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Abstract. The random set of instants where the Brownian bridge vanishes is
constructed in terms of a random branching process. The Hausdorff measure
supported by this set is shown to be equivalent to the partition function of a
special class of disordered systems. This similarity is used to show rigorously
the existence of a phase transition for this particular class of disordered systems.
Moreover, it is shown that at high temperature the specific free energy has the
strong self-averaging property and that at low temperature it has no self-
averaging property. The unicity at high-temperature and the existence of many
limits at low temperature are established almost surely in the disorder.

1. Introduction

Random walks are thoroughly studied in many areas of physics and applied
mathematics. A challenging problem that remains open is the construction of the
measure for the self-avoiding walk in low dimension (i.e. d = 2 or 3). A promising
method towards that aim is the study of weakly self-avoiding random walks
by suppressing walks with many self-intersections [27,28]. Counting the self-
intersections of a walk led to many new concepts; the most useful one seems to
be that of local time. Intuitively, if X s,se[0, oo[ is a random process with values
in R, its local time on xeR can be defined formally as

Lt(x) = \δ(Xs-x)ds.

For Brownian motion, this concept can be given a rigorous meaning [20] and it
turned out that it is intimately connected to the Hausdorff measure of the x-level
sets of the Wiener process, i.e. of the random sets of instants where the Brownian
motion attains the value x [15]. The study of the weakly self-avoiding walks and
their intersections was the starting point of this work [17].

* Work supported by the Swiss National Science Foundation
** Permanent address: Institut mathematique, Universite de Rennes I, Campus deBeaulieu, F-35042
Rennes Cedex, France



580 D. Petritis

Another interesting problem—apparently completely disconnected from random
walks—is the statistical mechanics of disordered systems, like the random field
Ising model, spin glasses etc. These physical systems are very difficult to study
from a rigorous point of view and only few partial results are known [12,4,25].
Since a general mathematical setting for these systems is still lacking, it seems
interesting to study some simplified models, sharing the main features of the "real"
systems, in order to grasp the mathematical difficulties. The purpose of this paper
is to present such a model that arose in the study of the astonishingly different
problem of the level sets of the Brownian bridge.

The problem encountered in the statistical mechanics of disordered systems is
very simple to explain in principle. However, nobody knows the complete solution
up to now. To start, one needs some finite-volume configuration space X (e.g.
X = {— 1, \γ~n^nZ i s the configuration space for the finite-volume, lattice, one-
dimensional Ising systems). This space is turned into a measure space by equipping
its Borel σ-field, &(X\ with an a priori measure K. Very often (for discrete finite
systems) K is chosen to be the counting measure. The disorder is modelised by
some underlying probability space (ί2, J*, p). Assume that some positive measurable
function f\Ω x I - > R + is defined and construct for each ωeΩ the measure

for β > 0 and Be@(X). In the standard terminology, / is the exponential of the
Hamiltonian and β is interpreted as the inverse temperature, μ is a random measure
on (X,$(X)% i.e. a measure-valued random variable. The total mass μωtβ{X) is
known as the finite-volume partition function Zω(β); obviously, in the disordered
case it is a random variable. As far as the volume is finite, (X, &(X)) can be equipped
with a natural random probability measure defined by

The problem, as is usual in statistical mechanics, lies in the infinite volume limit
(thermodynamic limit): the partition function may vanish in that case for certain
values of the inverse temperature β and πωβ may be not uniquely defined. In
summarising, one has to study whether, for some /?, there exists a unique probability
measure defined as the thermodynamic limit of πω β or there are many subsequences
converging to different limits. The complete answer is given for the particular
disordered system considered here. The paper is organised as follows:

In Sect. 2, the definition of the zero-level set of the Brownian bridge and a
random recursive construction of this set are given. In Sect. 3 the random Hausdorff
measure of the zero-level set is shown to be equal to the partition function of a
disordered system of the Derrida's GREM-type. Standard martingale arguments
are used to prove the vanishing of the partition function at low temperature.

The main results are postponed to Sect. 4. Namely, it is shown in that section
that at high temperature there is a unique probability measure and at low
temperature there are many states. Moreover, the existence of a specific free energy
is proved at every temperature with a self-averaging property at high temperature
and lack of self-averaging at low temperature. Section 5 is devoted to the study
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of the critical point. A characterisation of the probability measure is given in terms
of the exact Hausdorff measure of the zero-level set of the Brownian bridge. Some
open problems are discussed in Sect. 6.

