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Inverse Spectral Problem for the Schrόdinger Equation
with Periodic Vector Potential

G. Eskin
Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA

Abstract. For the Schrόdinger operator with periodic magnetic (vector) and
electric (scalar) potentials a new system of spectral invariants is found. These
invariants are enough to prove the rigidity of isospectral deformations in
the class of generic even and real analytic magnetic and electric potentials.

1. Introduction

Let L be a lattice in R2 with a basis d1,d29 i.e. any deL can be represented in the form

d = mdί + nd2,

Denote by L the dual lattice, i.e. L' = {δ = mδ1 + nδ2}, where δkdk = 1, k = 1,2,
δi'dk = O for iφk,δ-d is the scalar product in R2. Let Ak(xi9x2\k = 1,2, V(xl9x2)
be real-valued C00 functions periodic with respect to the lattice L. Consider the
Schrodinger equation describing the election in an electromagnetic field (see, for
example [1])

L Y (^ ^ ( U )

where A(x) = (A1(x\A2{x)) is the vector potential and V(x) is the scalar (electric)
potential. Without loss of generality we shall assume that

l ^ + ^ = α (1.2)
dx dx

Since A(x) is periodic we have that the magnetic field

l ^ i - ^ (1.3)
OX OXOX2 OXγ

is also periodic and moreover

$$ B(xux2)dxίdx2 = 0. (1.4)
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Using the Fourier series expansion it is easy to check that having periodic magnetic
field B{x) satisfying (1.4) one can find a unique periodic A(x) such that (1.2) and
(1.3) hold and

$$ Ak(x)dx = 0, fc=l,2. (1.5)
R2/L

2

Denote by Spec0 H the periodic spectrum of the operator H = ]Γ (i(d/dxk) + Ak)
2 +

V(x),i.t.
Hψn = λnψn, n = l , 2 , . . . , (1.6)

where

ψn(x + d) = xl/n(x\ VdeL. (1.7)

Also, denote by Specfc#,/ceR2/L', the Floquet spectrum of H, i.e.

Hφ n W = ^(/c)φπ, n = l , 2 , . . . , (1.8)

where

φH{x + d) = e2*u"dφH(x\ MdeL. (1.9)

We shall study the inverse spectral problem of recovering B(x) and V(x)
(or ^i(x) and V(x)) from Speco/ί or SpecfcH, VfceR2/L'. The case when ^4(x) = 0
was considered in [3,4]. We shall use some results and tools from [3,4]. Note
that the case of the vector potential is quite different and requires new ideas
and new techniques. Repeating the proof of Theorem 6.2 in [3] we get

Theorem 1.1. Assume that A(x) and V(x) are real analytic and the lattice L has the
following property:

\d\ = \d'\impliesd'=±d for any dJΈL (1.10)

Then Spec0H determines SpecfcH for all keJH2/L.
As in [3] denote by S the set of all "directions" in Lr, i.e. for any δεL there is

<50eS such that δ = mδ0 for some integer m and mδoφS for mφ\. Periodic
functions Ak(x\k= 1,2, have the following decomposition:

δεS \\θ\

where

(1.12)

^ = 1*1 ί Au{s)e-™W'ds = r^llAk{x)e-2W'*>dx9 (1.12')
0 I i I T 2

T2 = R2/L, IT21 is the area of Γ2. Analogous decomposition holds for V(x). Take
arbitrary δoeS, There is doeL such that δo-do = 0 and nd0,neZ, span the subspace
of L orthogonal to (50. Note that there exists a basis (do,d

iO)) in L that includes
d0 and d ( 0 ) must be such that d(0)-δ0 = 1. Denote

Λδ0(s) = Alδo(s)dol + Λ2,0(5)d02, (1.13)
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where do/\do\ = (dol,dO2\ l^ol is the norm of d0. The main result of this paper is
the following theorem.

Theorem 1.2. The Floquet spectrum SpecfcH, VfceR2/!^ determines the following

integrals:

l < 5 ° f l ds

A A . . (1.14)

for arbitrary δoeS and any μ > — AmmsAδo(s).
The proof of Theorem 2.1 is based on the study of the trace Jj G(x + Nd0 +

τ2

md{0\ x, xo)dxί dx2, where G(x, y, x0) is the fundamental solution to the Schrδdinger
equation

i^- = HG, x o>0, (1.15)
oxo

G(x,y90) = δ(x-y). (1.15')

This trace is known once one knows all Floquet spectrums. The asymptotics of
the trace when x 0 = τo/Nl9m and τ 0 are fixed and JV-> 00 has the following form:

(1.16)

where Nx = N\do\ + m(do/\do\-dio)). The explicit expression for S0(τ0) and a(τ0) is
given in Sect. 4. Note that S0(τ0\a(τ0) are spectral invariants and knowing S0(τ0)
we can find the spectral invariant (1.14). The proof of (1.16) is quite technical and
it is given in Sects. 3 and 4. In Sect. 2 we shall find sequence of approximative
eigenvalues for the spectral problem (1.6), (1.7). Although the results of Sect. 2 are
not used for the solution of the inverse problem they give an important information
about the spectrum and suggest the form of the spectral invariants. Indeed it will
be shown in Sect. 5 that the principal terms of the asymptotic expansion for the
eigenvalues are indeed spectral invariants. In Sect. 5 we shall apply the asymptotics
(1.16) to the solution of the inverse spectral problem. In particular we shall prove

Theorem 1.3. Assume that A%)(x)9V
it)(x),k=l,29 are even and real analytic in

x,xeR 2, and continuous in t, O g t r g l . Assume that Af(x\k= 1,2 satisfy a
generic condition (as in Proposition 5.3). Let A{t)(x\ V{t)(x) be an ίsospectral
deformation of J ( 0 ) ( 4 F ( 0 ) ( x ) , i.e. Spec0H

{t) = Spec0H
{0) for O ^ ί ^ l . Then

A(t\x)=A(0)(xl V(t){x) = Vi0){x) forO^t^l, i.e. H{0) is spectrally rigid in the class
of even real analytic vector and scalar potentials.

2. Asymptotics of Eigenvalues

In this section we shall find a two-parameter sequence of approximate eigenvalues
for the spectral problem (1.6), (1.7). Take arbitrary δoeS. Let (do,d

(O)) be the same
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basis of L as in Sect. 1, i.e. do-δo = 0, di0)'δ0 = 1. Make the following orthonormal
change of variables

Then

— I/5J 1 1 / / I " v ^ ^ v

At first we shall consider the eigenvalue problem for the following operation Hδo

which we shall call the reduced operator in the direction δ0:

~ + 2iAδΰ(s)jt + Csoisήψ = W, (2-3)

where Aδo(s), Cδo(s) are periodic in s with the period |δ0\~ x. Note that the periodicity
of φ in x-variables implies

We shall look for the eigenfunctions φ in the following form:

φ(s,t) = eiξtw(s\ (2.5)

where ξ is large. Since (do,d
{O)) is a basis in L we have that d = m1d0 + m2d

i0\
where mfceZ, /c = 1,2 and (2.4) implies

w(s + m 2 | 5oΓ 1 ) = e- / ξ m i l < i o | -^ m 2 ( d o d(0))/|dolw(5) (2.6)

for any mίeZ, m 2 eZ. Therefore in order to φ to be periodic we must have

ξ = —— n for some neZ (2.7)
|dol

and w(s) satisfies the following Floquet boundary condition

w(s + mM-1) = expΓ - iξ π m 2 ^^]w( S ) , (2.8)
L Idol J

where ξn = 2πn/1 d0 \ is fixed. Substituting (2.5) into (2.3) and cancelling eiξnt we obtain

£ > - fjf ~ 2^,0(s)^ w + Cδ0(s)w = λw(s). (2.9)
Take

λ = ξ2

n-μξn. (2.10)

Then we obtain

d2w(s)
ds2 - μ)ξnw - Cδ0(s)w = 0. (2.11)
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Denote

*"=τfe <2Λ2)

Consider for deίiniteness the case when ξn > 0. The case when ξn < 0 can be treated
analogously. After the division by ξn = h~2 Eq. (2.11) takes the following form:

- h2

n ̂  + (μ ~ 2Λδ0(s) + h2

n Cδ0(s))w = 0, (2.13)

i.e. (2.13) for hn -• 0 has the form of the semi-classical approximation in the quantum
mechanics (see for example [6]). Let s0 be an isolated local maximum of Aδo(s)
and SQ < s0 < s$ be such that Λδo(s) is strictly increasing on (so ,s0) and is strictly
decreasing on {SO,SQ ). For any μ such that 2Aδo(so) — ε0 ^ μ ^ max2i4ao(so) + ε0

consider the relation

J y/2Aj^μds = t9 (2.14)
s-{μ)

where 2Aδo{s + {μ)) - μ = 0 and ε0 < ^^0(s0) - max Aδo(s$). Denote by μ = μo(t) the
inverse function to (2.14) for 0 < C1 rg ί ^ C 2 It is known (see [6]) that there exists
approximate eigenvalues μmn and approximate eigenfunctions φm(s, hn) such that

where μmπ = μo(π(m + 1/2)^) + μ2wMΛπ

2 + ••• + μ ^ Λ ? , |μ fcmn| g C,2 g fc ^ JV. Note
that (2.15) holds uniformly for all m such that

0 < C x ^ π(m + i)ftn ^ C 2 . (2.16)

The relation (2.14) states that μOτnn = μo(m 4- l/2)/iΠ) satisfies the Bohr-Sommerfeld
quantization condition

S + (μomn)

J j2Aδo-μ0mnds = π(m + $)hn. (2.17)
S - (μomn)

Let /(sJeC^ίR1) be such that χ(s) = 1 for s_(μOmn) - ε < s < s + (μOmn) + ε,χ(s) = 0
for 5>s+(jUOm/J) + 2ε and for s<s_(μOmn) — 2ε,ε>0 is small. It is known that
<Pm(s> K) = ° ( e x P ( - c/ΛB)) for 5 < s-iμoJ) - ε and for 5 > s+(μOmn) + ε : Therefore
wmn = χ(s)φm(s,hn) satisfies (2.15) on [s_(μOmM) - 2ε,s_(μOmn) - 2ε + |δ 0 \~ x ] and we
use (2.8) to define wmn for all seR 1. Now we shall find a sequence of approximate
eigenvalues for the general equation (1.1). Making the change of variables (2.1) we
obtain

^ λψ, (2.18)

where δo/\δo\ = (δoι,δ02), φ{s,t) means the function φ(x1,x2) written in the
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coordinates (s, ί). Substitute in (2.18) φ = eif(Sji)$(s, ί), where y and $ satisfy (2.4), i.e.
γ(x\ w(x) are periodic with respect to the lattice L.

