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Abstract. In this paper we construct the equilibrium states of Dyson's vector-
valued hierarchical model with parameter c = ]/ϊ at low temperatures and
describe their large-scale limit. The analogous problems for j/2 < c < 2 and
1 < c < j/2 were solved in our papers [1] and [2]. In the present case the large-
scale limit is similar to the case j/2 < c < 2, i.e. it is a Gaussian self-similar field
with long-range dependence in the direction orthogonal to and a field
consisting of independent Gaussian random variables in the direction parallel
with the magnetization. The main difference between the two cases is that now
the normalizing factor in the direction of the magnetization contains, beside
the square-root of the volume, a logarithmic term too.

1. Introduction

First we briefly describe the model we are investigating. Dyson's hierarchical
model is a one-dimensional classical spin model on the lattice Z = {1,2,...}. Its
Hamiltonian function depends on a parameter a, 1 < a < 2, and is defined as

*(σ)=- Σ Σ d(iJΓ"σ(ϊ)σ(J), U l)
ieZ jeZ

where d{ίJ) = 2n{ίJ)-\ and

n(ij) = mm{n, there exists some k such that (k — l)2n<i,j^k2n}.

We are dealing with vector-valued models, where σ(j) e Rp with some p ̂  2. If x e Rp

and yeRp then xy denotes scalar product. We consider models with the free
measure v,

dv ί x2 t 1
— (x) = po(x) = po(x,t) = C(t)exp j - — - - \x\4 , xeRp, (1.2)
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where f >0 is a sufficiently small number, and C(t) is an appropriate norming
constant which turns po(x) into a density function. For the sake of convenience we
shall work in the sequel with the number c = 22~a instead of the parameter a.

We investigate the following problem: First we construct an equilibrium state
μ = μ(T) at low temperatures with magnetization in the direction of the first
coordinate x(1) and then we want to describe its large-scale limit. In more detail, let

σ = {σ(j) = (σ(1>(/), ., σ™V)) eRp, je Z}

be a random field with the distribution of the equilibrium state μ = μ{T\ and define
for all π = 1,2,... the random field

&n<TM(j)=— £ [σ(1)(fc)-£σ(1)(/c)], jeZ, (1.4)

1 J2»

mnσ
(s)(j)= — X σ(s\k), jeZ, s = 2, ...,p, (1.5)

where An and Bn are appropriate norming constants. We want to choose them in
such a way that the finite dimensional distributions of the fields 0ίnσ converge as
n-+ oo, and also want to describe the limit field. Here An is the norming constant in
the direction of the magnetization and Bn in the direction orthogonal to it.

We have solved this problem for j/2 < c < 2 in our paper [1] and for 1 < c < j/2
in [2]. In both cases we have to choose a "critical" normalization Bn = 2nc~n'2 in
the direction orthogonal to the magnetization, and the limit is a self-similar
Gaussian field with long-range correlation. On the other hand, in the direction of
the magnetization we have a different situation in the two cases. For j/2 < c < 2 we
have to choose An = 2n/2 and get a field of independent Gaussian variables for the
limit. For 1 <c< j/2 the right choice in (1.4) is An = 2nc~n, and the limit is a non-
Gaussian field which we have described explicitly in [2]. Our aim in this paper is to
solve this problem for c = j/2. The answer is very similar to the case j/2 < c < 2.
Namely, we have to choose Bn = 2"c~n/2 = 23"/4 and get a dependent Gaussian field
in the direction orthogonal to the direction of the magnetization. In the direction
of the magnetization we have to choose An = 2n/2]/ini and the limit is a field
consisting of independent Gaussian random variables. The main difference
between the cases j/2 < c < 2 and c = j/2 is the appearance of multiplying term j/n
in the normalizing factor An in the latter case. It is expected that translation
invariant models with short-range interaction in the cases rf < 4, d = 4 and d > 4
show a behaviour similar to Dyson's model in the cases 1 < c < j/2, c = j/2 and
|/2<c<2. Thus Dyson's model with c = j/2 corresponds to four-dimensional
translation invariant models.

