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Abstract We introduce quadratic Poisson structures on Lie groups associated
with a class of solutions of the modified Yang-Baxter equation and apply them
to the Hamiltonian description of Lax systems. The formal analog of these
brackets on associative algebras provides second structures for certain
integrable equations. In particular, the integrals of the Toda flow on generic
orbits are shown to satisfy recursion relations. Finally, we exhibit a third order
Poisson bracket for which the r-matrix approach is feasible.

1. Introduction

The classical r-matrices were first introduced by E. Sklyanin in [17] and [18] as
limits of their quantum counterparts. Subsequently, this has led V. G. DrinfeΓd to
introduce a new geometric concept, that of a Poisson Lie group [7]. The relevance
of these notions in the study of classical integrable systems was recently explained
in two fundamental papers of M. Semenov-Tian-Shansky [15,16]. By abandoning
the classical Yang-Baxter equation in favor of the modified Yang-Baxter equation
(mYB), the result is a unification of the generalized Adler-Kostant-Symes
procedure and the method of the Riemann problem [15]. Furthermore, in the
second half of [15] and in [16], it was revealed that the r-matrix approach is
naturally associated with a class of quadratic Poisson structures commonly referred
to as the Sklyanin brackets. These quadratic Poisson structures on Lie groups
(and modifications thereof [16]) are associated with skew symmetric solutions of
(mYB) and give rise to a geometrical theory of Lax systems and dressing
transformations. On the other hand, their formal analog on associative algebras
provides an abstract version of the "second Hamiltonian structure" for equations
of KdV type as conjectured by Adler [2] and proved in [9] by Gelfand and Dikii.

It is the purpose of this paper to extend the theory of Lax systems and the
construction of "second Poisson structures" in [15] and [16] to a wider class of
r-matrices. This will be carried out in Sects. 3 and 4 below. Instead of assuming
the r-matrix ReEndg to be skew symmetric, we shall assume that R and
A = j(R — R*) are solutions of (mYB). Here, the choice of this particular class of
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r-matrices is motivated by applications (see, for example, [12] and Proposition 4.2
below). In Sect. 3, we construct a theory of Lax systems for r-matrices which satisfy
our assumption. This is accomplished by means of a twisted Poisson structure
{ , }τ on the group G, where τ is an orthogonal map on g which commutes with
R. In particular, for τ = l , the corresponding Poisson structure is an analog
of the Sklyanin bracket. In contrast to the theory in [15], when the r-matrix is
not skew-symmetric but satisfies our assumption, the Poisson structure for the
associated Lax systems is not a product structure (cf. Theorem 11 of [16] and
Theorem 3.6 below). In Sect. 4, we consider the formal analog of the Poisson
structure { , }τ, τ = 1, on associative algebras. As in [15], the bracket is compatible
with the Lie Poisson structure associated with the generalized Adler-Kostant-
Symes scheme and gives rise to equations in Lax form. If we take g to be gl(n, R),
and let R be the r-matrix for the Toda flow [6], then R verifies our assumption
and the quadratic bracket provides a second Poisson structure for that system. In
[6], the Toda flow was shown to be completely integrable on generic coadjoint
orbits with \n{n — 1) independent integrals. The rest of the section is devoted to
proving recursion relations for this collection of integrals. Here, we find n recursion
relations, one for each of the n coadjoint orbit invariants, and the result implies
the involution of the integrals in both structures. With a little more work, one can
in fact establish the integrability on the generic symplectic leaves of the second
structure. Finally, in Sect. 5, we make an attempt to construct higher order
structures on associative algebras. The main result is a cubic Poisson structure
such that the Hamilton's equations associated to ad-invariant functions are in Lax
form-. Moreover, this cubic structure is compatible with the quadratic bracket of
Sect. 4 and the Lie Poisson structure mentioned earlier. In contrast to the quadratic
case, the r-matrix here is only assumed to satisfy (mYB). The investigations in
Sects. 4 and 5 naturally lead to the following question: Is there a natural hierarchy
of Poisson structures in the r-matrix approach and if so, what implications does
it have towards the complete integrability of the Lax equations?

Some of the results proved in this paper have been announced in [13].

2. Preliminaries

In this section, we provide the reader with some basic results and constructs which
will be used throughout the paper. The material is based mainly on the work of
DrinfeΓd [7] and Semenov-Tian-Shansky [16]. In the sequel, we consider Lie
algebras g which are equipped with nondegenerate invariant pairings ( , •). We
allow dimg = oo, in which case we assume, wherever necessary, that there exists
a corresponding local Lie group. This assumption is valid, for example, if g is a
Banach Lie algebra [4].

A. The Modified Yang-Baxter Equation and Squares of Baxter Algebras

Definition 1. A linear operator R e End g is called a classical r-matrix if the formula
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defines a Lie bracket. We shall denote by gR the algebra g when equipped with
the bracket[ , ] Λ and call the pair (&gR) a double Lie algebra.

An important sufficient condition for [ , ] Λ to define a Lie bracket is given by
the modified Yang-Baxter equation

(mYB) IRX,RY] -R&RX, Y] + IX,RY])=- IX, Yl

This choice is motivated by the following equivalent statement:

R± -UR ± 1):8R-*Q a r e a L i e a l g e b r a homomorphisms,

which allows one to obtain the solution of certain dynamical systems by
factorization problems. Note that a large number of Hamiltonian systems which
are related to Lie algebra decompositions [3,8],

g = α ® b (vector space direct sum), [α, α] c α, [b, b] c b,

are in this category as R = Πa - Πh (where Πa, Πh are the projections relative to

g = α©b) is a solution of (mYB).

