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Abstract. We study the superextension of the semi-infinite cohomology theory
of the Virasoro Algebra. In particular, we examine the BRST complex with
coefficients in the Fock Space of the RNS superstring. We prove a theorem
of vanishing cohomology, and establish the unitary equivalence between a
positive definite transversal space, a physical subspace and the zeroth coho-
mology group. The cohomology of a subcomplex is identified as the covariant
equivalent of the well-known GSO subspace. An exceptional case to the
vanishing theorem is discussed.

0. Introduction

The BRST approach has long been known to be an effective method for studying
quantization of string theories. It was first applied to the Virasoro algebra of the
bosonic string by Kato and Ogawa [11]. Based on a vanishing theorem, unitary
equivalence between the BRST cohomology groups and the physical spaces known
to physicists was proven by Frenkel, Garland and Zuckerman (FGZ) [5,17]. They
have also provided a conceptual proof of the no-ghost theorem. Several authors
have recently studied the BRST quantization of the Ramond-Neveu-Schwarz
(RNS) model [13,15]. In their work, a BRST differential operator was defined and
shown to be nilpotent at the critical dimension of spacetime D = 10 together with
an appropriate normal ordering. An extension of the GSO (Gilozzi, Scherk,
Olive)-projection was also proposed.

In this paper, we apply some of the ideas introduced in [5] to the Super-Virasoro
algebras. Using some standard techniques in homological algebra, we prove a
vanishing theorem. Formal characters and signatures of the cohomology groups
are expressed in terms of modular functions. We show that the canonical hermitian
forms on the BRST complexes naturally lead to ones on the relative subcomplexes
and induce an (positive definite) inner product on the physical spaces. We define
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a natural generalization of the GSO projection and show that it coincides with
that proposed in [13,15].

We now outline the organization of this paper. In Sect. I, we review a
construction of the BRST complexes of the RNS model, mostly following the
notations of [19]. In Sect. 2, we define the relative BRST complexes and examine
several important consequences of the vanishing theorem and we study the
hermitian structures on the complexes. We also discuss the correspondence between
the zeroth relative cohomology classes and the physical states known to physicists.
In Sect. 3, we discuss the proof of the vanishing theorem. The generalization of
the GSO projection is defined and shown to have the required properties in Sect.
4. Finally, in Sect. 5, we return to the BRST complexes and examine their
cohomology. An exceptional case to the vanishing theorem is discussed.

1. BRST Complex of the RNS Model

The Super-Virasoro algebras Virκ are super-extensions of the Virasoro algebra
given by

Q

[An> Ln~] = (m - n ) L m + n + - ( m 3 - 2κm)δm+n (δm+n = δm+n>0\
o

[ L w , Gn+K] =(±m-n- κ)G
m+n+κ,

{Gm + K, G Π _ J = 2Lm+n + C-{m2 + 2κm)δm+n,

where m,neZ,κ = 0,^. Viro is called the Ramond algebra and Vir1/2 is called
the Neveu-Schwarz algebra. VirK has a Z2-grading: respectively ]J CL „ φ Cc,

neZ

U CGn+κ are the even and odd parts of Virκ. These algebras arise as the "covariant
neZ

constraints" in the classical formulation of the RNS model [12, 14, 19].
Two important representations of each of these algebras are well-known. They

are Fock spaces constructed from certain complex super Heisenberg algebras.
We will briefly review them here. Since we will consider both Virκ, κ = 0,^,
simultaneously, whenever K appears unspecified, we will mean either case.

Consider the infinite dimensional super Heisenberg algebra with the Lie
brackets

where m, neZ, μ, v = 1,..., D, gμv is the inverse of the Lorentz metric with signature
( ( D - l ) + , 1-) and Id denotes the center. For each p e R D " l f l , there corre-
sponds an irreducible representation of this algebra. It is the linear space
V(p, K) = R(p9 K) ® U(κ\ where U(κ) is the space of polynomials C[α^ „, dt n + J | p}α

1 Unless otherwise stated, n in this notation is always ranging over N = {1,2,...} and μ over {1,..., D}.

The same notation will be used in the future without specifying these ranges of n and μ
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which respect the above commutation relations, and R(p,j) = C, R(p9 0) is the spinor
representation of Spin(D — 1,1) in which dg acts. We will sometimes drop the
factor R(p,j) when κ — \. Here |p> denotes the highest weight vector with
α£|p> = d£_κ |p> = 0 for rc>0, αg|p> = pμ\p} = 0. In all subsequent uses, p will
always be assumed non-zero until Sect. 5. The operator αg is interpreted as the
"center of mass momentum," also denoted by p. Let

-n'OCn+m' + Ί Σ (2 m + n - κ):d.n+κ-dm + n_κ:
neZ

where

= Qμ^m^n otherwise,

and

:dn + κ'dm-κ: = gμvdZ+κd
v

m_κ if m > 0

= -9μvάm-Λ+κ otherwise.

Note that we have summed over repeated Greek indices. In view of the commutation
relations, the normal ordering : : above is well-defined. A direct calculation (see
[19] for example) shows that

Proposition 1.1.

[π(LJ,π(L Π ) ] = (m - n)π{Lm+n) + v(m2 - 2κm)δm+n,
o

[π(Lj,π(Gn + κ)-] =&m-n- κ)π(Gm+n + κl

{π(Gm + κ, π(GM_κ)} = 2π(Lm+n) + - y 2 1 fa2 +

where m, neZ.
Thus for π(c) = D Id F , (F(p, K), π) is a representation of Virκ. This representation

has long been known in physics as the "matter sector" of the Super-Virasoro
algebras. We will call this the Fock space.

The ghost sector is constructed as follows. Consider the infinite dimensional
complex super Heisenberg algebra with Lie brackets:

[7m + κ X - κ ] = <5m+Jd, (1)

{cmibn} = δm+nld, (2)

[)Wκ,cJ = [Tm + A ] = ίCmJn- J = [&«,&- J = 0, (3)

{K>bm} = {cM,Cm} = [̂ m + K^n + J = [j5w + K^« + J = 0 , m,ΠGZ. (4)

Friedan and coworkers [6] have defined a class of irreducible representations of
(1). Specify a vacuum vector \qB}9 qBeZ + K and let

βn + κ\<lB> = 0 f o r n + κ>-qB,

7n + κkjB>=0 f o r n + κ^qB.
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The representation space is then the linear space of monomials generated by the
commuting operators {βn+κ,ym+κ,n + K ̂  — qB,m + κ<qB}. The parameter qB is
called the Bose-sea charge (Note: qB here differs from that in [6] by a constant).
Representations corresponding to distinct charges are inequivalent. We denote
each of them by ^~qB.

A similar class of irreducible representations of (2) is defined by specifying a
vacuum \qF}, qFeZ and letting

fr»l<?F> = 0 for n>-qF,

cn\qF)=0 for n^qF.

The representation space is the linear space spanned by the monomials generated
by the anti-commuting operators {bn,cm,n^ —qF,m<qF}. qF is called the
Fermi-sea charge. Each of these representations is equivalent to the linear space
of semi-infinite forms constructed by Feigin [4] and FGZ [5]. To be definite, we
f i x ^ = 0 and denote the space by Λ^ and denote its vacuum vector by \qF = 0>.
Note that under the above equivalence we can identify |qF} with b-nb_n + ί

for n = qF - 1 ̂  0 and with cncn + 1 c_ x |0> for n = qF < 0.
Define

Σ(n m ) ; C ~ A + m + Σ (
neZ neZ

neZ ΠGZ

where

:cnbm: = cnbm if m > 0

= —bmcn otherwise

and

'yn + κβm-κ' = yn + Kβm-K ίf m > 0

= βm-κyn+κ otherwise.

Similar to Proposition 1.1, one has (see [19])

Proposition 1.2. For qBeZ + κ, (A^®^"qBip) is a representation of Virκ iff

It is sometimes convenient to write the above representations of Virκ in terms
of generating functions or "quantum fields." Let (cf. [6])

c(z)=Ycnz

Σ
neZ

-'>+ί

neZ

y\z)— 2-j yn+κz 9
neZ

Tv{z)=Yπ{Ln)z-»~\
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neZ

neZ

Then

TΩ(z) =:c(z)^-b(z) + 2^c(z)b(z): y(z)^
dz dz 2 dz

^Ω(z) = -2b(z)y(z) + c(z)^β(z) + ~Φ)β{z).

We now construct hermitian bilinear forms (,)R, (9)v, (,)Λ, (,)#-, on each of the
spaces: R(p,κ\ Ό(κ\ A^.^ΓqB. The notations (,)<,> will be used interchangeably.

Definition 1.3.
(i) For κ = i (recall that R(p,$) = C) let <1,1}R = 1.

(ii) For κ = 0, wi/1 assume that Z) = 10. Lei Ψi, Ψl, i = l , . . . ^ ' 2 " 1

be α basis of R(p,0) with definite chirality and satisfying p-d0Ψl = Ψl. Set
(Ψl,ΨjS)R = j^Aδij, (Ψl,Ψi)R = 0 = (Ψl,Ψi)R. For p-p<09 we set
Γ0Ψl= + Ψl,Γ0Ψi= - Ψl, where Γo is the chirality operator of R(p,0),
Γ o = 25(do)i,...,(do)io For p p = 0, half of Ψl and half of Ψl are in
Ker(i"0 — 1) and the other two halves are in Ker(i"0 + 1).