Cancelling e1^ we obtain

(2.19)
υij

We shall choose f (s, ί) such that

U * ) = 0. (2.20')

Here Aδo(s) is the same as in (1.13) and yδo(s) is analogous to (1.12). Note that
d/dt = dold/dx1 + d02d/dx2. Therefore

y(χ χ \ = y y v^l^^Ol "*" a2δna02)\ Ol g2πin(δ x) (2 21)

^^ o n =-oo 2πin(δ'd0)

Using that div .4 = 0 we have

Since d/dt Akδo(s) = 0 we obtain using the decomposition (1.11) that

iA (s)δ -f A (s)δ ) = 0. (2.23)
ds lδo 0 1 2δί 02

Since J Akδo(s)ds = 0 (see (1.5)) we have

We shall often use the following decomposition

i ^ i , ^ ) = ί1*,! TFT ) + nxi,x2)> (2.25)

where F ( x 1 ? x 2 ) = J] FΛ(x δ/|5|). In the coordinates (s, ί) the decomposition (2.25)

has the form
F(s, t) = Fδo{s) + F'{s91). (2.26)

Note that the equation

ms>t)-P(st) an)
ot
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has a unique solution g{s,t) such that g(xux2) is periodic and

g(sj) = g'(s,t\ i.e. gδo(s) = 0 (2.28)

if and only if

F(s,t) = F'(s9t) i.e. Fδo(s) = 0, (2.29)

and this solution has the form analogous to (2.21) in the x-coordinates.
We shall take λmn = ζ2~μmnξn9 where ξn,μmn are the same as in (2.15) and we

shall look for the approximate solution of (2.19) in the following form:

w = eiξntv(s,t), (2.30)
where

ϋ(s91) = wmn(s) + hnvlmn(s, t) + h2ΰ2mn(s, ί), (2.31)

\vkmn(s,t)\ ^ C9k= 1,2, and wmn(s) = χ(s)φm(s,hn\φn is the same as in (2.15).
Substituting (2.30) into (2.19) and taking into account (2.20) and (2.24) we obtain

d2ύ d2v dv .~, dv

dt ds n dt ds mn o «

dv ^
_j_ 2,iA. (s) f- C(s t)v = 0 (2.32)

dt

where

^ 0 1 + A2d02)ft + V. (2.34)

Dividing by ξn = l//î  and decompositing C = C'(s, t) + Cδo{s) we obtain from
(2.32)

~ 2iΈ ~ h" S + {μmn ~ 2Aδo(s) + h"Cδois))6+m2»λ'*{s> t]ΊΓs
+ h"{ ~ % + 2iAi"{s)Tt+ ΰ(s't)ύ) = ° (235)

Denote by Ht the operator in the left-hand side of (2.35). We have

Hi wmn(s) = rOmn + 2ih2

nA'3(S> t)—^ + hi C'{s, t)wmn(s), (2.36)

where rOmn = 0{hN

n). Note that hadwmn/ds = 0(1). Denote by ύ'^isj) the solution
of the equation

η^ = %{s,t) (2.37)
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satisfying (2.28). Denote

ί)lmπ(s, t)= - M'u(s> ί ) — ^ (2.38)

Then ύlmn = 0(1) and

ί i (wmn + Mim»& ί)) = romn + Λί C;(s, t)wmn(s) - 2L4'3 ί i ! 1

+ rlmn, (2.39)
h J n ds

where rlmn = 0(/ιM

3) and # 1 < 5 o = - /ι2(52/δs2) + μmn - 2Aδo(s). Note that

fjlδo^^. = —Hlδowmn + 2ylδoS(s)wmn = 0(1). (2.40)

Note also that

Denote by ί)'2fc(s, ί), 1 ̂  fe ̂  4, the solutions of the following equations:

Î MHC'̂ ί), ^ M - ^ - i ^ ) * , (242)

As before we require that all #2fc(s,ί) satisfy (2.28). Note that ϋ'2A, = dv'23/ds
and 0/

22 = F i f e ί ) = l / 2 ( < r 1 1 ) 2 - F l ί o ( s ) , where l/2(ι/n)2 = F'1(s,ί) + F l ί o (s) is the
decomposition of 1/2(1^ J 2 of the form (2.26). Denote

Note that

where

^2m« = 0(1).

s,t

It

J

)-^21

is easy

ϊ l ( w m π -

to

fΛ

check

^ A i m n -

δs )

that

fΊ^2,

Vl2 δs2

\ + ih2v'24-

nn) ~ rlmm

52wmn

δ s 2 '
(2.43)

(2.44)

(2.45)

I t follows from (2.44) a n d (2.45) t h a t

(H - λmn)y1M+iζ"\wmn + Mimn + h2

nϋ2mn)-] = O(ξnr2mn) = O(hn) = 0
nj

(2.46)
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where H is the operator H in (s, t) coordinates. Since H is self-adjoint we obtain
from (2.46) the following result:

Theorem 2.1. Let λmn = ξ2 - μmnξn be same as in (2.15) and let λ%n be the exact
eigenvalue of H closest to λmn. Then

(2.47)

and (2.47) holds for all m satisfying (2.16).

3. The Green Function for the Time Dependent Schrodinger Equation

Let G(x,y,x0) be the Green function for the Schrodinger equation in R2:

i ' ? ° =HG{x,y,xo\ xo>0, (3.1)
dx0

G(x,y,0) = δ(x-yl x = (xux2)eR\ y = (yuy2)eR2. (3.1')

2

Here x0 is the time variable and H = £ (id/dxk + 4fc(x))2 + V(x) is the same as in

Sect. 1, i.e. A1(x),A2(x), V(x) are C00 and L-periodic functions satisfying (1.2), (1.5).
Let Gk(x, y, xo\ keL be the Green function satisfying (3.1), (3.1') for ye T2 = R2/L

and the Floquet boundary conditions

Gk(x + d,y,x0) = e2πik'dGk{x,y,x0), VdeL. (3.3)

Then (cf. [3])

Gk(x,y,x0) = Σ e-2πid'kG(x + d,y,x0), (3.4)
deL

where G(x,y,x0) is the same as in (3.1), (3.Γ). The following trace formula holds
(cf. [3])

00

Σ e~iλn{k)t = Jj Gk(x,x,x0)dx= ^ e~2πid'k j j G(x + d,x,xo)dx, (3.5)

where Aπ(fe) are the same as in (1.8). It follows (3.5) that knowing the Floquet
spectrum of H for all fceR2/L' we can recover the following integrals for any deL:

Jj (3.6)
T2

Take arbitrary (50eS. As in Sect. 1 there is a basis (do,d
(O)) in L such that

do δo = 0,d(0) (50 = 1. We shall identify T2 = R2/L with the parallelogram spanned
by d0 and dm. As in (2.1) make the change of variables

(3 7)

Let G(s, ί, sr, ίr, x0) be the function G(x, y, x0) in the new coordinates where (s', t') is
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the image of y = (yl9y2). We have

,xo) = G(s + m\δo\-\t + Nus,t,xol (3.8)

where

Nl = N\d0\ + m(J^'dw\ (3.9)

and therefore

fί G(x + Nd0 + mdi0\x,x0)dx = Jί G(s + m\δ0Γ\t + Nl9s9 t,xo)dsdt, (3.10)

where f2 is the image of T2 under the orthogonal transformation (3.7).
Our objective will be to find the asymptotics of the integral

t2

as N -» oo, m and τ 0 are fixed. We shall extensively use the stationary phase method
and we choose the Schrόdinger operator instead of the heat operator d/dt + H
because the application of the stationary phase method is easier for the Schrόdinger
operator. The Green function G(s,ί,s',ί',x0) satisfies the following equation
(cf. (2.18)):

δo\

, x o >0, (3.11)

and the initial condition

t'). (3.11')

Here A(s91) = (At(s91\ Ά2{s, ή). We shall find a good approximation for G(s, t, s', t\ x0)
assuming that

N ^ m l ί o Γ ' + C, W\£C9 ItlgΛΓi + C, \t\£C9

0£xo£C1Nϊ1

9C1 is small. (3.12)

Substitute in (3.11)

G(5, ί, s\ f, x 0) = e>ns>t]g(s, ί, s', ί', x0), (3.13)

where f(s,ί) is the same as in (2.20), (2.20'), (2.21). Then g satisfies the following
equation (cf. (2.19)):

§(s, t, s', f, 0) = <#Mδ{s - s')δ(t - £'). (3.14')

