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Abstract. We investigate a stochastic version of cellular automata used for
simulating hydrodynamical flows, e. g. the HPP and FHP models. The extra
stochasticity consists of "random exchanges" between neighboring cells which
conserve momentum. We prove that, in suitable limits, these models satisfy the
appropriate continuous Boltzmann and hydrodynamic equations, the same as
those conjectured for the original models (except that there is no negative
viscosity contribution). The results are obtained by proving a very strong form
of propagation of chaos and by using Hilbert-Chapman-Enskog type expan-
sions. Explicit proofs are presented for the stochastic HPP model.

1. Introduction and Results

Computer simulations on hydrodynamic cellular automata reproduce patterns
observed in real physical fluids [1-4]. This is, at first sight, remarkable, even
astonishing, since at a microscopic-particle level the dynamics seems at best a
caricature of the interactions between real molecules. The explanation lies in the
observation, basic to the development of these automata, that the macroscopic
behavior of a fluid does not depend on the detailed features of the particle
interactions: systems which microscopically look very different may give rise to the
same type of macroscopic behavior.

Scale separation is responsible for this behavior and the purpose of the present
paper is to rigorously prove its occurrence in a stochastic variant of these models. As
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we shall see, these automata have a very interesting and complex structure despite
their apparent simplicity. There are several space time regimes, each with its own
macroscopic equation obtained by suitably preparing the state of the microscopic
system at the initial time. There is a window in space-time through which we see a
kinetic behavior, described by a Boltzmann like equation. Looking through a
different window, one which looks on a longer time scale, we see hydrodynamical
behavior described by an Euler-like equation. Focusing on still longer times and
suitably choosing the initial state, we can observe the analogue of the incom-
pressible Navier-Stokes and Euler equations.

Our proofs work for both the stochastic FHP model on the triangular lattice and
the HPP model on the square lattice yielding for each its appropriate macroscopic
equations. Since the HPP system is notationally simpler we choose it to present our
result over the physically more interesting FHP system.

We introduce the model and state the main results, following closely [5], in this
section. In Sect. 2 we prove the main probability estimates and the convergence to
the Boltzmann equation. In Sect. 3 we derive the hydrodynamic equations using the
Hubert and Chapman-Enskog expansions, following the approach used in [6] The
results remain the same for the FHP model with the substitution of the
corresponding macroscopic equations [1-3].

The Stochastic HPP Automaton. Particles move on the square lattice,
which is a square centered at the origin, with sides equal to the integer part of ε~2

and periodic boundary conditions. This finite volume assumption will be un-
important from a physical point of view because the length ε~2 becomes infinite
with respect to any of the space scalings we shall use. We call east the positive
direction of the x-axis, north that of the j-axis, west and south are then determined
accordingly. The unit vectors in these directions are denoted by ei9i=l9...,49

respectively. We consider four copies of Zε

2 it is convenient to think of them as four
parallel planes imbedded in three dimensional space obtained one from the other by
a vertical translation. Each plane has a label σ e {1,2,3,4}. We call q the generic site
in Zε

2 so that (#, σ) specifies a site in Z2 and the plane σ on which q is located.
Particles move on each plane and jump from plane to plane. Particles have velocities
denoted by v e {e1,..., e4 }. There is an exclusion rule according to which there can be
at most one particle on each point γ = (q,σ,v) of the phase space Γ. A particle
configuration is therefore an element ηe{0,1}Γ. We write ηt or η(t) for the
configuration at time t and η (y), η (y, t) for the value of the occupation variable at the
point y.

We consider three types of updating of a configuration: the true evolution will
be a suitable combination of applications of these three steps. The first one is the
streaming updating according to which all particles move one step in the direction of
their velocity remaining on the same plane (σ is conserved), i.e. the configuration
η==η(q,σ,v)is changed into η'(q,σ,v) = η(q — v,σ,v). The second one is the collision
updating, the same as in the HPP model. Both σ and q are conserved (particles do
not move) in the collision updating while velocities change at all sites (#, σ) which
have exactly two particles with opposite velocities. The two particles then change
velocities, if previously they were north-south they become east-west and vice
versa. The third rule defines the stirring updating. This consists of two consecutive
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steps. The first one is stochastic: independently for each q we choose with equal
probability a number in the set {1,2,3,4}. Assume that for the site q the chosen
number is a, then if η(q, σ, v) are the occupation number before the updating, then
in the first step they are changed into η'(q,σ,v) = η(q,σ — a,v) (σ — a is defined
modulo 4). This means that this step consists of independent rigid vertical rotations
of all the vertical segments of four sites. The second step of the stirring updating is a
rigid translation of each of the four planes in the plane σ all particles move one step
in the direction eσ: a configuration η' goes into the configuration η" defined as
η"(q,σ,v) = η'(q -eσ,σ,v) .

The time evolution of our system is a Markov chain with the following transition
probability: at each integer time we choose independently for each site (#, σ) with
probability ε the collision updating while with probability 1 — ε we do nothing. The
stirring and the streaming updatings are than applied. The law of this Markov chain
is denoted by Pε

μ, where μ denotes the initial distribution (the distribution at time 0),
Eμ is the corresponding expectation. We shall be interested in the limiting behavior
when ε->0. For notational convenience it is often useful to use the language of
continuous times, instead of integers, it should then be understood that the
corresponding time in the Markov chain is its integer part.