If G l o c and (<JR)1OC denote the germs of local Lie groups corresponding to the

Lie algebra g,g* respectively, then there exist homomorphisms K±:(GΛ),o c->G l o c

such that TeR± = R±. For he(GR\^ (XegR), we shall write h± = R±(h)

(X±=R±X). Now, consider the map m:(GR\oc^Gloc:g^g+gZ1 Since Tem =
R+ -R_ = 1, this allows us to identify (GR) l o c with G loc. Thus we shall write

g = g+gZλ and if * denotes the group operation in (GΛ) I o c, then g*h = g + hgZ1.

Definition 2. A double Lie algebra (g, gR) is called a Baxter Lie algebra if R satisfies

(mYB) and R = - R*.

The square of a Baxter Lie algebra (g, gΛ) is defined as follows. First, we put

δ = g © g and equip it with the ad-invariant pairing

Let δg c δ be the diagonal subalgebra and embed gκ c; δ via X\-*{X + ,X-\ Then
δ = ό g 0 g R as a linear space therefore, if P θ g and P^R denote the projections onto
δg and gR respectively, it follows that

is a solution of (mYB) which is skew-symmetric relative to < , >. The Baxter Lie
algebra (<5, δR) is called the square of (g, gΛ). We shall let £>loc denote the germ of
local Lie group corresponding to δ. Note that (GR) l o c c; D l o c via g^(g+,g^\

B. Poisson Lie Groups and Poisson Reduction

Definition 3. A Lie group H equipped with a Poisson structure is called a Poisson

Lie group if group multiplication is a Poisson map from H x H (equipped with

the product structure) into H.
Let I) = TeH. For φeC^iH), we define the left and right gradients Dφ, D'φeί) by

at
φ{e'xg\ (D'φ(g),X) = ~ φ(getx\
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Writing the Poisson bracket on H in the right invariant frame:

we have (//, { , }H) is a Poisson Lie group if and only if the Hamiltonian operator
η:H ->Endί) is a 1 cocycle of// for the Ad-action, i.e.

In particular, the condition η(e) = 0 allows one to define the tangent Lie algebra
structure [ , ] + on I) (irrespective of whether H is a Poisson Lie group or not):

where

and (7,Z) = # ( β ) Z, Zeί).{X,Z) dφ{e)Z and (7,Z) # ( β ) Z , Zeί).

Let R,R'eEnd\) be skew-symmetric solutions of (mYB), we have

Theorem 4. {φ9 φ }{R Rt) = \(R(Dφ\ Dφ) + \{R'{D'φ\ D'φ) defines a Poisson structure
onH.

If we let H(RRf) = (H,{ , }(Λ>1Π), then in particular, H(R _R) is a Poisson Lie
group whose tangent Lie algebra is ί)R. The Poisson bracket { , }(R _R) is known
as the Sklyanin bracket.

Definition 5. Let G be a Poisson Lie group, M a Poisson manifold. A Lie group
action Φ:G x M-*M is called a Poisson group action if it is a Poisson map from
G x M (equipped with the product structure) into M.

Remark. The notions of Poisson group actions and reduction are different from
the more familiar ones considered, for example, in [1] and [11].

A useful proposition in Poisson group reduction is

Proposition 6 [16]. Let Φ:G x M-+M be a left {right) Poisson group action. Let
HczG be a connected Lie subgroup. If [I)1

5f)"L]* cz ί) 1, then the algebra CH of
H-invariant functions is a Lie subalgebra of C^iM), i.e. Φ\H x M is admissible. In
this case, there exists a unique Poisson structure on the quotient H\M {M/H) such
that the projection is a Poisson map.

The Sklyanin bracket admits such a reduction theory [16]. Indeed, the
description of its symplectic leaves is based on the construction of a dual pair
which involves the symplectic manifold {Dloc\RδRδ). We now give the definition of
a dual pair due to Weinstein [19,20].

Definition?. A pair of constant rank Poisson maps P1

< S >P2 from the

symplectic manifold S to the Poisson manifolds P1 and P2 is called a dual pair if

either of the following equivalent conditions is satisfied:

(i) π*C°° ( P J and πfC 0 0 (P2) are mutual centralizers in C°°(S),
(ii) at each xeS, ker Txπ1 = 1

The dual pair is said to be full if πί9π2 are submersions onto Pγ and P 2
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3. Twisted Poisson Structures on G and Application to Lax Systems

Let G be a Lie group whose Lie algebra g is equipped with a nondegenerate
invariant pairing ( , •). In this section, we give a new class of Poisson structures on
G associated with r-matrices ReEndq which satisfy the basic assumption:

(H) i? and i = \(R - R*) are solutions of (mYB).

We then apply these structures to the Hamiltonian description of the associated
Lax systems. Clearly, the skew-symmetric solutions of (mYB) are among those
which satisfy hypothesis (H). Therefore, our results are extensions of the work of
V. G. Drinfel'd [7] and M. Semenov-Tian-Shansky [15,16].

Before describing an important consequence of the basic assumption (H), we
shall provide the reader with some concrete examples of r-matrices which verify
the hypothesis.

Examples Associated with g = gl(n, U). In the first two examples, equip g with the
ad-invariant pairing (X,Y) = trXY, and let

I = the algebra of real, lower triangular matrices,
u = the algebra of real strictly upper triangular matrices,
ϊ = the Lie algebra of real, n xn skew-symmetric matrices.