In (3.14) (cf. (2.33), (2.34), (1.13)),

A'3(s, t) = A j ^ - Q, Aδ0(s) = Aiΰΰ(s)d01 + A2δo(s)dO2, (3.15)
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. ( 3 , 6 )

Denote the operator in the right-hand side of (3.14) by H2- Denote

A = {ξ2 + ε*η4 + εό 8 ) 1 / 4 , ε0 is small. (3.17)

We shall look for the approximate solution of (id/dx0 - H2)υ = 0 in the following

form:

υ = e-iΛL(X0 ^t,S',t',ξ

Substituting (3.18) into (3.14) we obtain

0

= e~i ΛLl(Λ2Lτ - Λ2L2 - Λ2Lf - iΛΔL- 2ΛAδo(s)Lt - 2ΛA'3LS - C)a

+ {iλaτ - 2iΛLsas - 2iΛLtat - 2iAδo{s)at - 2iA'3as) + Δά], (3.19)

where

τ = x0Λ. (3.20)

We shall choose L to satisfy the following eiconal equation:

Lτ - L2 - L2 - 2Λ-1Aδo(s)Lt -2Λ~ιAf

3Ls = 0 (3.21)

with the initial condition

L(^s^s\t\ξ,n) = {s-s')ηA-1+{t-tf)ξA-\ (3.22)

To find the solution of (3.21), (3.22) consider the system of equations for the
bicharacteristics:

d^=-2p-2A-1Af

3{s,t\ s(0,y,z,ξ9η) = y, (3.23)

^ = 2Λ- ιAso*(s)<l + 2Λ" ^'3,(5, t)p, p(0, y, z, ξ, η) = ηΛ~\ (3.24)

^ = - 2q - 2Λ ~' Aδ0(s\ ί(0, y9 z, ξ, η) = z, (3.25)

C^ = 2A~1A'3t(s,t)p, q(0,y,z,ξ,η) = ξΛ-1. (3.26)

We shall prove that the solution of (3.23)-(3.26) exists for all 0 ̂  τ < + oo. Denote

qx=q{τ,y,z,ξ,η)-ξA-\
1τ. (3.27)

Then the system (3.23)—(3.26) takes the following form:
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d<s
22Λ-1A'(=2p2ΛA3(s,z2ξΛ1τ + t1), s(O,y,z,ξ,η) = y, (3.23')

+ 2Λ-ίA'3s{s,t)p, p(O,y,z,ξ,η) = ηΛ-1, (3.24')

j^=-2q1-2Λ-1Aδ0(s), ί1(O,y,z, ί̂/) = O, (3.25')

^- = 2Λ-1Ά'3t(s>z-2ξΛ-1τ + t1)p, qi(O,y,z,ξ,η) = O. (3.26')

Since (3.24'), (3.26') are linear with respect to p and qt with coefficients bounded
by CΛ~1, and since |ξ|Λ~2 ^ 1 we have

(3.28)

Using (3.28) we obtain from (3.23'), (3.25'),

τ. (3.28')

Estimates (3.28), (3.28') imply that the solution of (3.23)-(3.26) exists for all
0 g τ < + oo. Differentiating (3.23')-(3.26') in y we obtain

^ s y = -2py-2Λ-1Ά3s(s,t)sy-2Λ-1Ά3t(s,ήtly, s,φ,y,z,ξ,η)=l, (3.29)

η± = 2ξΛ-2AδoSS(s)sy + 2Λ~1Aδoss(s)qisy + 2Λ~ί AδoS(s)qly

+ 2Λ'1 A'3s(s, t)p, + 2Λ-1 p(A'3sssy + A'3ttly), py(0, y, z, ξ, η) = 0, (3.30)

^=-2qly-2Λ-ίAδJs)sy, tly(O,y,z,ξ,η) = O, (3.31)

^ = 2Λ-1Ά'3t(s, t)py + 2Λ-1p(A'3tssy + A'3tttly), qίy(0, y, z, ξ, η) = 0, (3.32)

where t1 = t-z + 2ξΛ~1τ.
Since (3.29)-(3.32) is a linear system in sy,py, tly, qly with coefficients having the

bounds C + CΛ~ι + CΛ~1(\p\ + |qj) we obtain using (3.28) and assuming that

| s , - 1| + \Py\ + |ί, | + \qy\ ύ CτiΛ-1 + 1 +Λ~H\p\ + k J ^ e x p C Λ ^ d p I + \qι\)τ

^ Cτ(l + |f7|Λ-2)expC|ί;|/l-2τ. (3.33)

We used in (3.33) that ty = tly,qv = qίy. Note that I/7I/Γ1 g εό\Λ > SQ 2 Therefore

Is^-ll + IP.I + lί.l + I ^ I ^ C τ α + ε o M - ^ e x p C ε o M - ^ ^ C τ e x p C τ . (3.33')

Analogously we have
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k l + \PZ\ + U,- 11 + 14,1 ^ Cτ(l + ε 0 -M-^expCε 0 "M" 1 ! ^ C

(3.33")

Since T ^ T + , where τ+ is small we obtain that the Jacobian

Sy ty # 0 . (3.34)

Therefore there exists functions

y = y(τ, s, ί, & ?/), z = z(τ, 5, t9 & >/) (3.35)

that are inverse to

5 = s(τ9 y9 z, ξ, η\ t = ί(τ, y, z, ξ, η). (3.36)

Assuming that L(τ, s, ί, 5r, ί', ξ9 η) is the solution of (3.20), (3.21) we have (see for
example [2]):

d
— L(τ, s(τ, y, z, ξ, η\ ί (τ, j ; , z, ξ, η\ s\ t\ ξ, η)
dτ

-2q-2Λ-1Aδ0)=-p2-q2, (3.37)

where

p(τ, y, z, ξ, η) = Ls(τ, s(τ, y, z, & >/), ί(τ, y, z, f, η), s', ί;, ξ, η\

q(τ, y, z, ξ, η) = Lf(τ, s(τ, y, z, ξ, f/), ί(τ, y, z, ξ, η\ s\ t\ ξ, η). (3.38)

Then the solution of (3.20), (3.21) is given by the following formula (cf. [2]):

L = ((y(τ, s91, ξ, η) - sr)η' + (z(τ, s, ί, {, i,) - ί'Jξ'

τ

- J (P2(τ', y(τ, 5, ί, & */), z(τ, 5, ί, ξ, ̂ /), ξ, ι/)

+ ^2(τ', y(τ, 5, ί, {, i,), z(τ, s, ί, ξ, i,), ξ, i/)))^, (3.39)

where ξ = ξΛ~x

9η
f = ηΛ~x.

Note that if (s, ί,p,q) is a solution of (3.23)-(3.26) then (s + m\δ0\~x, t + Nx,p,q)
is also a solution of (3.23)-(3.26) with initial data (y + m\δo\~1,z + Nl9ξ',η'). So
that the uniqueness of the Cauchy problem implies

s(τ9 y9 z, ξ9 η) + m! = s(τ, y + m\z + Nl9 ξ9 η)9

ί(τ, y9z9ξ9η) + N1 = ί(τ, y + m\ z + Nί, ξ9 η)9 (3.40)

where mr = m l ^ Γ 1 , ^ = JV|do| + m(do/\do\)'diO). Therefore

y(τ9 5, ί, ξ9 η) + m! = y(τ, s + m'9t + Nl9ξ9 η), z + Nx

= z{τ9s + nt9t + Nl9ξ9η). (3.41)

It follows from (3.40), (3.41) that
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L(τ, s + m\t + Nus\ t\ ξ, η) = L(τ, s, t, s', f, & η) + m'η' + N.ξ. (3.42)

Therefore all partial derivatives of L in 5 and t are periodic, i.e. (2.4) holds. Also
all partial derivatives of s(τ, y, z, ξ9 η\ t(τ, y9 z, ξ, η) are periodic in (y, z) and all partial
derivatives of y(τ, s, ί, ξ9 η\ z(τ, s, t, ξ9 η) are periodic in (5, t). •

Now we shall solve the transport equations, i.e. the equations for a « a0 +
a1 + -~. We have from (3.19)

iaOτ - 2ί(Ls + Λ^A'Jao, - 2i(Lt + Λ" x A,0(s))αot - f(zlL - iΛ"x C)α0 = 0, (3.43)

ao{0,s,t9ξ9η)=L (3.43')

Denote

άo{τ, y, z, ξ, ?;) = αo(τ, s(τ, j , z, ξ, η\ ί(τ, 3;, z, ξ, ?/), ξ, ly). (3.44)

Then (3.43), (3.43') takes the following form

j άo(0,y,z,ξ,η)= 1. (3.45)

Therefore

αo(τ, y, z, ξ, η) = exp Q (ΔL -iA'1 C(s(τ\ y9 z, ξ, η)9 t(τ\ y, z, ξ9 η)))dτ'\ (3.46)

The equation for aγ has the following form:

(3.47)

a1(09s9t9ξ9η) = 0. (3.47)

Analogously one can write equations for αk, k ^ 2.