Remark. We note that (9)R above is defined so that (p*d0)* = —P'do We will see
later that this indeed gives the correct signature for the physical space. For
convenience, we will assume that p is always in the future half R + " 1 ' 1 of R^" 1 ' 1,
i.e. R ? " 1 ' 1 = {peRD~1 Λ :pD > 0}. For if we allow pD < 0, "time reversal" will reverse
the signature of (,)R. The construction of the "chiral" basis in the above definition
is quite standard, and the reader is referred to [19] for details.

To define (,)„, let αj* = αμ-Λ, «-** = dtH + κ9 n= 1,2,3,... and (|p>, |p>)L 7= 1.
It is well known that these conditions define a unique non-degenerate hermitian
form on U(κ) = C[αϋΠJd!ί.Λ + lc]|p>. Similarly a non-degenerate hermitian form (,)Λ

on Λ^ is defined by c* = c_π, 2?* = b_n, neZ, and (\qF}9 \-qF+ί » Λ = 1 (for any
qFeZ). Before we look at the hermitian forms on ^qB, we state the following lemma.

Lemma 1.4. Let s/ be a complex Heίsenberg Lie algebra with a canonical
basis {ai9ci9Id, ίeZ} such that \ahaf\ = 0 = [chc7] and [ahc7] = 5tjId. Let
T=Sym]JCc i ) be the representation of sd in which a^Cj) acts by derivation

ieZ

(multiplication), and <,) Γ be a hermitian form on T. If c*es$ for all k and af = a^
for some ij then ( , ) Γ Ξ 0 .

Proof It is enough to show that <μl, 1>Γ = 0 for an arbitrary monomial μ of the
c's. Now <μl, l> τ = <μl,[fl i,cjl> = <μl,flicil> = <ci*fljμl,l>. If a5μ\ = 0, then
<μl, 1>Γ = 0. If not, then μ = cn

jμ' for some n > 0 and some monomial μ' such that
[μ',α, ] = 0 . Thus

0 = <c7 μl, f l il> - {ajCjμl 1> = (n + l)<μl, 1>. Π
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The lemma states that the representation T does not admit a non-degenerate
hermitian form for which an annihilator (derivation) ai is conjugate to another
annihilator at. We now search among the &~qB, qBeZ + κ, for a representation
that has a non-degenerate hermitian form such that

y%+κ = y_π_κ βf+κ = -β-n-κ. (5)

Thus the y's the /Fs and their conjugates are creators or annihilators on each 2Γ qB.
Lemma 1.4 implies that in order for &~qB to admit such a hermitian form, qB must
be chosen so that the conjugate of any annihilator is never an annihilator. We find
that for κ = j[9 then qB = \ is the only choice. For if qB > \{qB < j), then βι/2 and
β*iityiii a n c * 71/2) a r e both annihilators on <FqΉ. When κ = 0, there is no such
choice. For if qB > 0 (qB ̂  0), then β0 and jS*(7o a n d y*) are both annihilators on
ZΓ qB. However, consider the spaces ^" 1 / 2 and ZΓ qB © ̂ ~~qB+1, qB Φ i Each of them
actually admits a non-degenerate hermitian form with property (5). If we let
(see [6])

( l 9 * > > | - 9 * + l > V = l , g*eZ + ιc (6)

then (5), (6) together defines a unique non-degenerate pairing between 2ΓqB and
«^"_ίB+1. Note that with respect to (,)^, the conjugate of an annihilator is always
a creator. Each of the spaces ^" 1 / 2 or ^ " ^ © ^ " - ^ + 1 , ^ 7 ^ 2 inherits a natural
gradation from the graded operators, yn+κ and βn+K9 with degyM+κ = n +?c =
degj8n+κ. A space in which deg (or "energy") is bounded neither above nor below
will give rise to various difficulties. Fortunately, for each sector K = \, 0, there is a
unique such space in which deg is bounded above, namely

&~\I2 for κ = %

3T0Q3rl for ιc = 0. (7)

Therefore we will restrict to these spaces for our construction. Denote

C(p, K) = R(p, 0) ® 1/(0) ® Λ^ ® (^"0 (g) ̂ Ί ) if ic = 0

= Λ(p,i)®l/(i)®yl o o(8)5 r

1 / 2 if /c = | . (8)

Definition 1.4. Define <,>c OM C(p,κ) as the tensor product of the four hermitian

forms < , > R < 5 > 1 7 < , > Λ < ) V de/zned αbθϋ6.
We now define a Z2-gradation on i^, [7,^^, 3ΓqΉ and hence on ̂ , as follows:

Ψ is Z2-even (Z2-odd) if Γ0Ψ= + Ψ{= - Ψ) for κ = 0. Since [/,/!«,, ^ € B are all
linear spaces of polynomials, it is enough to assign a Z2-grading to the generators
and the vacuo. Let α£,|p> be Z2-even and d%_K be Z2-odd. Let bn9cn,\qF = 0> be
Z2-odd and βn-κ,yn-κ,\qB> be Z2-even.

We extend the action of bn, cn9 d»+κ, < , βn + κ, yn+κ, to C (p,κ;) by demanding
that (indices omitted)
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More precisely, we let the bn9cn9djϊ+κ9cι*9βn+κ9yn+κ act on C(p9κ) as

respectively. (Note: If T is a Z2-graded vector space (— l) Γ ω = + ω if ω is Z2-even,
— ω if ω is Z2-odd.) Using these definitions of the actions, one can easily check
the following

Proposition 1.5. With respect to <,)o the above operators on C{p,κ) have the
following hermίticίty property:

(i) For K = i ,

Dn—°-ni Cn—C-n> an+l/2 ~ a-n-l/2>

= -β-n-1/29 yi+l/2 = y-n-l/2>

(ii) For K = 0,

K=-b.n, c*=-c-n, dϊ*=-dtH9

Definition 1.6 [19]. Define the BRST, Kinetic, Dirac-Ramond, and the ghost-number
operators:

n,meZ

(f n + m

- (n - κ)y_n + κβn-κ + (n - κ)β.n + κyn.κ) + ip-p - ic,

β*(=π(Go) + p(Go)) = p do+ Σ (α-M'rfn + rf_n αn

«>o
- 2b.mγΛ - 2y _ A + |nc_nJ8n - %nβ-ncn) - 2boγo,

U = cobo+ £ {c-nbn-b-ncβ-y-Λ+κβΛ-κ-β-H+κyn-J-{l
«>0

We note that Q can be interpreted as the charge of some BRST current [6], i.e.

where

J(z) = : Ίvc(z)

and the integral means taking Resz = 0(J(z)).

Proposition 1.7.
(i) All the operator sums above are well-defined on C, i.e. for each veC, only finitely

many of the operator products in each sum act non-trivίally on v.
(ii) Q2 = 0 iff D = 10.
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(iii) D*= -D R ,K* = K,ρ* = (-l) 2 * + 1 ρ with respect to <,>c.
(iv) [β,K] = 0.
(v) {β,DΛ}=0.

(vi) [l/,β] = β.
(vii) [t/,K] = 0.
(viii) [ l/,DJ=0.

(x) For K = 0, β = Xc 0 + Mfo0 4- DRγQ + iV/?0 + Qo + ftoyg, w/zere M, JV, ρ 0 are
some operator sums of products ofbn,βn,cn,γn,neZ\0.

(xi) For κ = \, ρ = Kc0 + Mb0 + ρ o , w/zere M,ρ o are some operator sums of
products ofbn,βm+1/2,cn,ym+1/2, neZ\0, meZ.

Proo/
(i) is a direct consequence of the normal ordering in the operator sums,

(ii) is done in [13,15].
(iii) follows from Proposition 1.5.
(iv) to (viii) are obtained by straightforward computations, some of which are done
in [13, 15, 19].
(ix)

o) + P(GO\ π(G) + p(G0)}

(x) and (xi) Calculations are done in [13]. •

It is obvious that K, U are diagonalizable in C(p, K) and their eigenvalues are
respectively [(1 — κ)Z + \p'p~\- and (Z + κ) valued. Thus C(p,κ) is turned into a
doubly graded space. By convention, we let C(p, K) be graded by U and — K:

c = c(p,κ)= U cr> cr= U cr;s>
reZ + κ se(l-κ)Z-(l/2)p p

where Crs = {veC:Uv = rυ.Kυ = -sv}.
From now on, we will take D = 10. Then by Proposition 1.7 (ii), (iv), (vi), (C*, Q)

is a complex with ρ:C r ' s->C r + 1 ; s.

Definition 1.8. The (Z + κ)-graded complex (C*(p, κ)9 Q) is called the BRST complex.
Its cohomology is denoted by H*(p,κ).

We note here that since the eigenvalues of — K are bounded above, for all
sufficiently large positive s (independent of r) Cr ;s = 0. We will call the Z + de-
gradation, the ghost-number, and call the (1 — κ)Z — ^p p-gradation, the degree.
Finally, we state an important fact about <,>c which follows from its definition.

Proposition 1.9. For each r,5, <,>c is non-degenerate when restricted to C ; s φ C " r ; s .
In particular it is non-degenerate in each eigenspace of K and in the whole C(p, K).

2. Relative BRST Cohomology

Proposition 2.1. [13] {β,b0} = X, [β, j80] = DR.
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Definition 2.2. Define the subspaces of Cr(p,κ),reZ + K,

&r(p, K) = Ker b0 for κ = \, reZ + κ

= Kerfe0nKerj80 for κ = 0, r e Z

&ra{p,κ) = &a-κ{p,κ)nKeτK for neZ

PUP,κ) = ̂ n(P,κ) far κ = i
= ^ " ( p , K) n Ker DR for κ = 0.