1° We have g = I®u. If ΠhΠu denote the associated projection operators, then
R = Πι — 77U satisfies the assumption and indeed, A(X) = X+ — Jf _, where X± is
the strict upper/lower triangular part of X. Thus A is a solution of (mYB).
2° For the decomposition g = ϊ © I, the corresponding r-matrix is R = Πt — Πx.
As in the first example, A(X) = ±(R - R*)(X) = X+ - X_.
3° Let § = g c ® CPi jh" 1 ] equipped with the nondegenerate invariant pairing

For any r-matrix ReEnd g c which satisfies the basic assumption (H), we associate
the operator KeEndg:

RX(h) = - £ Xih* + RX0 + £ X(h\ X(h) = £ Xft.
i<0 ί>0 i

Then clearly, R is a solution of (mYB). Since .R*£Endg is given by

R*X(h) = Σ χth' + R*xo ~ Σ * M ^(h) = Σ xiti>
ί<0 i>0 i

we obtain

AX{ti) = ̂ (R - R*)X{h) = - ^ xihi + AXo + Σ xiti-
i<0 i > 0

Therefore, A is also a solution of (mYB). This shows R is an r-matrix which verifies
hypothesis (H).

Remark. The first two examples above are clearly related the the root space
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decomposition and the Iwasawa decomposition, and therefore the results can be
adapted to other classical reductive Lie algebras as well. For further examples, we
refer the reader to the Appendix.

Lemma 1. Let S = ^(R + R*), then under the basic assumption (H), ̂ S:gA^»g is a
Lie algebra homomorphism.

Proof. We must show [_\SX,\SY]=\S[X,Y~\A, i.e., [(R + R*)X,(R + #*)Y] =
{R + R*)([X,(R - R*)Y] + [(R - R*)X, Y]). From the identities

(a) (R + R*)([X,(R-**)Y] + ί(R-R*)X, Y]) = (R-R*){IX,(R-

+ [(R - R*)X9 Y]) + 2R*(IX,Λ Y] - [R*X, Y]) + #*([#X, Y] ~

(b) [(R + R*)X,(R + R*)Y] = [(R - R*)X,(R - R*)Y]

and the assumption that A is a solution of (mYB), we have

[(R + R*)X9(R + Λ*) Y] - (Λ -h R*)([X,(R - R*)Y] + [(R - R*)X, Y])

= - 4[X, Y] + 2([R*X,R7] - R*[X,RY] - R*[R*X, 7])

+ 2([RX,R* Y] - R*[RX, Y] + R*[X,R*Γ]).

To complete the proof, it suffices to show

- R*tX,RY] -f R*IR*X, Y] = [X, Y].

But this is just an equivalent way of asserting that R is a solution of (mYB), as
can be easily verified. Π

Remark. Conversely, if JeEndg is a skew-symmetric solution of (mYB) and
| 5 : g j ^ g is a Lie algebra homomorphism which is symmetric, then J + S is a
solution of (mYB).

Theorem 2. Let τeAut(G) whose induced map on g (denoted by the same letter) is
orthogonal and commutes with R.

(a) The formula

{φ,ψ}τ = \(A(D'φ\ D'φ) - \(A(Dφ\ Dφ) + £(τ°S(2ty), D'ψ)

defines a Poisson bracket on G. If τ2 = 1, its tangent Lie algebra is gA+τoS-
(b) If φ is invariant under twisted conjugation g-*hg(τ(h))~1,g9heG, the equation
of motion defined by the Hamiltonian φ in the structure { , }τ is given by

g = ±TeRg(R(Dφ(g))) - \TeLg{

(c) Let h+(t) be the solution of the factorization problem

e x p ( - tDφ(g0)) = h^ty'h^tl (h+(t),h4ή)eGR9

for those values of t for which the left-hand side is in the image of the map m in Sect.
2A. Then the solution of the initial value problem associated with the equation in
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(b) is given by

g(t) = h+{t)goτ{h+{trι) = M

(d) Functions which are invariant under twisted conjugation commute in { , } r

Proof.

(a) The formula clearly defines a skew-symmetric bilinear form on C^iG) which
is a derivation in each argument. To complete the proof, it remains to verify the
Jacobi identity. This makes use of the basic assumption together with Lemma 1,
but we will omit the details here as we are going to describe the reduction theory
in the next theorem. Writing the bracket in the right invariant frame, we find that
the Hamiltonian operator is given by η(g) = ̂ Adg°A°Adg-i — \A + \kάg°τ°S —
\τ~ι°S°kάg-u If τ 2 = 1, then η(e) = 0. From Sect. 2B, it follows that the tangent
Lie algebra structure can be defined on g and a direct computation shows that it
is given by [ , ] A + τ o S .
(b) If φ is invariant under twisted conjugation, we have D'φ = τ°Dφ. Therefore,

- (Dφ(gl TgRg^Xφ{g)) = {φ9 ψ}τ(g) = ±(Dψ{g), AdgoAoτ(Dφ(g)) - A(Dφ(g))

+ AdgoτoS(Dφ(g))-S(Dφ(g)))

dgoτoR(Dφ(g)) - R{Dφ{g))\

from which it follows that Xφ(g) = \TeRg(R{Dφ(g)))-\TeLg(τoR(Dφ(g))).

(c) This can be checked by direct differentiation. See, however, the remark after
Corollary 5.
(d) This follows easily from the assumptions on τ and the invariance
properties. Π

Remarks.