Lemma 3.1. Functions αfc, k ^ 0, are periodic in (s, ί) and satisfy the following
estimates:

\ak\^Ckτ
kΛ~k, /c^O, (3.48)

;C fca.τM~ fc, fc^O, a^O, β^O. (3.49)

/. The periodicity of αk(τ, s, ί, ξ, ή) in (5, ί) follows from (3.40), (3.41) and (3.42).
To prove (3.48), (3.49) we shall need a more precise estimate of the solutions of
(3.23)-(3.26) for large A = (ξ2 + ε ^ 4 + εo~8)1/4

It follows from (3.26r) and (3.28) that

!), (3.50)

where qx = q- ξΛ~K Using (3.50) and (3.25r) we get

t l = OiΛ-'τ) + O{ηA~2τ2l (3.51)

where tί = t — z + 2ξΛ~1τ. Here and below in this section w1 = 0(w) means
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\wχ\ ̂  C|w|, where C is independent of ξ,η and ε0. In the case when |wx | ̂  C'\w\,
where C is independent of ξ,η but may depend on ε0 we shall write wt = O'(w).
Note that lηlΛ'1 ^s^1. So that

1 + 0'(yl-1), (3.50')

(3.51')

It follows from (3.33'),

| s , - l | + |p,| + |t,| + |«,| = O(τ).

Moreover integrating (3.32) and using (3.33') and (3.28) we obtain

qy = qly = O(τΛ-1) + O(τηΛ-2) = O'(Λ-1). (3.52)

Substituting (3.52) in (3.31) we get

ty = tly = O(τΛ'x) + O(τ2ηΛ~2) = O\A~ x). (3.53)

Analogously differentiating (3.23/)-(3.23/) in z we obtain

ẑ = ̂ iz = O(τyl-1) + O ( τ ^ - 2 ) , ί z - 1 = tlz = O M " 1 ) + O(τ 2ηΛ~2). (3.54)

Also analogously to (3.33'),

|52 | + |p z |^C(yl- 1 + k|/l- 2 ) = O ^ - 1 ) . (3.55)

For the inverse functions (3.35) we have from (3.28')

\y{τ,sΛξ,η)-s\ + \z-t-2ξΛ-1τ\^C{τ + \η\Λ-1τ) = C (3.56)

and

' 2), (3.57)

). (3.58)

To prove (3.57), (3.58) one should substitute (3.35) into (3.36) and differentiate in
s and t using (3.33r), (3.33"), (3.53), (3.54), (3.55). Now we are ready to estimate the
derivatives of L. We have from (3.39),

t τ

Ls = ysη' + zsξ' - 2 J p{pyys + pzzs)dτ' - 2 J q(qys + qzzs)dτf,
o o
τ τ

Lt = ytη
f + z ^ - 2 J p ^ y , -I- pzzt)dτ' - 2 J q(qyyt + ̂ z jdτ ' . (3.59)

o o

Using (3.52)—(3.58) and taking into account that \ξ'\Λ 1 = \ξ\Λ 2 g 1 we obtain

Ls = O'(l), Lt = ξ + O'(l). (3.60)

Differentiating the system (3.23')-(3.26') successively in y and z we obtain that
higher derivatives of s, p,tuqx satisfy estimates analogous to (3.52)—(3.58). Therefore
we shall have that

d*+βL
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where Caβ are independent of ξ, η. In particular ΔL is bounded. Therefore (3.46)
implies that

|α o | = C, \Δao\£C9 (3.62)

and (3.47), (3.47) gives

lαJ^Cτ/l-1. (3.63)

Analogously one can estimate ak, k ̂  2, to complete the proof of (3.48), (3.49). •

Now we shall estimate derivatives of L in ξ and η. Substituting in (3.39)
τ = x0Aiq = ξΛ~ί + quz = t + 2ξΛ~1τ + zu we obtain

ΛL = (y - s')η + (t + 2ξΛ~1τ + Zί-tf)ξ -] Λp2dτ' -]

= ξ2x0 + (t - t')ξ + iy - s')η + *i £ - j Λp2dτ' - ] (Iξq, + Λq\)dτ'. (3.64)

It follows from (3.51) that

zx = 0{A~lx) + O(ηΛ-2,τ2) = O'ίΛ"1). (3.65)

Note that

Λξ = iξΛ-3 = O(Λ-χ)9 Λη = ε4

0η
3Λ-3 = O(ε0), (3.66)

d*+βΛ
^CAι-2cί-β Vα^O, Vβ^O. (3.660

Changing in (3.23')-(3 26') τ to x0Λ, multiplying by A and then differentiating in
η we obtain

—*• = - Apη - Aηp - 2(Ά'3ssη + A ' 3 t t l η ) 9 (3.67)

„), (3.68)

ί i " ~ ' ~ ' ~ ' ' - (3.69)

^ = 2p,i3ί + 2 P α 3 t Λ + A'3tttu) (3.70)

with the initial data sη = tίη = qlη = 0 for τ = 0 and p^(0, y, z, ξ, η) = d/dη(ηA ~1) =
O(Λ ~x). Note that t = z - 2ξx0 + ίx. Note that (3.67)-(3.70) is a linear system with
respect to sη9pη,tίη,qη with coefficients bounded by CΛ, since M / l " 1 ^ ^ 1 ^ ^
Moreover since Λη = O(ε0) and ηΛ ~x = O(ε^x) we have that Aηq1 = 0(1), /l̂ p = 0(1).
Therefore all nonhomogeneous terms in (3.67)-(3.70), i.e. terms that does not
contain sη,pη,tlη,qlη have order 0(1). Therefore we obtain analogously to (3.33),
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l«,l + IP,I + 1*1,1 + ki,l ύiCΛ'1 + Cxo)expCΛxo £ C/l^expCτ£ C^'1,

(3.71)

where Cί is independent of ξ,η and ε0.
Using (3.71) we obtain from (3.70).

\qu\^Cx0A~ι + C\p\x0A~ι ̂ CτA~2 + Cτ\η\A~\ (3.72)

Also (3.72), (3.50) and (3.69) give

2 + Cτ2\η\A~\ (3.73)

Analogously changing in (3.23')-(3.26') τ to x0Λ multiplying by A and
differentiating in ξ we shall obtain a linear system with respect to sξ,pξ9tlξ9qlξ

with the initial data 0,0(ηA ~ 3 ), 0,0 respectively. Analogously to the estimates of
the solutions of (3.67)-(3.70) we obtain

ξ ξ ξ ξ Cxo{\η\A~2 + A-^^CA'2

^Cα+είV^C'Λ"2, (3.74)

where C means a constant independent of ξ and η but dependent on ε0.
Next we shall estimate dy/dξ, dy/dη, dz/dξ, dz/dη, where y9 z are the same as in

(3.35) with τ = x0A. Substituting in (3.35) τ = x0A and the functions (3.36) we obtain
differentiating in η:

Λ dz ds dt

dη dη oη

Therefore using (3.71), (3.73) and (3.58) we obtain

O(Λ-2) + O(Λ-3). (3.75)

Analogously

^ = O(Λ ~3) + O'(Λ ~ γ){O\A ~2) + O(A ~!)) = O(A ~2). (3.75;)

' 2 *) = O'(Λ-2). (3.76)

Denote by χ(τ) a C * function such that

χ(τ) = 0 for | τ | > τ + , χ(τ)=l for | τ | < τ _ . (3.77)

L e m m a 3.2. Given m one can choose parameters τ + , τ _ , ε 0 , τ 0 such that

: C 0 > 0 on suppχ'(xo/l), (3.78)

for N sufficiently large, where

Proof. It follows from (3.64) and estimates (3.74), (3.75') and (3.76) that
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{ΛL)ξ = 2ξx0 + (t- f) + yξη + Zι+zlξξ- Λ2J 2p{pξ + pyyξ + pzzξ)dx'o

- (Λ2)ξJp2dx'o - 2(ξΛ)ξ]qidx'o - 2ξΛj(qlξ + qlyyξ + qlzzξ)dx'o

xo xo

- (Λ2)ξ ί qldx'o - A2 I 2^!^!^ + qίyyξ + qlzzξ)dx'o

= 2ξx0 + (t- t') + O'(Λ ~1) + O'(l). (3.79)

Note that

I t- f l^JVt + OO). (3.80)

Consider the region where

\ξ\>ε0Λ
2. (3.81)

Then taking into account that x0Λ > τ_ on suppχ'(x0Λ) we obtain

2\ξ\
\(ΛL)ξ\ ^ 2\ξ\x0 - N, - O'(l) > ^ τ _ - N, - O'(l) > 2εoτ_Λ - N, - O'(l).

(3.82)

Since x0 = TQ/N^^ we have that

^ ^ on suppχXxoΛ)- (3.83)
1

x0 τ_

Therefore choosing τ 0 such that

τ o<2ε oτ 2_, (3.84)

we obtain for JV̂  large enough

\(ΛL)ξ ^ 2εoτ_Λ - ^ - O\\) = ( 2 ε ° τ " ~ τ o ) Λ - O'(l) ^ CA (3.85)

Note that x0Λ = (TQΛ/N^ > τ _ . Therefore Λ-• oo as JVΊ -> oo.
Now consider the region where \ξ\ < ε o / l 2 . We have that

Λ 4 = ξ2 + β4f/4 + ε0"
8 < ε 2Λ 4 + ε4^/4 + ε0"

8.

