Theorem 2.4). There exists
Qeγω such that Pn and Qn are asymptotic when n -> + oo. Let pn = 0(Pn), qn = θ(Qn).
Let F(p_n,pn) be the F-length of the geodesic θ(htP) between the points p_n, pn9

the number F(q_n, qn) is defined analogously. Let us denote by f(p-n9pn) the
minimum F-length of all segments connecting p_n, pn homotopic to the segment



22 M. L. Bialy

of θ(htP) between these points, we define f(q-n,qn) analogously. It follows easily
from the definition of the metric F that

2F(q_nίqn) = J ω1, 2F(p^pn)= J ω1,
Q-nQn P-nPn

where Q-nQn and P-nPn are trajectory segments of htQ, htP between the points
β_n, Qn and P_M, Pn respectively. Also F(q_n,qn)=f(q_n,qn) since θ(ήtβ) is an
A-geodesic. If θ(htP) is not an ̂ -geodesic, then for some constant / > 0 for all n > n0

For a small ε > 0 let us choose n > n0 such that the segment δn of y between the
points PM, Qn lies in an ε-ball l/Π5 also the segment <>_π of y between the points P_n,
g_ n lies in an ε-ball [/_„. Let (5_nj}ί be a smooth simple arc in t/ '_ π πS with the
ends P_M, Q_ M approximating 5 _ M (S is defined in Sect. 2). It follows from Theorem
2.4 and the theorem of continuous dependence on initial data that there exists a
smooth function τ:<5_nj j ί->[R, such that

hτ(Q-n}Q-n = Qn> hτ(P_n)P,n = P» and hτ(x}xeSnUn for all xeδ.n:,.

In addition, the arc

δn* = {y y = hτ(x}x for some xεδ-_n*}

is well defined and without self-intersections. It follows from Stokes' theorem that

2F(p^pn)-2F(q^qn) = f ω1 - J ω1.
<5-M* <5n*

Both of the integrals on the right-hand sides are less than const ε, since <5-ΠJjς,
<5ns|t c S are simple arcs lying in the ε-balls £7_n, t/n. This implies that

2/(g-n, «„) = 2F(p_n, pπ) - const ε > 2/(p_n,pπ) + /- const ε.

But the last inequality means that the geodesic θ(htQ) is not minimal between the
points g_M, qn. This contradiction yields the proof of the fact that the projections
on T2 of the trajectories of the flow ht on L are ^-geodesies. Now it follows from
Theorem 3.5(i) that none of these yl-geodesics intersect each other. This implies
that L is a cross-section of the cotangent bundle T*T2. This completes the proof
of the main theorem. Π

Remark 5.1 . Using the same method one can prove that in the case when L contains
closed orbits of the flow, projections of these orbits on T2 are ^[-geodesies. For
this one needs the classification theorem of Ks, Γs for rational s (see [B-P1]).

6. Appendix. Proof of Lemmas 4.7, 4.9.

Proof of Lemma 4.7.

i. Let (ml5 nj, (w2, n2) from Z2 represent homotopy classes of α1? a2 on T2 = IR2/Z2.
Let G c Z2 be the subgroup generated by these elements. Then the natural covering
map U2/G -> 1R2/Z2 is the desired covering map.
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ii. We have assumed that card(α1nα2) >α1°α2 >0. This implies that there is a
point Aeaίrιa2 such that the frame ( ά ί 9 ά 2 ) is negative at A. Let A% be some
lifting of A to the covering torus, av^ α2* the liftings of α l 5 02 passing through
A^. Then the frame (ά1#J ά2*) *s negative at yi^, and hence card(αls|c πα2H.) > 0ι*°02*
This completes the proof. Π

Proof of Lemma 4.9. Let ^4ί? A ί + 1 from αx nα2 be such that >4ί+1 is the next point
after At on ai with respect to the orientation on a1. Let 4is|e be some lifting of At

to the covering plane, α l j | t, α2j|ί the liftings of α1? α2 passing through Aίs|l. Let Ai + l+
be the lifting of Ai+ 1 belonging to αls |s. We have that 02* is a simple periodic curve
homeomorphic to IR, also different liftings of a2 do not intersect. We may assume
without loss of generality that T2(02*) = 02* (Ά> T2 are the unit shofts of R2 along
the axes ql9 q2 respectively). It follows from the definition of Aί+1 that the open
segment of a^ between the points A^9 Ai + i^ has no intersections with (Ttf(a2^
for each neZ. Let us consider two cases:

1. y4 ί + l j | ceα2 s | s and2. Ai + 1^a2*.

1. In this case the frame (όlj |c,ά2j|c) has different signs at the points A^ Ai+i+. Let
us assume for example that this sign at A^ equals — 1 (the opposite case is
analogous). It follows from the definition of the functions φ l 5 φ2 that

ί) = δφί9 (p2(At) - φ2(Ai+l) = δφ2,

where δφ^ is the rotation of the tangent vector to α1>κ from A^ to Aί+ί4ί9 δφ2 is
the rotation of the tangent vector to a2^ from Aί+1^ to Ai4l. Also the oriented
angle from α ls |s to ά2^ equals π + v(Aι) at A^ and v(Aί+ 1) at A ί + la lc. It follows from
[St, p. 261] that

<*Φι + <5Φ2 = 2π - v(^ί+ J - (π -
and hence

μ(A^π + v(^i) - μ(Aί + 1)π - v(Ai + l ) = π-
and hence

μ(Ai)-μ(Ai + i) = l.

2. In this case analogous arguments show that μ(Ai+ x) - μ(Aj) = 0. This completes
the proof of the lemma. Π
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