Let us formulate our results in more detail. In Theorem 1 formulated below we
construct the equilibrium state whose large-scale limit will be investigated.

Given some heR1, /ι^0, and a positive integer n let us define the Gibbs
measure μh

n = μh

n(T,t) on (Rp)2n with the density function
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given by the formula

Σ d(ujr3l2χtχj'h Σ χ{A} Π
i+1 l /J l

where (1.6)

—f- ΐ 1 Σ diUjT3l2XiXj-h ϊ xj1*)} fl Po(xj>t)dxj

is the grand partition function, and po(x9t) is defined in (1.2). Let ph

n{x) = ph

n{x, T)
2n

denote the density function of the average 2 ~" J σ(j) of the μ^ distributed random
7 = 1

vector (σ(l),..., σ(2")). Put μn = μh

n, pn(xl9..., x2n) = rf(xl5..., x2n) and pn(x) = ph

n(x) in
the case h = 0.

Let us introduce the functions

j g | p. (j/^ x) (1.7)

2
with α o = -j=, aί = a0 + l and the above defined functions pJx), where the

2-]/2
norming constant iCπ will be appropriately chosen. The function qn(x, T) is rotation
invariant, i.e. the function qn(z,T\ zeR1, defined by the formula qn(z,T)
= qn((z,0),T)9 zeR\ 0 = (0, ..^GjeRP'1 satisfies the relation ^II(x,T) = «II(|x|,T).
Choose the constant Kn in (1.7) in such a way that

j qJix9T)dx=ί9

o
and define the numbers

00

Mn= \xqn{x,T)dx. (1.8)
0

Now we formulate the following

Theorem 1. There are some thresholds To>0 and to>0 such that ίfO<T<T0 and

0<t<to then the limit M= lim M n >0 exists, and M2= ° —- +0(1) with

2
ao= -^ and ax = ao +1. Moreover, the following relation holds: Put

2-/2

M=\/—M, (1.9)
V «i

consider an arbitrary sequence of real numbers hn, n = 0,1,2,... swc/z
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2M
with some oo>D> -=. Then the measures μj[" tend to a probability measure

2-1/2
μ = μ(t, T) on (Rp)z. More precisely, for allkT^O the measures μfcn, the projections of
the measures μh

n to (Rp)2k, converge to the projection of μ to the first 2k coordinates in
variational metric as n-»oo. The measure μ does not depend on the choice of
sequences hn.

The main result of this paper is the following

Theorem 2. Let σ = {σ(ή) = (σ{1\ή),...,σ{p)(n))eRp,neZ}beaμ distributed random
field with the distribution μ defined in Theorem ί. Then the finite dimensional
distributions of the random fields Rnσ defined in (1.3), (1.4), (1.5) tend, with the choice
An = 2n/2]/n and Bn = 23n/*, to those of a Gaussian random field Y=(Y(n)
= (Y(i)(n%..., Yip\n))eRp, neZ). For all fc^O the density function hk(x1,...,x2k),
xj = (xγ\...,x(f))eRp of the random vector (7(1),..., 7(2*)) is given by the formula

hk(xl9...,x2k)

It follows from the result in Appendix E of [2] that the measure constructed in
Theorem 1 is an equilibrium state. We restricted ourselves to the construction of
equilibrium states for low temperatures where we are interested in their large-scale
limit. The proofs of Theorems 1 and 2 are based, similar to the papers [1] and [2],
on two analytic problems, where the action of an integral operator must be
investigated. We formulate these problems in the next section.