Remarks. The HPP evolution is determined by consecutively applying the stream-
ing and the collision rules and then looking at what happens on a single plane (i.e.
for a fixed value of σ, σ does not change in this case). We have added the stirring
evolution, a two dimensional version of the process introduced by Boghosian and
Levermore in [7], to have more stochasticity in the system. Its properties can be best
understood by considering first the case when there is just one single particle in the
whole space. The effect of the stirring is to make it jump from one plane to the other
and then move by one step in the direction determined by the plane where it is
staying. By only looking at its q position, i.e. forgetting about σ, this is a symmetric
random walk. On the other hand, if only streaming were present, it would move one
unit at each time step in the direction of its velocity. When we consider both
streaming and stirring we have a random walk with a drift. When more particles are
present the motion due to stirring and streaming can be proven to be in some
suitable sense close to that of independent random walks with drift. It is not exactly
independent because when particles have the same q position they undergo the same
vertical rotation appearing in the first step of the stirring updating, but the
correlations built up by this interaction can be controlled. This process is in many
respects analogous to the simple exclusion process, in particular to a realization of
this process called by probabilists working on interacting particle systems the
stirring process. By an abuse of notation we have adopted the same name for our
process.

We need the stirring to act more often than the collisions, however the choice of
having a streaming after each stirring does not seem so necessary and we hope to
relax it in subsequent works. What is surely needed for our methods is the
introduction of the stirring updating. This is designed to prevent the build up of
correlations due to the interactions. (In real fluids - possibly also in the automata -
the job is presumably done by the deterministic dynamics itself.)
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The effect of the stirring will be to produce approximate independence at
different sites. In fact if we had factorization at all times then the expected
occupancy at (q, σ, v) at time t would satisfy the lattice Boltzmann equation

,vj) , (1.1)

where ρε is just the first term on the right side.

We have chosen the initial condition to correspond to given configuration η,

ρε(q,σ,v,0\η) = η(q,σ,v) , (1.2)

and have set, for any function/(r,v)

Q(f)(r,v)= f{r,υL)f{r, - ^ ) ( 1 -f(r,v))(l - / ( r , -v))

-f(r,v)f(r, -v)(l - / ( r , ^ ) ) ( l - / ( r , -v1)) , (1.3)

v1 being obtained from v by a counterclockwise rotation off.
Since factorization does not hold exactly, unless the system is in global

equilibrium, ρε will not give the true expected occupancies of the process starting
from η. Nonetheless in [4] it was conjectured that an equation like (1.1) (i. e. without
the stirring part and with a fixed finite value of ε) actually describes the evolution of
the automaton at least in predicting the behavior of the system in the various
hydrodynamical regimes. (We also note here that a discrete factorized equation of
the form (1.1) has been used, as a model in its own right, which has some advantages
with respect to using particle automata, in performing numerical simulations, cf.
[8,9].)

Results. Under some assumptions on the initial state we shall prove that, in a sense
made precise in the sequel, the automaton inherits the limiting behavior of (1.1) in
the various space-time regimes, i.e. (1.1) correctly describes the behavior of our
stochastic HPP automaton, at least for small values of ε. In the various space time
regimes (the scale separation that we mentioned earlier) (1.1) converges to different
PDE's: i) a diffusive equation atti£ε~β,β<l, due to the stirring alone, ii) the space-
time continuous Boltzmann equation (1.9) below, for times tπε'1. iii) the HPP
versions of the Euler or Navier-Stokes equations for longer times and for suitable
initial conditions.

We note however that the hydrodynamical behavior of our stochastic auto-
maton differs from that conjectured for the HPP model [4], in that the viscosity in
[4] has a negative lattice contribution not present in our case. Indeed, we consider
(1.1) in the limit as ε->0 while in [4] the coefficient in front of the collision term Q is
kept fixed and does not vanish with ε. The space-time hydrodynamical regimes
where viscosity effects appear are therefore different, and this is why the viscosity
coefficient that we obtain does not have the negative lattice contribution as in [4].
Analogous results will be true for the stochastic FHP model in the limit ε->0.

Short Times and Typical Configurations. The next theorem shows that (1.1)
describes very closely the typical configurations of the process at short times on the
scale ε" 1 when ε->0:

Theorem 1.1. Let A (ε, θ, q) denote the square centered at q and with side ε~θ,0<θ<2.
Let 0 < β < 1, then there isζ>0 and for any n there is c such that given a solution ρε of
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(1.1), (1.2) we have

Pil sup \Λ(ε,θ,q)\- 1

(q,σ,v)

Σ (η(q',σ,v,ε β)-ρε(q\σ,v,ε β\η))
q'eΛ(ε,θ,q)

>εζ )<cεn

(1 4)
uniformly in η. v " }

N.B. On the time scale considered in Theorem 1.1 one can neglect the last term in
(1.1) which then becomes a diffusive type equation. The typical configurations at
time ε'β are essentially uniform on squares of size ε~θ, 0<f, and equal, on the
average, on different levels σ, uniformly in the initial configuration η. Furthermore,
as we are going to see, the distribution of the process is close to factorizing.

