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Inverse Spectral Problem for the Schrodinger Equation
with Periodic Vector Potential

G. Eskin
Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA

Abstract. For the Schrddinger operator with periodic magnetic (vector) and
electric (scalar) potentials a new system of spectral invariants is found. These
invariants are enough to prove the rigidity of isospectral deformations in
the class of generic even and real analytic magnetic and electric potentials.

1. Introduction
Let L be alattice in R? with a basis d,, d,, i.e. any de L can be represented in the form
d=md, +nd,, m,neZ.

Denote by L the dual lattice, ie. L = {0 =md, + nd,}, where §,°d, =1, k=1,2,
6;d, =0 for i #k,J-d is the scalar product in R2. Let A,(x,x,),k=1,2,V(x,,x;)
be real-valued C* functions periodic with respect to the lattice L. Consider the
Schrodinger equation describing the election in an electromagnetic field (see, for
example [1])

.0 2 .0 2
iz—+ Ay(x) | Y+|iz—+ A2(x) | ¥+ Vx)WY(x)=A(x), (L1)
0x, 0x,
where A(x) = (4;(x), A,(x)) is the vector potential and V(x) is the scalar (electric)
potential. Without loss of generality we shall assume that

oA, od; _

divd=—"1+

a0 (1.2)

Since A(x) is periodic we have that the magnetic field

- 0A; 04

=curlA=—>--2 1.3
B(x) =cur ox,  ox, (1.3
is also periodic and moreover

I B(xy,x2)dx dx, =0. (1.4)

R%/L
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Using the Fourier series expansion it is easy to check that having periodic magnetic
field B(x) satisfying (1.4) one can find a unique periodic A(x) such that (1.2) and
(1.3) hold and

i Ax)dx=0, k=1,2. (1.5)

R%/L
2
Denote by Spec, H the periodic spectrum of the operator H = Y, (i(9/0x,) + 4,)* +
k=1
V(x), i.e.

HY, =AY, n=12..., (1.6)
where
Vu(x +d)=y,(x), VdeL. 1.7
Also, denote by Spec, H, keR?/L, the Floquet spectrum of H, i.e.
H(p,,(X)=/1,,(k)(p,,, n= 1,2,-'-’ (18)
where
@ulx + d)=e*>"*4p,(x), VdeL. (1.9)

We shall study the inverse spectral problem of recovering B(x) and V(x)
(or A(x) and V(x)) from Spec, H or Spec, H, VkeR?/L. The case when A(x)=0
was considered in [3,4]. We shall use some results and tools from [3,4]. Note
that the case of the vector potential is quite different and requires new ideas
and new techniques. Repeating the proof of Theorem 6.2 in [3] we get

Theorem 1.1. Assume that A(x) and V(x) are real analytic and the lattice L has the
following property:

|d| = |d'|impliesd’ = +d for any d,d'eL. (1.10)

Then Specy H determines Spec, H for all keR?/L.

As in [3] denote by S the set of all “directions” in L, i.e. for any deL there is
0o€S such that 6 =md, for some integer m and md,¢S for m+# 1. Periodic
functions A4,(x), k = 1,2, have the following decomposition:

A (%) = zAk,,<‘|56’]‘> k=1,2, (1.11)

where

o0

Aps(s) = Z je2miklols, (1.12)

187"

Guan =101 [ Aus0)e™*™ 1P ds = [[ Aulx)e ™20 %dx, - (112)

|T21 f
T?=R?/L, | T?| is the area of T?. Analogous decomposition holds for V(x). Take
arbitrary d,€S. There is dyeL such that 6,-d, = 0 and nd,, neZ, span the subspace
of L orthogonal to 6,. Note that there exists a basis (dq,d?) in L that includes
dy and d® must be such that d@-§, = 1. Denote

Aso(8) = A15,()do1 + A250(5)do2s (1.13)
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where dy/|do| = (do1,do,), |do] is the norm of d,. The main result of this paper is
the following theorem.

Theorem 1.2. The Floquet spectrum Spec, H, VkeR?/L determines the following
integrals:
-1

190! ds
H = —_— 1.14
ﬁo(l'l) g m ( )

for arbitrary 6,€S and any p> — 4 ming A; ().
The proof of Theorem 2.1 is based on the study of the trace jf G(x + Ndy +

md®, x, x,)dx, dx,, where G(x, y, x, ) is the fundamental solution to the Schrodinger
equation

19 _HG, x,>0, (1.15)
0xo
G(x,y,0) = d(x — y). (1.15)

This trace is known once one knows all Floquet spectrums. The asymptotics of
the trace when x, = 1,/N,m and 1, are fixed and N — oo has the following form:

) G(x + Ndy + md®©, x,t—°>dx
! N

1
iN3 iN
1 1

47, / 21,

where N, = N|d,| + m(d,/|d,|-d?). The explicit expression for Sy(t,) and a(z,) is
given in Sect. 4. Note that Sy(t,), a(t,) are spectral invariants and knowing Sy(,)
we can find the spectral invariant (1.14). The proof of (1.16) is quite technical and
it is given in Sects. 3 and 4. In Sect. 2 we shall find sequence of approximative
eigenvalues for the spectral problem (1.6), (1.7). Although the results of Sect. 2 are
not used for the solution of the inverse problem they give an important information
about the spectrum and suggest the form of the spectral invariants. Indeed it will
be shown in Sect. 5 that the principal terms of the asymptotic expansion for the
eigenvalues are indeed spectral invariants. In Sect. 5 we shall apply the asymptotics
(1.16) to the solution of the inverse spectral problem. In particular we shall prove

=N, exPl: - So(/To/ ):I (a(zo) + OINTY), (1.16)

Theorem 1.3. Assume that AP(x), VO(x),k = 1,2, are even and real analytic in
x,xeR?, and continuous in t, 0<t<1. Assume that AP(x),k=1,2 satisfy a
generic condition (as in Proposition 5.3). Let A®(x),V®(x) be an isospectral
deformation of A®(x),VO(x), ie. Speco H? =Speco H? for 0<t<1. Then
AO(x)= AO(x), VO(x) = VO(x) for 0 < t £ 1, i.e. H? is spectrally rigid in the class
of even real analytic vector and scalar potentials.

2. Asymptotics of Eigenvalues

In this section we shall find a two-parameter sequence of approximate eigenvalues
for the spectral problem (1.6), (1.7). Take arbitrary d,€S. Let (dy,d?) be the same
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basis of L as in Sect. 1, i.e. dy'6o =0, d @5, = 1. Make the following orthonormal
change of variables

o dq
S=——X, t=—-X. 2.1
16| A @1)
Then
50 dO
X=5—+t——. 2.2
EARETA 22)

At first we shall consider the eigenvalue problem for the following operation Hj,
which we shall call the reduced operator in the direction J,:

0* 0
HBO‘// = < - b—s—i a a2 + 21A50(S) + C60(5)>!/l Al// (23)

where A4;,(s), Cs,(s) are periodic in s with the period |d,| ™ *. Note that the periodicity
of Y in x-variables implies

do d do )
S+ s,t), VdeL. 2.4
(srfobria)-ven ey
We shall look for the eigenfunctions i in the following form:
W(s, 1) = e w(s), (2.5)

where ¢ is large. Since (dg,d?) is a basis in L we have that d =m,d, + m,d?,
where meZ, k= 1,2 and (2.4) implies

w(s +m,| 0|~ 1) = g~ i¢mildo] —iémz(do~d<°))lldolw(s) (2.6)

for any m, eZ, m,eZ. Therefore in order to ¥ to be periodic we must have

E= IZ ln for some neZ 2.7)
0

and w(s) satisfies the following Floquet boundary condition

dy-d®
w(s 4+ m,|do| 1) = exp [ —i&,m, 1do] :|w(s), (28)
0
where £, = 2nn/|d, | is fixed. Substituting (2.5) into (2.3) and cancelling e*"* we obtain
62
E2w Fe —24;,(5)E,w + Cs ()W = Aw(s). 2.9)
Take

1=k, (2.10)

Then we obtain

52

M) L 2y (5)— WEW — Coyw =0, @.11)

62
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Denote
1

VT

Consider for definiteness the case when £, > 0. The case when &, < 0 can be treated
analogously. After the division by &, = h, 2 Eq. (2.11) takes the following form:

2.12)

62
- hfa—s”zv + (i — 245, (s) + h2Cy (s))w =0, (2.13)
i.e. (2.13) for h, — 0 has the form of the semi-classical approximation in the quantum
mechanics (see for example [6]). Let s, be an isolated local maximum of A4;,(s)
and sg < s, <sg be such that 4, (s) is strictly increasing on (sg , o) and is strictly
decreasing on (sq,sg ). For any p such that 24, (sp) — o = p# = max 24, (s§) + &
consider the relation

s+(w)

| J2A45(8) — pds=t, (2.14)

s—(w)
where 24;,(s+ (1)) — u =0 and gy < A44,(so) — max A, (s3 ). Denote by pu = p,(¢) the
inverse function to (2.14) for 0 < C; <t < C,. It is known (see [6]) that there exists
approximate eigenvalues u,, and approximate eigenfunctions ¢,,(s, #,) such that

FGRl0)
_ 28 Pm
h" 0s?