2. The Basic Steps of the Proof

In this section we discuss two analytical problems which play a central role in the
proof of Theorems 1 and 2. The first one is connected with the asymptotic
behaviour of the density function pn(x) of the average of a μn distributed vector
defined after formula (1.6). It is proved (see e.g. Appendix A in [2]) that pn(x)
satisfies the recursive relation

Pn+i(x) = Cn(T) jexp | ^ (x 2 -ι/ 2 )J pn{x-u)pn(x + u)du (2.1)

with the starting function po(x) defined in formula (1.2). For us it is more
convenient to work with the functions qn(x) defined in (1.7) instead of the functions
pn(x). Simple calculation shows that relations (2.1) and (1.7) imply the recursive
relations

In +i(x) = Knί exp {- 2nl2u2}qn{x - u)qn(x + u)du (2.2)

with the starting function

qo(x) = qo(x, T,t) = K0 exp | ^ = ^ x2 - ^ | x | 4 | , (2.2')
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2
where a0 = —, ax = a0 + i9 and Kn is an appropriate norming constant. (The

numbers a0 and aγ will denote these numbers in the whole paper.)
In Theorem A formulated below we describe the asymptotic behaviour of the

function qn(x). We recall that we have introduced the functions qn(z) = qn(z, T\
zeR1 in Sect. 1, and they satisfy the relation qn(x, T) = qn{\x\, T).

Theorem A. There are some thresholds t0 and To such that for 0<t<t0 and
0<T<Tothe functions qn{x) defined by formulas (2.2) and (2.2') satisfy the following
relations:

There are some M = M(T)t)>0 and no = no(T,t)>0 such that for n>n0,

2-»'2\frqn(x, T) = 2-"2yϋqJi\x\, T)

/Ϊ { 2"+ 1M 2 )
exp - 1—^- (\X\-MA +rn(x) (2.3)

( n )

with κ

\ΦM-7= (2-3')

and

M2-
tT2

with some K>0. Also the estimate

(2.4)

r- ί 2n/2U )
2~n/2]/nqn(x,T)SKQxp < -~^\x-M\\ for all x>0 (2.5)

holds with some K>0 and μ>0 depending on T and t.

For \x — M\^>2~nl2lγn we need a better bound on qn(x, T) than that given in
(2.5). This is given in the following

Proposition A. Under the conditions of Theorem A

2n J
β — (x — M) > for x>M (2.6)

n J

with some β>0 and K>0 depending on t and T.
IfO<x<M then for allε>0 there are some thresholds to = ίo(ε), To = T0(ε) and a

realnumber rn,C1n2~n/2<M-rn<C2n2~nl2 with C2>C1>0such that if 0<t<to

and <T<T0 then

2-n/2\/nqn(x,T)^Kexv<-βj{x-M)2\ for rn<x<M (2.7)

and

for 0<x<rn. (2.70
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I With some extra-work it can be shown that the number rn can be chosen in the

form rn = M — Cn2~n/2 with some C > 0 . We do not prove it, because the slightly
weaker statement formulated above is sufficient for our purposes. Also the
dependence of the thresholds ί0 and To on ε can be dropped with the help of some
additional investigation. We do not do it, because we do not need Proposition A
with very small ε. What we need is that it holds with some ε > 0 such that

^ u l

Now we formulate the second problem we are interested in. Given some
integers O^n^iV and positive real number h>0 consider the measure μh

N with
density function ph

N(xu ..., X2N) defined in (1.6) (we replace the number n by N in it),
and define its projection μjj N to the first 2" coordinates xl9..., x2n. We want to give

duh

a good asymptotic formula for the Radon-Nikodym derivative n'N (xl9..., x2n),

where μn is μjj with h = 0. It can be expressed explicitly by the following recursive
integral formula: (See e.g. AppendixC in [2].)

Formula for the Radon-Nikodym Derivative

*&L(xl9...9x2H) = f*N(2-* Σ xX nZN, (2.8)

flN(x) = K(N, h)exp {—ψ-) > (2.9)

/ Λ y x) = K^ N9 h)Snfn\ UN(x), (2.10)

with

Snf(x)= i exp ( ξ p xy) / ( ^ ) pπ(y)dy, (2.10')

where K(n, JV, /ί) are appropriate norming factors and pn(x) is the density function of
a μn distributed random vector.