For 7 = (7i,...,yn) with y φy,- for all i+j define

( ( 1 . 5 )

then

Theorem 1.2. There is <5>0 such that for all t^ε~β, 0 < j β < l , t > 0 and for all

2 = ( f t >•••>?»)
\Ve

H(y,t\η)\£cΓ*" , (1.6)

where the constant c depends on <5, β and n but is independent of η.

Remarks. In Sect. 2 we shall see, by using the Chebitchev inequality, that Theorem
1.1 is a straight consequence of Theorem 1.2. For the proof of Theorem 1.2 we refer
to Sect. 4 of [10], where the analogous property is proven for the weakly asymmetric
case. We also refer to Appendix A of [11] for the proof of (1.6) in the Glauber
+ Kawasaki process. The extension to our case is straightforward but tedious and
we omit the details.

Theorem 1.1 will play an important role also in the analysis of the process at
times t^>ε~β: we can reach times /~ε~1(logε~1)~α, for any fixed a<l, by first
dividing the whole time interval into subintervals of length ε~β, and then
conditioning on the value ηik) of the configuration at the beginning of the kth step.
We use Theorem 1.1 to control the typical configurations at the end of the time step,
proving that they are close in the average, cf. (1.4), to the solution of (1.1) starting
from η(k\ We have enough control of (1.1) (at least up to the times mentioned above)
to patch together all these different time steps and to prove that the typical
configurations at the final time are close to the solutions of (1.1) at that time,
starting from η{0). This requires some regularity properties of the solutions to (1.1)
that will be derived in Sect. 3 from suitable scaling assumptions on the initial data.

More precisely we shall choose the initial measure με as a product measure such
that

(1.7)

where fo

ε(r,v) is a function whose smoothness properties depend on the macros-
copic equations we want to derive. To derive the Boltzmann equation we shall
choose /o

ε independent of ε while for Navier-Stokes and Euler it will be ε-dependent.

The Kinetic Regime. Observe that the typical collision time as well as the mean free
path in (1.1) is of order ε" 1 . The kinetic regime is therefore characterized by a
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Knudsen number of order 1 the Knudsen number being the ratio between the
mean free path and the typical distances on which the macroscopic densities vary.
We therefore choose the initial measure με as in (1.7) with fo(r,v) = fo(r,v),
r e [0,1]2, (with periodic boundary conditions), where f0 is a non-negative periodic
smooth function independent of ε bounded by 1 for any v. In this way we have
imposed a velocity and density profile which varies in the average on distances of
the order of ε" 1 in the lattice, g e Z 2 is a microscopic point and εq the
corresponding macroscopic point. Since the space scale goes like ε" 1 and in the
system there are finite velocities, we need to rescale time too, namely the macro-
scopic time τ corresponds to the microscopic time ε~ί τ. We then have the following
result

Theorem 1.3. Let με be as above, then for all integers n and all / ^ 0 ,

lim sup
ε - > 0 γi,...,γn

where f(r, v, t) satisfies the Boltzmann-like equation

d

= 0 , (1.8)

j t (1.9)

with initial condition f(r,v,0) = fo(r,v). The collision kernel Q(f) is given in
(1.3) and the sup is over all distinct n-tuplets (yi,...,yw) of phase space points,
yi = (qi,σi,vi)9i=l9...,n.

Remarks. The proof of a weaker version of Theorem 1.3 can be obtained by using
the iterative scheme introduced by Lanford, [12], to derive the Boltzmann equation
for a gas of hard spheres in the Boltzmann-Grad limit. The limitation to short times
in Lanford can be lifted because of the exclusion condition built into the dynamics,
which gives an a-priori bound on the correlation functions. To get the uniformity as
stated in (1.8) we divide the whole time interval into intervals of length ε~β. At the
end of each interval we condition on the value of the configuration and start again.
In each single time step we prove that the process is close to the solution of (1.1): we
describe in Sect. 2 how we control this interative scheme. We then derive Theorem
1.3 from the fact that (1.1) converges to (1.9) in the above scaling.

The Euler Regime. The hydrodynamical equations describe the behavior of the
system in a regime where the Knudsen number is small. Since in our model the mean
free path is of order ε" 1 we need, to have a Knudsen number which vanishes when
ε -• 0, an initial state which varies on a microscopic space scale (λ (ε)ε) ~ ί with λ (ε) -• 0
as ε->0. This is accomplished by taking for the initial measure με a product measure
satisfying

Eμε(η(q,σ,v)) = fo

ε(ελ(ε)q,v) , (1.10)

where, for each v, /o

ε (x, v) is non-negative smooth function of x e [0,1 ] 2 bounded by
1 and there are two smooth functions ho(x)eR and co(x)e R2 such that (see (3.6)
for a more precise condition)

lim \fo°(x,v)-N(ho,co;v)\ = 0 (1.11)
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and

is such that the collision operator Q(f) vanishes identically when / is given by
(1.12). Since the macroscopic scale is now (ελ(ε))~1 we need to change, in the same
way, also the macroscopic time scale. We have the following result:

Theorem 1.4. Let με be as above and choose λ(ε) = (\og(ε~1))~a, 0<a< 1. Then the
analogue o/(1.8) (replacing ε~1 by (εΛ^ε))"1) holds, for all integers n and all t^O.
Furthermore fε(x,v,t) satisfies for all x and t,

lim\ft

s(x,v)-N(ht,ct;v)\ = O . (1.13)

The functions ht and ct satisfy the following Euler type equations:

+

where V=VX, and x = (xι,x2),

ρ(x,t) = ΣN(ht(x),ct(x);v) , (1.15a)

Σ{x),ct{xY,v) , (1.15b)
V

and the momentum flux tensor Π is given by

ΠUj(xj) = δiJ[N{ht(x\ct{x) ei) + N{ht(x\ct{x)',-ei)} , 1,7= 1,2 .(1.16)

Remarks. Equation (1.14) has the structure of a conservation law for the density
and momentum flux, it is an Euler-like equation. Its proof is obtained by showing
that (1.1) describes accurately the process up to times of order (ελ(ε)) ~1. At times of
order ε" 1 (1.1) becomes close to (1.9). We scale the initial datum for (1.9) by λ(ε),
cf. (1.10), and look at the rescaled solution when ε-»0. This is done using the Hubert
expansion and the Caflisch techniques, [13]. For this we need a local equilibrium
assumption at time 0 we prove then that it holds at later times. This is similar, even
simpler than deriving the incompressible Navier Stokes equation, so we shall give
only few details in Sect. 3.

The Incompressible Navier-Stokes and Euler Equations. The scaling to be used to
derive a macroscopic equation is dictated by the scaling symmetries of the equation
to be derived. In this way the Euler equation was obtained by scaling space and time
by the same parameter. The Navier-Stokes equation does not have any such
symmetry, except for special cases, as for instance for pure heat diffusion.
Traditionally, in kinetic theory, the Navier-Stokes equation is presented as a second
order term in a Chapman-Enskog expansion but this does not seem to specify in
which regime and in what sense the behavior of the system is well described by the
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Navier Stokes equation. The incompressible Navier-Stokes equation, however, has
a scaling symmetry obtained by scaling time as the square of the space (diffusive
scaling) and, at the same time, scaling velocities like their ratio: for any λ > 0,

1 ; t-+ΐf — λ~2t and u-+u'= λu. To exploit such a symmetry in our setup
we recall from Theorem 1.3 that the microscopic model is close on a time scale ε~ * to
the solution of the Boltzmann equation (1.9) and it stays close to it for times which,
in the Boltzmann time units are of the order of (log ε~ 1 ) f l , 0 < a < 1, cf. Theorem 1.4.
The problem is then reduced to showing that the Boltzmann equation (1.9) gives
rise, in the above scaling, to some limiting equation. The identification of the limit
with the incompressible Navier-Stokes equation for our model is based on what was
found in the case of the classical Boltzmann equation. In fact it was shown in [8] that
the solution to the classical Boltzmann equation converges in the above scaling, for
suitable initial conditions, to a local Maxwellian whose parameters are the solution
to the incompressible Navier-Stokes equation. The result was obtained using the
Hubert expansion and the Caflisch techniques; see also [14].

To carry out the above ideas we use the following setup: με is given (up to terms
of order λ(ε)2 which we specify in Sect. 3) by (1.10) and (1.11) where h(x) = h0, h0

being any given constant, while c(x) depends on ε and is given by

= λ(ε)co(x) . (1.17a)

Let then ρ0 be the constant density corresponding to N(ho,0;v) (cf. (1.15a)) and
λ(ε)ρouo(x) the corresponding momentum flux (cf. (1.15b)) at t = 0. Assume also
that u0 is divergenceless, i.e.

V uo = 0 . (1.17b)

Theorem 1.5. Let με be as above, and assume that in (1.10) λ(ε) = (γ\ogε~1)~a,
1. Then setting tε = ε~1λ(ε)~2

lim sup
0ε->0

i ΠfίftΛ) - Π £i = 0 . (1.18)

Furthermore:

lim sup
ε-+O γ

5 ) ) - ρ 0 = 0 , (1.19a)

where ρ0 is the constant value of the density per plane at time 0. We also have:

lim sup λ(έ) *
q,σ,v

A η(q,σ,vλ, te)η(q,σ, -vλ,

- (1 -η(q, σ, -v, tε))-η(q, σ,υ, tε)η(q, σ, -v, ίβ)(l -η(q, σ, vL, tε))

and

-{\-η{q,σ, -v\ι

lim sup
0 q,σ

= 0

1 X vE;cη(q,σ>v,tε)-ρou(ελ(ε)q,ή

(1.19b)

= 0 , (1.19c)
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where u(x,t) satisfies the HPP analogue of the incompressible Navier-Stokes

equation: namely

Qo γt uM Qo9(Qo) ^ «?= ~ P + v(flb) ^ Γ «, , d 20a)

with u (x, 0) = u0 (x) and V u (x, t) = 0. The constants g and v are given by the formulae,

0(ί?)=~ , (1.20b)

v(ρ) = ~ . (1.20c)

The quantity V p is uniquely determined by (1.20).