Therefore

\η\^^-Λ (3.86)
2ε0

in the region \ξ\ < ε0Λ
2 assuming that ε0 < 1/2 and Nί is large. Analogously to

(3.27) denote

/?! = p(τ, y, z, ξ, η)-ηΛ~ \ (3.87)

sx = s(τ, y, z,ξyη)-y + 2ηΛ ' H. (3.87)

Then the system (3.23/)-(3.26/) will have the following form:
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- 7 ^ = — 2pί —2Λ~ίAf

3(y — 2ηΛ~1τ + sίiz — 2ξΛ~1τ + t 1 ) , (3.23")
dτ

~ = 2ξΛ~ 2Aδ0S{s) + 2A~ 1AAJs)q1 +2Λ~ ^ ( s , t)Pl + 2ηΛ ~ 2A'3s{s, t\ (3.24")

-T1 = ~ 2^! - 2A~ % 0 (s), (3.25")

C^- = 2A-1A'3tpί+2ηΛ-2A'3t, (3.26")

with zero initial conditions for τ = 0.
It follows from (3.23")-(3.26") that

Isil + \px\ g \C\ξ\A-2 + C\η\Λ~2 g Cε0, (3.88)

since we consider the region where \ξ\^ε0Λ
2 and \η\Λ~2 ^ ε ^ M " 1 ^ ε 0 . Ana-

logously to (3.52), (3.53), (3.54), (3.57), (3.58) we have

(3.89)
ίτ + yί(τ,s,t,ξ,η), l^lgCβo, (3.90)

\yχs\SCε0. (3.90')

Finally analogously to (3.71) we have

ISiΛ + IPnl^Cβo/l- 1 (3.91)

I ^ I ^ C ε o v l - 1 . (3.91')

It follows from (3.64) that

Ah = ξ2x0 + {t- t')ξ + (s + 2 η A ~ 1 τ + y 1 - s')η + ztξ

- )A(ηA ~ι + Pl)
2dτ' - j(2ξ 9 l + Aq\W

= ξ2x0 + {t- t')ξ + η2x0 + (s - s')η + yγη + zγξ

- 2X\ ηΛPιdx'o - A2]P

2dx'o - 2 ]ξAqidx'o - A2] q2dx'o. (3.92)
0 0 0 0

Therefore

(ΛL\ = 2ηx0 + (s - s') + yί + yuη + zlηξ - 2(ηΛ\ J p^xΌ

- 2ηΛ J (pίη + pίyyη + plzzη)dxf

0 - (Λ2)η J p\dx'o
0 0

- A2 J 2px{pu + plyyη + plzzη)dxf

0 - 2(ξΛ)η j q^dxΌ
0 0

xo xo

- 2ξA j (qlη + qlyyη + qlzzη)dx'o - {A\ j q\ dx'o

- A2 )° 2qi(qiη + qίyyη + quzjdx'o- (3-93)
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It follows from the estimates (3.88)-(3.91')? (3.72)-(3.76), and since \ξ\^ε0Λ
2 that

(ΛL\ = 2ηx0 + (s- s') + 0(1), (3.94)

where 10(1) | < C, C is independent of ξ, η and ε0. Therefore in the region | ξ | A ~ 2 ^ ε0

we have

— rri - 0(1) ^ — - rri - 0(1). (3.95)

We assume that ε0 is such that

m ' - O ( l ) > l . (3.96)

Therefore | (ΛL\| > 1 in the region | ξ \ ̂  ε0Λ " 2. •

Successively differentiating (3.23')-(3.26') with respect to ξ and η we can estimate
higher derivatives of s, ί, y, z and therefore the higher derivatives of L. We shall
have that L and ak9 k ̂ 0 , satisfy estimates of the form | da+β/{δξadηβ)b \ g C ^ " " 8 " ' ,
α ^ 0, β ^ 0. Therefore the differentiation in ξ and 77 decreases the order with respect
to A.

Now we are ready to construct the Green function G{s, ί, s\ t\ x0) oϊ(id/δx0 — H).
Denote

Oμl(s, ί, s\ t'x0) = e^%, (s, ί, 5', ί', x0), (3.97)

where

gμX(s, t, s', f, x0) = - — 5 - J J χ ( x o ^ ) e " i Λ L K + «i + + aμ)dξdη, (3.97')

where Lis the same as in (3.39) and ak,k}z0, satisfy the transport equations
(3.43), (3.430, (3.47), (3.47) and etc. Note that

= e~mt>)δ(s-s/)δ(t~t/). (3.98)

Also we have

(3.99)

where

rμi = ίAχ'(x0Λ)(a0 + αx + - + aμ\ (3.100)

rμ 2 = 0(τμA ~% μ is large. (3.100')

Since \(ΛL)ξ + \{ΛL)η\ ̂  C o on suρpχ'(x0Λ) we obtain repeatedly integrating
by parts in ξ and η and using that the differentiation in ξ and η decreases the
order in A:

(3.101)
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where
\rμ3\^CμΛ-^. (3.102)

Since x0Λ ̂  τ_ on suppr 3 we have that

Ir^lgC^- 2 *^*^"". (3.102)

Note that rμl,rμ2,rμ3 and ΛL — {s — s')η — (t — t')ξ are periodic in (s,ί) and
independent of s\ t'. We shall find

such that rμ4 is periodic in (s, t) and

' d
(3.103)

(3.103')

Then Γμ4(s, ί, ξ, f/, x0) will satisfy

+ 4 r μ 4 - (C + 2^(s) { + 2 i ^ ) r μ 4 = - (rμ3 + r , 2 ) e - ί Λ L + ιXo, (3.104)

rμ4(s,ί,&!j,O) = O, (3.104')

where L o = xo(^2 + ̂ /2) + (s - ^ + (ί - ίr)ξ
Denote H 3 = H 2 + 2ίη(d/ds) + 2iξ(d/dt) - 2Aδo(s)ξ - 2A'3η, where H 2 is the same

as in (3.103) or (3.14). Since H3 is self-adjoint we obtain taking the imaginary part
of the scalar product of (3.104) with rμ4 and then integrating in x0:

|| rμ 4(x0) | |
2 £ 11|(rμ2 + rμ3)e-

iΛL + iL° || || τjyo) \\ dyθ9 (3.105)

where ||t;|| is the L2-norm over f2 (see (3.10)). Therefore

max || rμ4(y0) \\ ^ ] II (rμ2 + r μ 3 ) ^ M L + ί L o II dy0

^ x 0 max 11(^3+ r , 2 ) e - i Λ L + i L o | | o . (3.106)
O^yo^xo

To prove the existence of a periodic r μ 4 one should replace H3 by H3 + iεΔ.
Then there exists periodic rμ 4 ε such that

- - H3 - isΔ\μ4ε = - (rμ2 + rμ3)eiΛL+i\ (3.107)

W t o = o = 0, (3.1070

since (3.107) is a parabolic equation. Moreover the estimate (3.106) holds for
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Taking a weak limit as ε->0 we prove the existence of rμA.. It follows from

(3.100'), (3.102') that

ll(^2 + rμ3)e~ I A L + ILoll = \\rμ2 + rμ3\\^Cτ^Λ-^Cx^2Λ-^2. (3.108)

Therefore

Gμl + Gμ2 = e^\gμl+gμ2) (3.109)

is the Green function satisfying (3.1), (3.2).

4. The Asymptotics of the Trace of the Green Function

In this section we shall find the asymptotics as N -• oo of the trace

T2
us^)dsdt, (4.1)

where G and G are the same as in (3.10), Nx = N\d0J + m(d0/\d0\ydi0\N-+oo,m
and τ 0 are fixed. We have G = Gμl + G μ 2 , where Gμl, Gμ2 are the same as in (3.109).
Using the Cauchy-Schwartz inequality and (3.108) we obtain

: ( 2 π ) 2 ^

(4.2)
= (2π)2 P*

since x0 = To/iVΊ. In (4.2) 1121 = | d011 <50 Γ * is the area of f2. Now we shall consider

= Σ H ttx(XoΛ)e-iΛLak(xoΛ,s,t,ξ,η)dξdηdsdt.

Changing the order of integration and making the change of variables (3.36) we
obtain

t2

= Σ 7Λ2 fί (tfχ(xoΛ)e~iΛLάk(xoΛ,y,z,ξ,n)
2{s,t)

9{y,z)
dydz )dξdη, (4.3)

where L, άk are the functions L, ak in the new coordinates and f\ is the image of
t 2 under the map (3.36). It follows from (3.40) that f\ is a fundamental domain
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with respect to the lattice L:t1 = R2/L. Therefore we can replace t\ by t 2 since
all functions in (4.3) are periodic with respect to L.

As usually we consider the integrals in ξ and η as the ascillatory integrals, i.e.

one should introduce a cutoff function χ(ε^/ξ2 + η2) and consider the weak limit

as ε->0. We have (see (3.39)):

L(τ, y9 z, ξ9 η) = (y + nί - s(τ, y9 z, ξ9 η))η' + (z + N1- ί(τ, y, z, ξ, η))ξ'

- ) p2(τ', y, z, ξ, η)df - ] q\τ\ y, z, ξ9 η)dτ\ (4.4)

where ξ'= ξΛ-\η'= ηΛ-\τ = x0Λ9m'= m\δ0Γ\ Λ = (ξ2 + ε*η*+ So8)1/4, xo =

τo/Nx. Using (3.64) and that tx = -2)q1{τ\y,ziξ,η)dτ' -lA-^A^dτ' (see
o o

(3.25r)) we obtain:
τ, y, z, ξ, η) = ξ2x0 + N^ + (y + m'- s(x0A, y9 z, ξ, η))η

Xoλ, y9 z, ξ9 η) - A2 J p2{x'0Λ, y, z, ξ9 η)dxf

0

= ξ2x0 + N^ + (y + m'-sto + 2ξ J Aδo(s)dx'0

- A2Jp2(x'oAy,z,ξ,η)dx'o - Λ2Jq*d*θ9 (4.5)

where q = ξΛ'1 + qί9t = z — 2ξx0 + t1. Analogously to (3.79) we have

1), (4.6)

(4.7)

where O\A~k\ k = 1,2, means \Of(Λ~k)\ g CΛ~\ C is independent of ξ,η and iV^
It follows from (4.6) that \{ΛL)ξ\ ^ C unless