(a) When τ = 1, the Poisson bracket { }τ is the analog of the Sklyanin bracket
for the class of r-matrices which satisfy hypothesis (H). It provides first of all a
Hamiltonian description of the Lax equation g = \TeRg{R(Dφ(g))) — \ TeLg(R(Dφ(g)))
corresponding to a central function φ. Furthermore, when R = — #*, it reduces
to the Sklyanin bracket.
(b) In general, the group G equipped with the twisted Poisson structure { , }τ is
not a Poisson Lie group. This fact can be obtained from the explicit form of the
Hamiltonian operator η in the proof of (a).
(c) The inversion map r.gh^g'1 satisfies {φ°ι,ψ°ι}τ= — {φ,ψ}τ-i°ι,φ,ψeCco(G).
In particular, when τ 2 = 1, i is an anti-Poisson map.

We now describe the reduction theory of the twisted Poisson structure. In the
next lemma and theorem, we shall deal exclusively with germs of local Lie group.
To simplify notations, the image of a Lie group under the localization functor will
be denoted by the same symbol. Thus, from Lemma 1, the Lie algebra
homomorphism ^S\QA-+Q can be lifted up to a group homomorphism σ:GA-+G.
Modifying the action of the Poisson Lie group GA on DiAδtAδ) (D = G x G and Aδ

is defined as in Sect. 2A) by left and right translations, we consider the maps
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p,q:GAx D-+D defined by

Then p is a right action and q is a left action.

Lemma 3. The actions p and q are admissible, i.e. the invariant functions on D(AδiAδ)

for these actions form subalgebras.

Proof We shall prove the assertion for p. First of all, by combining left and right
translations, we get a Poisson group action:

D(Aδ,Aδ)
 X Φ(-Aδ,Aδ)

 X D(-Aδ,Aδ))^>

Now, embed GA into D(_Aδ,Aδ)x D(__A^Aδ) via ^ ( ( τ " 1 (<%)), τ 'Vte))), {g+,g-))
and embed §A into ^ ® ί ^ via the differential of this map. By Proposition 2.6,
to show p is admissible, it is enough to show gA c (5^ © <5̂  is a Lie subalgebra. Now,

Since δAδ = ĝ θ 9^ (Lie algebra antidirect sum), it suffices to show that

i S o τ f a i H - ^ and | S ° τ f o 2 ) = - £ ' 2

implies \S°τ( — {_ηl9η^\A) = ~ [£Ί>£2] But this follows from Lemma 1 and the
assumptions on τ. •

From Lemma 3, there exist unique Poisson structures on D/GA and GA\D such
that the projections pr:D-+ D/GA, Pi'.D-* GA\D are Poisson maps. If we now identify
the quotients with G, then

pAx, y) = τ " H φ Γ VΓ 1)x(x~1y)+ and Pι(x, y) = (xy-1)-

Theorem 4. Under the assumptions of Theorem 2,

(a) The reduced Poisson structure on D/GA~G is the twisted Poisson structure { , }τ.
(b) Le/ί GA-invariantfunctions and right GA-invariantfunctions commute in D(AδίAδ).

Proof

(a) Let φ,\j/eC™{G) and set φ = φ°p r, ^ = ^°p r. Then φ,$ are right G^-invariant
functions on D and the reduced bracket on D/GA ~ G is given by

{φ^K dM = <Aδ(Dφ(x,x)),Dψ(x,x)} + <^(

To simplify notations, let X = Dφ(x), X' = D'φ{x\ Y = Ity(x), Γ = JD>(x). Since
the subspaces 5g and g^ of δ are isotropic with respect to < , >, we have

(Aδ(D'φ(x,x)\D'ψ(x,x)} =|(τ°S(X), r)-i(X',τ°S(Y)).

On the other hand, using the properties of A, S and τ, we find

£ f), Y') - (A(X\ Y) + %τ<>S(X)9 Γ)
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Putting the calculations together yields {φ,ψ}red = {φ,Ψ}τ, as asserted.
(b) Suppose φeC^iD) is right G^-in variant and ^eC°°(D) is left GA-invariant, then

(*) i τ " ^ S i Y , -X,)-X\_ + Y\ + = 0, \τ°S{Y'2_χ>2)-X2_ + Y2+ = 0,

where Dφ(x, y)=(Xu Yt), D'φ(X, Y)=(X\, Y\\ Dφ(x, y) = (X2, Y2) and D'ψ(x, y) =
(X'2, Y'2). Now,

p - {PβΛ(Dφ),Dφ} + < ,

-<PSΛ(D'φ),D'ψy,

and on using (*), we find

- <P5A{Dφ),Dψ> + (Pδp'φ), Vψ> = 0.

Similarly,

(PspφlDψy - (PQA(Ό'φ\D'ψ) = 0.

This completes the proof. •

Corollary 5. // G is finite dimensional, then

GA\D J±- D(AδίAό) -^ D/GA is a full dual pair,

and the symplectic leaf of (G, { , }τ) passing through xeG is given by
{τ~ V((τoσ(/z))- x x" xhxτ°σ{h))~ ^ ^xwihMwQi))- 1x'1hxτoσ(h))+ \heGA).

Proof. The maps pι and pr are submersions as T{x x)Pι(Z9 Z) = T(x x)pr(Z9 Z) =
Z, Ze TXG and the rank is constant on orbits. Since dim D = dim GA\D -f dim D/GA,
the first assertion is a consequence of Theorem 4(b). To prove the second assertion,
we apply a general result in [19], according to which symplectic leaves are obtained
by blowing up points in the double fibering GA\D<-D-^D/GA. From the explicit
expression for pb we obtain

from which the result follows. •

Remarks.