Theorem 1.5 is proven in Sect. 3 while the last statement of Theorem 1.5 is
proven in [15]. We note again that the viscosity v(ρ0) in (1.20) does not contain the
"negative lattice contribution" of HPP. This is due to the fact that in our model the
mean free path, and hence the true viscosity, is going to infinity on the lattice scale,
cf. (1.1). To obtain a finite value we have to scale things properly and this leads to a
Boltzmann equation (1.9) in continuous space which makes the negative lattice
contribution vanish.

To prove the covergence to the incompressible Euler equation we use the
same initial condition as above but look at times of order tε = ε~ίλ(ε)~ί~at,
0 < α < l,λ(ε) being as in Theorem 1.5. The analogue of (1.19) then holds, if we
replace A(ε)"1 in (1.19b) and (1.19c) by Λ(ε)~α. The velocity u(x, t) will satisfy the
analogue of the incompressible Euler equation, namely it is divergenceless and

ί £ * = - - L p - (L21)

2. Proofs

Proof of Theorem 1.1. By the Chebitchev inequality with power 2 k the left-hand side
of (1.4) is bounded by

c Σ β-C2*fiβm

(q,σ,v) qίeΛ(ε,θ,

(2.1)

where d— 2 is the space dimension and c is a constant (whose value will change from
line to line). The contribution to the above sum of the terms {gr.φ^V/Φ/} is
bounded by

cε-2dε-ζ2kε62k 9 { 2 2 )

where the first factor comes from the ]Γ and the third one from (1.6). If ζ<δ
(q,σ,v)

then, by choosing k large enough, (2.2) is bounded by cεn. Consider now the
contribution of the other terms. Let si be a subset of {1,..., 2k} and & its com-
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plement, denote by Q(stf,0$) the set of all (ql9...q2k) s u c r i

^Φήf.V/ + ί, while if zeJ' then there is je&, yΦi, so that q^qy Let A be
the cardinality of si and (2k — h) that of $?. It is easy to see that if
(q1,..., q2k) eQ(stf,$) then the expectation in (2.1) can be written as a sum of Vf,
where h^i^lk. By (1.6) the sum over (qί,...q2k)eQ(s/,^) is bounded by

cε-2dε-ζ2kεShε±θd(2k-h) 9 ( 2 3 )

the last factor arising from the normalization factor εθd2k times the cardinality of the
sum restricted to Q(s/,&). This term is also bounded by cεn for k large enough, if
θd/2 > ζ (and as before δ>ζ). D

The Seminorm || ||. Instead of space averages as in Theorem 1.1 it is more
convenient in the sequel to consider suitably weighted averages: let / be a function
on Γ, then we define the seminorm 11/II as

(2.4)= sup Σ^ίy,/)/(/)

where Pε(γ, y') is the [ε * ] power of the transition probability determined by the
stirring updating when only one particle is present (we use the notation [x] = largest
integer 5Ξx):

y>y')=i T,XAiy.et)(y') , (2.5a)

where

XA( ) w //ze characteristic function of the set A , (2.5b)
and

A(y,ei) = {y' = (q\υ',σ') :q' = q — v — e'σ,v' = v,σ' = i} . (2.6)

The Good Trajectories. For any be[1,2], let

^[ fc&Γ'] , (2.7)
and denote by

7̂ —tftk v^ "y

the configuration at time tk. Let ρίt( \η{k)) be the solution of (1.1) at time tx with
initial datum η{k\ For α>0 and ί>0we set

| k l i (2.9)
Furthermore for any of the initial profiles fl considered in Sect. 1 we set

\ \ \ \ (2.10)

Lemma 2.1. Let α > 0 be small enough. Then for any I and n there is a c such that

uniformly in η,
ε-ι))>l-C£n , (2.11a)

and for any of the initial measures considered in Sect. 1

ε-ι))>l-cεn . (2.11b)
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Proof. To prove (2.1 la) we use the Chebitchev inequality with power 2k, as in the
proof of Theorem 1.1. It is easy to see that

Therefore, like in the proof of Theorem 1.1, if δ > α and |- > 2 α we have that for k
large enough (2.11a) holds. Equation (2.11b) easily follows from the definition
(2.10) and the assumptions in the initial measure με: we have to use again the
Chebitchev inequality with power 2 k to estimate the probability of the set

which is easily achieved recalling that με is a product measure. •

The next proposition states that the good trajectories, in the above sense, follow
closely the solution of the Boltzmann equation (1.9). To establish this result we need
a uniform bound on the derivatives of the solution of (1.9) for the times involved. At
finite times, in the units of (1.9), this is a consequence of the smoothness assumption
on the initial datum. At the longer hydrodynamical times this requires some work a
proof will be given in the next section.