For ξ satisfying (4.8) we have

(ΛLΛ)ξξ = 2x0(l + O'(Nϊ% (4.9)

since A2 §: |ξ | ^ CNJx0 when ξ belongs to the region (4.8).
Since |(ΛL)ξ| ^ C outside of the region (4.8) we have integrating by parts in ξ

that the contribution of the complement to the region (4.8) is O(Nϊμ\ Vμ>0.
Therefore the main contribution as Nt -• oo will come from ξ satisfying (4.8). We
shall find a more precise asymptotics of AL and its derivatives assuming that ξ
satisfies (4.8) and JVX -> oo. It follows from (3.26;) that
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qfa y9 z,ξ,η) = 2Λ~1] Afφ(τ\ y9 z, ξ, η), z-2ξΛ~ V + t x(τ\ y9 z, ξ, η))
o

•vV,y,z,ξ,nW (4-10)

We have

—A'3(s, t) = A 3 ! , — + A 3 t ( s , t)\ —2ξΛ~1-\—-I. (4.11)
dτ dτ \ dτ )

Note that (see (3.25'), (3.50)) dtjdτ = O'(A -1). So that

(4.12)
dτ v *

Therefore
1 idA'3t(s, t) = A

- 2 ξ y l " 1 + — ^
dτ

Substituting (4.13) into (4.10) and integrating by parts we obtain

*, ,x τc 2 ds - , , \ - , . d 2p
q1{τ,y,z9ξ',η') = ] ——pA 3 s dτ f - ]A'3{s9t)~- -. ^ dτd±dτ dτ d±)Λ 2ξ +

dτ \ sτ
2A'3(s,t)p 2A'3(y

dτ

It follows from (4.14) and the estimates of Sect. 3 that

(4.15)

- 1 ) , (4.16)

n - 1 ) . (4.17)

Substituting (4.15) into (3.25') we get

'= -2Λ~ ^A^sW + O(ξ~ % (4.18)

Λ-1). (4.19)

Also substituting (4.15) onto (3.23') and (3.24') we obtain

s = y - 2 }p(τ', y, z, ξ, η)dτ' - 2Λ " 1 ]λ'3 (s, z-2ξA~1τ' + tjdτ', (4.20)

p^ηΛ'1 + 2ξΛ-2]AδJs)dτ' + O'(Λ-1ξ-1) + 2A-1]A'3s(s,t)pdτ'. (4.21)
0 0

There exists periodic v\1(s,t) such that d/dt v'11 = i4'3(s,ί) (see (2.37)). Analogously
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to (4.11) we obtain

Adifιl(dt\-ί(d d&nds\

where dt/dτ = - 2ξΛ ~x + dtjdτ. Substituting (4.22) into (4.20) and integrating by
parts we get

+ 2Aδo(y)Γ%1(y,z) = y -2]pdτ' + O'QY (4.23)

Analogously using that ^'3s = d/δtA'4(s,t), where A'4(s,t) is periodic we obtain

Substituting (4.24) into (4.21) and integrating by parts we have

p^ηΛ'1 + 2ξΛ-2]AδJs)dτ' + O'(Λ~1ξ-1)

= ηΛ~1 + 2ξΛ~21 ^,o s(s)dτ' + CK(ΓJ). (4.25)

In (4.21)-(4.25) we assumed that ζ satisfies (4.8). Denote by so(τ,y,η',ξΛ~2),
po(τ,y,η',ξΛ~2) the solution of following system:

^ = - 2 p 0 , so(0,y,z,η',ξΛ~2) = y, (4.26)

(4.26')

Replacing (4.26), (4.26') by the equivalent system of integral equations and
subtracting from (4.23), (4.25) we obtain

(λ (4.27)

(4.27)
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Denote

τ = | ξ | 1 ' 2 x 0 , Po = \ξ\~mΛPo, S0 = s0, (4.28)

where ξ belongs to the region (4.8), ξ < 0. Then s0, p0 satisfy the following equations:

^ = - 2 p 0 , so(O,y,fj) = y, (4.29)
aτ

^ = - 2AδJsol po(0, y, ή) = * (4.290

Substituting (4.27), (4.27) into (4.5) and using (4.28) we obtain

-\ξ\lf2 I o

~1) = ξ2x0 + N1ξ + \ξ\1f2S(τ,y,η)

where

S(τ, y, ή) = (y + mf- so)ή " ί (Po + 2Aδo(so))dτ'i S, = O'iΛξ'1). (430')

Remark 4.1. Since dso/dy (τ,y9ή)φ0 for O g τ g f + , τ + is small, there exists a
function y = yo(τ,s,ή) inverse to so(τ,y,ή). Analogously to (3.39) we have that the
function

S(τ, 5, ή) = S(τ, yo(τ, s, //), ή)

is the solution of the eiconal equation

S τ - S s

2 + 2^ o(s) = 0 (4.31)

with the initial condition

S(<Uf/) = sfj. • (4.31')

We shall find the partial derivatives of S(τ, y, ή) in y and ή. We have

<5S f

_ = (y + rri - s0) - s^ή -1 CpoPo,- + lA^SolSyW, (4.32)
GY\ 0

1
0

Using (4.29) and integrating by parts we obtain

T

M_ dp0 A , j _ d Ss0 ds0

dτf dή dή 0

since 5so/5>7 = 0 for τ ; = 0. Therefore
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^ -ή)δ^. (4.33)

Analogously using (4.29') we obtain

dS _ ds0 _

= _ _ 5 S o _ /_ d s Λ τ

 = - _ ^ 0 - - ^ 0 _ _ - / - _ η f f c o f 4 3 4 ^
3 y y ° dy J o 3 y ° 3 y ° 3 y '

since po(0,y,ή) = ή,dso/dy\τ=o = 1.
Since dso/dy φ 0 for 0 ^ τ ^ τ +, τ + is small, we have that 35/dy = dS/dή = 0 if

and only if

(4.35)

If m = 0 then {y,ή) satisfying (4.35) belongs to a periodic orbit P{ξ] of (4.29),
(4.29') with the period τ 0 . Note that any point of P{ξ} will also satisfy (4.35)
and therefore it will be a critical point of £(τ0, y, ή). When m φ 0 then (y, */) belongs
to the trajectory P^m) that describes the whirling motion of the pendulum

— 2 — 4ΛδoS(so) = 0. (4.36)

Also any point of P^m) will be a critical point of <S(τm, y,fj). Note that (4.36) is
equaivalent to (4.29), (4.29') and that

p(m)==p(i) f m = m f l for any m ^ l . (4.37)

Since 35/3}; = δS/δη = 0 on P(ζ\ we have that the restriction of S(τm,y,fj) to
P^m) does not depend on (y.^eP^ and depends only on τm. We shall denote
this restriction by S0(τm). To use the stationary phase method we shall need to
compute δ2S(τmiy,ή)/dή2 on P(ζ\ It follows from (4.33) that

d2S ds0 t fep0 ^δso t δ% =ί^_2\^ ( 4 3 8 )

5^2 dη \dη J dη dη2 \dη J dη

since p o - ί / = 0 on P ^ . Let ή = ψ{τm9y) be the equation of P(ζ\ mφO. Then
differentiating in y the equations

Sofon, ̂  ψ(τm9 y)) = y + m\δo\~\ p(τm, y, ψ(τm9 y)) = φ(τm9 y\ (4.39)

we obtain

Sθy + SθηΨy=h Poy + PofjΦy = Ψy (4-40)

Therefore eliminating ψy we get

SoyPofj) = 0. (4.41)
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Since {sOy,pOy\ (sOήipOή) are the solution of the same system

y — _JV — ΊΛ (ς \V
j — 1 — ^ ' 2 ' j — — " δnSsKrO/ 1*

we have that the Wronskian

Therefore

So that

(4.42)

(4.43)

(4.44)

and therefore d2S/dή2 Φ 0 for small τφO.
We make in (4.3) the change of variables η = \ξ\1/2ή and apply the stationary

phase method in {y,fj). Outside of a neighbourhood of Pf° we have \dS/dή\ +
\dS/dy\ ̂  C, and therefore the integration by parts gives the contribution of order
O(\ξ\~μί% \fμt. Note that \ξ\ ̂  CN\ in the region (4.8). In the neighbourhood of
P<m) we shall use the stationary phase method in η for fixed y and then integrate
in y9z and ξ. We obtain from (4.3),

f2

9{s,t)

9(y,z)
dη

O(JVΓ")

=|ξ| -1/4

'), (4.45)

where χ1(2ξx0 + N 1 ) is a cutoff function with the support in the region (4.8),
akl = O'(l/ξk),

9{s,t)
o,ξ,y,z) = άo(xoΛo,y,z,ξ,ήo\ξ\ίl2)

ήo = Ψ(τm>yl τm = x o l ^ l 1 / 2 ^ o is equal to A at η = \ξ\1/2ηo,άo{xoA9y,z,ξ,η) is the
same as in (3.46). Note that St = O\ηξ~x) = O'(ή\ξ\~112) and we do not consider
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e~ι§ί as a part of the phase function. Note also that χ(x0Λ0) = 1 for τ 0 small where

o
Finally changing in (4.45) ξ = JV? ξ' — N\βτ0 and applying the stationary phase

method in ξ' we obtain

O(JVΓμ)

(4.46)

where

A l s o i n (4.46) f o = - N f ^
^ 0 i s t h e v a l u e o f t h e J a c o b i a n

(4.47)

o 8 ) 1 / 4 ,

9(τ,y,z,ξ,η) =
sy{τ,y,z,ξ,η),s2

tt(τ,y,z,ξ,η),tz

at τ = xoλo,ξ = ξo,η = \ξo\
ll2ψ(τm,y). Note that (sy,ty) are the solutions of the

following system (cf. (3.29), (3.31));

dτ y

Also we have (see (3.38))

Therefore

— s =(-2L -2J

dτ y ss

— sy=-2py-2Λ xA'3ssy-2Λ λA'3tty,

d Λ * Λ - 1 Λ / ,f — /Π / /\ M I P I P

Lstty, qy = Ltssy + Lttty.