(a) When R = - R*, we have σ(G) = {e}. In this case, the actions p and q reduce
to left and right GR-translations considered by Semenov-Tian-Shansky and the
symplectic leaf passing through x is the orbit of an action, known as the dressing
transformation [16].
(b) Under additional assumptions on the r-matrix, we can obtain Theorem 2(c)
via reduction technique. Indeed, by modifying the argument in [16], we can
consider the action

g:(x, y^

where τ(X9Y) = (X,τ(Y)), M a = foA ίof"1, g±=R±(g). If we assume
R%lR*_X,RtY~]A = R*IR*X9R*TΓ\A (this is satisfied by Examples 1° and 2°



554 L.-C. Li and S. Parmentier

above), the action is admissible and the unique Poisson structure on GR\D ~ G
coincides with { , }t when R2 = 1. In this case, the integral curves
of the generalized Lax equation in Theorem 2(b) are images under the reduc-
tion map ρ:D-+GR\D ~G, (x,y)\-+τ~ί(y~ί)xy_ of an associated Hamiltonian
system on D. Such a description, however, is not available to us without the extra
assumption. So the general case remains open.

For r-matrices which satisfy the assumption (H), we now describe the
Hamiltonian character of the associated Lax systems. For this purpose, let

N

GN = G x ••• x G (N copies) and © # = ( J ) g . Equip (5N with the ad-invariant
pairing 1

(X, Y) = t (X* Yil * = ( * ! , . . . , X N ) , Y = (Y»..., YN)£®N,
i=l

and let τ:GNs(gl9... 9gN)\-+(g29... ΛNIΘI), a s m [16]. Now, extend the operators
R, JR*, etc. componentwise to (5N and denote them by the same symbols. Then
obviously, both ReEnd(5N and τeAut(GN) satisfy the assumptions of Theorem 2,
so that we can equip GN with the twisted Poisson structure. Thus we obtain

Theorem 6. If ReEnάq satisfies (H) and τ is the map defined above, then

(a) The twisted Poisson structure on GN takes the form

{φ, ψ}Hgl9..., gN) = \ Σ ( W D'jψ) - (A(Djφ), Djψ) + {S(Dj<p)9 D)_^)
7 = 1

where Djψ {D'.φ) denotes the j t h component of Dφ (D'φ)

(b) Let φ be a central function on G, φm9 T:GN-+G be maps defined by

Ψm(9) = 9ι'~Qm-u T{g) = ψN+ί{g)9g = (gl9...9gN). Then the Lax system

gj = ±TeRgR(AdM)-iD<P{T(g))) ~ ^TeLgjR(Adψj+ ιiβ)-ιDφ(T(g)))> J = h ,N

is the Hamilton's equation defined by hφ(g) = φ(T(g)) in the Poisson structure { , }τ

on GN.
(c) Let (hj)+(t) be the solution of the factorization problem

(hj)_(t))eGRfor those values of t for which the left-hand side lies in the image of the
map m in Sect. 2A. Then the solution of the initial value problem associated with
the Lax system in (b) is given by

gj(t) = (hj)±(t)(g0)j(hj+ ^(ty1, J = l JV.

In (a), (b) and (c), the subscripts j are taken mod JV. Π

Remarks, (a) In contrast to the theory in [16], when the r-matrix is not
skew-symmetric but satisfies our assumption, the Poisson structure (in Theorem
6(a)) for the associated Lax systems is not a product structure, (b) For an application
of the above theorem, the reader is referred to [12], where the equations in [5]
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are reformulated as a Lax system. Moreover, the complete integrability of the
equations on generic symplectic leaves is established.

4. Quadratic Poisson Structures on Associative Algebras

We now consider the formal analog of the bracket { , }τ with τ = 1 on associative
algebras.

Theorem 1. Let $ be the Lie algebra of an associative algebra for which multiplication
is symmetric with respect to some fixed nondegenerate pairing ( , •), i.e.

) = (Y,ZX\X, Y,Ze& IfReEndg satisfies (H), we have

(a) The formula

{F, H}(X) = &4(grad F(X)X), grad H(X)X) - \{A{X grad F(X))9 X grad H(X))

+ %S(X grad F(X)l grad H(X)X)

- §(%rad F(X)X), X grad H{X)\

F, HeC^ig), defines a Poisson structure on Q.
(b) The Poisson structure in (a) is compatible with the Lie Poisson structure
{F, H}R(X) = (X, [grad F(X), grad H(XftR).
(c) ad-invariant functions commute in { , } and the Hamilton's equation generated
by an ad-invariant function H is in Lax form

X = £R(X grad H(X)), X] = \_R±{X grad H(x)), XI

(d) // IX, grad F(Z)] ε(Im(R + I)) 1, [X, grad H(X)] e(Im (R - I))1, then
{F,H}(X) = 0.

Remarks.

(a) If there exist local Lie groups G, GR corresponding to the Lie algebras Q
and gR, then the hypothesis in part (d) are just the infinitesimal versions of the
invariance properties

F(Adg+X) = F(X\ H(Adg_X) = H(X), geGR,

(b) From the symmetry of the multiplication, it is clear that ( , •) is ad-invariant.
(c) Under the assumptions of part (d), we also have {i7, H}R(X) = 0. An application
of this fact can be found in [6].

Proof of Theorem 1.