Proposition 2.2. There exists a choice of a > 0 in (2.9) so that the following holds. Fix
β>0 in Theorems (1.1) and (1.2) so that α > ( l - j 8 ) . Let τ(ε)^( logε~ 1 ) α ,β<l, be
such that the time and space derivatives of the solution fτ

ε(r, v) of(l .9) for τ ̂  τ(ε) are
uniformly bounded by a constant c*. Then V 0 < z < α — (1 — β) there is a constant c
such that for all ηe^fε(θL,ε~1τ(ε)) and for all be [1,2],

sup \QΪ(y\ηik))-fεlε-βbk+t)(eq,v^cεZ > ( 2 1 2 )
γ = {q,v,σ)

whenever

Proof. We denote by fτ

ε(r, v) the solution to (1.9) with initial datum /o

ε(r, v) and set

Ft

ε(q,v) = fε(εq,v) . (2.13)

Then for s<t we have from (1.9),

Fε(q,v)-Fε

s(q-v(t-s')v) = ε } ds'Q(Fε

s,)(q-v(t-s'\v) . (2.14)
s

We choose t and s in (2.14) as integers and then replace the integral in (2.14) by a
sum over the integers s' from s+1 to t. The error is bounded by

ε(t — s) sup sup ε
(q,υ)

(2.15)

since t^ε xGogε 1 ) α ,α<l,and
d

~~ ^c*. It is easy to see that for y = (q, σ, v),

Σ Pt(y,yf)\q-tv-q'\^cγt . (2.16)
γ'=(q',σ',v')
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We now use (2.16) recalling that there is a scaling factor ε in the definition of F,
cf. (2.13), and we get

Σ
γ' s'=s +

^c*εlogε~1-f c*εc λ/t — s — ε Σ c*εc γt—s'^cε* . (2.17)

y'

t

s + l

The first term in the middle inequality comes from (2.15), the second one from the
second term in the left side after using (2.16), and the last one by using (2.16) in
the sum appearing in the left side. Finally for the last inequality we used that
t ^ε"1 logε"1, hence that ε* bounds all the terms. In (2.17) and below we use the
fact that the collision kernel Q(F) is a polynomial in F, hence it has the same
smoothness properties as F.

Let ί>ί β =[ε"*]. Then

QεΛy\η{k))=Σ Λ-t.(y>/) Σ Λ.ί/

y'

Σ ) Σ Λ-.(y.Y')Q(Ql(-\iik)W) , (2 i8)

so that, using (2.9), we get

\Qε

t(y\rιik))-ΣPtfrylQ'tM^-^+BΣ ΣPt-s(y,y')Q(Ql(-Wk)W)\
y' s-te γ'

- * ) , (2.19)

where cε1~i bounds the first sum in the last term of (2.18).
Let us define, cf. the statement of Propostion 2.2,

K(y,t)=W,(yWk-u)-my)\ , (2.20a)

A,(r) = supAe(y,r), (2.20b)
y

where t is such that

tk-ι+tε<tStkύε~1τ(ε) (2.20c)

Then from (2.17) and (2.19) it follows

y'

(2-21)
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where
I(t) = {s:sφ(tk,tk + tΛ)} . (2.22)

From (2.21) we get that ϊϊE(t)^exp(cεt)ck(εa + ε1~* + εi) hence is the Proposition
follows. •

Proof ofTheorem 13. Let Γ > 0 be any fixed time. By assumption fo

ε(r,v)=fo(r,v) is
in C \ so that we can apply Proposition 2.2 for t ̂ ε " 1 T. Given t we fix b e [1,2] so
that there is k such that

tk + tε<t^tk+1 (2.23)
Let

^k = σ-algebra generated by {η(y, t),yeΓ,t^tk) , (2.24a)
and let

Eε^k(') = expectation with respect to the law of the process conditioned to $Fk .

(2.24b)

For any yeΓ and t^>0, t verifying (2.23), we set (cf. (2.13))

hε(y,t) = Qε(y,t\ηik))-Fϊ(y) (2.25)

and note that if ηe Jf ε(α, tk), by (2.12)

sup\hε(y,t)\Scεa-β . (2.26)
y

Then

( ( i [η(yt, 0 - ^ ( 7 ,

Π Aε(y,-, 0 F^.^2', ̂ < f t ))) (2.27)
y, ^

In the last equality we have used the Markov property together with the fact that hε

is J^-measurable. Using Lemma 2.1, (2.26) and (1.6) we then get, for any ra>0,

y Ei(y*_ Π \hε(y{j)\\V]ί/Ay\t\n(k))\\^cεξ

n

g ^ e(«-Λ(«-liΊ)ε* (2.28)

Theorem 1.3 now follows. •

Observe that the proof of (2.28) extends to all times t for which Proposition 2.2
holds, namely to all times t ̂  ε ~1 (log ε ~x )fl, 0 < a < 1, such that the derivatives of the
solution of (1.9) are bounded in absolute value by some constant c*. We shall prove
in Sect. 3 that this holds for the times involved in Theorem 1.4. Therefore for all
such times

'n . (2.29)
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In (2.29) V*(y, t\με) is defined as in (1.5) with η replaced by με as initial measure
for the process and with ρε defined as the solution to (1.1) with initial condition
Qε(y> 0) = με(η(y, 0)). Finally in (2.29) δ' > 0 is some fixed constant and c depends on
δ' and n.