We write &= {] ^ α , J ^ = ]}&n and C r e l = ]} Cn

τel.
aeZ + K neZ neZ

Remark. Note that ^(p, K) is the linear span of canonical basis vectors of the
form Ψk®A\p}®B\qF = 1>®C\q B = 1 — τc>, where A,B,C are monomials in
C[^_ w ,^_ M + κ ],C[ί?_ π ,c_J and C [ i 5 _ π + K ? 7 _ π + J 2 respectively. Similarly, J^(p,/c)
is the (finite dimensional) linear span of those canonical basis vectors with
deg A + deg B + deg C = p-p/2 - K.

By Proposition 2.1 and Definition 2.2, we see that Q leaves C r e l invariant and
that C r e l is graded by U + K:

C?el = {ϋECrel:(l7 + κ)υ = ni;}, neZ.

Since [I/, β ] = β, (C*el(p, κ\ Q) is a Z-graded complex.

Definition 2.3. (C*el(p, K), Q) is called the relative BRST complex. Its cohomology is
denoted by H?tl(p, K). We will also call the Z-gradation of the complex given by
U + K, the ghost-number.

Theorem 2.4. Suppose p Φ 0: then H"el(p, κ) = 0 unless n = 0.
This is the analogue of the vanishing theorem proven by FGZ. We will see

that as consequences, the zeroth relative cohomology group can be identified with
the positive definite subspace of physical states and that its Euler characteristic
and signature is closely related to various modular functions [10,17]. We will first
discuss these consequences and will return to the proof of this theorem in the next
section.

In order for H%γ(p, K) to be physical, there must be an inner product. Does
there exist such a "natural" inner product? We need first a hermitian form on the
complex Crel(p,κ).

Proposition 2.5. <,>c is identically zero when restricted to &(p,κ) and hence to

Cre,(p,ιc).

Proof Since Crel(p, K) a J^(p, κ\ it is enough to show that <,>c = 0 when restricted
to @(p,κ). Since {foo,co} = l and />o = 0, we have Kerfco = Imfco. Thus by
Definition 2.2, &(p9κ) = b0C(p,κ). Proposition 1.5 implies that b% = ±b0. Thus

). •
Definition 2.6. For κ = j 9 define the hermitian form on <%(p, \) by < , •> = <*, c0χx/2 >c>
where χί/2 = (— l ) c is the Z2-grading on ^

2 See footnote on notation in Sect. 1
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Note: &{p9%) = boC(p9%),{bθ9co} = 1, together with the second part of Proposition
1.9 implies that <v># is non-degenerate on &(p,κ). Hermiticity can be easily
checked.

The case K = 0 requires special treatment. In fact, < , c0 }c = 0 when restricted
to Crel(p,0) c J>(p,0) = F(p,0)® feoΛ,, ( x ) ^ ! nKer j?0 because < ^ Ί , ^ Ί > * - = 0. To
define <,>rel on Crel(p,0), we need to understand the structure of the space
better. First note that D2

R = K, {DR,bo}=0 and \_DR,β0']= -2b0. It follows
that &-*&-*& is a complex (& = Ker b0 n Ker β 0 n Ker K), with D ^ as its
differential.

Theorem 2.7. Assume p φ 0: ίhe α/?ot>e complex has zero cohomology. Thus

Proof. For p Φ 0, say p 1 # 0, we have {DR\^,d^/p1} = 1. Applying this formula on
^, one sees that f2eImD R |^ . Thus, KQΪDR\^ = I m D R | ^ . Π

Note that i^Ί,^Ί}^ = 0 because <,>^ is a non-degenerate pairing between
^ o and Sr

1. Also ^xnKcTfi0 = C[β-n,γ-n]\qB= 1>.3 Thus, following [6,16],
we define a "picture changing operator"

by

Definition 2.8. Define a hermitian form on J*(p,0) by < ,c o χ o >c, w/ierβ χ0 =
(— 1)C1F® l Λ ® χ ^ , and (— l ) c is the Z2-grading on C(p,0).

Again it is easy to check hermiticity and non-degeneracy. Furthermore,
it follows from the commutation relations (Eqs. (1) to (4) in Sect. 1) and
Proposition 1.5 that

Proposition 2.9.

(i) With respect to < ,c o χ o >c on

αS = α(LB, neZ

(except for bo,co,βθ9γo).
(ii) With respect to < ,c 0 χ 1 / 2 >c on

βn-l/2= -β-n+l/2 7n- 1/2 = V-n+ 1/2 < * = ^ - n ,

(except /or feo»co).

See footnote on notation in Sect. 1
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Proposition 2.10.

(i) < , c o χ o ) c restricted to #"(^,0) is non-degenerate.
(ii) DR\* = -DR\j. Thus <;coχo ) c = 0when restricted to Crel(p,0) =

(iii) < ,c 0 χ 1 / 2 >c restricted to Crel(p,^) = J*(p,i) is non-degenerate.

Proof.

(i) Recall that < , c o χ o >c is non-degenerate on J^(p, 0) and that ^ ( p , 0) = J^(p, 0) n
KerK. Given ueJ^p,0)\0, we can find ve&(p,0) such that <tί,coχof > c ^ 0 . Since
Ku = 0 and K* = K with respect to <,)c> we can choose ί eKer K.
(ii) Since J*(p, 0) <= Jf(p, 0), it is enough to check DR\%= — DR\@ with respect to
< ,c o χ o >c. But this follows from Proposition 2.9 and that c oχ o commutes with
all the generators (except bo,co,/Jo,yo). Now DR\% = K acts like zero in
Using Theorem 2.7 and DR\%= — DR\^, we have the result.
(iii) Since i*(p,i) = ^ ( p , i ) n K e r X , the argument for (i) applies here. •

Now using Theorem 2.7 and Proposition 2.10, we have the following well-defined

non-degenerate hermitian form on Cτel(p, K).

Definition 2.11. Define the hermitian form <,>rei on Crel(p,κ) as follows: for
u,veCrel(p,κ\ let

= J— 1 < M , # > ^ if κ = 0 where v = DRv.

Remark. In the case K = 0, although the way < ) r e l is defined seems rather peculiar,

given any u,veCrel(p,0) one can in principle compute <w,ι;>rel. Note first that

^v\Qλ = ^\{u,ύy^ v = DRv

is independent of the choice of ϋ. For iίv = DRv = DRv, then

<M, v - v > a = - <ώ, DR(ύ -υ)ya = 0.

Recall that (Theorem 2.7) there is a contracting homotopy ε J^-^J^ such that
{DR,ε} = 1. Then one finds that

Thus

It is remarkable that the right-hand side of this equation is independent of the
choice ε.

Definition 2.12.
(i) If T is a ^Z-graded vector space, T = ]J Tn, with a non-degenerate hermitian

neT/2Z

form <,>Γ, then we call T hermitian. Suppose dim Tn < + oo /or α/J n and T" = 0
for all large enough positive n. Then the character and signature of T are
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respectively

chqT= £ dimT-y1,
nel/2Z

sign^T = Σ sign T~nqn, where
neί/2Z

signT" = #{ + signs of <,> τ restricted to Tn in its diagonal form}
— #{— signs of <,)r restricted to Tn in its diagonal form}.

(ii) // (C*, β) is a complex with finite support and Z-gradationy then we write
char C=£(-l)* dimC*.

fceZ

Definition 2.13. [20] Let φ(«) = Π ί1 ~ β"), <Po(<Z) = <?(«) W Γ S </>i,2(<Z) =
n>0

φ(qll2)φ(q2)φ(q)~\ and p(

κ

N)(n), we(l - κ)Z, be ίfce coefficient of qn in φκ(q)~N

Proposition 2.14.
(i) β* = β with respect to < ?> r e l.

(ii) char Crβl(p, K) = \{2κ + 1) dim R(p, κ)p™{κ - (p p/2)) = sign Crel(p, K).

Proof
(i) Recall that @{p,κ) = b0C(p,κ). Similarly, ^(p9κ) = b0(C(p,κ)nKerK). For
* = i CΓβl(p,i) = ^(p, i ) . Let iι,t>6Crel(p,±). Then

ι;>c. (1)

But u = boύ,υ = bov ϊoτ some tί,t;GC(p,κ:)nKerK and [feo>{6ίco}] = 0. Thus, the
second term of (1) vanishes because £?g = b0 and b% = 0. Thus the Right-hand side
of (1) is <u, Qt;>rel. By non-degeneracy we have Q* = Q. For K — 0, let w, ι;eCrel(p, 0).
By Theorem 2.7,

u = DRύ, v = DRv for some ύ,ve^(p9θ).

By definition,

/ i :ϊ /^ (2)

As in the case of κ = \, the right-hand side = - yf-^(DRύ,coχoQv}c =

- ^Ϊ(DRU, Qv}^ = <w, Qv}r&ι since Qv = -DRQv. Thus β* = β.