(a) Clearly, { , } defines a skew-symmetric bilinear form on C°°(g) which is a
derivation in each argument. To verify the Jacobi identity, write { , } = { , }A +
{ , }s with the obvious meaning and let gradF t(x) = Lb i ^ e C 0 0 ^ ) , i= 1,2,3.
Then

= ( L ^ , IA(L2X)9 A{L3X)2) + (XL19 IA(XL3), A(XL2ft) + c.p.

= 0 (by mYB).
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In a similar way,

4{F1,{F2,F3}s}s(X) + c.p.

= {XLl9 [S{L3X)9 S(L2X)-]) + (LXX, [S(XL2)9 S(XL3)]) + c.p.

Finally, by using Lemma 3.1,

4{Fi, {F2, F3}A}S(X) + 4{F1? {F2, F3}S}A(X) + c.p.

= - (XLU [S(L3X), S(L2X)]) - (LXX, [S(XL2), S(XL3)]) + c.p.

This completes the verification.

(b) We use a device in [15]. Assume first that g is an algebra with identity. Pick
λeC and associate with FeC°°(g) the function Fλ defined by F\X + λl) = F(X).
Then grad F\X + λl) = grad F(X). A straightforward calculation shows that we
have the relation {F\Hλ}{X + λl) = {F,H}{X)+ λ{F9H}R{X). This shows the
right-hand side is a Poisson bracket. If g does not have an identity element, then
we adjoin an identity I to it and note that the formula in (a) defines a Poisson
bracket on the extended algebra g + C/, which is uniquely determined by its
restriction to a hyperplane λ = const.
(c) The first part of the assertion is a special case of (d) which will be proved below.
For the other part, note that ad-invariance implies X grad H(X) = grad H(X)X.
Therefore,

, H}(X) = &4[grad F(X)9 X\X grad H(X))

i , grad F(X)l X grad H(X))

- S)[grad F(X)9 XIX grad H{X))

= f (grad TO, IR(X grad H(X))9 X]).

(d) The assertion follows by noting that the bracket in (a) can be rewritten in the
form

{F, H}(X) = ̂ - ( g r a d F(X)X)9 [grad H(X\ X])

- |([grad TO, XIR+(grad H(X)X))

+ 1(R _(X grad F(X)), [grad H{X\ X])

- |([grad TO, XIRΛX grad H(X))). D

As an application of Theorem 1, we take g = gl(n, U) with the pairing (X, Y) ~ tr X7
and let # be the r-matrix in Example 2°, Sect. 3. Then Theorem 1 is valid. In
particular, if we take the Hamiltonian to be #i(M) = tr M, then the equation of
motion it generates is given by

M = i[(JTf - iT,)(M), M] = [77t(M), Λf ].

In other words, we have proved

Proposition 2. The Toda flow M = [iTf(M),M] is Hamiltonian relative to the
Poisson structures { , }R and { , } with Hamiltonians given by H2(M) = | t r M 2

and Ht(M) = tr M respectively. •
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Caveat. Due to a different choice of pairing, what we call the Toda flow here
is different from the one in [6], which is given by M = [Πt(Mτ% M]. The necessary
changes one has to make in the construction of integrals is straightforward, as we
shall describe below.

Now, if a dynamical system is Hamiltonian relative to a pair of compatible
symplectic structures, then it was proved in [10] and [14] that commuting integrals
can be generated sequentially by means of a recursion operator and as such are
connected by a recursion relation. Although the result makes no claim about the
integrability of the system, nevertheless, it does give a simple and practical means
to obtain integrals. Unfortunately, with a pair of compatible (degenerate) Poisson
structures, such a simple procedure does not seem to be available. In the rest of
the section, we shall demonstrate, however, that in the case of the Toda flow, the
integrals in [6] (which were used to establish its integrability on generic coadjoint
orbits) are indeed connected by n recursion relations. Aside from proving the
involution of the integrals in both structures, this information also provides us
with a better geometric picture of the situation.

In the following, we introduce (with modifications) the variables that were
constructed in [6]. For an n x n matrix M, let (M)k be the (n — k) x (n — k)
matrix obtained by deleting the last k rows and the first k columns of M
and define

n-2k

Pk(M,λ) = det(M-λ)k = X Erk(M)λ»~2k-\ O f̂c

Also, set
n n [r/2]

J(MΛz) = det(MΛ-z)= X Er(Mh)z""= £ £ Jrk{M)h\\-hfz"-',
where

Mh = M + h(Mτ - M).

Lemma 3. The sign of Eok, 0 ^ k ^ [w/2] is constant on the connected components
of the symplectic leaves of { , }R and { , }.

Proof. The symplectic leaves of { , }R are the coadjoint orbits of the group GRi

where G = GL(n,R) and the proof of the assertion is in [6]. For the other part,
note that

2{Eok, H}(M) = (Πx(yτH(M)M + MVTH{M% \yτEOk{M\ M])

+ ([VΓH(M), M], Πt(VτEOk(M)M + MWτEOk(Mψ.

Now, it is easy to see from the definition of EOk that

and ^ , , , (
V EOk{M)Ik

1 If F:gl(n,R)->M, VF{M) = (dF/dmi]), and so gradF(M) = VTF(M)
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This immediately implies the vanishing of the second term and leads to

2{EOk, H} (M) = EOk(M) ( X (VTH(M)M + MVτH(M))u

k \

- Σ (VTH(M)M + MVTH(M))H

Thus the sign of EOk is constant along the trajectories of Hamiltonian vectorfields.
Since any two points on a connected component of a symplectic leaf can be joined
by a piecewise smooth curve consisting of segments of trajectories of Hamiltonian
vectorfields, this completes the proof. •

From the above lemma, the set W = {Megl(n, U)\EOk{M) φθ,k= 1,...,[n/2]}
is foliated by the symplectic leaves of the two compatible Poisson structures. For
Me W9 we define Irk{M) = Erk(M)/EOk(M\ 0 S k g [\{n - 1)], 1 g r ^ n - 2k.