3. The Hilbert-Chapman-Enskog Expansion

We now study the solution f(r, v, τ) of the following (HPP)-Boltzmann equation,

-^f(r9v9τ)Hv rr)f(r,v,τ) = Q(f) , (3.1)

where ve{e1,...,e4} and Q(f) is given in (1.3). The initial conditions as well as the
size of the periodic square in which r varies will be specified later.

The equilibrium distributions for (3.1) is the function N(h,c;v),

ί + ^ . υ (3.2)

which verifies

Q(N(h9c;v)) = 0 VheR,ceR2 . (3.3)

We want to show that if the initial datum of (3.1) is suitably close to a slowly
varying equilibrium distribution, then under suitable scaling limits /(r, v91) is also
close to a local equilibrium distribution with parameters h(r, t) and c(r, t) which are
solutions of the hydrodynamic equations.

More precisely, we denote by λ the scaling parameter and we choose λ = λ(ε) as
in Sect. 2 so that λ eventually vanishes. We define for xe [0,1]2,

where / solves (3.1) in [0, A"1]2. Then fλ solves

dfλ

-ir- + λ-a(vVf) = λ-*-1Q(f) (3.5)
dt

with periodic boundary conditions in [0,1]2. The problem is similar to that studied
in [8] for the classical Boltzmann equation. The following results hold.

Euler regime. Let α = 0 and consider the initial datum fλ(x, v, t) for (3.5) satisfying

lim sup -2-\fλ(x,v,0)-N(ho,co;v)-λg1(x,v,0)-λ2g2(x,v,0)\ = 0 , (3.6)
λ-*O xe[0,l] 2 A

where

ho = ho(x)eR forxe[0,l] 2 ,

CO = CO(X)ER2 forxe[0,l] 2 ,

gx (x, v, 0) and g2(x, v, 0) are suitable bounded functions. Then there are ht,cnλ0,C
and τ0 such that for any ί;gτ0 and for all λ ^λ0,

sup \fλ(x,v,t)-N(ht(x\ct(x);v)\SCλ . (3.8)
xe[0,l]2
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Moreover denoting by

Qt = Σ N(ht> ct\ v) , QΛ = Σ vN(h» cήυ) >
V V

then ht and ct are such that ρt and wt solve the "Euler equation" (1.14)—(1.15).

Incompressible Navier-Stokes Regime. Let α = l and consider the initial datum
fλ(r, v, t) of (3.1) satisfying

lim sup -ϊ\fλ(x,v,0)-N(ho,λco;v)-λ2g2(x,v,0)-λ3g3(x,v,0)\ = 0 ,
λ->0 jce[0,l] 2 Λ

(3.9)
where Ao e i?, c0 Ξ C0 (X) e R2 for x e [0,1 ] 2 verifies

F co = 0 (3.10)

and g2(x, v, 0), gf3(x, v, 0) are suitable bounded functions verifying (3.27) and (3.29)
below. Then there are ct,λ0,C and τ 0 such that for any t^τ0 and for all λ^λ0

sup \fλ(x,v,t)-N(h0,λct;v)\ίCλ2 . (3.11a)
jce[0,l] 2

Moreover,

ρo = lim £ N(ho,λct;v) ,

ρoW^lim A"1 Y^vN(ho,ct;v) (3.11b)

solve the "Incompressible Navier-Stokes equation" (1.20).

Incompressible Euler Regime. Letting λ*^>λ we can rewrite (3.5) as follows

with n = ^>2. Assume that the initial datum is such that
α

lim sup \fλ(x,v,0)-N(ho,λco;v)-λ'>gn(x,υ,0)-λ'> + 1gn+1(x,v,0)\ = 0
λ-*0 jce[θ,l] 2

(3.13)
with h0 and c0 as in (3.10) and n is any integer > 2. Then (3.11) is true also in this case,
but ρ0 and u solve the "Incompressible Euler equation" (1.21).

The proof of the above statement is a straightforward adaption of the arguments
used in [8] for the Boltzmann equation which rely on the Hilbert-Chapman-Enskog
expansion. We describe below the analysis of the Incompressible Navier Stokes
regime.