(ii) Recall that J^(p, /c) is the linear span of the canonical basis vectors of the form

®(y-1+Jiy-2+^'-iβ-1+Ji(β-2+J2- MB = l-κy, (3)

where the powers mi9ni9qiμe{0,l},ki9li9piμe{0,l,29...} such that all but finitely
many of these powers are zero. { Ψ1} is a basis of R(p, K) and AΓβ is some fixed but
yet undetermined positive constant. We will denote the basis by A. Recall also
that J^(p, K) = @(p, K) n Ker K (Definition 2.2). Thus #"(p, K) is the zeroth eigenspace
of X. Note that this subspace is Z-graded by U -f K, i.e. &'\p9 K) is the nth eigenspace
of U + K. Thus we have

Σ (-1)" dim ^«(p, fc) = const term Tr < ( - l)u+κqκ(Λ)>trivial. (4)
tu=Z
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Here < ( - l ) u + κ q κ ( A ) ) t ή v i a l

i s the matrix of the operator ( - l)u+κqκ in the basis A,
with respect to the bilinear form defined by <f2,i2') t r i v i a l = δΩΩ,,Ω,Ω'eA. Now
using the explicit expression for the ghost number operator U and the kinetic
operator K together with the above basis A, direct calculations give

Tr < ( - l)u + VWtriviai = qip'pl2)-κφκ(qΓ8 dimR(p, K). (5)

For κ = i , Q e l(p,i) = #""(p,i). Thus (4) and (5) give the desired result for
char Cτel(p, \). For K = 0, unfortunately the above formula for char does not hold.
However, Theorem 2.7 implies that

dim J^(p, 0) = 2 dim σnl{p, 0). (6)

Thus (4), (5) and (6) give the desired result for char Crel(p, 0). •

To compute the signatures, we introduce the following notion, Let A =
{a1,a2,.. ,aN] be a basis of a hermitian space W, and L.W-^W be linear. Then
(L(A)}W denotes the matrix whose (zj)-entry is (ahLaj}w. We say that A has the
canonical pairing property with respect to (,}W9 if the matrix <1(A)>^ has exactly
one non-zero entry in each column and (ahcij} = 0 or ± 1 for each (i,j).

Lemma 2.14.1 If A has the canonical pairing property, then

Proof. Let A = {ax •••%}. By reordering, we can assume that for each i, exactly
one of <αf, at_ ^W9 <αf, αΓ V , <αf, ai+ x)w is nonzero (α0 = 0 = aN+ λ). Thus (l(A))w

is block diagonal, each block being of the form ± [ 1 ] or

Thus, its diagonal form O(1(A)}WOT (where 0 is an orthogonal matrix) can be
obtained from <l(v4)>^ by replacing

ro η
Li oj

by

"ί/y/2 0
0
 -

By definition, sign W= £ sign(O<l(^)>w,OΓ) ί i. But the right-hand side =

Σ
ί = l JV

Remark, sign W = Tr (l(A)yw does not hold for an arbitrary basis A.

Counter Example. Let W = R2, A = {al9a2) be a basis,

<«!, fliV = 0, <αx, α 2 > ^ = <α 2 ,« !>^ = — , (a2,a2}w = 1.

Then obviously Tr (l(A)}w = 1. But sign W = 0.
We now compute signC r e I(p,|). Denote the canonical basis (given by (3)) of
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the subspace ^ ; s(p,i) = Ker (K - (p p/2) 4- \ - s)n^(p^) by As. Then A = [j As is
s

the canonical basis of Λ(p,i) = 0 &'\vΛ\ Because Λ(p,i) = C, we will drop

y 1 from (3) for ιc = i .

Lemma 2.14.2. For each s, ίfte ί>αsis As of &s(p,\) {with suitable normalization
constant NΩ; see (3)) has the canonical pairing property with respect to < v><^

Proof. Let Ω,Ω' be two canonical basis vectors. Then

iff

H = ki9 Piμ~Piμ>

for all U μ, where the powers with (without) primes correspond to the basis vector
Ω(Ω). This implies that each ΩeAs pairs with exactly one other Ω'eAs. Thus we
can choose NΩ so that each matrix entry of <1(,4S)>^ is either 0 or + 1 . Π

Now Crel(p,^) = ^ ; s (p,i) for s = — (p p/2) + ^. Thus by the above two lemmas:

agn Crel(p, i) =

= const term £ qr+{p'p}'2

[_rel/2Z +

= const term Tr (qκ(A) }a. (7)

Using the above basis vectors and the commutation relations in Sect. 1 to do direct

calculations, we get

Tr (qκ(A))% = q(P'PM-W2) φ1/2(q)-*. (8)

Combining (7) and (8) gives the desired result for signCrel(p,^).
We now turn to κ = 0. This calculation is slightly less trivial because

Crei(P>0) = J^(p,0)nKer DR and DR is in general not diagonal in the basis defined
by (3). Note also that Crel(p,0) is zero unless p p/2 is a non-positive integer.

Case 1. p'p = 0. One can easily check that (Definition 1.3)

Using Definition 1.3, 2.11, we have

signCrel(p,0) =
i = l 1 6

= Σ
i = l , . . . , 1 6

Case 2. p p/2 is negative integer. There are a few facts we need to establish first.
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Recall (Definition 2.2) that 4

p, 0) = R(p, 0) <x) C[μtH9 ΛL J I P>

,y_J|^=l>. (9)

Then J*(p, 0) = R(p, 0) ® 5^, where we denote the last three factors as 9*.

Let Ψi

± = l/y/2{l/mΨl±yfΞϊΨiJ (cf. Definition 1.3). Then p<doψ
i

± =

m = y/—p'p/2. Let {ε(s, k)}k=ί_Mis)u {Θ(s, l)}ι=1 >JV(S) be the canonical monomials

in C[atH9d'Ln]®C[b-H9c-n}®Clβ-n,y-n} such'that for each s = 1,2,...,

(i) [X, φ , fc)] = s φ , fc), [X, Θ(s, /)] = sΘ(s, I) for all k, I
(ii) φ,fc)(©(s,ί)) are Z2-even (Z2-odd).

We abbreviate \p}®\qF= l}®\qB=l} as ί2 0 . Let

/ = l ) . . . ^ ( 4 ϊ = l ) . - . J 1 6 } . (10)

Note that K Ψι

± ®Ω0 = {p-p/2) Ψ\ ® ί20. Thus by (i), A°s u l̂,1 is the canonical basis
of J*(/?,0) = J>(p,0)nKerX whenever s=-p p/2. In this case dim^(/?,0) =
32(ΛΓ(s)

Lemma 2.143. Z) R ^, D ^ i αr^ two bases of Crel(p, 0) = #Xp, 0) n Ker DR when
s= -p-p/2.

Proof. By Theorem 2.7, observe that DRA°S, DRAl are both in Crel(p,0). Using the
definition of DR, we can write D K U = P'd0 -f 5, where 5 is a Z2-odd operator
containing no co,bo,ίig,αg,jβo,7o. Using this formula, one can easily show that
DRA®, DRAl are both linearly independent sets containing 32 M(s), 32 N(s) elements
respectively. But Theorem 2.7 implies that

2 dim Crel(p, 0) = dim JF(p, 0) = 32 (N(s) + Af (s)).

Thus we must conclude that

dim Crel(p, 0) = 32 N(s) = 32 M(s).

This means that DRA®,DRAl are both bases of Crel(p,0). •

Recall that J*(p, 0) = R{p, 0) ® ί? (see (9)). When we computed sign Crel(p, £), the
hermitian structure of ^(p,i) and its canonical basis (cf. Lemma 2.14.2) played a
crucial role. We will see that as ^(p,i), Sf has a similar structure which simplifies
the computation of sign Crel(p, 0).

Recall that

,y_J/2 0, where

(11)

4 See footnote on notation in Sect. 1
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Define a non-degenerate hermitian bilinear form {,)y on Sf by

*>„* = *>_„ c*

, β 0 ) ^ = l , (12)

P-M in ϊ-n

where weZ\0.
Then one can easily check that

φ,/)ί2 0 )y = 0 (14)

for all k91 = 1,...,N(s). Let 4 S = {Θ(s,k)fl 0 )φ,k)Ω θ 9k = 1,..., JV(s)}. Then (J As

is a basis of Sf. Note that 9> inherits a N-graded structure from this basis,
s = @ 5;s, where 5;s is the C-span of As.

Lemma 2.14.4. With suitable normalization, the basis As of έ?;s has the canonical
pairing property with respect to ( v ) ^

The proof is similar to that of Lemma 2.14.2.

Lemma 2.14.5. With suitable normalization, DRA° and DRAl(s = —p-p/2) are two
bases ofCrel(p,Q) with the canonical pairing property with respect to <v)rei

Proof. We will show it for DRA°S. The argument is similar for DRAl. From Eqs.
(13) and (14), we have

for any fc, / = 1,..., N(s) and σ,p = ± . Write DR = p d0 + D as before. Observe that
Dε(s, fe) ̂ V ® Ωo are linear combinations of <9(s, /) ̂ V ® ί2 0 . Thus using these two
facts, we have

(DRε{s, k) n

= σm(φ,

Here σ,p ranges over ± , and m = J-p-pβ > 0. Thus by Lemma 2.14.4, for each
(k,i,σ) there is a unique (/,j,p) such that the last expression is non-zero. With
suitable normalization of the vectors DRε{s,k)Ψι

± ®ΩoeDRA°, this basis has the
canonical pairing property. •

We are now ready to compute sign Crel(p, 0). By Lemma 2.14.1, 2.14.5 and a
short calculation, we have for 5 = — p p/2,

2 sign Crel(p, 0) = Tr < 1{DRA°) >rel + Tr < l(DRAl) >rel

= 32 £ (φ,k)ΩoΛs,k)Ωo)y
k=l,...,N(s)

+ 32 X (Θ(s,k)Ω0,Θ(s,k)Ω0)y. (17)
k l i V ( )
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Thus

sign Crel(p,0) = 16 const term £ qs+{p'pl2)Ίτ{l(As)}^
\_seZ J

= 16 const term Ίτ(qκ(A)} y9 (18)

where A = (J Λs. Now direct calculations can be carried out using (12) and the

canonical basis A of £f (with suitable normalization). Just as the case κ = \ (cf.
(8)), we have here

Ύr(qκ(A)}^ = q^2φ0(q)-8. (19)

Combining (18) and (19) gives the desired result for sign Crel(p, 0) •

Corollary 2.15.
(i) ("Quantization Condition")

dim HUP, K) =i(2* + 1) dim R(p9 κ)p™(κ - ψ \

(ii) (No-ghost Theorem) H?el(p, K) is a positive definite space.