In Theorem B formulated below we give an asymptotic formula for the
function /π%(x) if h = hN satisfies the relation

f ) s ^ D α
2-J/2 \]/2j \|/2

2M
with some oo>D> —. To formulate it we introduce the sequences gM, Am

n = ί,29...,N defined by the recursive relations

M = ^ , (2-12)

+ ~M for n<N, (2.12')
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AN = AN(N,hN) = 0, (2.13)

An+Λ2

'- for n<N, (2.13')

where M is defined in (1.9), and M and T are the same as in Theorem A.
For the sake of simpler notations let us restrict ourselves to the case RP = R2.

Let us define the domains

(2.14)

Ω2 = {xeR2\\x\-M\<2-°-2n}\Ω1

n, (2.14')

Ωl = {xeR2,\\x\-M\^2'° 2n}. (2.14")

Clearly Ω^uΩ2uΩl = R2. Now we formulate the following

Theorem B. For all q, 2~0Λ <q<\, there is some no = no(T,M,D,q) such that if
(2.11) holds, and N^.n^.n0 then the Radon-Nikodym derivative /„(%) =/ίjv(x)
defined by formulas (2.9H2.10') satisfies the following relations:

a) In the domain Ωl

with
sup \εn{x)\^q\
xeΩ1

b) In the domain Ω2

0^/n(x)^Lnexp \gn{\x\-M)- (^ -An) 2-°Λn + qn\. (2.16)

c) In the domain Ωl

\^{\xf-M2)\, (2.17)

where the numbers An and gn are defined in (2.12)—(2.13'), and Ln = Ln(N,hN) is an
appropriate norming constant.

We also need the following result which describes the asymptotic behaviour of
the sequences gn and An defined by (2.12)—(2.13').

Proposition B. Let us choose some integer N and real number hN > 0. Define the
sequences gn and An, O^n^N, by formulas (2.12)-(2.13') and put gn = 2~n/2gm

An = 2~n/2An. If hN satisfies relation (2.11) then gN^gN-!^... ^go^g and

0 = AN^AN_l^...^Ao'^A with g= ^τ^r> and Ά= ^———. // the relations
2-J/2 T T

N>N0 and N>nB also hold with some appropriate No = N0(M, T, D) and
B = B(M,T,D) then |g π -g |<4~" and \An-A\<4~n.
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The above results enable us to carry out a limiting procedure analogous to that
in Sects. 6 and 7 in Part II of [2], which leads to the proof of Theorems 1 and 2. The
main step of this limiting procedure is to give a good estimate for the expression

Pn ( 2 - - ^Σ *;) LhNN ( 2 - ^Σ xj) (2.18)

Since we can express the function pn(x) through qn(x) Theorems A and B
together with Proposition B enable us to give a good asymptotic formula for this
expression in a typical domain around the point (M,0)ejR2. Then Theorem B
together with Proposition A guarantee that the region outside this typical domain
has a negligible effect.

3. On Theorem A. The Method of the Proof

The proof both of Theorem A and B is based on the ideas of [2]. Most proofs can
be carried out in almost the same way, only the number c must be replaced by
|/2. The proofs of such parts will be omitted, we only refer to the corresponding
result in [2]. From now on the letters C, Cl9 K etc. will denote absolute
constants. The same letter in different formulas may denote different constants if
it is not stated otherwise.

Let us introduce, similarly to Part I in [2], the numbers Mn defined in (1.8) and
the functions

fn(x) = Mx, T) = 2-^2qn(Mn + 2-n'2x, T), (3.1)

where the function qn(x) was defined after formula (1.7). We shall deduce
Theorem A from the following

Theorem A'. Under the conditions of Theorem A the limit lim Mn = M>0 exists,
and

with some \R(T, ί)| <const. Moreover, there is some n0=no(t, T) such that for n>n0

l2 (3.3)T 7 7 2

AM

with some K>0. The function /„ satisfies the relations

2M { 2M

nπ

and

KM

<— for x>-2n/2Mn (3.4)
n

for n>n0 with some μ > 0 and K>0.