The Power Expansion in the Incompressible Navier Stokes Regime. Let fλ(x, v, t) be
the solution of (3.5) in the case α = 1. Assume

fλ(x, v, t) = N(ht, λct v) + λ2g2(x, v, t) + λ3g3(x, v, t) + λ3 f£(x, v, t) . (3.14)

We are going to determine uniquely the functions ht,ct,gi9i = 2,3 as solution of
some initial value problem, while the remainder / i ( x , v, t) is such that (3.13) holds at
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all times. We show below that fE(x,v,t) has to satisfy an initial value problem
whose solution is uniformly bounded in λ from this (3.11) follows. We first observe
that

λ(x,v,t) , (3.15)
where

No(x,v) = N(ho,0;v) (3.16)
and

We define

N(ht,λct;v) i£ l . (3.17)
Λ=0

2eh>
Q(X, t)u(x, 0 = ( 1 + g f t t W ) 2 ct(x) , (3.19)

and therefore we have

φ, (x, v, 0 = k ( * . O(u(x, t) -v) , (3.20)

φ2(x,v,t) = ρ(x,t)g(ρ(x,t))(u(x,t) v)2 , (3.21)
where

*(β)4=* (3-22)
4 - ρ

Since fλ is the solution to (3.5) with α = l, using (3.14) and (3.15) we then get

1

~Q(fλ) . (3.23)

Using (3.3), (3.14) and (3.15), we have

Q(fλ) = λ2Log2 + λ3[Lλfi+L^g2+Log3]+λ^λ(g2,g3JE

λ) , (3.24)

where we have set

^ , (3.25)

^ ( 3 - 2 6 )

and 3%λ is defined in such a way that (3.24) holds. We now insert (3.24) in (3.23) and
we impose that each order in λ, not containing f£, vanishes. We then get the
following three equations,

vVN0 , (3.27)

d,N0+υ Vφ1=L0g2 , (3.28)

. (3.29)
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The equation for the remainder /J is

x 1 x 1 x 1

 f λ

with

J*=-dt(φ2+g2)-vVg3 . (3.31)

Summing over v in Eq. (3.27) we get

Vρ = 0 . (3.32)

To solve (3.28) we notice that, for any /, Lof is orthogonal to the vectors
φo(v) = (ί91,1,1), φx (iθ = (l, 0, -1,0) and ^2(ι;) = (0,1,0, - 1 ) and the range of Lo

is given by the 1-dimensional subspace generated by φ3(v) = (l, — 1,1, —).
Moreover Lo has a m/// space which is generated by φi9 ι = 0,...,2, and only one
eigenvector ι̂ 3 with a negative eigenvalue. Equation (3.28) can be solved for g2 only
if the left-hand side is also orthogonal to φi9 z' = 0,...,2. The orthogonality is
checked as follows. Summing over v in Eq. (3.28), using (3.20), we get

3*0 + 3 * ^ 1 + 3^112=0 . (3.33)

Integrating (3.33) over x and using both (3.32) and the conservation of the total
mass, we get

dtρ = 0 , i.e. ρ(x,t) = ρo , (3.34)

where (cf. (3.9) and (3.18))

^ 0 = ^ (3.35)

From (3.35)

3ΛlWi + 3X2w2 = 0 > (3.36)

which is the incompressibility condition.
Once (3.35) and (3.36) are fulfilled, (v Vφx) turns out to be parallel to φ3, and

since Lo can be inverted on the complement of its null space, we get from (3.28),
(3.35) and (3.36),

2

i=0

where the functions βt(x, t) will be determined from (3.29), and we have denoted by
LQ"1 the inverse of the restriction of Lo to the linear subspace generated by φ3. A
straightforward calculation together with (3.20) and (3.36) shows that

LQ (V ' Vφι)= — v(ρ0) j ρou 'V (3.38a)
with

v ( ρ o ) = - . (3.38b)

The operator L ( 1 ) is also orthogonal to the vectors φi (v), i = 0,1,2. Therefore, we
have to impose the solvability conditions also on the left-hand side of (3.29). To do
this, we insert (3.37) in (3.29) and we multiply both sides by v. Then summing over v
we get that u has to satisfy Eq. (1.20). We then adjust the unknown functions βt in
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such a way that the other solvability conditions are satisfied and determine g3 in the

same way as g2 was determined above. We are then left with Eq. (3.30) for the

remainder.

In order to really control the function/^ we need to write

fE

λ = β + λg4 + λ2g5+λ3g6 , (3.39)

and choose 0 ί ?/ = 4, 5,6 according to the Hubert expansion. This produces an

equation for the/^ similar to (3.30) with a power λ2 in front of stf and no negative

powers of λ on the right-hand side beside the -y in front oϊLλfR. This equation can

A

be controlled along the lines of [8] (to which we refer for details) once one assumes

the initial datum for/^ vanishing. Therefore the initial condition for (3.5) with α = 1

is

fλ(r,v,0) = N(ho,λco;v) + £ λkgk(r,υ90) , (3.40)
k=2

the functions gk being determined uniquely from ρ0 and u0.

The same arguments apply also to the case 0 < α < 1.

Proof of Theorem 1.5. We assume that the initial measure με is a product with

μ\η{q,σ,v))=fm{ελε)q,v,ϋ) ,

where fλ is defined in (3.40). The results of Sect. 2 then show that setting

ί, then for any ί > 0 and for any />0,

lim -^τι\EμC(ηtc(q,σ,v))-fλ^(sλ(ε)q,v,t)\=O (3.41)
0 λ{8)

holds whenever the solution of (3.1) has bounded derivatives up to time tε (cf.

(2.29)). Moreover, the proof of (3.11) assures the regularity of the solution of

Eq. (3.1) up to λ(ε)~2t. Combining (3.41) and (3.11) then implies Theorem 1.5. D
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