Where B = ﬂo(n(m + 1/2)hn) + .u2mnhr? +eeet AuNmnhnN: “‘kmn| é C’ 2 é k é N. Note
that (2.15) holds uniformly for all m such that

0<C,<nm+3)h,<C,. (2.16)

The relation (2.14) states that u,,,, = to(m + 1/2)h,) satisfies the Bohr-Sommerfeld
quantization condition

+ (.umn - 2A50(S) + hr% Céo(s))(pm = O(hrly)’ (215)

S+ (Homn)
245, — tomnds = n(m + $)h,,. (2.17)
s—(#omn)
Let x(s)eCZ(R*) be such that x(s) =1 for s_(Uomm) — & <5 <5+ (Lomn) + & x(s) =0
for s> s, (toms) +2¢ and for s<s_(Uomn) —26,¢>0 is small. It is known that
On(s, h,) = O(exp (— c/hy,)) for s <s_(oms) — € and for s> s, (Uomn) + & Therefore
W = X(5) @S, h,) satisfies (2.15) on [s_ (Lomn) — 26 S - (Homn) — 26 + |00]~ 1] and we
use (2.8) to define w,,, for all seR!. Now we shall find a sequence of approximate
eigenvalues for the general equation (1.1). Making the change of variables (2.1) we
obtain

oy . 1.6
— gz T 2i(A1 601+ Ayd05) -

~

“ N 0 - ' aa A

where 04/100] =(091,002), P(s,t) means the function ¢(x;,x,) written in the
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coordinates (s, t). Substitute in (2.18) ¥ = e"“"\(s, £), where § and W satisfy (2.4), i.e.
7(x), w(x) are periodic with respect to the lattice L.
Cancelling e” we obtain

oW %W \ow [ - R a9\ ow
_'&3‘ a 2 +2l(A 601+A2602 as>as +2I<A1d01+A2d02_5; E‘
N T i N A S LA
2 2 . o s bl
+[A1+A2 i 'at2+<as +\ 3,
I N S OO 2
+ V—" 2(A1601 + Azéoz)g - 2(A1d01 + Azdoz)‘a_t‘ w= AW (2.19)
We shall choose (s, t) such that
M - R
P Agdyy + Aydgy — Ay 9), (2.20)
Vso(8) = 0. (2.20)

Here A;,(s) is the same as in (1.13) and 7,,(s) is analogous to (1.12). Note that
5/5! = d01 5/6361 + d02 5/6362. Therefore

2 (a15ndos + A26n802) 0| 3 rins. )
—_ min X, 2‘2
Wxd= 2 YT dmmedy) @21)

Using that div A =0 we have
0 - “ 0 - -
&(Aléol +A2502)+'a_t(A1d01 + Azdo;) =0. 2.22)
Since /0t ﬁkéo(s) =0 we obtain using the decomposition (1.11) that
0
&(Awo(s)ém + A35,(5)002) =0. (2.23)

180171
Since [ A, (s)ds =0 (see (1.5)) we have
0

A154(8)001 + A255(8)092 =0. (2.24)
We shall often use the following decomposition
50 X ’
F(xy,x;) =Fs, ol + F'(x1,X2), (2.25)
0

where F'(x,,x,)= Y, Fs(x-8/|8|). In the coordinates (s, ) the decomposition (2.25)
d#do

has the form . R
F(s,t) = F;,(s) + F'(5,1). (2.26)
Note that the equation

94(s,t)
ot

=F(s, 1) 2.27)
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has a unique solution §(s, t) such that g(x, x,) is periodic and

4, t)=4'(s,1), ie. gs(s)=0 (2.28)
if and only if

F(s,t)=F'(s,t) ie. F;(s)=0, (2.29)

and this solution has the form analogous to (2.21) in the x-coordinates.
We shall take A, = &2 — Uy, &, Where &,, i, are the same as in (2.15) and we
shall look for the approximate solution of (2.19) in the following form:

W = el (s, £), (2.30)
where
ﬁ(S, t) = Wmn(s) + hnﬁlmn(s, t) + hr% ﬁZmn(S! t)a (231)

[Okmn(S, 8)| = C, k= 1,2, and w,,,(5) = x(5) @ (s, ), @, is the same as in (2.15).
Substituting (2.30) into (2.19) and taking into account (2.20) and (2.24) we obtain

% o* . 0b
—oa g~ Ut 2i44(s, t) + (M —2A55(8)) 00
+ 21A,,O(s) + C(s,t)0 =0, (2.32)
where
;{%(S,t)=21501 +22502 _%’ (2.33)

A s a2 0 0% (99N (99
— 42 2_ ;7 g v _ s
C(s,t)= A7 + A3 i3 52 + 3s + ot

- 0y - - 0y -
- 2(A1601 + Azaoz)gz— 2(A1d01 + Azdoz)b—z + V (2.34)

Dividing by &, = 1/h? and decompositing C = C'(s, ) + Cs,(s) we obtain from
(2.32)

L0 R
- at hn Os2 + (:umn 2A60(s) + hn C@O(S))U + 2lhn AS(Sa t) Os
0%
+ hf( Frl + ZlAao(S) + C's, t)ﬁ) (2.35)

Denote by H, the operator in the left-hand side of (2.35). We have

5Wmn( )

H Wp(S) = Fomn + 2ih2 A4 (5, 1) —22 + B2 C' (S, £) Wyun(9), (2.36)

where 7, = O(hY). Note that h,0ow,,,/0s = O(1). Denote by ¢',(s, ) the solution
of the equation

063
ot

= A5(s,1) (2.37)
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satisfying (2.28). Denote

ﬁlmn(s» t) = - hnﬁll I(S,
Then 9,,,, = O(1) and

O+ Hn,0) = P+ BEC 5 8 — 265051 00 o

0 00, 0%
h2 1H150< wmn> + 2h: 2 o + ¥ {mn>

0s ds 0s?
where 7y, = O(h3) and H,; = — h2(0%/0s%) + pp, — 2A45,(s). Note that

0 0

160 A il 5 H i 5,Wmn + 24505(S) Wy = O(1).
ds  0s

Note also that
0t
ot et 2 ot (ﬁ )
Denote by 05,(s,t),1 < k <4, the solutions of the following equations:
o0y,(s,t) 4, ., 1o,
2_(?%___ = A40, =5 5 (01, )2

2 0t
oty Oy 0Dy
o0 'Y ot as

vy
A3ﬁll

,21(55 t) = C,(S’ t)’

G. Eskin

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.42')

As before we require that all 07,(s,7) satisfy (2.28). Note that ¢, = 0055/0s
and 0, = Fy(s,t) = 1/2(0,,)* — F14,(s), where 1/2(v}1)* = Fi(s,£) + Fy5,(s) is the

decomposition of 1/2(v},)? of the form (2.26). Denote

i, W,y
O2mn(S, 1) = 5”21(3» EYWpin(8) + B2, 050 — 5 752

'—% ,23H1ao<a::mn> +ihi 05 626w2m,,.
Note that 9,,,, = O(1). It is easy to check that
ﬁl(wmn + hulimn + 13 020mm) = T 2>
where
"2mn = O(h3).
It follows from (2.44) and (2.45) that

A . . 1
(H - j'mn)l:elﬂs’t)-\‘—":"t(Wmn + hnﬁlmn + hrzlﬁlmn)] = O(Cnr2mn) = O(hn) = O<—)’

(2.43)

(2.44)

(2.45)

Jn

(2.46)
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where H is the operator H in (s, t) coordinates. Since H is self-adjoint we obtain
from (2.46) the following result:

Theorem 2.1. Let A, = &2 — p,,&, be same as in (2.15) and let ¥, be the exact
eigenvalue of H closest to 4,,,. Then

| Ain = Amn| < Ch,=C —'j;' (247)

and (2.47) holds for all m satisfying (2.16).

3. The Green Function for the Time Dependent Schrodinger Equation

Let G(x, y,x,) be the Green function for the Schrédinger equation in R2:

iM = HG(x,y,%0), X¢>0, 3.1)
0x,
G(x,y,0)=08(x—y), x=(x;,X;)eR? y=(y;,y,)eR% (3.1)

2
Here x,, is the time variable and H = Y, (i/0x, + A,(x))* + V(x) is the same as in
k=1

Sect. 1, ie. 4,(x), A,(x), V(x) are C* and L-periodic functions satisfying (1.2), (1.5).
Let G,(x, ¥, Xo), ke L be the Green function satisfying (3.1),(3.1') for ye T? = R?/L
and the Floquet boundary conditions

Gi(x +d,y,xo) = e2™¥9G,(x, y, %), VdeL. (3.3)
Then (cf. [3])
Gk(x7 y’ xO) = Z e—27rid'kG(x + da y5 x0)> (34)
deL

where G(x, y, x,) is the same as in (3.1), (3.1'). The following trace formula holds

(cf. [31)
§ e [ Gyt v = X [ G+ dxold (B9
=1 T2 deL T2

where A,(k) are the same as in (1.8). It follows (3.5) that knowing the Floquet
spectrum of H for all keR?/L we can recover the following integrals for any deL:

([ G(x +d,x,x)dx, VdeL. (3.6)
T2

Take arbitrary 6,eS. As in Sect. 1 there is a basis (dy,d®) in L such that
dy 6o =0,d9-6, = 1. We shall identify T2 = R?/L with the parallelogram spanned
by d, and d©. As in (2.1) make the change of variables

do do

=ﬁ'x, t=@'x. (37)

Let G(s, ¢,5, ¢, Xo) be the function G(x, y, x,) in the new coordinates where (s',t') is

S
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the image of y =(y,,y,). We have
G(x + Ndy + md®, x,x5) = G(s + m|8o| "L, t + Ny, 5,8, %), (3.8)

where
N1=N|d0|+m< d“”) 3.9)
ld,

and therefore
§§ G(x + Ndo + md®, x,x)dx = [[ G(s + m|do| %, t + Ny,5,t,x0)dsdt,  (3.10)
T2 72

where T2 is the image of T2 under the orthogonal transformation (3.7).
Our objective will be to find the asymptotics of the integral

1) G<s+ m|do| "Lt + Ny,s, t,3)—>dsdt
7.2 Nl

as N - oo, m and 7, are fixed. We shall extensively use the stationary phase method
and we choose the Schrédinger operator instead of the heat operator /0t + H
because the application of the stationary phase method is easier for the Schrodinger
operator. The Green function G(s, t,s',t',x,) satisfies the following equation

(cf. (2.18)):
L3 4 G PG (. b dy \0G
’ag‘}—"m"a?“‘(ﬂao,) +2( 1do] )t
+(A24+ A2+ V)G, x,>0, (3.11)
and the initial condition
G(s,t,5,t,0)=8(s — 5)o(t — t'). (3.11)

Here A(s, ) = (A (s, 1), A,(s, ). We shall find a good approximation for G(s,t,8,t, %)
assuming that