In [16], rigorous probabilistic methods are used to study the phase transition
of a REM-type model; for GREM-type models, rigorous results, reminiscent of
the ones presented here, are obtained for the first time for a model of random
multiplications on the c-adic tree by Collet and Koukiou [7]. Some of their powerful
methods are used here for the study of the high temperature region, different
methods are used for the low temperature region.

Although the notation used is standard and defined before it is used, it is useful
to remember that, in general, small Greek letters are used to denote measures;
especially λ is always the Lebesgue measure and π and p are always probability
measures. Script capital Latin letters are used for σ-fields; exceptionally, the symbol
ffi is used to denote the Hausdorff outer measure and not a σ-field.

2. The Zero-Level Set of the Brownian Bridge

2.1. Definition of the Zero-Level Set. A one-dimensional Brownian bridge over
[0,1] is a centered, Gaussian random process ^(ω), ίe[0,1] over a probability
space (Ω,^,p) and taking values in R, with covariance function E(BsBt) = s(l — t)
for 0 ^ s £Ξ t ^ 1. Obviously, B0 = B1 = 0. We are interested in the level sets of Bt,
i.e. the random sets of constant B. More specifically we have the following

Definition 2.1. The random set

is called the zero-level set of the Brownian bridge.
This set has a Cantor-like structure as stated in the following

Lemma 2.2. The zero-level set of the Brownian bridge almost surely

i) has Lebesgue measure zero
ii) is closed

iii) has accumulation points at t = 0 and t = 1
iv) has no isolated points in ]0,1[.

Proof. The proof of items i)-iii) follows closely the one given in [15] for the Wiener
process; it is therefore only sketched in the present situation. Denote by λ the
Lebesgue measure over

i) By Fubini's theorem

E(λ(zω)) = ] dtp({Bt = 0}) = 0,

hence λ(zω) = 0 a.s.
ii) There exists almost surely a version of the random mapping t^-*Bt{ω) which is
continuous and zω is the inverse image under this a.s. continuous mapping of the
closed set {0}; it is therefore closed.
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iii) It is enough to show that Vεe]0,1[, the process Bt changes sign infinitely often
for te[0,ε]. For every Ce^(R), consider the hitting time Hc(ω) of this set, i.e.
Hc(ω) = mί{te[0, l]:βί(ω)eC}. One can show that both H]0oo[ and H^^^ are
optional. Moreover, because of the symmetry around the origin of the Brownian
bridge we have p(H]0oo[ = 0) = p ^ . ^ ^ f = 0) = p. By the Blumenthal zero-one law,
p can be either 0 or 1. Now, p can not be 0 since this would mean that there is
an interval [0, ζ], with ζ > 0 such that Bt — 0 for every ίe[0, ζ] almost surely; this
issue is impossible. So, p = 1 and one can find sequences of times sn9 ίM|0 such that
BSn < 0 and Btn > 0 a.s. for n > 1. Thus 0 is an accumulation point. By symmetry
of the probability distribution, with respect to reflexion o n ί = 1/2, the point 1 is
also an accumulation point,
iv) For every ίe]0,1[ define the random times straddling t by

βt(ω) = inf {se]t, l]:B5(ω) = 0}
and

yf(ω) = sup{se[0,ί[:BJ(ω) = 0}.

Suppose that some optional time Te]0,1[ is an isolated zero of the Brownian
bridge and consider βτ(ω) and γτ(ω). The set zω being closed by item ii) above, Bt

is still a Brownian bridge over both [yτ(ω), T] and [T,/?τ(ω)]. By shifting and
rescaling of the bridges and item iii) above, it follows that t = T is an accumulation
point, in contradiction to the hypothesis that it was an isolated point. It
remains to show that T is always an optional time, but this is immediate since

:Bs = 0}. •

The previous lemma establishes that zω is not a trivial set. Although it has zero
Lebesgue measure, it is closed and dense in itself. To get some insight into the
structure of this set it is natural to look at its Hausdorff dimension. Some basic
facts about Hausdorff measures are reminded in the next subsection.

22. The Hausdorff Dimension. The Hausdorff dimension [13] allows one to
distinguish between sets of same Lebesgue measure. It can be defined on every
metric space (R,d) and has interesting mathematical properties [3] (see also [10]
for a modern exposition).

Definition 2.3. Let A be a subset of a metric space (R, d). A countable collection
{l//}5 ieN of subsets of R is called a δ-cover of A if

i) AcUCΛ

ii) I Ut\
 l<δ, Vi, where 117,| = sup {i(x,y):x,yeϋj.