for x>-2n'2Mn (3.5)
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To prove Theorem A' let us introduce, similarly to [2], the operator Qπ?Aί,

<W(*)=f«p{-2- '2«2-t;2}

" / V - M))

(3.6)

its standardization defined by the formula

<W(*)= $-"«X + mJ (3.7)
ί Q»,«/(x)Λc

_ 2 (n+l)/2 M

with *
ί *Qn,Mf(x)dx

mn=^^^ (3.7)

ί <W(*)dx
_ 2 (n+l)/2 M

together with their approximations T M and T M given by the formulas

TM/W- I.-/ ( ^ +»+ £ ) / ( ^ -«+ ̂ ) A* (3.8)

and

The same calculation as that in (2.20) of [2] yields that the Fourier transforms
of the operators T M and T M defined by the formulas T M / = ( T M / ) ~ and
T M 7=(T M /)~ satisfy the relation

r <39)

|/2M
and

The relation

(/n + 1(x),Mπ + 1) = (Qn,MJπ(x),Mπ + 2-<"+1«2mn) (3.10)

holds with the starting pair (fo(x), Mo) defined by the relations

M o = J xqo(x)dx fo(x) = qo(x-Mo), (3.10')
0

where the function ^0(x) was defined after formula (1.7) (with n = 0).



52 P. M. Bleher and P. Major

We have

Qw /W = T f(x) + ε (x), (3-11)

where εn(x) is a small error term. We get a heuristic explanation of Theorem A' by
investigating the expression Ύn

Mf(x) for large n with a function f(x) satisfying the
relations $f(x)dx = l and $xf(x)dx = 0. Put

k

MJ(ξ) = Σ djξ
k

2J = 2
jΛξ

k.

It follows from (3.9) that

h 2j{]/2Mf

lim d, n=
h

for j £ 3 ,

Hence

and

The above relations imply that

Since/Λ(x) behaves similarly to Ύn

Mf0(x), the above calculation suggests that

]/nfn(]/nx) is asymptotically Gaussian with variance -—j- We justify this heuristic

argument similarly to the method of [2]. First we show that if t and T are
sufficiently small then for all not too large n fn(x) is asymptotically normal with

variance σ = 2(ao-T)
. More precisely, we prove the following

Proposition 1. For all positive integers N ̂  1 there are some thresholds tQ and To

such that if 0<T<To and 0<t<to then for all n^N

-£j [/«(*)-#*,*)]
B{n) Λ Y « ( r)(n+2)/2ι ̂ .Π

exp( —z |x|)

t/ |x |<logM n , j = 0,l,2,

1^1 Λ*)
{

<B(n)exp < 2"/2 2x +
Mn

and

if x>-2-"/ 2Mπ,7 = 0,l,2,

(3.12)

(3.13)

(3.14)
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where Ml = — — ^ , σ2 = ——-—-, φ(x, σ) denotes the normal density function
Tt 2(a0 — T)

with expectation zero and variance σ, and B(n) is some appropriate multiplying factor
depending on n, but not on t and T.

If t0 and To are sufficiently small then M o is very large, therefore (3.14) states
that for fixed n (depending on t and T) Mn is very close to M o . Then (3.12) gives a
good Gaussian approximation of fn(x) and (3.13) a good bound on its tail
behaviour.

The proof of Proposition 1 is based on the observation that M o almost agrees
with the positive maximum M o of the function qo(x\ fo(x) is almost Gaussian, and
we commit a small error by substituting the operator Q π M for small n by the
operator Tn,

fjn(x) = C J exp {- v2 -2~ni2u2}fn{x + u)fn(x - u)dudv

Since the proof is almost the same as the proof of the corresponding result for

1 < c < ]/l given in Sect. 4 of Part I in [2] we omit it. By the same reason we omit the

proof of its Corollary formulated below. To formulate this result first we have to

introduce the following notion:

Definition of the Regularization of a Function. Let us choose some fixed function
φixjeC^iR1) such that 1 ̂ φ ( x ) ^ 0 for allxeR1, φ(x)=ί for \x\ < 1, and φ(x) = 0

for |x |^2. Put φn(x) = φ[γ^:2~n/2x\. Given some function f(x\ /(x)^0,

\f(x)dx<oo we define its n-th regularization φn(f) as φn(f)(x)

= -r Ψni* + Bn)f(x + Bn) with An = f φn(x)f{x)dx and Bn = —- J xφn(x)f(x)dx, pro-

vided that the above formula is meaningful, i.e. Λn>0.

Now we formulate the following

Corollary of Proposition 1. Under the conditions of Proposition ί we have for all

s2

far \s\<2,

for x> ~2"'2MnJ = 0,1,2.

1 + 2 0 0
and

~fn(x)

Let us fix some positive integer JV, and define the sequences αn5 βn, n = N,
iV+1,..., as

( 3 1 5 )

10" 1 2

for n^N (3.15')
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and

where Mn is defined in (1.8).
Now we define the following Properties I(ή) and J(n).

Property I(n). Let n^N. The function f(x) satisfies Property I(ή) (with the starting
index N and parameter C) if

P. M. Bleher and P. Major

(3.16)

for n^N, (3.16r)

<
1

YF.
2x + for x>-2"l2Mn,j = O,ί,

with the above defined sequence βn and the number Mn defined in (1.8).

Property /(«). Let n^N. The function f{x) satisfies Property J{n) (with starting
index N) if

eX*jβfJ for
with the above defined sequences ocn and βn.

Now we formulate

Proposition 2. The multiplying factor C and the starting index N can be chosen in
Properties I(ή) and J(ή) in such a way that under the additional conditions Mn > K
with some universal constant K, \Mn — Mn_1\<\, 100n>jβn>max(9M~2,4~"),
Properties I{ή) and J(n) for the function fn(x) imply Properties I(n +1) and J(n +1)
for the function fn + 1(x) (with the same parameters N and C). Also the following
relations hold true:

dJ

with

7/« + iW-TM nφM(/w)(x)

1

(3.17)

C
<

= aU+D/2
Pn+l

9-ιt/2

and

dj
CVC

2 2\x\

(3.18)

, x e I * 1 , ; = 0,1,2,3,4 (3.19)

with some absolute constant Cv As a consequence, if 0 < T< To andO<t<t0 with
some sufficiently small t0 > 0 and To > 0 then Properties I(n) and J(n) hold for the
functions fn(x) with some appropriate parameters C and N, and these functions
satisfy relations (3.17)—(3.19). Also the relation βn<100n holds.
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Proposition 2 is proved similarly to the analogous result for 1 < c < j/2 in
Sects. 5 and 6 in Part I of [2], only the number c must be replaced by j/2
everywhere. The expressions Qn,M/(x), ΎMφn(f)(x), and Q ^ M / M - T ^ / ) can
be bounded with the help of Property I(n\ as it is formulated in Proposition 3 and
proved in Sect. 5 in Part I of [2]. This enables us to reduce the problem to the
investigation of ΎMnφn(fn) (x), which can be done with the help of Property J(ri) and
formula (3.9').

The only difference between the cases 1 < c < j/2 and c = j/2 is that for c = j/2
the condition β<100 must be replaced by the condition β<100n when the
operator Qn M is investigated. This is so, because we apply our estimates with
β = βn, and the sequence βn defined in (3.16), (3.16') is of order const n. (In the case
1 < c < j/2 it was bounded by a constant.) Nevertheless, this difference causes no
problem and the estimate β<iθθn is sufficient for our purposes.

Proposition 2 enables us to bound the error term εn{x) in (3.11) when the
operator Qw,Mn *

s applied for fn(x). With the help of this estimate we can turn the
heuristic argument after formula (3.11) into a rigorous proof.