Proof, (i) We recall the Euler-Poincare Principle for characteristics:

( - iγdimHn

rel(P,κ)=Σ(-ίTdim c - i (P, 4

Thus by Theorem 2.4, the left-hand side gives dim Hj?el(p, K) while the right-hand
side is char Crel(p, K). Hence (i) follows from Proposition 2.14 (ii).

(ii) Similarly, the Euler-Poincare Principle for signature states that

X sign H"nl(p, κ)=Σ sign σnl{p, K).
neZ neZ

Again Theorem 2.4 implies that the left-hand side = sign H?el(p, κ\ while the
right-hand side is sign Crel(p, K). Thus (ii) follows from Proposition 2.14(ii) also. •

We now proceed to relating H?el(p, K) with the physical space well-known in
the "old covariant" formalism. Thus we will recall some of the structure of V(p, K)
(see [19]).

Definition 2.16. Let 0>(p, κ) = {ve V(p, κ):π(Ln)v = δnκv, π(Gn + κ)v = 0, n ^ 0}. It is
called the space of physical states.

When restricted to ^(p,0), < ? > κ = < ) κ ® ( , ) u is identically zero because
π(Go)* = — π(Go) a n d π(G0)

2 = π(L0) is zero on ^(p,0). This is reminiscent of the
fact that (cf. Proposition 2.10 (ii)) for K = 0, <, >^ is zero when restricted to Crel(p, 0)
because D%= — DR and D\ = K acts as zero on Crel(p, 0). Thus we have the analogue
of Definition 2.11:

Definition 2.17. Define the hermitian form (,)<? on έP(p,κ) as follows: for u,ve^(p,κ),
let

if κ = \

ί,t;>F if κ = 0 where v = π(G0)v.
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We note that <,>^ is a well-defined hermitian form on SP(p,κ) in the very same
w a y Orel is o n Cτeϊ(p9κ) (see Remark following Definition 2.11).

Proposition 2.18. There exists a subspace T(p, K) of V(p, K) 1ΓK (i.e. elements anni-
hilated by π(Lπ),π(Gn_κ),rc > 0) with

ch, T(p, K) = dimR(p, κ)q^2φκ(qΓS

T(vΛ)ί5 positive definite with respect to <>>F. T(p,0) is a direct sum of two subspaces
T± of equal characteristics, where T+ (respectively T~) is positive (respectively
negative) definite with respect to <,>F.

Proof Using the so-called spectrum generating algebra, physicists [1,2] have
constructed these spaces. However, we will prove their existence the way FGZ did
in the bosonic case.

It has been shown [7,9,10] that the Verma module of Mκ(h, c) over Virκ is
non-unitary for h < 0, c = 1 and unitary for h > 0, c = 9. By Kac's determinant [22]
formula, for h" < 0 and h! > 0, Mκ(h", 1), Mκ(h\ 9) have no (non-zero) proper
Z2-graded submodule. Note however that M0(h'99),h'>09 is the direct sum
of two irreducible proper submodules N+(h',9\ generated by the highest weight
vectors (HWV)

w± = \h\9)±h'-ί/2G0\h',9) with Gow± = ±h'~1/2w±, (20)

where |/i',9> is a Z2-homogeneous HWV of M0(h\9). Given peR 9 ) I \0, we choose
a decomposition p = p"®p' with pffeROΛ\09 p'eR9>°\0. Then

(i) Mκ(p"'p"β91) has no proper Z2-graded submodule.
(ii) M1/2(p''p'/2 + r,9), N±(p'-p'/2 + n,9) are unitary and irreducible for all re^Z +

and neZ+.

As in the bosonic case, there is a canonical isometry V(p, K) = V(p\ K) ® V(p\ K),
where V(p'\ κ)(V(p\ K)) is non-unitary (unitary). We will briefly describe their
structures.

(iii) V(p'\ K) and V(p\ K) are given by

V(p\ K) = Rip", K) ® C[αLo

n, dl°n+κ, neN] \p" >, non-unitary,

7(p',ιc) = R(p /,ιc)®C[αL l l,dL l l + κ,πeN,i = l,. . .,9] |p />, unitary,

R(p«9κ) = Cl if ιc = i

= 2-dimensional representation of {dl°, dl°} = — 1 if K = 0,

Λ(/?/,?c) = Cl if ιc = !

= 16-dimensional (positive definite) representation of

{4,4} = ̂ ' if ιc = 0.

(iv) The characters and the c-values are:

ch, V(p\ K) = (2 - 2K)q^M^M'\ (21)

chg K(p', K) = (16 - 3 0 κ ) ^ ' ^ 2 φ κ ( ί ) " 9 , (22)

π"(c)=l, π'(c) = 9, (23)
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where π"(x)(π'(x)) is the action of xeVirκ on V{p",κ)(V(p'9κ)). Thus (i) to (iv)
imply that we can express these spaces in terms of irreducible modules:

(24)

if κ = i

^ if κ = 0, (25)

where an9 bneZ+ with an + bn= 16p(

0

8)(n).
The eigenspace of π"(L0) corresponding to the eigenvalue p"-p"jl is given by

V0(p",κ) = CΊ if κ = i

= C 1 + Θ C 1 _ if κ = 0 (26)

where

= +^=lτ,l+isZ2-even. (28)

Equation (24) implies that

κ)γ^ = V0{p\κ). (29)

Equation (25) says that each eigenspace of # ;(L0),

| ^ ^ j t ? j , ne(l-κ)Z

is such that
dim Vn(p\ κ)γ*ϊ = (16 - 3 0 φ < 8 ) ( 4 (30)

Since F^p^/c) is unitary, we can choose an orthonormal basis

{w,(n):l= l ? . . . , ( 1 6 - 3 0 φ (

κ

8 ) W } of Vn(p\κ)Yi^:{wk(nlwι(n)}viP',κ) = ̂ ι (31)

Now following FGZ, we let

T(p, K) = V(p", κ)Ylΐϊ (x) K(p', /c)vi^+. (32)

It follows from (26), (29), (30) that

chβ T(p,κ) = (2- 2κ)(16 - 30κ)qppl2φκ(qy8

= dimR(p,κ)q^2φκ(qr^ (33)

Equations (27), (31) imply that T(p,^) is positive definite with respect to (,V(p, i/2) =

Γ(p,0)=T+θΓ with

T±=C(l++^ΐl-)®V(p\κ)Vlΐ^ (34)

where T + (T~) is positive (negative) definite with respect to (,)F(p,o) •
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Remark. F(p, K) is in general not a direct sum of Verma modules of Virκ even
though it is Vir~-free. This was also pointed out in [5] in the bosonic case.
To see a counter-example, we consider the Neveu-Schwarz case. Suppose
V = V(p, I) is a direct sum of Verma modules. Then computing chg gives

(35)

for some positive integers an,n ranges over 0,^,1,.... We wish to derive a
contradiction. Recall that V is hermitian. Thus

( + n, lo) s* ®anNl0ψ + n, 10V. (36)

By Kac's determinant formula, M(h, 10) is irreducible for h > 0 and hence hermitian.
Thus (36) implies that

0 α n M ^ + n , l θ ) s 0 α n M ^ + W,lθY. (37)

Since Verma modules are strongly indecomposable, (37) implies that (see [20],
Sect. 3.4)

f o r n- (38)

But by Kac's determinant formula, there are some negative half integers h such
that M(h, 10) is reducible. If p-p/2 + n is one such number, (38) contradicts
reducibility.

Corollary 2.19.

(i) dim Tn3P = i(2κ + 1) dimR{p,κ)p{*\κ-p p/2).
(ii) TCΛSP is positive definite with respect to (,}&.

(iii) F(p, K) is a free Vir ~ -module.