Given some non-negative number s and some subset A a R9 define

Λ%4) = inf £117,1*,
i = l

where the infimum is over all <3-covers of A. Now, define an exterior measure by
taking
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Notice that J^s

δ(A) does not decrease when δ decreases, therefore the above limit
always exists (may be infinite). J^S(A) is the Hausdorff measure of order s as
originally defined by Hausdorff. In the special case of the metric space R = R with
distance d(x,y) = \x — y\ the cover can be formed by intervals and the outer
Hausdorff measure can be written as

/ oo \

Jfs(A) = lim inf £ λ(Uif)9

where λ(U^ is the Lebesgue measure of the interval Ut.

Definition 2.4. The Hausdorff dimension, dH(A)9 of the set A is given by

dH(A) = inf {s: Jf%4) = 0} = sup {s:Jfs{A) = oo}.

Remark. dH(A) is the unique real number for which J^S(A) = oo holds if s < dH(A)
and j f S(A) = 0 if s > dH(A). Notice however that jedH{A)(A) may be zero, finite or
infinite depending on the fine structure of the set A.

In view of the previous remark one may wonder whether it is possible to define
some modified Hausdorff measure such that the exterior measure of A of order
dH(A) would be finite and non-zero, for the specific set A. Suppose that A is a
subset of R". If dH(A) Φ n, the set A has zero n-dimensional Lebesgue measure. The
Hausdorff measure rescales in some sense the Lebesgue measure to render it
different from zero. However, the rescaling introduced by | U^ is quite crude and
the corresponding Hausdorff measure is usually either 0 or oo. Now, consider the
function h:R+ -»R + that can be written as h(x) = xsS(x\ S(x) being a slowly varying
function, i.e. a function with lim xεS(x) = 0 for every ε > 0 . Form the exterior

xlO

measure
/ 00

je(h\A) = lim inf £ h(\Ui\

where h(x) = xsS(x) as above. This definition generalises the notion of the Hausdorff
measure, obviously it coincides with it if S = 1. If there is some s0 and some slowly
varying function So (i.e. h(x) = xs°S0(x)) such that 0 < J^(h){A) < oo, then s0 is called
the exact Hausdorff dimension of the set A.

The knowledge of the exact Hausdorff dimension of a set provides more detailed
information about the set than the ordinary Hausdorff dimension. In fact, it gives
not only the leading scaling term (| Uι\dH) required to render the Lebesgue measure
non-zero but also the subleading term included in S0(x).

In general, it is very difficult to compute the Hausdorff measure of a set just
by applying the general Definition 2.4 since it is not a constructive one. In the
following, a recursive random construction of the set zω is given that allows the
computation of its Hausdorff measure by an appropriate limiting procedure.

2.3. The Random Recursive Construction. Denote by M = {1,2} and by M* =
00

(J Mm. Every element seM* is in an one-to-one correspondence with a branch
m = 0

of the rooted dyadic tree in an obvious way. Therefore, branches of the dyadic
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tree are also denoted by s. Denote by \s\ the integer-valued length of the branch
s and by s\n9n ^ \s\ the restriction of s to the n first ancestors. Given two branches
s, ίeM*, we denote by s v t the concatenation of t to s with length | s v ί | = |s | + |ί | .
Notice that s v ί ^ ί v s in general. By abuse of notation, write s v 1 (respectively
s v 2) for the concatenation of branch (1) (respectively (2)) to s. Finally, use the
symbol ( ) to denote the empty branch of length zero.

Now, given the stochastic process of the Brownian bridge Bt over (Ω, J% p) we
construct a family of random, finite, closed intervals {Ks(ω}}, SGM*, having the
infinite, rooted, dyadic tree as index set. Denote by as(ω) and bs(ω) the random
edges of these intervals, i.e. Ks(ω) = [_as(ω\ bs{ω)~] and by ms(ω) = ̂ (as(ω) + bs(ω))
their middle points. The recursive construction goes as follows:

Start from K{ }(ω) = [0,1] = K.

Define

a(1) = a(} = 0,

α ( 2 ) = inf {ί ^ m( yBt(ω) = 0},

b{1) = sup {t ^ m( yBt(ώ) = 0},

fc<2) = h)=!»

i.e. K(1) = [α(1),fo(1)] and K ( 2 ) = Lai2),bi2)] The set zω being closed by Lemma 2.2,
Bt is by construction a Brownian bridge both over K(1) and K{1y Thus,

Repeat ad infinitum. Rescale and define in general

asvl =as,

Obviously, we have for the zero-level set of the Brownian bridge

z»= Π U KJiω).
ί

Π
The family, {Ds}, of deterministic intervals indexed by the dyadic tree is also used
in the sequel. For every seMk there is exactly one interval D s, of length 2~fe, and
belonging to the family {Ds} that contains Ks.