Is|<m|do|™ '+ C, |SISC, [t|SN;+C, |f|=C,
0<x,<C,N{%,C, issmall (3.12)

Substitute in (3.11)
G(s, 1,8, 1, x0) = €™04(s, 1,5, 1, Xo), (3.13)

where (s, t) is the same as in (2.20), (2.20'), (2.21). Then g satisfies the following
equation (cf. (2.19)):

g 0% 0%
650 = —-W— pre +2i A’3(s t) % + 21A,;0(s) + C(s g, xo>0, (3.14)
g(s,t,8,1,0)= e‘“S * ’5(s —s)o(t—1t'). (3.14)
In (3.14) (cf. (2.33), (2.34), (1.13)),

o7

Tsny= A2 %
A3(s9 t) 150| ass

Ago(8) = Ay50(5)do1 + Az5,(8)dog2> (3.15)



Inverse Spectral Problem for the Schrodinger Equation 273
~ “ ~ ~ 09 \07 ~ dy \0Y
=|AP+V—idp+ VPP —2( 4% |2 —2( A== )= (3.16
Denote the operator in the right-hand side of (3.14) by H,. Denote
A=(E*+ein* + &0 )4, g, is small. (3.17)

We shall look for the approximate solution of (i/0x, — H,)v = 0 in the following
form:

=g iALGO ASS N (A st E ) x> 0. (3.18)

Substituting (3.18) into (3.14) we obtain

=e "AL[(A’L,— AL} — AL? —iAAL — 2A A, (s)L, — 2AA3 L, — C)a

+(iAa, — 2iAL,a, — 2iAL,a, — 2iA,,(s)a, — 2iA4a,) + Ad), (3.19)
where
T=XxyA. (3.20)
We shall choose L to satisfy the following eiconal equation:
L, —L2—L2—2A"'A; ()L, —2A"* A5L,=0 (3.21)

with the initial condition

LO,s,t,5,t, &) =(—sMA™ +({t —t')EA™ . (3.22)

To find the solution of (3.21), (3.22) consider the system of equations for the
bicharacteristics:

ds

Jp = T2 24T A5(s,0, s0,3,2,&m) =y, (3.23)

dp _ —1 A _
E=2A YAsos(8) + 247 Al(s,0p, p(O,y,2,E,m) =nATY, (3:24)

dt

i —2q—2A" 45 (s), 10,y,2,En) =2z, (3.25)
U4 _ o1 7 st 0 — AT 3.26
E_ 3t S, )ps q( 7y’29€911)_€ . ( . )

We shall prove that the solution of (3.23)—(3.26) exists for all 0 < 7 < + c0. Denote

q: = q(T,YaZ’ é,?”) - éA“l,
ty=tt,y,2,En) —z+2EA . (327

Then the system (3.23)—(3.26) takes the following form:
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%= —2p—2A" 1 AY(s,z—26A e+ 1;), sO0,y,z,En) =y, (3.23)
P _ 224 (5) + 2471 4,,(s)
dt dos s0s\8)q1

+2A7 (s, 0p, PO, 3,2, Em) =1nA"Y, (3.24)
% = —2q; — 247 4,,(s), 1,(0,5,2,¢,1) =0, (3.25)
%‘{c—l =2A" 1Ay (s,2—26A" 1+ 1))p,  4,(0,y,2, &) =0. (3.26')

Since (3.24'), (3.26") are linear with respect to p and g, with coefficients bounded
by CA™1, and since |£|A~2 <1 we have

Ipl+1g—EA Y E(Ct+ClnlA~YexpCA™ 1. (3.28)
Using (3.28) we obtain from (3.23"), (3.25'),
|s—yl+|t—z+26A7 | S CA 1 +4C(z* + |n|A™ ' 1)exp CA™ . (3.28")
Estimates (3.28), (3.28') imply that the solution of (3.23)—(3.26) exists for all
0 £ 1 < + 0. Differentiating (3.23')—(3.26') in y we obtain

d -1 4 -1 5
Esy=-2py—2A 1A3s(s,t)sy_2A 1A3t(s’t)t1y5 sy(O,y,Z,é,"l)=1, (329)

d
D = 262 A (95, + 247 o941, + 247 391,

+2A7 A (s, 0)p, + 247 1 p(Asges, + Alytyy), py(0,,2,6,1)=0,  (3.30)

d

B 20, =24 A5 11,0026 =0, (3
dq -1 4 - e e

Wi QA Ayl 0, + 247 p(Anss, + Aatiy) 4002 Em =0, (332)

where t, =t —z+2¢A7 1.

Since (3.29)—(3.32) is a linear system in s,, p,, t, ,, q; , With coefficients having the
bounds C + CA~'+ CA™!(|p| +|q,|) we obtain using (3.28) and assuming that
011, <1,

Is, =11 +1p,| + 15, +1g,| £ Co(A™" + 1+ A7 (Ipl + |9, 1) exp CA™ (Ipl + 1q.1)7
<Ct(1+|n|A™%)expCln|A™ 2. (3.33)

We used in (3.33) that t, = ¢t,,,q, = g,,. Note that || A™! < &5 !, A > &5 2. Therefore
Is, =11+ 1p,l +1t,l +1g,| S Cr(1 + 65 ' A~ )exp Ceg ' A7 1 < Crexp Cr. (3.33)

Analogously we have
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Is; |+ 1p, | +1t,— 1| +1q,| S Ct(1 + 65 1 A" )exp Ceg * A1t S C texp Cyr.

(3.33")
Since T < t,, where 7, is small we obtain that the Jacobian
S ? £0. (3.34)
Therefore there exists functions
y=ys,t¢n), z=z(,s1t¢n) (335
that are inverse to
s=s(t,3,2,¢n), t=t(,y,2¢n). (3:36)

Assuming that L(z,s,t,5,t, &, 7) is the solution of (3.20), (3.21) we have (see for
example [2]):

d
I L(z,s(t,y,2, & n), t(t, ¥, 2, &, 1), ', ', &, 1)

ds dt
= L—+L,—
L+ sd1+ Ydt

+L(—2p—2A"1A4) + L(—2q —2A714,)=—-p*—q¢* (337

=L2+ L2+ 2A7 A5 L+ 2A7 1 A4 L

where

p(t,¥,2,¢,m) = Ly(z,5(t, ,2,&,m), t(z, , 2, &, m), ', £/, &, ),

q(t,y,z,&,m) = Ly(t, (1, y, 2, &, ), t(1, ¥, 2, &, 1), 8, £, €, m). (3:38)
Then the solution of (3.20), (3.21) is given by the following formula (cf. [2]):

L= ((y(Ta s, L, 63 ’7) - S’)’?’ + (Z(T’ s, t, éa ’7) - tl)fl
- i (PZ(T/, ,V(T, S, 1, 59 ’7)’ Z(Ta S, L, éa ’7), é: ’7)

+q*(7, y(5, 5,1, &,m), 2(1, 5, , &, 1), €, 1)) d, (3.39)
where &' =A™ L,y =nA~ L.

Note that if (s, ¢, p, g) is a solution of (3.23)—(3.26) then (s + m|J,| ", + N, p,q)
is also a solution of (3.23)-(3.26) with initial data (y + m|d,|~ %,z + N,,&,7’). So
that the uniqueness of the Cauchy problem implies

sy, zEn)+m =s(t,y+m,z+ Ny, & n),
1, y,2,6m+ Ny =tr,y+m,z+ Ny, En), (3.40)
where m' =m|d8,| ™', N; = N|do| + m(dy/|dy|)-d©. Therefore
s, &m+m =y(r,s+m,t+ Ny, &),z + N,
=z(t,s+m,t+ N, &) (3.41)
It follows from (3.40), (3.41) that
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L(t,s+m,t+ N,,s,t,&,n) = L(z,s,t,5,t,&,n) + m'y’ + N . (342)

Therefore all partial derivatives of L in s and ¢ are periodic, i.e. (2.4) holds. Also
all partial derivatives of s(t, y, z, €, ), t(z, y, z, &, n) are periodic in (y, z) and all partial
derivatives of y(1,s,t, &, 1), 2(z, s, t, &, 1) are periodic in (s,z). W

Now we shall solve the transport equations, ie. the equations for a~aq +
a; + ---. We have from (3.19)

iag, —2i(Lg+ A~ YA )ags — 2i(L, + A1 A;s,(5))ag, —i(AL—iA™! C)ay =0, (3.43)
aO(O, S, t, 67 1”) = 1' (3.43/)
Denote

dO(T, ys Z, 6, ’1) = aO(T’ S(t’ y5 Za 6’ ’7), t(T, y, 29 67 1’,), 6) 1’]). (344)
Then (3.43), (3.43') takes the following form

%do(f, y.2,E,m)=(AL—iA"10)dg, 4(0,y,2,Em)=1. (3:45)
Therefore

Ao(c, ¥, 2,,1) = exp ( 5) (AL—iA™ ' C(s(, y,2, & m), (T, Y, 2, &, m))) ) (3-46)

The equation for a, has the following form:
ay,— 2L+ A" AY)ay, — 2L, + A~ 45,(s))ay, — (AL —iA™* C)a, =iA™ ! Aa,
(347)
a,(0,s,t,&1)=0. (3.47)

Analogously one can write equations for a,,k = 2.