4. The Proof of Theorem A

We prove Theorem A by estimating the Fourier transforms φn(fn) (t). Let us fix
some constants N and C in such a way that Propositions 1 and 2 hold with this
choice of the parameters. Let us introduce the functions ψn(t) = \ogφn(fn) (t) and the

d2

numbers βn=-—ψn(ή
dt2 , provided that these quantities are well-defined, i.e.

we can take logarithm in these expressions. We shall prove the following

Lemma 1. // 0 < t < t 0 , 0< T< To with some sufficiently small to>0 and To>0 then

a ) ai N, (4.1)
A«o-- .

βn+i=Pn+^2+δ(n), |φ)|^2""/4 for n^N. (4.2)

/ n \ 1 / 3

b) For \t\< I — I and n^N ψn{t) is well-defined, and
\rn/

d3

for \t\^(j) and n^N. (4.3)
dt3

Proof of Lemma ί. Because of Proposition 1 φN(fN) (t) is very close to the Fourier

transform of the normal density function φ(χ9 σ) with σ2 = ——-—-, and the
2(ao-T)

analogous result also holds for its derivatives. This implies (4.2) and (4.3) for n = N,
since if φN(fN){t) were exactly normal then we would have βN= ——-—- and
Λ3 2(ao-T)

j ) = 0. We prove (4.2) and (4.3) in the general case by induction from n to

n + 1.
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Let us introduce the operator TM by the formula Twι/;(ί) = logTMnexpί/;(ί). It
follows from (3.9') that

4Ml+βn>

and

| r
j/ϊr.

16Mn

3 ( 1 +
l/2Mπ,

(4.4)

(4.4')

Since Mn is very large, (4.4') together with our inductive hypothesis imply that

= M3 + i / 2 Z

n + lV' 3

P W "
(4.5)

Because of the identities TMφn(0)= — TnxpN(t)

that

= 0 it follows from (4.4) and (4.5)

where 91 denotes real part. (Observe that 1 <βn<n/ί0.) This relation implies that

for Itl^(^-i) . (4.6)

We get similarly, by expressing the derivatives oftMnφn(fn) (t) through ψn(t) and its
derivatives, that

dj

for , 7 = 1,2,3. (4.6')

On the other hand, some calculation with the help of (3.18) yields that

#" dJ *.

for \t\eR1 and ; = 0,l,2,3. (4.7)

J3 ^3

By expressing—ytpn+ x(ί) and—γΎnψn(t) by the corresponding Fourier transforms

we get that relations (4.6), (4.6'), and (4.7) imply that

U . (t)-—ΐ (t)<— 2"w / 4

dt3 n+1 dt3 n n = 100



Large-Scale Limit of Dyson's Model 57

The last relation together with (4.5) imply (4.3) for n +1.
It can be proved similarly that

t = 0

which together with (4.4) imply (4.2) for n-f 1. Lemma 1 is proved.

Proof of Theorem A'. It follows from Lemma A that

with | J ? n ( ί ) | < ^ + 2

1/3

Hence

ί e-itx[e~β"* -φn(fn)(t)]dt

On the other hand

~"14 I —

J 2 it
2 rn

and by Property J(ri) and the relation an> 10 14j?n

J β I

Relations (4.8), (4.8'), and (4.8") imply that

<?„(/„) (x) - -i== exp •! - i -

(4.8)

(4.8')

(4.8")

(4.9)

In relation (4.9) φn(f)(x) can be replaced by fn(x), since for |x| <2" / 2 they are very
close to each other by (3.8), and for |x| > 2"/2 both terms at the left-hand side of (4.9)
are negligibly small. (The norming constants An and Bn appearing in the
regularization are almost 0 and 1.)

Hence (4.9) implies that

/„(*)-
1

for n>iV. (4.10)
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Since
4M: <10, hence

exp< -
2M2

. const (4.10')

For large n the term •=- can be replaced by in (4.10), hence (4.10) and (4.10')
Pn n

imply (3.4). Relation (3.5) holds because of Property I(n\ and relations (3.2) and
(3.3) can be deduced from Proposition 2 in the same way as the analogous result in
[2] in Lemma 10 of Part I. Theorem A' is proved.