Now it is possible to express the Hausdorff measure of zω in a form convenient
for computations by virtue of the following

Lemma 2.5. Let

Zω,k(β)= Σ
seMk

with λ denoting the Lebesgue measure. Then, the limit lim Zωtk(β) = Zω(β) always
kjoo

exists in R u { + oo} and is equal to the Hausdorff measure of order β of the zero-level
β
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Proof. If the limit exists, it is equal to J^β(zω) by the theorem on comparable net
measures (see Chap. 2 of [23]). The problem that remains is the existence of the
limit that is postponed to the Theorem 3.2 of the next section. •

Remark. Notice that the estimate Zω k(β) of the Hausdorff measure can be written
as the partition function of a disordered system in the form explained in
the Introduction. The Hausdorff measure of order β of zω appears as the
thermodynamic limit of Zωk(β).

3. Thermodynamics

It is pointed out in the last section that the recursive construction of zω allows
one to express the Hausdorff measure of this set as a statistical sum (partition
function) of a disordered system. This analogy is not a new one. It has been already
used for the Hausdorff measure of deterministic fractals [2].

The question that arises here is whether the disordered statistical systems that
naturally appear in this random construction have any physical relevance. In fact,
at the level k there are 2k terms appearing in the statistical sum and each such
term is non-negative, hence it can be written as exp (— βεs\ where εs = — log λ(Ks)
is a random energy. Moreover, for s,sΈMk the corresponding energies are
correlated and £[ε sε s] - £ [ ε s ] £ [ ε s ] = c[fc-φ,s')], where d is the ultrametric
distance defined for every s,s'eMk as

d(s, s') = k — max {/: s | £ = s'lj.

Thus, the model studied here is reminiscent of the Generalised Random Energy
Model (GREM) introduced in [9] and studied in [25]. There is nevertheless an
important difference: contrary to Derrida's approach of the GREM, here the
hamiltonian is bounded from below, guaranteeing thus the stability of the model.
However, in view of the special construction used, the model must be viewed merely
as a model providing some understanding of the real case.

This warning being given, I study here the thermodynamics of the model.

Lemma 3.1. Let φ(β) = El{λ{Ksvl)
β + λ{Ksv2)

β)/λ(Ks)
βl Then,

i) φ is independent of seM*,
ii) φ is strictly decreasing in β,

iii) 0(1/2) = 1 .

Proof, i) For every seM*, the Brownian bridge over Ks and the rescaled bridges
over Ksvl and Ksv2 have the same pobability distribution. Pushing the argument
back to the root of the tree, φ(β) is equal to E(λ(Kxf + λ(K2)

β).
ii) The decrease in β follows immediately from the observation that for every ωeΩ,

iii) Using the explicit form for the bivariate probability distribution,

p(A(K1(ω))e<ix, λ(K2(ω))edy) = (2π)~1 ί[Oflι2]2(x, y)\^xy(l — x — y)3]

derived in the Appendix, it is shown by direct computation that $(1/2) = 1. •
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It is possible now to state the main result about the thermodynamic limit of
the partition function.

Theorem 3.2. The sequence of random variables Zk(β) converges almost surely to a
random variable Z(β) such that

i) for β>βc= 1/2, Z(β) = 0 almost surely,
ii) for β<βc=l/2, Z(β)=oo almost surely and the limit lim Zk(β)/φ(βf is a.s.

<5Too

strictly positive.

Proof i) Consider the σ-algebra J ^ generated by the random variables

Xs,i = λ(KsU+ί)/λ(KsU)

for seMk and i = 0,...,fc— 1. The sequence {J^/ceN} is a filtration. Moreover,
due to the rescaling of the Brownian bridge, the variables XsΛ are i.i.d. Now, write

ZM= Σ ί
seMk

and take the conditional expectations

( λ(K )β \ k~2

λyκs\]s]

Defining the sequence of random variables Wk(β) = Zk(β)/φ(β)k, one sees immediately
that {Wk^k}ksN is a positive martingale, hence it converges to a random variable
W(β) with O^W(β)<oo. The statement follows trivially because φ(β)<l for
0>l/2.