Lemma 3.1. Functions a, k=0, are periodic in (s,t) and satisfy the following
estimates:

lal < Gt A7, k20, (3.48)
aa +8 @
os*ot?
Proof. The periodicity of a,(z, s, t, &, n) in (s, t) follows from (3.40), (3.41) and (3.42).
To prove (3.48), (3.49) we shall need a more precise estimate of the solutions of

(3.23)-(3.26) for large A = (& + gdn* + &4 8)M/*.
It follows from (3.26") and (3.28) that

S Cuy™A™% k20, 220, B20. (3.49)

q1=0(A"112) 4+ 0(nA~ %), (3.50)
where g, =g — EA™L. Using (3.50) and (3.25') we get
t; =0(A" 1)+ 0(nA~27%), (3.51)

where t; =t —z+2¢A 1. Here and below in this section w, = O(w) means
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|w,| < C|w|, where C is independent of £,% and &,. In the case when |w,| < C'|w]|,
where C' is independent of £,# but may depend on ¢, we shall write w, = O'(w).
Note that [7|A~* <& . So that

q=E(AT1+O0A M)+ 0(g ' AT ) =EAT L+ O0'(A7Y), (3.50"
t=z—2A"11+0(A7). (3.51)
It follows from (3.33’),
sy =11 +1p,| + 18,1 + g, = O(2).
Moreover integrating (3.32) and using (3.33’) and (3.28) we obtain

4,=q1,=0@A )+ 0(tA~2)=0'(A"1). (3.52)
Substituting (3.52) in (3.31) we get
t,=t;,=0(A™ )+ 0@*nA~2)=0'(A""). (3.53)

Analogously differentiating (3.23')—(3.23') in z we obtain
4:=q;,=0@A )+ 0(nA™?), t,—1=t,=0@@A ")+ 0(*nA"2). (3.54)
Also analogously to (3.33'),

Is:] +1p.] S C(A™ +n]AT2)=0"(A71). (3.55)
For the inverse functions (3.35) we have from (3.28)
ly(t,s, 5, &) —s| +|z—t—28A7 11| £ Cr + n|A )= C (3.56)
and
yl<C, InISCA™ +nlA™2), (3.57)
lzg] + 1z, — 1| S C(A™ +|n|A™3). (3.58)

To prove (3.57), (3.58) one should substitute (3.35) into (3.36) and differentiate in
s and t using (3.33'), (3.33"), (3.53), (3.54), (3.55). Now we are ready to estimate the
derivatives of L. We have from (3.39),

Ls = ysrll + Zsél -2 _(‘; p(pyys + pzZs)dT/ -2 g q(qyys + qus)dT’,

Li=yn +z¢ -2 g p(pyy, + p.z,)de' — 2 g 9(q,y: + q.z,)d7’. (3.59)

Using (3.52)—(3.58) and taking into account that | ¢'| A1 = |£]| A2 £ 1 we obtain

L,=0'(1), L,=¢&+0'(). (3.60)

Differentiating the system (3.23')—(3.26') successively in y and z we obtain that

higher derivatives of s, p, t,, g, satisfy estimates analogous to (3.52)—(3.58). Therefore
we shall have that

aa+[}L

ds*otP

<Cyp Vo, VB, (3.61)
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where C,; are independent of ¢,#. In particular AL is bounded. Therefore (3.46)
implies that

lagl = C, |4ag|=C), (3.62)

and (3.47), (3.47') gives
la,| £ CtA™L (3.63)
Analogously one can estimate a,, k = 2, to complete the proof of (3.48), (3.49). W

Now we shall estimate derivatives of L in & and #. Substituting in (3.39)
T=xoA,q=EA"1 +q,z=t+2EA" 1+ z,, we obtain

AL=(y— s+ +26A v+ z, — )¢ — [ Ap*de’ — [ A(EA™! + q,)%d7
0 0

= &g+ (E—)E+ (y— )+ 2,E — g Ap2dr — g Qq, + Agd)dr.  (3.64)

It follows from (3.51) that

z2;=0(A"11)+ 0(nA~2,13)=0'(A7 ). (3.65)
Note that
A=3EAT3=0(AT1Y), A,=¢ein’A73 =0(,), (3.66)
HBA
a5 SCupA' 278 Vu20, VB20. (3.66")

Changing in (3.23')-(3.26") 7 to x,A, multiplying by A and then differentiating in
n we obtain

ds,

o=~ Apy = Ap = Al + Anty,) (3.67)
Xo
d .
P DEAT Ay 905, + AEA Ny As() + 2ty + 2451,
0
+ 2q1Aéoss(s)sr, + 2p(ggsssn + ESSttln)’ (368)
dt
— = —2Aqy, — 24,41 — 2A5,(5)5,» (3.69)
dx,
d . . _
% =2p, A3t + 2p(Alyss, + Asaty,) (3.70)
0

with the initial data s, =t,,=¢,,=0 for t=0 and p,(0,y,z,&n) =d/on(nA~") =
O(A™1Y). Note that t = z — 2&x, + t, . Note that (3.67)—(3.70) is a linear system with
respect to s, p,,t1,, 4, With coefficients bounded by CA, since |7|A ™' <¢; ' £ A.
Moreover since A, = O(go) and nA ~* = O(gg ') we have that A,q, = O(1), A,p = O(1).
Therefore all nonhomogeneous terms in (3.67)—(3.70), i.e. terms that does not
contain s,,p,,t,,,q1, have order O(1). Therefore we obtain analogously to (3.33),
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ISyl + 1Pyl + 121, + 11, S(CA™H 4+ Cxg)exp CAxg S CA lexpCt < CiA 7Y,
(3.71)

where C, is independent of &7 and ¢,.
Using (3.71) we obtain from (3.70).

141,] < CxoA ™" + ClplxoA~1 < CtA =2 + Crlg|A~>. (3.72)
Also (3.72), (3.50) and (3.69) give
[t1y] S Cxo(tA™  +2|n|A™H) + CxoA TP S CTA T2+ CP? A3 (3.73)

Analogously changing in (3.23')-(3.26') 7 to x,A multiplying by A and
differentiating in ¢ we shall obtain a linear system with respect to s, pe,t1,,q;¢
with the initial data 0,0(nA ~3),0,0 respectively. Analogously to the estimates of
the solutions of (3.67)—(3.70) we obtain

el + 1Pel + 1t16l + 1g1el S ClplA T3 + Cxo(nlA 2+ ATHSCAT2+ ClylA~>
<Cl+egHA"2<CA™2, (3.74)

where C' means a constant independent of ¢ and » but dependent on g,.

Next we shall estimate dy/d&, dy/on, 0z/0&, 0z/0n, where y, z are the same as in
(3.35) with © = x,A. Substituting in (3.35) t = x,A and the functions (3.36) we obtain
differentiating in #:

0z 0s ot

0=— — —.
6r/+zsan+z‘6n

Therefore using (3.71), (3.73) and (3.58) we obtain

0
5% = O(A™2) + O(mA ™). (3.75)
Analogously
0
52? = 0(A%) +0(A™)(0(A ™) +0(A™Y) = 0(A 7). (3.75)
Yp=0(A""), y:=0A"%)+0(nA"%=0(A7?). (3.76)
Denote by y(t) a C§ function such that
x)=0 for |z|>71,, x(r)=1 for |t]<t_. (3.77)
Lemma 3.2. Given m one can choose parameters T, ,T_,¢&q,To Such that
0 0
5E(AL) + %(AL) 2Co>0 on suppy(xeA), (3.78)

for N sufficiently large, where

T d
xo=ﬁ0-, A=(E+egn* +e0°)%, Ny =N|d0|+mﬁ'd(°).
1 0

Proof. It follows from (3.64) and estimates (3.74), (3.75') and (3.76) that
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(AL).g =2xo+(t—1)+ yan+z;+ Z1;é — A? i‘; 2P(P§ +Dyye+ pzzq)dXB
- (Az)gg prdx, — 2(¢A), g q1dxp —2¢A g (‘11.5 +4q1,y:+ ‘hzzg)dx'o

— ([ qtdvo = 27 20,01+ 41,9+ 41205
=2%xo+(E—1t)+0(A"H+0(1). (3.79)
Note that
[t—t'|= N+ 0Q). (3.80)
Consider the region where
|| > g A2 (3.81)
Then taking into account that x,A > 7_ on supp y'(xoA) we obtain

(AL).| 2 2|&[xo — N, — O'(1) > y%z_ — N, —0(1)>2et_A— N, — 0(L).

(3.82)
Since x, = 7o/N, we have that
N, = ;—‘(’) < % on  supp r'(xoA). (3.83)
Therefore choosing t, such that
To < 26972, (3.84)

we obtain for N, large enough

2 _
|(AL)532801_A_M_0'(1)=(28_02‘_30_)
T

A—0'(1)= CA. (3.85)
Note that xqA =(t,A/N) > 7_. Therefore A — 00 as N; — co.
Now consider the region where |£| < g,A%. We have that
A =E2 L ednt + 658 < e3A* +ednt + 65 8.

Therefore

1
> 3.86
Inl_zgoA (3.86)

in the region |¢| < e,A? assuming that e, < 1/2 and N, is large. Analogously to
(3.27) denote

p1=p(w 250 —nAY, (3.87)
s1=5(t,3,2,&m) —y +2mA ™. (3.87)
Then the system (3.23')—(3.26') will have the following form:
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ds,

=i 2ATIAYy — 2mA "t + 50,2 — 2EA T T+ 1), (3.23")
d’l —_ -2 -1 -1 o -2 < "
dT - 26/‘ Aéos(s) + 2A Aﬁos(s)ql + 2A A3s(Ss t)pl + 2’7/1 A3S(S’ t)a (324 )
dt, .