Proof.
(i) The case κ = \ is an immediate result of Proposition 2.18. Consider the case
K = 0. Clearly T(p,0) is left invariant by π"(G0)® 1. But

{π(G0),π"(G0)Θ 1} =2π"(G 0 ) 2 ® 1 =p l / p/f Id Γ ( P i 0 ) . (39)

This implies that in T(p,0)nKerπ(Lo),

T n K e r π ( G 0 ) = ΓnImπ(G 0 ) . (40)

The left-hand side is Tc\0>. Thus by (40) and Proposition 2.18, we have

dim Tn0> = ̂ dimR(p,0)p^( ~^γ\ (41)

(ii) Again the κ — \ case follows from Definition 2.17 and Proposition 2.18. Let
κ = 0,n= — p p/2. Then one can check that {π(G0)l + ®w ί(n)}/=1 d i m T n ^ is basis
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of Tn0>. By using Definition 2.17, and Eqs. (27), (28), (31), we obtain

<π(Go)l + ®wk(n),π(Go)l + ®wI(n)>, = 5kfI. (42)

(iii) Equations (24), (25) imply that V(p, K) is a direct sum of tensor products of
free modules over Vir ~. One can easily check that each of the tensor products is
also Vir ~ -free. •

Theorem 2.20. There are unitary isomorphisms

Proof. Consider the map Λ,:^-»Cί?el defined by

We note that λ maps 0* into the cocycles Z°el and thus induces an isometric
inclusion ^/λ'^B^-^H^ where JB?el is the (zeroth) coboundaries. But A-1B?e l is
a subset of rad^. By Corollary 2.19(ii), Tn &>->0>/τad0> is also an isometric
inclusion. Thus we have

onto

1-1
Ίc\0>

Using Corollary 2.15(i) and Corollary 2.19(i), we have the desired result. •

Having discussed its consequences, we now return to the vanishing theorem (2.4).

3. The Vanishing Theorem

Lemma 3.1 (Poincare Duality). H™el(p, K) is isomorphίc to the anti-dual ofH~e™(p, K).

Proof. For each m, C™el(p, K) is a finite dimensional vector space over C. Thus we
can write

C?el(p, fc) = K e r ρ m Θ K e r β i ,

where β m = β restricted to C™el(p, K), and Ker Q^ is a subspace of C™el(p, K)
complementary to KerQm. Similarly we can write Ker(2w = I m β m _ 1 0 I m β ^ _ 1 ,
where \vaQ^n_1 is a subspace of Kerβ m complementary to lmQτn.ί. Now <,>c

defines a non-degenerate pairing between C^el(p, K) and C~1

m(p, κ\ i.e. restricted to
CΓeiθ C'ϊ1, <,>rel is non-degenerate. Using β* = ± Q (Proposition 2.14 (i)) and the
non-degeneracy of <9>re l, we have < I m β w _ 1 , K e r β _ m > r e l = 0 and that ϊ m β m _ 1

pairs with Kerβΐ m . Similarly < I m β _ m _ 1 ? K e r β m > r e l = 0 and that I m β _ w _ 1

pairs with Ker β^. Note also that < C?el, C^el>rel = 0 for all m Φ 0. Recall that

CΓ i = Im Qm-1 θ Im β^_ x 0 Ker β i ,

Assume m φ 0. The case m — 0 is similar. Pick a basis for each of the six spaces:
I m β w _ l 5 I m β ί . ! , Kerβi , I m β ^ ^ , I m β V i , K e r β i w . Label these
bases according to the same order: lx,..., I6. Then, the matrix M of <,>rel in these
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bases must have the form

0
0

0

0

0

X

0
0

0

0

D
X

0
0

0

X

X

X

0
0

X

0

0

0

0

D
X

0

0

0

x\
X

X

0

0

0

where the (i,j) block is the evaluation of </j,//>reb and the X's denote some
nonzero blocks. That M is non-degenerate implies that the square blocks • are
both non-degenerate, i.e. ImQ^.i pairs with I m g i m _ 1 . Thus

^ ί l m β ^ r (antidual).

This induces an isomorphism

HTei^(H-n*. D

To compute the cohomology, we will use some standard techniques in
homological algebra. The same techniques were applied to the calculation of the
BRST cohomology of the bosonic string by FGZ. Here we need only a slight
modification. The strategy is to define a filtration of the complex such that the
induced differential operator Q simplifies considerably. One can then relate the
new cohomology groups with the ones we want to compute, by some long exact
sequence. As we will see, it is then enough to compute the new cohomology groups.
In fact they are essentially the classical homology of a (super) Lie algebra (see [23])
which will be dealt with using the standard techniques we mentioned earlier.

Recall that Crel(p,^) (respectively Crel(p,0)) is spanned by the canonical basis
vectors of the form

(see Definition 2.2 and Theorem 2.7), where pa,pd,pb,pciPβ,py are monomials of
creation operators. Define on Crel(p, K) the filtration degree

- degp r/ degβ= - V-γ + degpα + degpd + degpb - degpc

For example,

/deg(α1_1d
2.3 / 2 |p>®b_3c_4 |l>(χ)iS_5/ 2y_7 / 2 |i»
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Here we emphasize that for K = 0, Theorem 2.7 tells us that

Crel(p, 0) = (Im DR:F(p, 0) - P(p, 0));

also, / d e g D Λ = 0 is essential for /deg to be well-defined on Crel(p,0). Let
Iκ = (1 — κ)Z — p'p/2. Then / deg is Iκ-valued on Crel(p, K). Define

(1)

Then one can easily check that

Proposition 3.2. {5^}ge/ is a finite filtration of the complex (Crel(p,κ)9Q)9 i.e.
QBq<^Bq,Bq + 1~κ czBq for all qelκ9 and there exists qθ9q1 such that for q^q0,
Bq = Crel(p, K) and for q^quB

q = 0.
This means that for each q9 {Bq, Q) is a complex with differential β, graded by the

Z-valued ghost number, B* = 0 ( ^ T Furthermore, {Bq/Bq+1~K

9Q) is a complex
meZ

with the differential Q induced by the map Bq-^Bq/Bq+ί~κ. @Bq/Bq+ί~κ is the

associated graded space of C r e l.

Proposition 3.3. For p Φ 0, ί/ie cohomology of the associated graded space is such
that Hm(Bq/Bq + ί-κ) = 0 for m < 0, qelκ.

First, its consequences

Corollary 3.4 (Theorem 2.4). /ί?el(p,κ) = 0 for mφO and pφ0.

Proof From the short exact sequence of cochain complexes 0
Bq/Bq+1~K-*0, one obtains the long exact sequence

Then by Proposition 3.3 we have H m ( ^ + 1 " κ ) ^ i ί m ( ^ ) for all qelκ and m < 0 .
From the finiteness of the filtration (Proposition 3.2), it follows that H™el(p, κ) = 0
for m < 0. By Lemma 3.1, we have the desired result. •

Proof (Proposition 3.3). The proof consists of 3 steps

Step 1. Define Dq = {ΩeCτel(p, κ):f deg Ω = q}. Thus Bq = Bq+ x ' κ ® Dq and we can
identify

Dq = Bq/Bq+1~κ. (2)

Thus the induced differential Q is now acting in Dq,Q:Dq^>Dq. Explicitly,

2 = 61 + 62, where

Σ
n>0

-\ Σ
-̂ m,n>0

+ Σ z([L_m,G_n + κ])ε(L_Jε(G_Π + κ)
m,«>0

- ^ Σ /({G-m + κ,G_Π + κ})ε(G_m + κ)ε(G_n + κ), (3)
^ m,n>0
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Qi=-\ Σ ε(LJε(Ln)ι(lLm,LJ)+ £ ε(
£ m,n>0 m,rt>0

~\ Σ i({Gm-κ,Gn_κ})ε(Gm_κ)ε(Gπ_κ), (4)

where ε, z are linear maps from Virκ onto the super Heisenberg algebra (Eqs. (1)
to (4), Sect. 1) defined by

ι(Ln) = bn ι(G-n+κ) = β.n+κ.

By definition of Dq, it is clear that

cUP,κ) = @Φq)\ (5)
qelκ

where (Dqf is the elements of Dq of ghost-number n. Then (C*bQ) is a cochain
complex with differential Q. Recall (Definition 2.2) that

Thus there is a canonical isomorphism

^(p,κ) s C(9-9 V)® C(» + ,Q, (6)

where

>jS_M+J, (7)

(8)

Here, n ranges over 1,2, Throughout this proof, we will denote the tensor
product in the right-hand side of (6) by F. Here $ ± denotes the subalgebras of
^ = Virκ given by <S± = span{xe&: ± degx > 0}. Note that C(^_, V),C{&+,C),F
are also graded by the ghost number and that

Cw(^_,F) = C- n (^ + ,C) = 0 for n > 0 , (9)

Fn= 0 C- Λ (^_,F)®C b (^ + ,C). (10)
n = b — a;a,b^.O

Furthermore (cf. (3), (4))

ρ 2 :C M (^ + ,C)->C M + 1 (^ + ,C), (12)

Q:Fn-*Fn+\ (13)

and β2 = ρ2 = ρ2 = 0 τ h u s c*(^_,F), C*(^+,C),F* are complexes with the
above differentials.

Recall that

Crei(P> ^) = ^ ( P ? 2 ) n K e r ^ f o r κ = 2

for κ = 0. (14)
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By (6), K(K and DR) has a canonically induced action on F when κ = j
(when K = 0). Thus by (5), (6) and (14), we have the canonical isomorphisms of
complexes

qelκ

^FnKcrDR for κ = 0. (15)

Following FGZ, we denote the right-hand side of (15) in either case by F^°. Here
90 = CK(90 = CK(BCDR) when κ = #κ = 0). Combining (2) and (15), we have
for each n,

0 Hn{Bq/Bq+! -*) ^ Hn(F"°), (16)

where Hn denotes the nih cohomology group.