ii) Denote by Mk(β, δ) the random set

Mk(β, δ) = {seMk:λ(Ks)
β ^ δk}

for 0 ^ δ ^ 1. It is easy to establish the inequalities

δkE{c2LϊdMk{β,δ))^φ(β)kSk sup

Therefore, if β < βc, φ(β) > 1 and it is possible to find some integer k and some
(Se[0,l] such that δkE(czrdMk(β,δ))> 1. Then using the Lemma A.3 of the
Appendix and the fact that zω Φ 0 , it follows that for β < jSc,ρ{\Z^(β) = oo}) = 1.
Now, by the standard theorem on the branching process, stating that either W = 0
almost surely or {PF>0} = {Z= oo} almost surely [1], we establish that W>0
a.s. •

Using the identification oϊZ(β) with Jf β(zω) as explained in the previous section
one has the

Corollary 3.3. The Hausdorff dimension of the zero-level set of the Brownian bridge
is a.s. 1/2.

The previous theorem, showing that the partition function vanishes at low
temperature, is the first step towards proving the existence of a phase transition.
Actually, if there is a phase transition the partition function vanishes, by the Lee
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and Yang theorem. However, vanishing of the partition function is not a sufficient
condition since models can be imagined where the partition function vanishes but
which do not present any phase transition; it must be proved that there are in fact
more than one state at low temperature. The existence of many states at low
temperature in the thermodynamic limit is shown in the next section. Here, the
definition of the state, adapted from [7], is given.

Definition 3.4. The "finite-volume''' state is a random probability measure π on the
measurable space ([0, l ] ,#([0,1])) defined for every Ae^{[0,1]) by

The problem as usual is the thermodynamic limit (N->oo). As far as N is finite
πβ,N i s w e U defined (unique). In the limit N -+ oo the probability measure πβ remains
well defined if Z(β) > 0 (i.e. at high temperature) but it may fail to exist if Z(β) — 0.

Instead of exploring the whole Borel σ-field ^([0,1]) it is enough to study
πβfN(Ds) for every seMk with N^k and eventually take the limit N-^oo. An
important role in the intermediate technical steps is also played by the unnormalised
random measure μβtN on ^([0,1]) defined for every AE&([0, 1]) by

μβ.NW= Σ λ(Ks(ω)nAγ.
seMN

4. Study of the Free Energy and the States in the Thermodynamic Limit

The finite-volume free energy is defined as usual to be the random variable

This section is devoted to the study of the limits \imfk(β) and " l i m " π M .

4.1. Self-Averaging and Unicity at High Temperature. It is generally believed [22]
that when dealing with disordered systems, the annealed—i.e. lim(l//c)log£(Zfc(/J))—

and quenched—i.e. lim(l//c)£(log Zk(β))—averages of the free energy coincide at
fcjσo

high temperature. This phenomenon is known as the self-averaging property of the
free energy. Here, an even stronger result is shown in the following

Proposition 4.1. (Strong self-averaging property). For β < βc, f(β) = limfk(β) is
/cfoo

almost surely a constant equal to the annealed mean.

Proof The annealed average is logφ(β) because E(Zk(β)) = E(Zk(β)\^0) = φ(β)k.
Now, for β < βc the limit limZk(β)/φ(β)k = W(β) is almost surely 0 < W{β) < oo as

shown in Theorem 3.2. Hence, lim(l/k)(Zk(β)/φ(β)k) = 0 a.s. •

The other important, but immediate, result at high temperature is summarised
in the following
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Proposition 4.2. (Unicity). For β < βc, there is an almost surely unique random
probability measure πβ on ^([0,1]), obtained as limit of %βk for fcfoo.

Proof Fix A to be a dyadic interval Dt with leMN,N < k and write

λ(KsnAγ/φ(β)k

"'•*v~' zk(β)/φ(βf •

Both the numerator and the denominator are positive martingales, therefore they
converge respectively to the random variables w(A) and W. By Theorem 3.2, W > 0
a.s. and by the positive martingale convergence Theorem, 0 ^ w(A) < oo. Hence
the ratio w(A)/W is a well defined random variable πβ(A) ^ 1 and πβ([0,1]) = 1.
Thus, πβ( ), defined on the dyadic intervals, can be uniquely extended to a
probability measure over ^([0,1]), for β < βc. Hence, the limit lim πβtk exists and

is a probability measure on J*([0,1]). •
/cfoo

4.2. Existence of Many Limits and Lack of Self-Aver aging at Low Temperature. The
natural question whether the self-averaging fails at low temperature is answered
in the following