—— = —2q; — 247 4,(9), (3.25")
dt

Uy A1 7, p. 1 2mA 24 3.26"
e 3D1 21 3t (3.26")

with zero initial conditions for 1 =0.
It follows from (3.23”)—(3.26") that

Is1l+1p1| SICIEIA™2 + ClnlA™2 < Ceo, (3.88)

since we consider the region where [£| <g,A% and [n|A"2<¢ 'A7! <¢, Ana-
logously to (3.52), (3.53), (3.54), (3.57), (3.58) we have

[81y1 + p1yl = Ce, (3.89)
y=s—=A" 't +y(r,565n), |y| £ Ce, (3.90)
[Vis] = Ceq. (3.90)
Finally analogously to (3.71) we have
[$1,] + [Pyl £ CepA ™1 (3.91)
|V1q] S CeoA ™. (391)

It follows from (3.64) that
AL=E*xo+(t—t)+(s+2nA e+ y, — s+ z,&
—[AMA™! + p,)2dr — g (2¢q, + Agh)dr’
0
=Ex0+ (=) +n*x0 + (s =W+ yin+ 2,
X0 X0 X0 X0
—2 [ nAp,dxy, — A? | pldxy, —2 [ EAq dxy — A? | qidx;. (3.92)
0 0 0 0
Therefore
xo
(AL)n = 271X0 + (S - S') + Y1 + yln” + Zlné - 2(’1A)n ti; P1dxlo
X0 X0
—2nA g (D1g+ P1yVy + PraZn)dxo — (A?), g p}dx,
- A2 .( 2p1(p1r1 + plyyn + plzzry)dxlo - 2(6/1)11 g qldxl()
0

X0 X0
- 2€A g (qlq + quyn + qlzzrl)dxlo - (AZ)n g q% dx/O

- A? (5) 2q1(q1q + q1yYn + d1:2,)4%5. (3.93)
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It follows from the estimates (3.88)—(3.91’), (3.72)~(3.76), and since |&| < g,A? that
(AL), =2nx + (s — 5) + 0(1), (3.94)

where |0(1)| < C, Cisindependent of &, 17 and . Therefore in the region |£|A ™% < ¢,
we have

I(AL),,zzmaxo—ls—sw—0(1);2"11“— _

m —0(1) 7;—“ —m' —0(1). (3.95)
0

We assume that ¢, is such that

“_mw—o>1. (3.96)
o

Therefore |(AL),| > 1 in the region [£| < e, A 2 n

Successively differentiating (3.23")—(3.26") with respect to & and 5 we can estimate
higher derivatives of s,t,y,z and therefore the higher derivatives of L. We shall
have that L and a;, k 2 0, satisfy estimates of the form |[0**#/(0&*0nP)b| < CyA™ 74,
o = 0, f = 0. Therefore the differentiation in & and # decreases the order with respect
to A.

Now we are ready to construct the Green function G(s, ¢, 5, ¢/, Xo) of (i0/0x¢ — H).
Denote

(A?M(s, t,s,t'xq) =€70g (s, 1,5, 1, xo), (3.97)
where

—i)

Gur(ot.358%0) =5 [ [ dxoAle™ M Hag +ay + - +a)ded,  (397)

where Lis the same as in (3.39) and a,,k =0, satisfy the transport equations
(3.43), (3.43"), (3.47), (3.47) and etc. Note that

—ip(s’t)

gul(sa t, S/, t/, O) — (271:)2 I!‘e—i(s—s')ﬂ—i(t—t’){dédn
= e TNG(s — 5)o(t — ). (3.98)
Also we have
D . o) .
(la—o - H2>g#1 = W” (rul +1u,)e lALdéd'/’ (3.99)
where
g =iAY (xoA)ao + ay + -+ a,), (3.100)
T2 =O0(T*A™H), uis large. (3.100)

Since |(AL); +[(AL),| = C, on supp x'(x,A) we obtain repeatedly integrating
by parts in ¢ and n and using that the differentiation in ¢ and # decreases the
order in A: '

froe”tdédn = [r e TdEdn, (3.101)
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where
7l < CuA'z“. (3.102)

Since xoA = 7_ on suppr; we have that

C
lralsCA™< 2 XA (3.102)

Note that r,;,7,,,7,3 and AL—(s—s)—(t—t)¢ are periodic in (s,t) and
independent of s',¢. We shall find

e 100 —i(s— s —i(t— 1) — ixo(E2 +12)
9u2 =W rua€ " ol"TMIdEd,
such that r,, is periodic in (s, t) and
. a . e—iy‘(s’,t') CiAL
(la—x—; — H2>gu2 =— W”(ruz + rya)e” M Akdédn, (3.103)
gua(s,t,5,t,0)=0. (3.103)
Then r,4(s,t, &, 1, x,) will satisfy
6r s 0ru,
—2iA A,
"o ~ 2 (S ) — 243

+ Ar,— €+ 2Aéo(s)é + 2A311)r,“t = —(rz+r,)e A o (3.104)

ru4(sa t’ é: 1, 0) = 05 (3104’)

where Lo = xo(&? +1%) + (s — s + (t — )&,

Denote Hy = H, + 2in (0/0s) + 2i(0/0t) — 2A4,5(s)¢ — 2A4n, where H, is the same
as in (3.103) or (3.14). Since H, is self-adjoint we obtain taking the imaginary part
of the scalar product of (3.104) with r,, and then integrating in x,:

I7a(x0) 1 = :[0 102 + rua)e ™ A5 | 1 7,4(00) [l dyos (3.105)

where ||v| is the L,-norm over T2 (see (3.10)). Therefore

max [ rua(yo) | <f 10ruz + ruz)e ™ A5 F 0 L dy,

0=yo<xo
Sxo Max_[[(r+ 1o Ao (3.106)
0=<yo=xo
To prove the existence of a periodic r,, one should replace H, by H, + icA.
Then there exists periodic 7,4, such that

d o
(l— —-H,- lSA)r,m = —(r,, + 1,3t iko, (3.107)
0x,

ru4s[xo= o= 0’ (3107’)

since (3.107) is a parabolic equation. Moreover the estimate (3.106) holds for
Ve>0.

u4£’
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Taking a weak limit as e >0 we prove the existence of r,,. It follows from
(3.1007), (3.102') that
[(Fuz + rua)e” LT = |7,y + 1,5l SCT*FATHS Cxf2AT#2 (3.108)
Therefore
Gy + G =e"%g,1 +g,2) (3.109)
is the Green function satisfying (3.1), (3.2).

4. The Asymptotics of the Trace of the Green Function

In this section we shall find the asymptotics as N — oo of the trace

if G(x + Ndy + md®, x, —)dx ﬁG(s +m|dg| "Lt + Ny,s,t, >dsdt 4.1)
1

where G and G are the same as in (3.10), Ny = Nl|do| + m(do/|dol) )-d®, N — oo, m

and 7, are fixed. We have G = G w1t G“Z, where Gul, G 42 are the same as in (3.109).

Using the Cauchy—Schwartz 1nequa11ty and (3.108) we obtain

2(s+m|50| Lt+ Ny,st, >dsdt

<(f1G,,ldsdt < —

7
I

(2 ) .‘1; |ru4|dsdtd€dr’

Lk 5 it dean
I
=20 2

since xo = 7o/N;. In (4.2) | T2| =|d,||d,| ! is the area of T2. Now we shall consider

=

jj Cxy>+ A™H2dEdn < C,NT#2 71, 2)

HG,,l(s +m|do| "Lt + Nl,s,t,i>dsdt
72 N1

L3 1 = .
= kZO ﬁ o [§ x(xoA)e ™ ALay(xoA, 5,1, & n)dEdndsdt.
=032 i

Changing the order of integration and making the change of variables (3.36) we
obtain

ﬁGul<s+m|60| Lt+ N,,s,t, )dsdt
D(s, t)

_ Z (2n)2 H (H J(xae 128, (xoA, y,2, £, n)l dydz)dédn, (4.3)

vAvhere L, a4, are the functions L, a, in the new coordlgates and T2 is the image of
T? under the map (3.36). It follows from (3.40) that T? is a fundamental domain
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with respect to the lattice L: T, = R2/L. Therefore we can replace 72 by T2 since
all functions in (4.3) are periodic with respect to L.
As usually we consider the integrals in £ and # as the ascillatory integrals, i.e.

one should introduce a cutoff function y(e./&? + n?) and consider the weak limit
as ¢ —~0. We have (see (3.39)):

Lt,y, 2.8 = +m —s(t,y, 2, E,m + (2 + Ny — t(z, 3,2, £, 1))’
— g p*(t,y,z, & m)dt’ — (f) q*(t, y,2, & n)dr, (4.4)

where & =EAT L =nA" Lt =xA,m =m|dp| 7, A=(E2 + edn* + o 8)V4, xo =
to/N;. Using (3.64) and that t;= —2]q,(t,y,2,&ndr — 24~ [ Ay ()dt’ (see
(3.25")) we obtain: ° °

AL(t, y,2,&,0) = E%0 + N &+ (y + m — s(xoA, y, 2, &)

— Eti(ro 2 Eon) = A2 | PP A2 £y
A ] oA iz, Eon)dxy — A gl
= &%+ Ny &+ (y 4+ m' — sy + 28 (j) A, (s)dx,
— A2 Py o — A7 g, @4.5)

where g =EAT! +q,,t =2z —2&x, + t,. Analogously to (3.79) we have
(AL);=2Exo+ N, +0(A™Y), (4.6)
(AL)gs=2x0 + 0'(A™2), 4.7)

where 0'(A %), k = 1,2, means |0'(A™%)| < C'A7¥, C' is independent of &, and N ;.
It follows from (4.6) that |(AL),| = C unless

Nt C =)

. o (4.8)

For ¢ satisfying (4.8) we have
(ALA Jee =2x0(1 + O'(NT 1)), 4.9)

since A2 2|¢| = CN,/x, when & belongs to the region (4.8).