Step 2. It is easy to check that, as acting on F,

In particular, K has a naturally induced action on Hn(F). Let

Hn(F)κ = Hn(F) n Ker K. (18)

By the Kiinneth formula and (10) we have

Q). (19)

As in [5], 7f" f l(C(^_, V)) will be computed in Step 3 using the standard technique
we mentioned earlier. Suppose that

F)) = 0 for all α > 0 . (20)

We will establish that for K = 0,^,

Hn(F^) = 0 for all n < 0 . (21)

Proposition 3.3 then follows from (16) and (21).

Let &n and %n be the spaces of nth coboundaries and cocycles in Fn.

Case 1. κ = \. Equation (17) implies that there is a natural homomorphism

Ψ\Hn{Fκ)-*Fίn{Ff,
κ < % " . (22)

We will show that Ψ is bijective. Let we(&n)κ and w + @n = 0. Then

w = Qw' for some WeFn~x. (23)

Since [K, Q] = 0, Q leaves each eigenspace of K invariant. Thus we can choose

w'eiF"-1)*. (24)

By (23), (24), we have

w + (iT )* = 0. (25)

Thus IP is injective.
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Note. To prove surjectivity, it is tempting to use {Q,b0} = K to argue that every
cocycle of F is annihilated by K. But remember that Q Φ Q and that b0 is not
define in F\

However, let
F)κ. (26)

Again, we can choose w to be an eigenvector of K,

Kw = λw for some λ. (27)

But (26) implies that either

or λ = 0. (28)

In either case, w + $lnelm Ψ. This means that Ψ is surjective. Thus for K = | , (22)
is a natural isomorphism, i.e.

Hn(Fκ) s # M (i0* (29)

Thus (19) and (20) imply (21).

Case 2. κ = 0. Recall that D2

R = K,<go = CK® CDR. They imply that

Hn(F*°) = Hn(FDR). (30)

Repeating the argument used in Case 1, we have (cf. (29))

Hn(Fκ)^Hn(F)κ. (31)

By (17) and Theorem 2.7, we have the short exact sequence of cochain complexes:

0 ^ FDR -U FK -^ FDR - 0, (32)

where i is the inclusion map and Ψ = DR( — 1)FK. Thus there is a long exact sequence

• -*Hn-1(FDR)->Hn(FDR)-±Hn{Fκ)->Hn(FDR)-* -. (33)

Equations (19), (20) and (31) imply that

Hn(FK) = 0 for all n < 0 . (34)

Since Fκ is finite dimensional, the sequence (33) terminates on both ends. But (34)

implies that

Hn~1{FDR)^Hn{FDR) for all n < 0 . (35)

This in turn implies (21).
We have now established that for K = 0, ^, if

F)) = 0 for all α > 0 , (36)

then

Hn(Bq/Bq+1-K) = 0 for all n < 0 . (37)

Thus to complete the proof of Proposition 3.3, we need only to show Eq. (36).
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Step 3. We first state a theorem.

Theorem 3.3.1. Let <& = i f ° θ i ί ? 1 be a super Lie algebra where SgQ,<£x are the
even, odd parts. Let Cn = 0 US' ® A V<£° ® v qSe\ where A V<£\ V q5£1) denotes

n = p + q

the pth exterior space generated by ^°{qth symmetric space generated by S£x) and
XJ3? is the (Z2-graded) universal enveloping algebra of if. Define d:Cn-^Cn-ί by

d(u®x1 A ••• Λ xp®y1 v ••• v yq)

= (-!)" Σ (-n+1

+ Σ yϊ

-(-!)" Σ (-

+ ( - ! ) " Σ ( - 1)' M ® X I A •• x r Λ x ,® [Xfrtt] v yi v -$j-vyq

- ( - 1 ) M 5] w ® ! ^ ^ } A X ! Λ ••• Λ X ^ ^ v ...j)....j) r.. vj;,, (38)

(—1)" is the Z2-grading of ue\J££. Let ε: C o -+C be the map defined by
linearly extending

1 ίf U = 1 (39)
0 if u Φ 1 and u is a canonical basis vector of I)Ί£.

Then the sequence

C'"'C d > C —> C ε > C —*0 (40)

is exact. In particular, the homology groups Hn(C) = 0 for n>0.
This is a generalization of a theorem in the theory of classical Lie algebra

homology (a good exposition is given in [18]; see also [23]). The proof of this
super case requires only a slight modification of the ordinary case. Note that the
theorem holds if we replace (7 i f by any free if-module A, for then A ^ @(U^)S

where A is free on S. seS

We now apply this theorem to the subalgebra Vir ~ of Virκ. Let 5£ = Vir ~. Then
it is clear that canonically, Λ &O ^C[£>_„] and v if1 ^ C [ j 8 _ n + J . By Corollary
2.19(iϋ), V(p,κ) is a free if-module. Now let d = Qt and Cn = C~n(^_, V). Then
(C^d) satisfies the conditions of the above theorem. Thus, 0 = Hn(C) = if"π(C(^_, V))
for n > 0. This completes the proof of Proposition 3.3. •

4. The GSO Projection

It is clear from Corollary 2.15(i) that in the case K = \, a "tachyonic" state (i.e. a
state with pmp>0) exists. In the early days of superstring theory, the RNS model
was meant to be a "spacetime" supersymmetric extension of the bosonic string
in which the Neveu-Schwarz sector (K = ^) consists of bosons and the Ramond
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sector (κ = 0) fermions. However, Corollary 2.15 (i) implies that ^el

dim H®el(p, f). Thus one of the basic requirements of a supersymmetric theory — #
bosons = # fermions at each mass level—is violated. It turns out that these two
undesirable features can be removed by certain natural truncations on the spectrum.
They were first proposed by Gliozzi, Scherk and Olive [8] (GSO) in the "old
covariant" formalism. It turns out that if one projects out the Z2-odd states of
0>(p, K) in both sectors, the above two features will be eliminated. We will discuss
these truncations below.

GSO defined the G-parity on the Fock space V(p, K) by

where Γlj2=—l and Γo is the chirality operator on R(p,Q) with Γ% = 1,
{Γ0,d^} = 0. Note that Gκ is essentially the Z2-gradation defined on V(p,κ). Thus
a natural extension to Cτel(p, K) would be

Σ (d-n + κ dn-κ + b-ncn + c.nbn)

Definition 4.1. Let Gκ = Γκ{ - l)"^1 . Then one has

Q:\{\ ± Gκ)σrtl(p,κ) -4(1 T Gjq + HfrK). (1)

Let

P±=±(l±(-l)u+κGκ). (2)

It follows that {P±C*Ql{p,κ\Q) are two subcomplexes of (C*,(p,K),Q). We will

denote their cohomology groups by H*(P±C r e I) and call (P+C*e l,β) the GSO

subcomplex.

Proposition 4.2. char P+ Crel(p, k) = 8p(

0

8)( - p ρ/2).

Proof. Let K = \. Then

char P + C r e l = Σ ( - l ) r t dim P+C«e l

= Σ <Ω^(l+(-l)u + 1'2Gll2)(- l ) C 7 + 1 / 2 β > t r iv ia l, (3)
ΩeA

where <,> t r i v ia l is defined by <β,ί2'> = δβ,β', where Ω,Ω'eA and A is the
canonical basis of C re l.

Recall that C r e l = ^(p, |)nKeriC. Thus (1) becomes

charP + C r e l = const, term [Tr<|( - l ) u + 1 / 2 ^ > t r i v i a l + T r < | G 1 / 2 ^ > t r i v i a l ] . (4)

Calculations as in Proposition 2.14 give

-^r-) > (5)
l—q /

Combining (4), (5), (6) and using Jacobi formula (see [19], Chap. 4), we have
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Γ /l+tfΛ8Ί
char P+ C r e l = const term Sqpp'2 [ ] — . (7)

L n>o\l-qnj J
The reader should compare this with a calculation in [19] using the "transverse
coordinates."

Now consider, K = 0. We will do only the nontrivial case where p p/2 is negative
integer. As before,

char P + C r β I = ± Σ <Ω,(-ί)uΩ\rivM + ̂  £ <β,G o ί3> t r i v i a l . (8)
ΩeA ΩeA

The first term of (8) is ̂ char C r e l = 8/?(

0

8)( - p p/2), by Proposition 2.14(ii). Thus it
is enough to show that the second term of (8) is zero. Recall the Z2-odd canonical
monomials {Θ(s,k)}k=lmmmNis) defined in the proof of 2.14(ii) with s = —p'p/2 > 0.
Recall also the basis vectors ofK(p,0) (Definition 1.3(ii)) Ψ^9 Ψi, which satisfy

r0 ψι = + Ψl,r0 Ψl = -Ψi.

Lemma 4.2.1. The set

is a basis of Crel(p,0).
The proof is exactly the same as that of Lemma 2.14.3. Now it is clear from the

definition of Go that precisely half of the^ above basis is in Ker(G0 - 1) and the
other half in Ker (Go + 1). Thus X <Ω, G0Ω > t r i v i a l = 0. •

ΩeA

Remark. We note that each of the factors

Σ b-ncn Σ c-cbn

(-1)"*1 , (-1)-^ ,

_ Σ β-n + Kyn-κ , ΣV-n + Jn-K

(-l) î , (-I)-**

in (— l)u + κ is an involution. Thus we can write

_ Σ

The right-hand side is precisely the "G-parity" proposed by Terao, Uehara [15],
and Ohta [13], as a generalization of the GSO projection.