Theorem 4.3. (Lack of self-aver aging). For β sufficiently larger than βc,

K Zk(β)
a s

Proof. Write

Zk(β)

J
where Xsj = λ(Ksli+ι)/λ(Ks{ι). Therefore,

Wk(β)= X exp \β
k-1

exp

where Ysi = logXsi-E(logXsi). Notice that Xs4 are i.i.d. and so are the
quantities Ysi. Now, E(Ysi) = 0 and £( |y s > ί | )< oo; by the law of large numbers

k l

lim k
k-l

r

si = 0 a.s. Consequently,

" p({|7k |>ε/c})<(X)
k=ί

for every ε > 0, by Borel-Cantelli lemma. Write | Yk\ =

fc-l

. Thus,

k

V y
= 1

/ c - 1

Σ *

VII

k

ΣY<
i=ί

>εfc/2ic{|y)I|>ε/c}and

ΣP
k=l

>ε/c/2> < oo.
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Now, p X zxpiβΣYi) > 2kQxp(βεk/2) < 2 f cp(lΣ y*l > εfc/2). Choosing ε > Iog2

it is possible to render p(| Yk\ > εk) < 2 kk 2. By Borel-Cantelli it follows that the
event {Qxp(βYιYi)>2kQxp(βεk/2) i.o.} is a null set. Otherwise stated, it happens
that £ exp(βΣYi) ^ 2kexp(βεk/2) occurs infinitely often. Substituting, we get

seMk

lim sup i log Wk < £(log Xβ) - log E(Xβ) + β log 2/2.

The proof is completed by noticing that £(log Xβ) - log E(Xβ) + β log 2/2 can be
made strictly negative for β sufficiently large (larger than βc). •

The next important question that has to be answered is whether at low
temperature there are many states or not. It will be shown that in general (i.e. if
A = 0 and A φ [0,1]) the sequence {πβk(A\ fceN} admits at least two subsequences
converging almost surely to different limits, if β is sufficiently large.

Before stating the main result, two particular subsets of M* are introduced
that can be easily visualised of one thinks of elements of M* in terms of branches
of a dyadic tree. For every seM*, the set umb(s) = {ίeM*:ί | ) s | = s] is called the
umbra of s and the set pen(s) = {ίeM*:3n, with 0 < n S \s\ s.t. VΪ ̂  n9s\t = ί | J is
called the penumbra of 5.

We need furthermore the extension of the Borel-Cantelli lemma to the case of
non-independent events.

Lemma 4.4 (Conditional Borel-Cantelli lemma). Let (Ω, 3F, p) be a probability space
and {An,neN} be a sequence of events adapted to the filtration

ί 1
i.e. An is 3Pn measurable. Then the sets {An,i.o.}, < £ p(An\&r

n-ί)= oo >, and

( J
n=l

1
p(An\^n_2)=co } are a.s. equal

Proof. Apply Lemma A.I of the Appendix to the bounded random variables

*» = W •
A technical result is summarised in the following

Lemma 4.5. Let (ί2, J^,p) be a probability space and {Xn,neN} be a sequence of
random variables ί2—>R adapted to the filtration \β* n <=^, neN}. Fix some Borel
set Ae&(R) and denote by An = {XneA}. The sequence of random variables {Yn, neN}

defined by Yn = ^ p{Ai + 1\!F^ is a non-negative submartingale with respect to the

filtration {J% c &, neN}.

Proof Xn being adapted, the events An are obviously $Fn measurable. Therefore,
Yn are adapted to J%. Now,

1\^n)= Σ
l

The main result of this subsection is summarised in terms of the following
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Theorem 4.6 {Non-Unicity). Fix A = [0, l/2[ c K. For every εe]0, l/4[ there is a
β0 = βQ(e) > βc such that

lim sup πβtk(A) — lim inf πβtk(A) ^ ε

farβ>βo(ε).

Proof. Since the sequence of nβtk(A) is bounded, there is at least one converging
subsequence. It will be shown that there are at least two subsequences converging
to different limits. The proof uses essentially the upcrossing-downcrossing in-
equalities in the reverse way of the one used in the standard proof of the martingale
convergence theorem.