Since ](Af,)gl = C outside of the region (4.8) we have integrating by parts in ¢
that the contribution of the complement to the region (4.8) is O(N[#), Yu>0.
Therefore the main contribution as N; — co will come from ¢ satisfying (4.8). We
shall find a more precise asymptotics of AL and its derivatives assuming that &
satisfies (4.8) and N, — oo. It follows from (3.26) that
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4:(t,y,2,E,m) =241 (I) A (s, 2, E )y 2 — 26A ™ + £4(7, 2,4, 1))

p(7, 3,2, ¢, m)dr. (4.10)
We have
L 0=+ Ays o — 26471+ 4 @i
d 3W )= 3sd 305, dt . .
Note that (see (3.25), (3.50)) dt,/dz = O'(A~1). So that
—2§A'1+%=(—2€+0’(1))A‘1. 4.12)
Therefore
- 1 d - ds
A (s,1) _——711:_( —Aj(s,0) — Ay o > (4.13)
26/1 1 + -1 1

Substituting (4.13) into (4.10) and integrating by parts we obtain

F 2 ds d 2 ,
4:(v, y,2,¢,1) = j—dt—d pAsd 5,4 (5. 1) ——pdT_ dt
Y2 -tA <—2§+—1A>
ST
’ 1 -1
2A3(S:;t)P B 2-"1236()% Z;ZIA( : (4.14)
—26+22A 20
dr
It follows from (4.14) and the estimates of Sect. 3 that
1
‘11(7,)’,2, é”)=0,<2)9 (4.15)
q1:(xoA, 2,8, = 0'(ETTATY), (4.16)
G15(XoA, 3,2, &) = 0'(E71ATH), 4.17)

Substituting (4.15) into (3.25') we get
ty = —2[qdv’ —2A7 ' [ As(s)dt' = —2A 1 EA,,O(s)dr’ +0(&™Y,  (4.18)
0 0 0

ltiel =0~ ATY). 4.19)
Also substituting (4.15) onto (3.23') and (3.24') we obtain

t T
s=y—2 gp(‘c’, y,2,E,n)dt —2A 1 gAg (5,2 —2EA™ I + t,)d7, (4.20)

P=nA" 4 2A? [ A (AT + O(A~1E ) 4247 [ Ayy(s.0pde.  (421)
0 0

There exists periodic 8}, (s, t) such that 8/dt ¢, = A%4(s, t) (see (2.37)). Analogously
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o 00y (dt\T'(d , 80y ds
5= =|— —1 4.2
4= <dt> &M os dr (4.22)
where dt/dt = —2EA ™! + dt,/dz. Substituting (4.22) into (4.20) and integrating by

parts we get
“lds 097, (5,1)
_ 1 b 7
s=y— 2jp(r »zz,8m)de + 247 f<d1) &oas O

+24- 1j< <Zt> ) v — 24" <Z§> 8,5, 1)

=208 +24;(»)) 1 2) =y — 2(}: pdt’ + O’G). (4.23)

to (4.11) we obtain

Analogously using that A, = 0/t A, (s, t), where A(s,t) is periodic we obtain

. a\"'(d . . ds
A3s=<a) <EA4—A4S(s,t)E). (4.24)

Substituting (4.24) into (4.21) and integrating by parts we have
p=nA""+26A72 [ A5 (s)dT' + O'(A™1ETY)
0

t/dt\ " tds -
_ -1 it - ’ ’
2A g( d‘c) T pA, (s, t)dt
td ((dt\ ! dt ~
— _1 —_— —_— ! !
2A odr((dt) p>A (s,t)dt' +2A~ <S’E> pAL(s, 1)
—2(—2¢ =245, ()" 'nAT Ay(p,2)

= AT+ 2EA72 [ Ay () + O'(EY). 4.25)
(4]

In (4.21)—(4.25) we assumed that ¢ satisfies (4.8). Denote by s(t,y,7,EA™2),
po(t, ¥, 1, EA™2) the solution of following system:

ds

T = 20 500,y,20,EA7) =y, (4.26)
o _rsp-24, ( 0,y,2,7,EA"2) =y’ 4.26'
d dos SO) pO( ,y’Z,ﬂyé )_77' ( . )

Replacing (4.26), (4.26") by the equivalent system of integral equations and
subtracting from (4.23), (4.25) we obtain

s(t, y,2,8,m) =50 + O’<é>, (4.27)

1
p(%. y,2,8,1)=po + OI(E) (4.27)
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Denote
A=1817"2n, T=EPA T =182, Po=1EI72Apy, So=so, (428)
where £ belongs to the region (4.8), £ < 0. Then 3, p,, satisfy the following equations:

ds, oL _

2=~ 20 S0.y0) =y, (4.29)
T

dp _ o o ,
0= —245,(50), Bol0.3.A) =1 (429)

Substituting (4.27), (4.27’) into (4.5) and using (4.28) we obtain
Af‘(on, V2, éa ’1) = ész + Nlé + (y + ml - EO(Iéll/sz’ys ﬁ))lflllzﬁ
xo|&|1/2
— &2 g (5T, 3, 11) + 245,(50))d7’
+0'(AE™) = %0 + N1 & +|E[V25(F, y, 1)
+ gl (x07 ¥z, é’ 7]), (4.30)

where
Sy ) = (v +m' = 5ol = [ (B3 + 245, (So))dr's Sy = 0'(AS™"). (4.30)

Remark 4.1. Since 0sy/0y (T,y,7)#0 for 0ST<7,,7, is small, there exists a
function y = y,(7, s, 1) inverse to s,(7, y,7). Analogously to (3.39) we have that the
function .

8(,s,1) = 8(3, Yo(Tss, 1),1)

is the solution of the eiconal equation

S;—S2+424;,(5)=0 4.31)
with the initial condition
S$O,s,7)=si7. B 4.31)
We shall find the partial derivatives of $(7,y,7) in y and 7. We have
oS I e g
o (v +m' —50) = 5o — (I) (2PoPo;  2A4545(50)50;) AT, (4.32)

where T = x,|&|2
Using (4.29) and integrating by parts we obtain

¢ 6p0 I 95|
_[20 dr' —f Por a_dr —poar_’o
dp, 05, 05, 05,
jdpo a—o __p(J 6_0 2jAJoS(SO) odr

since 05,/077 = 0 for 7’ = 0. Therefore
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oS _ 05,
—=+m —5)+(Po— M) 5= (4.33)
o on

Analogously using (4.29') we obtain

s _ 9Py _ .05
_67_"——" £<2 3y +2Aéos(50)ay dr

— a- - z d 550
=f——=2 Po- A
fl ay’7+£<”°dz<ay> 2 aos(so) )
— a_o — (_ 650) i _ a—o — — a_o - asO
=f——0"+ — )| =——"N+po—— — 4.34
f ay" Poay . 1 ay" Poay 1= (Po n) (4.34)
since po(0,y,1) =17, 850/0y,=0 = 1.
Since 05,/0y #0 for 0 <7 g 74,7, 1s small, we have that é’S/ay 6S/611 0 if

and only if

p_O(fm9y>ﬁ)=ﬁas_0(fmay’ﬁ)=y+m|60|—1' (435)

If m=0 then (y,7) satisfying (4.35) belongs to a periodic orbit P{’ of (4.29),
(4.29") with the period 7,. Note that any point of P‘o’ will also satlsfy (4.35)
and therefore it will be a critical point of S(Z,, y, 7). When m # 0 then (y, 77) belongs
to the trajectory Pﬁ":" that describes the whirling motion of the pendulum

&5,
rea

Also any point of Pi.':’ will be a critical point of S(%,,y,7). Note that (4.36) is
equaivalent to (4.29), (4.29') and that

P™ =P f,=mi; forany m#l 4.37)

—4A;,5(50) = (4.36)

Since 08/dy = 85/077=0 on P, we have that the restriction of S(Z» ¥, 1) tO
P{™ does not depend on (y,7)e P! and depends only on 7,. We shall denote

this restrictign by So(T..)- To use the stationary phase method we shall need to
compute 828(%,,, y,7)/0if> on P™. 1t follows from (4.33) that

az§ 35, (3P, aso a %59 aﬁo aso
—_—— — — ——1 = _— —_— .

since po—17=0 on P™. Let = lﬁ(rm, y) be the equation of Pﬁ"", m#0. Then
differentiating in y the equatlons

§0(fm7 Y, w(fm’ y)) =y+ mléol_ 13 p(fma Y, lp(fm: y)) = l//(fm, }’), (439)
we obtain
§0y + §0r7‘//y = 1’ p_Oy + pOﬁl//y = ]l,y' (440)
Therefore eliminating , we get

11— Po; — (SOqPOy §0yﬁ0ﬁ)=0' (4.41)
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Since (Soy, Poy)s (Sos» Doy) are the solution of the same system

d v,
==, 22

we have that the Wronskian

= - 2A60ss(§0) Vl s (442)

§Oyﬁ0ﬁ - §Oﬁ130y =1

Therefore

Pos + Soy = 2. (4.43)
So that

25

(3_177 = SOySOﬁa (444)

and therefore 925/07j% # 0 for small 7 # 0.

We make in (4.3) the change of variables # = |¢|'/*# and apply the stationary
phase method in (y,7). Outside of a neighbourhood of P! we have |0S/07| +
|6S/dy| = C, and therefore the integration by parts gives the ‘contribution of order
O(|€|7*1), Y, . Note that || = CN? in the region (4.8). In the neighbourhood of
P("" we shall use the stationary phase method in # for fixed y and then integrate
in y,z and £ We obtain from (4.3),

.U G‘“<S+m[50[ ! t+N1,S L, )det

I

= I 21(28x0 + N, )ﬁlél”2

k=0 (27!)2
. ]9 X(xoA)e—i(ézxo+N:C)—ilé|1/2§(xolél”2yrl) e S18,(xo A, , 2, &, | E| 12 7) | o 9(s5,1) d )
e 2(,2)
-dydzdf + O(NT#)
Lo 1

= 2(x,+ N 1/2
k=o(27t)2 __‘w g)ﬁ( Exo )I¢]
.e-i(é’Xo+Nx§)e-ilél"zso(xolél”l)—in/‘*_{il&l—1/4
SOySOn
@y (%0, &, y,2)dydzdE + O(N1*), (4.45)
where y,(2¢x,+ N;) is a cutoff function with the support in the region (4.8),
ay = 0'(1/),
D(s,t)
2(y,2)

iiO = '!/(fm’ y), fm = x0i6|1/29 AQ iS equal to A at 1’] = |¢l”2ﬁo,do(xo/1, ¥, 2, 53 ’I) iS the
same as in (3.46). Note that §, = 0'(né ') = 0'(7|¢|~*/*) and we do not consider

aOl(xOsésya Z) dO(XOAOsy’Z, 67’70'6!1/2)

b
=g
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e Stasa part of the phase function. Note also that y(xoA,) =1 for 7, small where
Xo =10/N;.