Proposition 4.3. For K = 0,^,

(i) there is an isometry

#* e l s H*(P+ CreI) Θ H* (P _ Crel)

such that the right-hand side is an orthogonal decomposition;
(ίi) the cohomology of the GSO subcomplex has

Sj for n = 0

= 0 otherwise.
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Proof.
(i) It is easy to check that P ± are orthogonal projectors with respect to <, >rel. i.e.

P + P _ = P _ P + =0, P++P_ = 1.

Furthermore, [β,P+] =0. These equations imply that the map

ff , -> H*(P+ C r e l )+ # *(P_ Crel),

is an isometry.
(ii) Combining (i) and Theorem 2.4, we have Hn(P+ Crel) = 0 unless n = 0. By the
Euler-Poincare Principle, we have

( - 1)» dim P + C r e l = dim H°(P + Crel).

The left-hand side is char P+ C r e l which is given by Proposition 4.2. Q

We note that the cohomology of the GSO subcomplexes H°(P+Crel(p,κ;)),
K = 0,^ no longer have the two undesirable features—i.e. H°(P+ Crel(p,^)) has no
tachyonic states and dimifo(P+C r e l(p,i)) = dimHo(P+C r e l(p,0)). Thus we have
achieved the "covariant" equivalent of the GSO projection.

5. Cohomology of the BRST Complex and the Exceptional Case

We now return to the BRST complex defined in Sect. 1. First the Neveu-Schwarz
case {κ = \). Recall that (C*el(p,i),β), (C*(p,i),Q) are Z- and Z + f graded
respectively (Definition 1.8, 2.3).

Theorem 5.1. There are isomorphisms H r° e l(p,i)^H± 1 / 2(p,i) and Hn{pS = 0for

nΦ±i
Proof. We observe that {Q, b0} = K. Thus, the cohomology of C*(p9%) is the same
as that of C*(p,%)κ = C*(p,|)nKer K. Define the map

by ψ(w) = ( - l)wb0w, where ( - l)w = + 1 if w is Z2-even, - 1 if Z2-odd. Then we
have a short exact sequence of cochain complexes:

) I ^»C- M l (p,i)-0, (1)

where i is the inclusion map. This implies the long exact sequence

Λέ)-^iϊ; e l(p,i)^ . . (2)

Theorem 2.4 then implies the desired result. •

In the Ramond case (K = 0), again
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H*(p9 0) s H*(C(p, 0)κ) canonically. (3)

Unfortunately, because C(p,0)K is infinite dimensional, a short exact sequence
similar to (1) does not exist. Recall that (Sect. 1)

C(p,0f = Co®Cl9 (4)

where C(p,0) has a doubly graded structure (cf. Proposition 1.9) and

CqB = (V®Λm®rqBf9 qB = 0,l. (5)

Let

Remark. Note that although CqB is infinite dimensional, each Cn

qB~
1/2 is finite

dimensional. This follows from the fact that for fixed qB = 0,l, and neZ, there are
only finitely many monomials v in F ® Λ 0 0 ® ! f 4 B which satisfy both

Kv — 0 and Uυ = (n + qB)v.

Note that QCn

q;
112 c CJ+ 1 ' 2. Thus by (3), (4), we have

H ^ O J ^ H ^ ^ ί C o ί Θ H " " 1 7 2 ^ ) . (7)

Proposition 5.2. H " + 1 / 2 ( C 0 ) s H - " - 1 / 2 ( C 1 ) * , for all neZ.

Proof. By Proposition 1.9, (,)c defines a non-degenerate pairing between Cn ; 0 and
C~n;0 = {C~n)κ. In particular, there is a similar pairing between the two finite
dimensional spaces, Cn

0

+1/2 and C;n~1/2 (cf. (6) of Sect. 1). Since β* = - Q with
respect to (,)c, the pairing induces the isomorphism we want. The detailed argument
is very similar to that Lemma 3.1. •

Thus, it is enough to compute one of H*{CqB), qB = 0,1. Observe that Crel(p,0)
is a subspace of C1. As we did in the case K = \, we will try to relate Hfel(p,0) and

i). Since both cθ9bo act in Cx and {bo,co} = 1, bl = 0, we have

(8)
Let

Dn

ί = {veCΓ1/2:b0v = 0}. (9)

Then we have a short exact sequence similar to (1):

0, (10)

where *F(w) = (— l)wbow as before. This implies the long exact sequence:

-^fl"(D1)-> . . (11)

Proposition 5.3. IfpφQ, then H^DJ^Hn

τel(p,0) for all neZ.
First its consequence:

Theorem 5.4. For K = 0, the cohomology of the BRST complex is given by

HM(p,0)^Hr°elfe0) for n=l
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(p,O) for n = 0

£H°,(p,O)* for n = - l

= 0 otherwise.

Proof. By Proposition 5.3, Theorem 2.4 and the long exact sequence (11), we have

H'iCJ^HU&O) for r = ± i

= 0 otherwise. (12)

The theorem then follows from Proposition 5.2 and Eq. (7). •

We now return to the proof of Proposition 5.3.

Proof (Proposition 5.3). Recall that D1 = 0 D*ϊ has the structure, by (5), (8) and (9),
meZ

(13)

where

= l > , (14)

= l > . (15)

Thus, £>! can be written as

D^φE,, Et = γι

onp,0), (16)

where (Definition 2.2)

®C[βU9yn9n<O]\qB=iyf. (17)

From Proposition 1.7 (x), we see that Q acts on D1 like

βθ9 (18)
where

B = Q0, C = N. (19)

One can easily check that A,B,C contain no zero modes {bo,co,βo,yo) and they
satisfy

A2 = C2 = 0, B2 = CA, (20)

{B,A} = {B,C} = {A,C}=0, (21)

A, B, C commute with βθ9 yθ9 (22)

(23)
Note that (23) is essentially Theorem 2.7 since b0 acts as zero. A similar structure
((18) to (23)) was first realized by Dixon and Taylor [21] in their study of gauge
theories. Kato and Ogawa [11] then apply it in a different context. It turns out
that such a structure allows one to define a projection map from the cocycles of
DX to those of C*el.
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Lemma 5.3.1 (Dixon-Taylor). There is a projection map P0:Z
m(D1)-+Z™el such

that for each weZm(D1), w = Pow + Qwf for some w'eD™"1.

Proof. For each m, choose a fixed complementary subspace (Ker A)1 c D™. Then
(20) and (23) implies that

A: (Ker A)1 -• Ker A is invertible. (24)
Now

βw = 0 (25)
and

w = Pow + Qw' (26)

are equivalent to

4y o *V-i+Bw Λ + C/ίoWII+1=0, n ^ l , (27)

w0 = Pow + Bwf

0 + Cβow\ (28)

and

wΛ = >lyow;-1 + JBw'B + C/ίow; + 1 , n £ l , (29)

where WΠ,W^G£Π are components of w,w'. Note that w= Σ wn terminates. Thus

using (20), (21), (24) and (27), one can inductively solve for a unique

Σ 1 (30)

such that (29) is satisfied. The solution and Eq. (28) then uniquely defines P o . One
can verify that P o has all the required properties. The reader can consult [11] for
details. •

Corollary 5.3.2. There is an isomorphism H*(D1)->Hfel(p,0) given by [w]h-»[Pow].
This completes the proof of Proposition 5.3. •

Thus far, we have assumed p φ 0. For p = 0, the vanishing theorem does not
hold because the Fock space V(p, K) is not Vir ~ -free, as in the case of the bosonic
string (see [5]). In fact, π(L_ x )R{0, κ )®C|p = 0> = 0. Fortunately, the cohomology
groups in this case are easy enough to compute explicitly.

Proposition 5.5. Let p = 0:

(i) For K = 0

Hn

rel = 0 for nΦQ

ι = l , . . . , 3 2

where Ψι are basis vectors ofR(0,0).
(ii) For K = \,

Hn

rel = 0 for nφO

^ C for n=±l.
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(iii) For κ

Hn =

= 0,

for w#O,±l

= [J
i=X 3 2

ί = l , . . . , 3 2

ί = l , . . . , 3 2

(iv) For κ =

= 0 for n # ± i +

for n = 0

0}®\qF=l}®yo\qB=\y for n= + l

qB = 0} for n = - l .

/or n=-±

for n = + |

^ C /or n = ± f.

Proof.

(i) For K;

that each
(ii) For κ

= 0, the only non-trivial C"el is C?el as given above. One can also check
element of Cj?el is a cocycle.
= j 9 the only non-trivial C"el are

d = LJ
l

all of which are cocycles that are not exact,
(iii) Let

As in Proposition 5.1, we need only to consider C(0,0)κ Ξ C(0,0)nKerK. Then,
the complex C(0,0)κ is given by

(C°) κ =
i = l 32

= [J
i = l , . . . . 3 2

L-! m>0,

m>0.(C~m)κ=

Using these bases the calculations of Hn (0,0) becomes trivial,
(iv) This is similar to part (ii). •
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6. Conclusion

We have constructed a complete super analogue of the BRST cohomology theory
for bosonic strings using the methods introduced by FGZ. We have shown that
such a construction indeed leads to a theory equivalent to the "old covariant"
quantization method.

As in [5], the construction here of the super-extension of the BRST complex
can be generalized to an arbitrary super graded Lie algebra. The only mathematically
non-trivial result is the vanishing theorem (2.4). Work in this direction is under way.

Note added in proof. After the completion of this work, we received preprints from J. Figueroa-O'Farrill
and T. Kimura, whose work appears to be similar to ours.
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