(4.48)

(4.49)

-ty = (-2Lts-2Λ-1AδJs))sy-2Lttty, s,\τ.0 = l, t y | τ = 0 = 0. (4.50)
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Functions (sz,tz) satisfy the same system (4.50) with the initial conditions
szlτ=o = 0' ^ = 0 = l Therefore S>(τ,y,z,ξ,η) is the Wronskian of the system (4.50).
The well-known formula for the Wronskian gives

> = exp j ( - 2LSS - 2Λ~ M' 3 f - 2Ltt)dτ'.

Comparing (4.51) with (3.46) we obtain

'αO3(τo,J;,z,iVΓ1) = ^ o 1 / 2(1 +

Using (3.53), (3.54), (3.55), (4.27) we obtain

(4.51)

(4.52)

dy

dy

So that

dso(τm,y,ηo)\112

dy J

Therefore we have proved the following theorem:

(4.53)

(4.54)

Theorem 4.1. The trace

asymptotics as JVt ~* oo:
t2

o\~1,t + Nus,t,τo/N1)dsdt has the following

•exp I -

where τm =

1 - ^
4τ 0

(4.55)

We used that in the parallelogram t2y changes from 0 to | 5 0 | ]

— y I δ011 d01 ^ z ^ — y \ δ0 \ \ d0 | +1 dQ |. Therefore the contribution of the integration
in z to the principal term in (4.55) will be \do\.

Remark 4.2. Repeating the integration by parts in (4.14), (4.18), (4.23), (4.25) and
computing more terms by the stationary phase method in (4.45) and (4.46) we can
obtain an explicit expression for more terms in the asymptotic expansion (4.55).
This will give new spectral invariants.

5. Spectral Invariants

It follows from (4.55) that S0(τm) and J (sQfj)~ίl2dy are spectral invariants.

We have
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S0(τm) = S(τm,y,φ(τm,y)), (5.1)

where ij0 = φ(τm, y) is the equation of Pf'K Since dS/dή = 0 on Pf\ we obtain
^m m

dτ dϊ + dηΨidτ

Therefore using (4.30') and (4.29) we obtain

^ ^ - (Po + 2Aδo(s0)) = 2po(τm, y, φ(τm, y))φ(τm, y)

- (p2

0 + 2ASΰ(s0)) = p2

0{τm, y, φ(τm, y)) - 2Aδΰ(s0(τm> y, ιp(τm, y))). (5.3)

We used in (5.3) that po(τm>y,φ(τm,y)) = Ψ(τm,y) (see (4.39)). Denote

E(τ, y, η) = 2(pg(τ, y, η) - 2Ado(s0(τ, y, η)) = 1 ^ Y - 4Aόβ0). (5.4)

It follows from (4.36) that

dE(τ,y,η) ds0fd
2s0 \

—W~=-Έ XW ~ 4ΛM) = ° (5 5)

Therefore £(τ, y, η) is constant on Pf°, i.e.

E(τm9 y, ψ(τm, y)) = £(0, y, ψ(τm, y)) = 2(ψ2(τm, y) ~ 2Λδo(y)). (5.6)

It follows from (5.3) that

—j=— = iE{τm,y,ψ(τm,y)), (5.7)

and therefore E{τm,y,-φ(τm,y)) is independent of y. Denote

EQ(τm) = E(τm,y,ψ(τm,y)). (5.8)

It follows from (5.7) that E0{τm) is also a spectral invariant. We have

Ψ(τm, y)=~ JίE0(τm) + 2Aδΰ(y), (5.9)

and we take the negative sign of the square root since we consider τι > 0. For
fj < 0 one should take the positive sign. We also assume that

(y). (5.10)
y

Note that ή0 = ψ(τm,y)-+ — oo as £0(fm)-» + oo and vice versa. It follows from
(5.4) and (5.9) that

τm) + ZAδo(s0). (5.11)

Therefore

d " ° ^ = = dτ. (5.12)
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We have so(0, y, ψ(τm9 y)) = y9 so(τm, y9 φ(τm9 y)) = y + m\δ0\~x.So that integrating
from τ = 0 to τ = τm we get

y+m|jf°1"1 ds

y j2E0{τn

Since Aδo(s) has the period l^oΓ1? a n ^ s i n c e ^m

 = m ^ i w e obtain

m ' ^ j . 1 ds
—= I = m τ 1 .

/9 o /F (r \ 4- άΛ (<Λ

Also £ 0 (τ m ) = E0(τι), where τ x corresponds to m = 1. Therefore

T JE{XJ • = = ^ - ( 5 1 4 )

Note that £ 0 (^i) is a decreasing function of τγ since differentiating in
τ1 we obtain

i.e. £ /

0 ( τ 1 ) < 0 . Also f i-*0 as E o ( ί i ) - * + °° a n ^ vice versa. Denote by H(μ) the
inverse function

E0(H(μ)) = μ. (5.16)

Then
\So\~1

 d

f
Denote ^ + = m a x ^ 0 ( s ) , A_ = mm Aδ(s). It follows from (5.17) that H(μ) is

s s

analytic in μ for all μ e C \ ( - oo, — 4A_]. Therefore by the analytic continuation
we can recover #(μ) for any μeC\( - oo, - 4A _ ] from the values of H(μ) for large
positive μ. Take any μ0 < - 44 _. We have

Note that

f (μo + /ε + 4 ^ o ( 5 ) ) - 1 / 2 d S = f + J . (5.18)
0 μ 0 >-44 ί (s) μo<-4AδQ{s)

lim

= lim f (μ0-iε-h4Aδo(s)yί/2ds
εjO μo>-4X^(5)

= J (μo + 4 ^ o ( 5 ) ) - 1 / 2 ^ , (5.19)

where we took the branch of the square root ^Jz which is positive for positive z. Also

lim J (μ0 + Ϊ8 + 4^O(5))~ ̂ ώ = J ( - i)( - 4 ^ ( 5 ) - μ0Γ
1/2ds,

iO
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lim J (μo-iε + 4Aδo(s))-1'2ds= f i(-4Aδo(s)-
μo<-4ΛΛ,(s)

) = lim (H(μ0 + iε) - H(μ0 - iε))
e|0

Therefore

J (-4Aδΰ(s)-μ0)-ιl2ds (5.21)
Mo<

is a spectral invariant. Also we have

H(μ0 + iO) = 4 r *J

V 2 °

I ί 4
1

2

I (5.22)

μo<-4AδQ{s)

Therefore since we already know H(μ + iO) and H^μ) we can recover

H2(μ0) = J (4^0(s) + μoy ^ds. (5.23)

Note that the spectral invariant (5.23) is similar to (2.14). Note also that one
can obtain the spectral invariant (5.21) by studying the asymptotics of the trace
(4.1) when m = 0, but this asymptotics is harder to obtain than in the case m Φ 0.

l 1

Now we shall consider the spectral invariant J (%

Proposition 5.1. The integral \ (sOfj)~ll2dy can be recovered from H(μ).

Proof. Integrating (5.12) for 0 to τ we obtain

y (5.24)
y

ή) = 2fj2
where E(τ, y, ή) = £(0, y, ή) = 2fj2 - 4Aδa(y). Therefore

*θ(τ.M) _
J (2ή2 - 4Aδ0(y) + 4Aδ0(s')Γll2ds' = Jϊx. (5.25)
y

Differentiating (5.25) in ή when 3; and τ are fixed we obtain

so,(τ, y, ή)(2ή2 - 4Λδ0(y) + 4Aδo(so(τ, y9 ή)))~ ^

+ f ( - i ) ( 2 ^ 2 - 4 ^ o ( y ) + 4^ o (s ' ))- 3 / 2 4 ^ s ' = 0. (5.26)
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Substituting in (5.26) τ = τm, ή = φ(τm, y) we obtain

m|ί 0 Γ 1 ) ) " 1 / 2

y + m l ί o ! " 1

- f 2ηo(E0(τm) + 4Ado{s')Γ3'2ds' = 0, (5.27)
y

where ήo = ψ{τm,y) and we used that so{τm9y9ψ(τm9y))==y + m\δo\~1

9Eo(τm) =
2ήl - 4Aδo{y). Therefore

s0ή(τm9y,fj0) = m^/2(E0(τm) + 4Aδo(y)) j ( £ 0 ( τ J + 4^ 0 (s ' )Γ 3 / 2 ds ' . (5.28)
o

Note that

ι * > ι -
J (μ + 4Aδ0(s'))-V2ds' = - 2y/2H'(μ). (5.29)

Therefore

°f (^(tm. Λ ηo))~ll2dy =
0

• J (E0(τJ + 4AδM-^dy=-—(-Hf(E0(τm)))-^H(E0(τJl (5.30)
o ./2m

l o l

i.e. knowing H(μ) we can recover J (sΌfj)~1/2dy. •
o

We shall assume that Aδo(s) satisfies the following "generic" condition:

If 5+ is the point such that Aδo{s+) = max^ 0 (s) = A + ,
then A'δ0(s+) = 0, ^ 0 ( s + ) < 0 and Aδo(s) < Aδo(s+) for
| s - 5 + | < | ( 5 0 Γ 1 . (5.31)

Let sι < s+ < s2 be such that Aδo(s) is increasing on the interval (sl9s+), decreasing
on (s+,s2) and Λ5 0 ( s i ) = ^ O ( S 2) Therefore there exists inverse functions sx(μ) and
s2(μ) such that

= - μ , k=l,2, (5.32)

where

- 4 A + ^ μ ^ -4A&{Sl) = -4A δ 0(s 2). (5.33)

Consider the spectral invariant H2(μ) for μ satisfying (5.33). We have

+

H2(μ)= ί (μ + 4^ 0 ( S ))- 1 ' 2

ί i s= f + J
μ>-4Λ ί o(s) si(M) S +

= - f (μ-vΓ1<2s'1(v)dv+ f ( μ -
-4-A+ -4A +

j ^ ( v > Z ^ v > d v . (5.34)
-A-A+ y/μ — v
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Solving the Abel equation (5.34) we shall find s\(μ) — s2(μ\ — 4A+^μ^ —4AOQ(sί).
Since s1{ — 4A1) = s2( — 4A + ) = s+ we can recover also s1(μ) — s2(μ) by the
integration. •

We have

4A+ - 4Aδ0(s) = - 2Al(s+)(s -s+)2 + O((s - s+f) = B2(s - s + )9 (5.35)

where β(ί)eC°° for s1-s+<t<s2~s+ and £'(0) Φ 0. Therefore there exists a C00

function b(t) that is the inverse to B(t):

B(b(t)) = t. (5.36)

Since B2(t) = 4,4+ - 4Aδo(s+ + t) we have

4Aδ0(s++b(t)) = 4A+-t2. (5.37)

Comparing (5.37) with (5.32) we get

5 -1- h(t\ — ^ (ιi\ t — / Δ A A- ιι \D.ό I)

So that

sx(μ) = s+ +b(-yj4A+ +μ),

s2(μ) = s+ + b{^/4A+ + μ). (5.38)

It follows from (5.38) that

S2(μ) - si(μ) = b{J^A+ + μ ) - b( - ^74.4 + + μ), (5.39)

where — 4A+ Sμ^ — 4 ^ ( 5 ! ) . Therefore knowing s2(μ) — s^μ) we can recover
the odd part of the function b(t).

Proposition 5.2. Assume that Aδo is an even function satisfying (5.31) and having only
one maximum and one minimum on [0, l^l" 1 ] . Then the spectral invariant H2(μ)
determines Aδo(s) up to the position of the maximum point.

Proof. Since Aδo(s) has only one maximum and one minimum we have that s^μ)
and s2(μ) are defined on [-4,4 + , -4v4_]. If Aδo(s) is even then b(t) is odd and
therefore

s2(μ)-s+ = -(s^μj-s+l s2(μ)- sx(μ) = 2s2(μ) - 25+, (5.40)

so that we can recover 5 1 (μ)-s+ and s2(μ)-s+. Therefore knowing s k ( μ ) - s + ,
k— 1,2, we can recover Aδo(s) up to the position of the point s+. Since Aδo(s) is
even there are only two possibilities: either 5+ = 0 or 5+ = 1/2|5O |""1- •

Proposition 5.3. Assume that Aδo(s) is even and real analytic. Assume that Aδo(s) has
m extremal values A_=Ai<A2< -<Am = A + , i.e. if Aδo(sk) = 0, then Aδo(sk) is
equal to one of Ap, l^p^m. Assume also that Aδo(0) φ Aδo(sk) for 5fce(0, l ^ o l 1 )
and Aδo(0) Φ 0. Then there is at most 2m even real analytic functions having the same
spectral invariant H2(μ).
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Proof. If Λδo(s) is real analytic then s1(μ),s2(μ) and b(t) are also analytic. Also
H2{μ) is a piece-wise analytic function of μ which is analytic on [ — 44 + , — 4 4 _ ]
except μ = — 44 k , fc = 1,2,..., m. Suppose ^ ( O ) = τ4p and s = 0 is a local maximum
oϊAδo(s). In a neighbourhood of Ap we have H2(μ) = H2p(μ) + R2p{μ\ where R2p(μ)
is analytic in a neighbourhood of J4P and H2p(μ) has the form (5.34) with A +
replaced by Ap and s+ replaced by s = 0. Analogously to the proof of Proposition
5.2 one can recover Aδo(s) from H2p(μ) in a small neighbourhood of s = 0. Since
Aδo(s) is analytic this determines Aδo(s) for all s. When s = 0 is a local minimum
we reach the same conclusion by using the spectral invariant Hx(μ) instead of
H2(μ). Take arbitrary Ap. Assume that Ap = Άδ(0\ where Aδo(s) is even analytic
function in a neighbourhood of s = 0. As before we can recover Aδo(s) using the
spectral invariants H2(μ) or Hx(μ). In general this function Aδo(s) may have no
analytic and periodic extension to all seR 1 . Even if such extension exists the
corresponding spectral invariant H2(μ) may not coincide with H2(μ) for all
μe[ — 44 + , — 4 4 _ ] . In any case there are at most 2m functions Aδo(s) having the
same spectral invariant H2(μ) since for any Άδo(s) the function Aδo(s + 1/21 <501 ~~ )̂
has the same spectral invariants. •

Now we shall consider the problem of recovering the scalar potential from the
spectral invariants assuming that the vector potential A(x) is already known. The
lowest order term in the expansion (4.55) containing V(x) has the following form:

(m \

~i\ξoΓ112 I (SoηΓ
1/2ί^lVs0(so(τ,yMτm,y))dτ)jdy. (5.41)

Indeed it follows from (3.46), (4.47), (4.52), (4.53) that

\ o

where 0(Λ0

 x) consists of terms either independent of V(x) or having order 0(Λ0

 2)
and C is the same as in (3.16). Representing C = C'(s, t) + Cδo(s) and integrating by

parts j C'dτ analogously to (4.14), (4.23) we obtain that the main contribution

is given by J Cδo(s0(τ\y,ή0))dτ'. Therefore it follows from (4.46) that the principal
o

term depending on V(x) has the form (5.41).
We shall simplify (5.41). Since sO f>O we have changing variables s =

so(τ,y,ψ(τmiy)) for fixed y and using (5.12),

fM y + m l δ o l - ' fa

j F,0(s0(τ, y, ψ{τm, y))dτ = j Vδo(s) ===

— f j/ (s)(E ίx ) -f- 4̂ 4 ίs))~ ^^2ds (5 42)
o x / 2 δ°
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Note that (5.42) is independent of y. Therefore (5.41) can be written in the

following form:

! do I - 1 I - M " 1

-i l foΓ 1 ' 2 { (sOήy^2dy J ^Vδo(s)(E0(τm) + 4Aδ0(s)ΓV2ds. (5.43)

15o I ~ 1

Since J (sOή)~lj2dy is already known (see the Proposition 5.1) we can recover

H3(μ)= J Vδ0(s)(μ + 4Aδ0(s))-1l2ds. (5.44)
o

Analogously to (5.21), (5.23) we can recover also

HM = f Vδ0(s)(-μ - 4Aδ0(s))-V2ds, (5.45)
μ<-AAδo(s)

H5(μ) = - J Vδ0(s)(μ + 4Aδo(s))-^2ds. (5.46)
μ>-AAδo{s)

In (5.45), (5.46) μ< -4A_. Let s+9s^\ s2{μ) be the same as in (5.32), (5.34).
Analogously to (5.34) we have

f )VM^ {5AΊ)
-4-A+ yjμ — v

Solving the Abel equation (5.47) we can recover

VδQ(si(v))s\(v)-Vδ0(s2(v))sf

2(v).

Assume that Vδo(s) and Aδo(s) are even functions and s = 0 is a local maximum.
Then s2(μ) = -s^μ), s'2{μ) = - s'^μ) and

V(s2(μ))=V(-s1(μ))=V(s1(μ)).

Therefore

VMμWΛμ) ~ Vδ0(s2(μ))s'2(μ) = 2V3o(

and we can recover Vδo(s) in the neighbourhood of s = 0.

Theorem 5.1. Lei J ( ί )(x) = (^f(x),yl(

2

ί)(x)) and V(t\x) be continuous families of even
real analytic vector and scalar potentials, 0 :§ t ^ 1. Assume that the lattice L satisfies
the condition (1.10) and A(0)(x)for any δoeS <L satisfies the same generic condition
as in the Proposition 5.3. Assume that the periodic spectrum of H(t) is independent
oft, O ^ ί ^ 1, where H{t) is the Schrδdinger operator corresponding to A{t)(x) and
V(t\x). Then A«\x) = A{0)(x), V{t\x) = V{0\x)for all te(0,1], i.e. there is a rigidity
of isospectral deformations.

Proof. It follows from Proposition 5.3 that for any <50 there is only a finite number
of Aδo(s) having the same spectral invariants as AfJ(s). Since Afo(s) depends
continuously on t we have that A$(s) = A$(s) for all t. Knowing A{x) we can
recover uniquely the even Vδo(s) in a neighbourhood of s = 0. Since Vδo(s) is analytic
it will uniquely determine Vδo{s) for all 5. Therefore Vδ

t]

0(s) = F(^(s), V<S0. •
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Remark 5.1. Computing the next term in the asymptotic expansion (4.55) (see

Remark 4.2) one can show that J Cδo(s)(μ + 4Aδo(s))~1/2ds is also a spectral
o

invariant.
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