Write

ZN(β)= Σ
teM*

Σ
teMNnumb(A) tepenμ)\umb(Λ)

teMN

where umb (A) = (J umb (s) and pen (A) = (J pen (s). The particular choice of
s:Ks<=A s:Ks<=A

the set A is such that pen (A) = umb (̂ 4) and the same holds for the set Ac = K\A,
hence the second term in the above sum vanishes and

Choose a = 1/2 — ε. We show that nβk(A) < a happens infinitely often. The difficulty
here is that πβ^-^A) and nβk(A) are not independent random variables. Hence
the standard Borel-Cantelli lemma is of no use. Consider therefore the sequence of
events

It is easy to see that {πβ>k(A) <a} = Ak and moreover Ake3Fk. By Lemma 4.5,
k

the sequence of random variables Yk= ]Γ p{An\^n^1) is a submartingale. By
n = l

Doob's decomposition theorem (see [8] for instance), it can be written as
Yk = Mk + Ik, where Mk is a martingale and Ik is an increasing process given by
Ik = p(Ak+ί \βΓ

k_1). The process Ik being increasing, it is enough to show by explicit
computation that for β sufficiently large p{/2 > θ} = 1, for some positive θ, since
then Σp^fc + il^fc-i) = °° a n d by the conditional Borel-Cantelli Lemma 4.4 the
event Ak happens i.o •

5. The Critical Point

The study of the critical point presents a particular interest because the probability
measure corresponding to the thermodynamic limit can be explicitly constructed.
Moreover, the unnormalised measure—related to the problem of self-intersections
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of random walks—was at the origin of the present study [17]. Namely, the
unnormalised measure is proportional to the local time at zero.

In the Introduction, the notion of local time was given formally in terms of
intuitive definitions. Here precise statements are made.

Definition 5.1 [15]. The occupation time for the Brownian bridge is the random
measure Γt( ,ω) on J*(R) defined for every Borel set A by

for O ^ ί ^ l .

Definition 5.2. // the random measure Γt{\ ω) is absolutely continuous with respect
to the Lebesgue measure λ, the local time Lt is defined as the Radon-Nikodym
derivative dΓjdλ.

Remark. The previous definition means that for every Ae&(K) and 0 ^ ί ^ 1,

Γt(A, ω) = j dxLt(x, ω).
A

The main result of this section follows:

Theorem 5.3. There is a positive constant c and a function h given by the formula
h(y) = (j; log I log y\)112 on R + for which

for O ^ ί ^ l .
Before proceeding to the proof of this theorem some comments should clarify

its significance. In the previous sections we used as a priori measure on the intervals
[α, ft], 0 ^ a ^ b ^ 1 the Lebesgue measure λ([a, b~]) = b — aAi instead of λ we use
some set function

(m is not a measure) and construct the corresponding probability measure π ( ^ ω ( )
on ^ ( [ 0 , 1 ] ) by adapt ing the Definition 3.4, the previous theorem states that every
interval [α, b] c [0,1] (i.e. every configuration) has a probability

π ( m ) L & ( 0 , ω ) - L α ( 0 , ω )
1 / 2 ' ω ' 1^(0,0))

The interest of the previous formula stems from the fact that the local time can
be computed by other methods [24,18,29] thus it provides an explicit construction
of the limit probability measure!

Definition 5.4 [5]. A process Yt is stable if its characteristic function χ(z;ή =
Eexp(izYt) can be written as

- φ | α 1
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where 0 < α ̂  2, |β\ ^ 1, c = c(ί) ̂  0

g | | ,/ α = l '

α Ϊ5 cα/kd £/i£ order of the process.

Lemma 5.5. The Brownίan bridge Bt over [0,1] is a stable process of order 2 with
β = y==θand c(ή = ί(l - ί).

Proof Let {X^ieN} be a family of i.i.d. random variables uniformly distributed
n

on ]0,1] and form the family of random variables Yn

t=n~112 ]Γ H {Xi< ί } — nll2t.
i=l

Yn

t converges in law to Bt [14]. Moreover the distribution function of Yn

t

is infinitely divisible since Eexp(izY") = \_fni
z)Ύ with fn(

z) = [ίexρ(ϊzrc~1/2) +
(1 -ί)]exp( — ίzn~1/2t). Therefore the characteristic function of Bt is χ(z;t) =
exp(-z 2 ί ( l - ί ) ) D

Theorem 5.6. Suppose Xt is a stable process of order α > 1 on the line with zero-level
set zω and local time at zero Lv Then there is a finite positive constant c depending
on the parameters of the process such that almost surely

for all t ^ 0, where h(y) = /(log | logy I ) 1 " 0 andθ=l- 1/α.