Finally changing in (4.45) £ = N2¢' — N?/2t, and applying the stationary phase
method in & we obtain

”Gm(s"'mléol Lt+ Ny, st )dsdt

u

= H ,” X1(2ToN &)

k=0 (27t)2 #2 —

N , , N}
'CXP[—lﬁ"lToNié2:|0k2<fo,y,Z,N%é —E‘i>

0

2
N2 e aya + o)
/So0yS0
PR | I:_,Ni . N, ( T—°>—in] (2\/')2N1
(213)"* \/SoyS0s

2
“@i3(to, ¥, 2, N{ V)dydz + O(N %), (4.46)
where

1
2(To, ¥, 2, &) = exp(—i| f[l/ZSO(x0|£|1/2))'|é|1/4ak1(x0, &z, @a= 0<Nk >,

a93(7,¥,2, N1 1) = do(xozo, Y, 2, f_o, 770|Eo|1/2)90- (4.47)

Also in (4.46) &= — N}/2t6, o =T Y) Tm=/T0/2, Ao =(1Eo|* + 510 275 + 25 )14,
9, is the value of the Jacobian

5,(%.1,2,&,1), 5,
@ T’ )Z) b = y
®p26m) t(n,y,z.En)t,

at 1=x0A0,&=&,n=|&|" *Y(%,,y). Note that (s,,t,) are the solutions of the
following system (cf. (3.29), (3.31)):

5= =2, =247 s, — 247 Ay,
d -1
I t,= —2q,—2A7 " As4(5)s,. (4.48)
Also we have (see (3.38))
= LS, + Lyt,, q,= LS, + Lyt,. (4.49)
Therefore
d

38 = (2L =247 A5 )5, + (= 2Ly — 247 A,

d -
E ty = (_ 2Lts —2A 1Aéos(s))sy - 2Ltttya Sylt=0 = la ty‘t=0 =0. (450)
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Functions (s,,t,) satisfy the same system (4.50) with the initial conditions
S;le=0 =0, t,|.=o = 1. Therefore 2(z, y, z, &, 1) is the Wronskian of the system (4.50).
The well-known formula for the Wronskian gives

@ =exp | (— 2Ly —2A" 1 A, —2L,)d7. 4.51)
0
Comparing (4.51) with (3.46) we obtain
a03(10, 3,2, N7 1) = 25 2 (1 + 0(Ag 1))Zo = 25*(1 + O(NT 1)) (4.52)
Using (3.53), (3.54), (3.55), (4.27) we obtain

a- T 27 7l —_ -
Pt 20) | vty oY

a - = —
Do = Y =.a_80(i.’yw+0(N;1)
oN; ), 1+0(N; ) @53
So that
- a§ fma ) 7 12 -
G03(50, 3,2 NT ) = ((—5yy”°—)) +ONTY) @54

Therefore we have proved the following theorem:
Theorem 4.1. The trace [ G(s +m|3,|™%,t + Ny,s,t,14/N,)dsdt has the following
22
asymptotics as N, — o0: ’

iN|do|

P T
“LUt+ Ny, st~ dsdt = —— 2500
‘;‘g G<S+m|50l L+ 1 S, t Nl )dsd 7'[(2‘[(3’)1/4

s BT e o)
. —jr_ ;19 i o —1)
exp( T W2 N S ) N,

4.55)

where T,,= ./70/2.

We used that in the parallelogram 72y changes from 0 to |§,|"! and
—y|0olldol Sz £ — y|0||dg| + |do|. Therefore the contribution of the integration
in z to the principal term in (4.55) will be |d,|.

Remark 4.2. Repeating the integration by parts in (4.14), (4.18), (4.23), (4.25) and
computing more terms by the stationary phase method in (4.45) and (4.46) we can
obtain an explicit expression for more terms in the asymptotic expansion (4.55).
This will give new spectral invariants.

5. Spectral Invariants
|do| 1
It follows from (4.55) that So(%,) and [ (s,)”"/?dy are spectral invariants.
0

We have
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So(Tm) = ST, 1, Y (Fms 1)), (5.1)
where 7o = Y/(Z,, ) is the equation of P™. Since 88/07=0 on P, we obtain

dSo(En) 05 0S ~_0S
i ot ot ot

Therefore using (4.30') and (4.29) we obtain

dSo(Tm) _
i

(5.2)

= Sozfllo — (B3 + 2A455(50)) = 280 (Tms ¥, Y (T YW (Es ¥)

— (D3 + 2455(50)) = D3 (Tms ¥, Y (Tns V) — 24560 (Ts 1 ¥ (Tis 1)) (5.3)
We used in (5.3) that po(T,, ¥, ¥(Tms V) = (T, ¥) (see (4.39)). Denote

_ . _ 1/d5y\? _
E(T’ Vs ’1) = 2(p(2)(1,', Y, ’1) - 2A60(SO(T’ Y, 'I)) = z(ﬁ) - 4A60(SO)' (54)
It follows from (4.36) that
dE(fa y, ’1) d§0 d2§0 =
— = = —"—4 =0. .
d’f df dfz AEDS(SO) 0 (5 5)
Therefore E(%,y,#) is constant on P{™, ..
E(@p, , YT 1)) = E0, 3, Y (Tps ) = 20 % (T» ¥) — 245,()- (5.6)
It follows from (5.3) that
dSo(T _ -
060n) — e, 1 i 1), 67
T
and therefore E(7,,, y, V(T y)) is independent of y. Denote
Eo(Tm) = E(Tp, Y (T, ¥))- (5.8)
It follows from (5.7) that E,(%,,) is also a spectral invariant. We have
YT Y) = —/3Eo(Tm) + 245,00), (59

and we take the negative sign of the square root since we consider 7, >0. For
7, < 0 one should take the positive sign. We also assume that

Eo(f,) > — 4min A,,(y). (5.10)

Note that 7, =y/(,,y)—> — o0 as E4(f,)— + o and vice versa. It follows from
(5.4) and (5.9) that
ds,

== 2Eo(%,) + 8A54(50). (5.11)

Therefore
ds,

SPEo(m) + 8AnG)

di. (5.12)
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We have 50(0, y, Y/(Tn, ¥)) =¥, So(Tm> ¥, ¥(Tm, ¥)) =y +m| 5|~ *. So that integrating
from 7=0 to T=1, we get

y+rnljéol" ds
v /2Eo(E,) + 845,(s)

Since A;,(s) has the period |3, ~*, and since 7,, = mt, we obtain

=7, (5.13)

-1
m 1ol

)2 ! Eoltn) + 445(5)

Also E(7,) = Eq(7,), where T, corresponds to m = 1. Therefore

1501 1
5.14
1/E(,(11)+4A(;0(s \/‘1 G149

Note that E,(7;) is a decreasing function of 7, since differentiating in
7, we obtain

L7 (— 4 Eo(E,)ds
AR T L 19
ie. Ey(T;)<0. Also 7, >0 as Ey(T;)— + oo and vice versa. Denote by H(u) the
inverse function
Eq(H(w) = p. (5.16)
Then

léol !
(5.17)

(1).
| Jirono 4Aao(s =2
Denote A, =max A;,(s), A- =min A4, (s). It follows from (5.17) that H(y) is

analytic in p for all ueC\(— oo, — 44 _]. Therefore by the analytic continuation
we can recover H(u) for any ueC\(— oo, —4A4 _] from the values of H(yu) for large
positive u. Take any py, < —44_. We have
|d0] 1
[ (uo+ie+44,() Y2ds= [ + [ . (5.18)
0

po > —4A45(s) Bo < —4A45,(s)
Note that
lim | (uo+ie+44,(s) " Y2ds

el0 fo> —4Aéo(s)

=lm | (uo—ie+4d,(s)” ?ds

el0 pg>—44;.(s)

= | (no+44,(9) V2ds, (5.19)

po > —4A4;5,(9)

where we took the branch of the square root \/; which is positive for positive z. Also
lim [ (Motietdds() s = [ (=i)(=4ds(s) = po)ds,

el0 o< —4A5.(s) Ho<—4As,(s)
° ° (5.20)
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lim [ (no—ie+44,(s) " Pds= [ i(—44,(5) — o)~ 2ds.

el0 <—44 0(s) < —4A4;.(s)
Ho 5 Ho 5 (520,)
Therefore
H,(po) = lim (H(po + ie) — H(po — ie))
el0
=—i/2 [ (=445 — o)~ V2ds (5.21)
Ho < —4454(s)
is a spectral invariant. Also we have
1 [1%l™!
H(uy +i0) = ﬁ [ (o +i0+44;,(s) " ?ds
0
1 1
— [t ]
2 uo> 4459 \/—2_ o < ~4A5(s)
1
=—= | (uo+44,(5)) 2ds
2 po>—445(9
+ (=) [ (—4As(s) — po)?ds. (5.22)
\/5 By < —4A45,(s)
Therefore since we already know H(u + i0) and H,(u) we can recover
Hy(mo)= |  (44s(s)+po)™'ds. (5.23)

Ho > —445,(9)
Note that the spectral invariant (5.23) is similar to (2.14). Note also that one
can obtain the spectral invariant (5.21) by studying the asymptotics of the trace

(4.1) when m =0, but this asymptotics is harder to obtain than in the case m # 0.
|do] ~*

Now we shall consider the spectral invariant | (5,;)”/?dy.
(4]

|do| 1
Proposition 5.1. The integral [ (5,;)”"/*dy can be recovered from H(u).
0

Proof. Integrating (5.12) for 0 to 7 we obtain

So@ Y1)
[ (EGy,7)+44,(5)) " V2ds = \/ir‘, (5.24)
y
where E(7,y,7) = E(0, y,7j) = 27> — 4A;,(y). Therefore
So(T.y.1)
[ Q7 —44,,(y) + 44,,(5)) " V2ds' = /2% (5.25)

y
Differentiating (5.25) in # when y and 7 are fixed we obtain
Soil(T: s M2 — 445,(9) + 445,(o(T, y, 1)) 12
ENAT)

+ [ (=D —44,,(y) + 44,,(s)) " **-47ds = 0. (5.26)

y
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Substituting in (5.26) T = 7,,, 1 = ¥(7,,, y) We obtain
Soi(Tms Vs 10) (2115 — 445,(y) + 445,(y +m| o]~ 1))~/

y+m|do| ™!