Remark. From [6], the Irks and the Jrks have the invariance properties

Irk(lMΓx) = Irk(M), leUn9 U)9 Jr,k{OMOτ) = Jr.k.(M\ OeO(n, M)9

where L(n, IR) is the lower triangular group and O(n, U) is the orthogonal group.

Lemma 4. The following provide Casimir function of the quadratic Poisson structure
on W:

(a) /π_2fc fc, 1^/c;

Froo/.

(a) 2{/Λ_2M,/ί}(M) = (77,(VΓH(Aί)M +MVTH(M)), [VT/Λ_ 2 M(M), M])

H- ([VΓH(M), M], Πx{Ψln_2kk{M)M + MVτIn_2k ϊfc(M))).

From the invariance property ln_2kk{lMl~ι) = In-2k,k(M\ 'eL(n, R), the first term
is equal to zero. On the other hand, it follows from the definition of In-2kk that
both MVτ/n_2fe fe(M) and VτIn_2kk(M)M are lower triangular matrices. So the
second term vanishes as well.
(b) Let F{M) = En{Mh), then by the invariance property F(OMOT) = F{M),
OeO(n,U), the matrix [VTF(M),M] is symmetric. Consequently, the bracket
simplifies to

2{F, H}(M) = - {Π{(VτEn{Mh)M + MVτEn(Mh)\ [VΓ//(M), M]).

Now, for hφ\, we have M = (1 — h/1 — 2h)Mh — (h/1 — 2/i)M^, this implies

MψEn{Mh) = En{Mh)U + (Ml - Ό/l ~ 2h)(MhM;τ- Mτ

hM;ι)\

Similarly,

VΓ£M(Mfc)M = £B(MA) [/ + (/!(!
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Adding the expressions and applying Π{ to both sides, we find Πι(MVτEn(Mh) +
ψEn{Mh)M) = 2En{Mh)L As a result,

2{F,H}{M) = -2En{]\

Remark. From [6], the Casimir functions of the Lie Poisson structure { , }R on
W are given by / u , 1 ̂  k ̂  [n - 1/2], J 1 0 and J2 f c fe, 0 ̂  /c ̂  [n/2].

For a function H on g, let X^ } and X^ denote the Hamiltonian vectorfields
generated by H relative to { , }R and { , } respectively. We have the following
theorem.

Theorem 5 (Recursion relations). On the set W,

(b) Xψru = X{ϊr\lk, i.e. \[M, Πx(MψJrk(M) + VτJrk(M)M)]

= lM,Π{(VrJr+uk(M))l

Proof.

(a) Applying VΓ to both sides of the relation

C = " X lrk(M)λn-2k-\

and then multiplying both sides on the left by (M — λ), we find

n~2k n-2/c-l

JjMM-AΠ, 0\ det(M-A)M_

£ M ( M ) V * OJ E2

0k(M)

But from the definition of EOk, (M — λ)S/τEok(M) is a lower triangular matrix.
Therefore, when we apply 77f to both sides of (*), the right-hand side vanishes and
on comparing coefficients of λ, we obtain

Πx(Mψlrk(M)) = Πx(Ψlr + ιk(M)\

[r/2]

(b) Applying Vτ to both sides of Er(Mh) = £ Jrk(M)h\l - hf, we find

[r/2]

(1 - /*)(grad Er)(Mh) + ft(grad Er)
τ(Mh) = ^ ψJrk(M)hk(\ - hf.

k = 0

In particular, this gives

iIi(grad£Γ)(MΛ)= [ J i7i(VΓJrfc(M))/zk(l -hf.
k = 0

Also,
[r/2]

Σ (MψJrk(M) + VΓJrΛ(M)M)/ife(l - Λ)* = (1 - /*)(M(grad Er)(Mh)

+ (grad Er)(Mh)M) + /z(M(grad Er)
Γ(MΛ) + (grad Erj
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For h Φ f, M = (1 - h/1 - 2h)Mh - {h/1 - 2h)Mζ. Substituting into the above
expression and then applying Π{ to both sides, we obtain

[r/2]

Σ /Ii(MVΓJrfc(M) + ψJrk{M)M)h\l - hf = 2Πι(Mh(gmd Er){Mh)\
fc = O

which is valid for all h by continuity. Now, from the definition of Eri it is easy to
derive the recurrence relation MΛ(gradEr)(Mh) = (grad Er+ί){Mh) + Er(Mh)In from
which it follows that

t

+ Er(Mh)In.

Therefore, ±[M, Πx{MψJrk{M) + ΨJrk{M)M)-\ = [M, Πx{ΨJr+Uk{M))l •

Corollary 6 (Involution). On the set W, the Irk's and the Jrk's Poisson commute in
both the linear and the quadratic structures.

Proof. We shall do this for the /rk's in the quadratic structure, the other cases can
be done in a similar way. By Theorem 5, we have

{Irk,Ir,k,}(M) = {/r+1Jk,/rt.