Proof See Theorem 1 of [26]. •

Proof of Theorem 5.3. The proof is an immediate consequence of Theorem 5.6 and
Lemma 5.5. •

6. Conclusion

It is shown in this paper that the model of disordered system considered here
presents a phase transition at a critical temperature. Above the critical temperature
the partition function does not vanish, the state is unique and the free energy has
the self-averaging property. Below the critical temperature it is established that
the partition function is zero; this is the starting point for showing that there are
many states in the thermodynamic limit and that the free energy has not any
self-averaging property. The methods used here are probabilistic.

The results proved here are in agreement with the results in [7] for a closely
related model of multiplicative chaos. However, in spite of the formal similarities
between the two models there are also important mathematical differences and
the method used here to prove the multiplicity of the states at low temperature is
different from the methods used in [7].

Is the method used here applicable in other disordered systems? Although the
model considered is very special and cannot be transplanted as it stands to other
situations, the probabilistic methods used to study it are very general and can be
adapted.

It is worth recalling some genuine problems that still remain open. It is proved
that there are at least two states at low temperature. How many states exist actually?
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It is believed that there is an infinite number of them but this is not proved. More
fundamentally, what can be interpreted as a physical phase is an extremal
thermodynamic state. Is there a procedure for selecting extremal states in the limit?
Some very preliminary results seem to indicate that for this particular model there
are only finitely many extremal states. Other closely related models should
admit—by the same arguments—infinitely many states. Work in this direction is
in progress. In case it is firmly established that there are infinitely many extremal
states, here or in similar models, there is still a remaining open problem, namely
the Choquet theory of infinitely many extremal states.

The thermodynamic state that arose at the critical point is well characterised;
the corresponding probability measure can be written in terms of local time. It
should be interesting to obtain explicit expressions for the probability measures
at other temperatures.

In summarising, one can say that although some questions are rigorously
answered in this work there are many important problems that still remain open.

A. Appendix

A.l. The Bivariate Distribution. In Sect. 2 the random times βt and yt straddling
t were introduced for the Brownian bridge. These definitions are generalisations
of the corresponding definitions for the Wiener process Wt; in fact it is in the
context of Wiener processes where the random times β't and y't straddling t are
initially introduced.

Now, use an equivalent definition of the Brownian bridge in terms of the Wiener
process given by

Bt=Wt- tWι

for ίe[0,1]. From the invariance of the probability distribution under the
transformation Wt ->tWί/t and the Proposition 3 of [6] stating that for 0 < x < t < y

Prob (y'tedxj'tedy)= d%dy

one obtains [19] for 0 < x9y g 1/2,

p(γtedx,l-βtedy) = - % y

Iπjxyil -x-yΫ

This last formula immediately leads to the form for the bivariate distribution of
L-L) and λ(K2) claimed in the proof of Lemma 3.1.

A.2. A Useful Lemma

Lemma A.I. Let (Ω,lF,p) be a probability space with a filtration {J% c «^
on it, and {xn} a sequence of positive random variables adapted to J%. Let
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= x0 + £(*! I J%) + £(x2| J%) + £(x3| J M + ••• + £ ( x ^ n _ 2 ) ,

Denote by X<£ = lim Xψ and by Aj = {X<£<0o}. Then, A , s 4 _ , c . . . c i 0
n-* oo

almost surely. If moreover xn are bounded uniformly (in n% these sets are almost surely
equal.

Proof Y{jlj+1= X{

n

j~1] - X{

n

j) is a martingale and the random variable T$ =
inf {n\Xψ > N} is a stopping time. The proof is completed by repeatedly applying
j times Theorem 46 of [8].

A3. Branching Process Associated to the Random Recursive Construction. Given
the random recursive construction on M* define for every δ with 0 < δ < 1/2 the
random set

Mk

δ = {seMk:Xs]ι > δ, Vi = 1,..., k},

00

and consider the limit Mf = (J Mk. The random graph Mf is isomorphic to the
k = 0

tree associated to an ordinary branching process having as progeny a random
variable with the same distribution as the random variable N = card {JGM:XU) > δ}.
Obviously N takes on the discrete values 0,1, and 2 = card M. Now the following
is known from the standard theory of branching processes [1]:

Theorem A.2. If E(N)> 1, there is a strictly positive probability for the branching
process not to become extinct.
This theorem is used in [11] to prove a result about flows on random networks.
Rephrased in the present case this result can be stated in the form of the following

Lemma A.3. If in a random recursive construction there is a δ with 0 < δ ^ 1 and a
positive integer k, such that

δkE[ c a r d \ s e M k : f\Xsl> δk\) > 1,

then the corresponding branching process Mf has a strictly positive probability not
to become extinct.
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