— [ 200(Eo(Tn) +4A4,,(s) 32ds =0, (5.27)

y

where 7o =(%,,y) and we used that So(Tm, y,Y(Tmsy)) =y +m|do|™ !, Eo(Tn) =
273 — 44,,(y). Therefore

|do] 1

Sor(Tms Vs 110) = M/ 2(Eo (E) + 44,5,(0) g (Eo(Tm) +44,,(s))"*2ds’.  (528)

Note that
[o0] =1

[ (n+84,(5))"32ds = — 2. /2H (). (5.29)
0
Therefore
|dof !
[ Goglems . 70)) ™ 2dy = (my/2(— 2/2H'(Eo (%)) "2
{dof—1

1
g (Eo(Tm) +44,,(»)”2dy =\/_i;n—1( — H'(Eo(Tn) " 2 H(Eo(%,)),  (5.30)

|d0] 1
ie. knowing H(u) we can recover [ (5,,)"?dy. W
0

We shall assume that A4;,(s) satisfies the following “generic” condition:

If 5, is the point such that 4, (s,) =max A4;,(s)=4,,
then Aj.(s,) =0, 45(s+) <0 and A4;,(s) < A;,(s) for
[s—s,| <872 (5.31)

Let s; <s, <s, be such that 4, (s) is increasing on the interval (s, s ), decreasing
on (5,,s;) and A;,(s,) = As,(52). Therefore there exists inverse functions s, (¢) and
s,(u) such that

445, (s() = —p, k=12, (5.32)
where
— 44, SPS —AA5(5;) = — 44, (5,). (5.33)
Consider the spectral invariant H,(u) for p satisfying (5.33). We have
Hyw= | (n+44,(s) Hds= sf +sziu)
> —445(6) siw s+

u
-

b0 =50)

—44+ «/lt-—v

(=W Pso)dv+ | (=) Psy0)dy
—4A4+

+

(5.34)
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Solving the Abel equation (5.34) we shall find s (u) — 55 (1), —44 ., Spu=< —44,.(5,)
Since s;(—4A4,)=s,(—4A4,)=s, we can recover also s,(u)—s,(u) by the
integration. M

We have
44, —445(s) = — 245(s 1) (s — 54)* + O((s — 5,)°) = B*(s — 5,), (5.35)

where B(t)eC® for s; —s, <t <s,—s, and B'(0) #0. Therefore there exists a C®
function b(t) that is the inverse to B(t):

B(b(t))=t. (5.36)
Since B*(t) =4A, —44,,(s+ +t) we have
445, (s+ + b)) =44, — % (537
Comparing (5.37) with (5.32) we get

Sy +b(O)=s1(p), t=— /44, +p,
s, +b(t)=s,(n), t=.4A4, +p. (5.37)
So that

si(W) =s, +b(— /44, + p),
sy(u) =54 +b(J4A, + p). (5.38)

It follows from (5.38) that

$2() = 51(0) = (/44 + 1) — b(— /44, + p), (5.39)

where —44, S u< —44,,(s,). Therefore knowing s,(p) — s,(1) we can recover
the odd part of the function b(z).

Proposition 5.2. Assume that A;_ is an even function satisfying (5.31) and having only
one maximum and one minimum on [0,|5|"]. Then the spectral invariant H,(u)
determines A; (5) up to the position of the maximum point.

Proof. Since A,,(s) has only one maximum and one minimum we have that s, ()
and s,(u) are defined on [—4A4.,, —4A4_]. If A, (s) is even then b(t) is odd and
therefore

Sp(W—sp = —(s¢(W—s4), s2(0) —s1(p) = 25,(p) — 25, (5.40)

so that we can recover s,(u)— s, and s,(u) — s, . Therefore knowing s,(u) — s,
k=1,2, we can recover A;,(s) up to the position of the point s,. Since A;,(s) is
even there are only two possibilities: either s, =0 or s, =1/2|6,/". W

Proposition 5.3. Assume that A; (s) is even and real analytic. Assume that A;(s) has
m extremal values A_ = A; <A, < - <A, =A,,ie. if A;(s) =0, then A;(s) is
equal to one of A,, 1 <p<m. Assume also that As(0) # Asy(s,) for s,€(0,194]7")
and Aj (0) # 0. Then there is at most 2m even real analytic functions having the same
spectral invariant H,(w).
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Proof. If A;.(s) is real analytic then s;(u),s,(n) and b(f) are also analytic. Also
H,(p) is a piece-wise analytic function of p which is analyticon [ —44,, —44_]
except u = —44,,k=1,2,...,m. Suppose 4,,(0) = A, and s = 0 is a local maximum
of 4,,(s). In a neighbourhood of 4, we have H,(u) = H, (1) + R,,(1), where R, (1)
is analytic in a neighbourhood of 4, and H,,(¢) has the form (5.34) with 4.
replaced by 4, and s, replaced by s = 0. Analogously to the proof of Proposition
5.2 one can recover A;,(s) from H,,(u) in a small neighbourhood of s = 0. Since
A, (5) is analytic this determines A, (s) for all s. When s =0 is a local minimum
we reach the same conclusion by using the spectral invariant H,(u) instead of
H,(u). Take arbitrary A4,. Assume that 4, = A,(0), where Zéo(s) is even analytic
function in a nelghbourhood of s=0. As before we can recover A‘,O(s) using the
spectral invariants H,(u) or H,(u). In general this function A,;o(s) may have no
analytic and periodic extension to all seR*. Even if such extension exists the
corresponding spectral invariant H ,(4) may not coincide with H,(u) for all
ue[—4A,,—4A4_]. In any case there are at most 2m functions A(5 (s) having the
same spectral invariant H,(u) since for any Aao(s) the function Aao(s +1/218,17Y)
has the same spectral invariants. W

Now we shall consider the problem of recovering the scalar potential from the
spectral invariants assuming that the vector potential A(x) is already known. The
lowest order term in the expansion (4.55) containing V(x) has the following form:

|dof~1

—]&| 712 bf (S‘oﬁ)'”z(tgVao(S'o(f,y,l//(fm,y))df)>dy- (5.41)

Indeed it follows from (3.46), (4.47), (4.52), (4.53) that
E 7 |E |12 s (7 = Y\~ 1/2 -—-1XOK°" ! E o5 |E |12
Ao(Tos Y52, E05 o1 ol ! )=(SOy(Tmsy9r’0)) / (1_1/10 g C(s(t', y,2, 80,1010l 2),

(7', y,2, €0, 0] €0l /2))dT + O(Ag 1)),

where O(Ag 1) consists of terms either mdependent of V(x) or having order O(A; ?)

and C is the same as in (3.16). Representing € = C'(s, 1) + C;,(s) and integrating by
xAo

parts j C'dr analogously to (4.14), (4.23) we obtain that the main contribution

is given by j Cs,(350(t', y,1o))d7’. Therefore it follows from (4.46) that the principal
0

term depending on V(x) has the form (5.41).
We shall simplify (5.41). Since §,;>0 we have changing variables s=
5o(t, y, Y(T, ¥)) for fixed y and using (5.12),

y+m|do| ! ds
f“) VJO(SO(Ta y> l//(tma y))dt“' j

Vao(s)
y  2Eo(T,) + 84;,(s)

[dof 1

(N EoE) + 44, (0)" 2ds.  (5.42)

=g\/§
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Note that (5.42) is independent of y. Therefore (5.41) can be written in the
following form:

|60] 1 |d0] 1

—ilﬁ_ol"”z g (S_Oq)—l/zdy g

m
¥
£

Since | (s, '/*dy is already known (see the Proposition 5.1) we can recover
0

Vs WEo(En) + 4d,(5) " 12ds.  (5.43)

|do] ~ 1

Hy(p) = (f) Vio(S)(u +44,,(s) ™ 2ds. (5.44)
Analogously to (5.21), (5.23) we can recover also
Hyow= [ Vs (—p—44,/(s))" ds, (5.45)
u<—44;(s)
Hi=— | Vi)t 4ds(s)ds. (5.46)
u>—445(s)

In (5.45), (5.46) p< —4A_. Let s,,s,(u), s,(4) be the same as in (5.32), (5.34).
Analogously to (5.34) we have

H ()= — ’i Vso(81(1)51(v) — Vo (2(v))s5(v)
3 ~4A+ /u —V

Solving the Abel equation (5.47) we can recover

dv. (5.47)

Vao(s1(m)s1(v) = Viso(52(v))s3(v).

Assume that V, (s) and A4, (s) are even functions and s=0 is a local maximum.
Then s,(1) = —s,(u), s2(w) = — s3(p) and

V(sy(w) = V(=s1(w) = V(sy(w).
Therefore

Vio($1(1))s1 (1) = Vo(s2( )85 (1) = 2V 5,(51(10))s ()s

and we can recover V; (s) in the neighbourhood of s =0.

Theorem 5.1. Let A (x) = (A9(x), AD(x)) and V®(x) be continuous families of even
real analytic vector and scalar potentials, 0 <t < 1. Assume that the lattice L satisfies
the condition (1.10) and A (x) for any 8,eS < L' satisfies the same generic condition
as in the Proposition 5.3. Assume that the periodic spectrum of H® is independent
of t, 0t < 1, where H® is the Schridinger operator corresponding to AV(x) and
VO(x). Then A9(x) = AO(x), VO(x) = VO(x) for all te(0,1], i.c. there is a rigidity
of isospectral deformations.

Proof. It follows from Proposition 5.3 that for any 4, there is only a finite number
of A, (s) having the same spectral invariants as AP)(s). Since AJ)(s) depends
continuously on t we have that AQ(s) = AX(s) for all t. Knowing A(x) we can
recover uniquely the even V; (s) in a neighbourhood of s = 0. Since V(s) is analytic
it will uniquely determine V;(s) for all s. Therefore V{)(s) = V{(s), Vé,. W



300 G. Eskin

Remark 5.1. Computing the nextlétle_rpl in the asymptotic expansion (4.55) (see
Remark 4.2) one can show that [ C, (s)(u+ 44,(s))”/?ds is also a spectral
0

invariant.
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