Repeating, we would eventually obtain either {In-2k,k>Ir+r'-n + 2k,k'}(M) or
{J r + r, t k,I l k,}R(M). By Lemma 4 and the remark which follows, we obtain zero in
either case. •

Remarks.

(a) The involution theorem for the /rfc's and the Jrfc's in the Lie Poisson structure
{ , }R was first proved in [6] using in variance properties together with the explicit
form of the Jrfc's.
(b) The vanishing of the Poisson bracket {Irk, Jr,k,} also follows from Theorem \(d).
(c) With more work, one can in fact establish the integrability of the Toda flow
on generic symplectic leaves of the quadratic Poisson structure. We leave the
details to the interested reader.

5. Cubic Poisson Structures in the /-Matrix Approach

The r-matrix approach to classical "integrable" systems was introduced by
M. Semenov-Tian-Shansky to generalize the Adler-Kostant-Symes scheme
and to provide a link with the method of the Riemann problem [15]. In [15,16]
and in Sects. 3-4 of the present work, we have seen the role played by linear and
quadratic Poisson brackets. The purpose of this last section is to exhibit a third
order Poisson structure on associative algebras for which the r-matrix approach
is feasible.
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Theorem 1. Let g be Lie algebra of an associative algebra for which multiplication
is symmetric with respect to some fixed nondegenerate pairing ( , •). If ReEnάg is a
solution o/(mYB), then

(a) The formula

{F, H}(X) = \(X, [grad F(X), R(X grad H(X)X)]

+ IR(X grad F(X)X),

^ ) , defines a Poisson structure on g.
(b) Tfie Hamilton's equation generated by an ad-invariant function H is in Lax form

(c) // [X,gradF(X)]e(Im(£ + l))\ [X,gradtf(X)]e(Im(K- I))1, then {F,ίf}
(X) = 0. In particular, ad-invariant functions commute in { , }.

Proo/. (a) We shall omit the straightforward but lengthy calculations. See,
however, Proposition 2(a) below.
(b) Using X grad H{X) = grad H(X)X9

{F9 H}(X) = \{X, [grad F{X)9 R(X grad H(X)X)])

= i(grad F(X), IR(X grad ff( X)X), X]).

(c) The result follows on noting that the bracket can be rewritten in the form

{F9 H} (X) = f( [X, grad F(X)l {R + l)(X grad H(X)X))

%9gradH(X)l(R - l)(XgradF(X)X)). D

Denote the linear, quadratic and cubic structures respectively by { , }(1)J

{ , }(2) and { , }(3) and let w l5 w2, and w3 be the corresponding Hamiltonian
operators. We now give relations between these objects. The proof consists of
straightforward verification and will be left to the reader. In what follows, in
addition to the hypothesis of Theorem 1, we assume g has an identity /.

Proposition 2. Assume that the group of units g inv is an open subset of g. Then

(a) {F°ι,Hoι}{3)(X)= -{F9H}(1)oι(X)9

where Xeg i n v, i s / ί e C 0 0 ^ ) , and r.X\-^X~1 is the inversion map. If in addition, we
assume R satisfies hypothesis (H), then also

(b) {Foι9Hoή(2)(X)= - {F9H}{2)oι(X).

Proposition 3. Let v and 1 be the vectorfields on g defined by υ(X) = X2, ί(X) = I
and let R satisfy (H). Then

Lvwx = - 2w2, Lvw2 = - w3, Lvw3 = 0,

L1w3 = 2w2, L1w2 = w1, L 1 w 1 = 0 ,

where LV(LX) denotes the Lie derivative with respect to v(l). In particular, this implies
the compatibility of the three structures.

Remark. From many points of view, it is clear that the Lax equations corresponding
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to ad-invariant functions can be realized most conveniently as Hamiltonian systems
in the linear structure { , } (e.g. the symplectic leaves are coadjoint orbits).
However, the presence of an additional structure (whether isomorphic to { , }Roτ
not) with respect to which the equations are Hamiltonian would impose further
constraints on the dynamics in most cases. So the following question arises: is
there a natural hierarchy of Poisson structures in the r-matrix approach and if so,
what implications does it have towards the integrability of the Lax equations in
the ground structure { , }R1

Appendix.

We shall provide the reader with further examples of r-matrices in g = gl(n, U)
which verify our assumption.

Recall that any r-matrix R which satisfies the basic hypothesis (H) can be written
uniquely as R — A + 2</>, where A = \(R — R*) is a solution of (mYB) and
φ = ±(R -j- R*):$A->g is a Lie algebra homomorphism.

Let us take A to be the operator X\-+X+— X_, then any Lie
algebra homomorphism qA -• g which is symmetric will give us an example. For
simplicity, let us consider those φ's which have the additional properties

where

n+(n_)ϊ= subalgebra of strictly upper (lower) triangular matrices

and

b = the abelian subalgebra of diagonal matrices.

For this class of homomorphisms, the condition φ\_X, Y~\A = [φ(X),Φ(Y)l simpli-
fies to

Φ±=Φ)n±9 φo

There are many solutions to (*), the one given here is of particular interest.

Example. Let eitJeQ be the matrix having 1 in the (i,j) position and 0 elsewhere.
For each λ = (λι,...,λn_1)eUn~i, we associate the map φλ:QA^>Q defined by

Then φλ is symmetric and satisfies (*). Thus we obtain an n - 1 parameter family
of r-matrices Rλ = J + 2φλ which verifies (H). This family contains Examples 1°
and 2° of Sect. 4 as special cases, corresponding to λ = 0 and A = (— 1, —, — 1)
respectively.
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