Proof of Theorem A. By Theorem A' and (3.1)

-
ί

rn(x) (4.11)

with

We have to check that an error of order 01 -= I is committed if Mn is replaced by
M in (4.11). We have ψ " /

exp<-

s e x p < -

(x-M)2}-Qxp<-

-{x-Mf
2n

M2\(x-M)2-{x-Mn)
2

{
\M-Mn\ {2\x - M\ + 2|Af - Mn\) exp < -

2(x-M):

K

since \M~Mn\<CM~12~n/2. This estimate together with (4.11) imply (2.3). The
remaining statements of Theorem A also follow from Theorem A'.

Theorem A gives a good Gaussian approximation only for large n. On the
other hand, the error term in (4.10) is small for all n ̂  N. Beside this, Proposition 1
yields a good Gaussian approximation for all n ̂  N if Mo is very large. These
observations imply the following

Corollary of Theorem A'. Define the sequence βn by (4.1) and (4.2) for n^N and
βn — PN for n^N. For all δ>0 some positive integer N and thresholds to>0 and
To > 0 can be chosen in such a way that

1
^v\-w*

<δ foralln^OandxeR1 (4.12)
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if 0<t<to and 0 < T<T o . As a consequence, for arbitrary L > 0 the inequality

- ^ x 2 J for \x\<Lγ%, n = 0,1,2,... (4.13)

holds with the sequence

ί» = 1 0 + ] ^ ϊ 7 2 for O^n^N, (4.14)

Λ " Mx 1 /or n^iV, (4.14')

if the conditions (4.12) hold with a sufficiently small δ = δ(L).

5. The Proof of Proposition A

First we prove formula (2.6). Choose an appropriately small ε > 0 and a large
L = L(ε)>0. We are going to show that if 0 < ί < ί o and 0 < T < T o with some
ί0 = ίo(ε, L), and To = T0(ε, L) then

fn(x)^—exp\--jx2> for \x\<L\/% n = 0,1,2,..., (5.1)

and
for |x|>L|/K, n = 0,l,2,.... (5.1')

Since lim — = ——-j, relations (5.1) and (5.Γ) imply (2.6). Because of the
n-*oo n o M

corollary of Theorem A' we may assume that relation (5.1) and relation (5.Γ) for
L]/Kι < \χ\ < 3L]/%i hold. It is enough to apply this corollary for 3L, and to choose

' L2) εL in such a way that exp < — — > < —. Moreover, it can be seen from the form of

fo(x) that for n = 0 (5.Γ) holds for all x>L\/ίβ0. Hence it is enough to prove (5.Γ) for

x > 2Lyrβn by induction from n to n + 1 . We shall do it with the help of the following

Lemma 2. // ε > 0 and L > L(ε) > 0 are appropriately chosen (in dependence of the
number C appearing in the conditions of this lemma), n is some non-negative integer,
M>K>0 with an appropriate K>0 and

} for \x\<L]/β, (5.2))^^Lexp{4
yβ iP

) ^ - ^ e x p j - ^ x 2 j for |x|>L|/J8, (5.2')

-j= forallxeR1, (52")
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then

F3/2 i l l r-

g expj-— x2j for x>2L]/β.

Proof of Lemma 2. The proof applies the same ideas as that of Lemma 19 in Part I
of [2]. Let us introduce the functions

β

(X-J/2U)2

— ^
1/2 *"" '

+ 2 T $ l A

/±M(x, u, v) = 2nl

P(x, u) = f exp {- v2}f{lt M(x, K, *;)

and

P(x) = P(x,0). (5.30

Then oo

Qn,MΆx) = 2 ί exp{-2-nf2u2}P(x,u)du, (5.4)
0

and by the Schwarz inequality

P(x, u) ̂  [P(x + ]/2u)P(x - ]/2u)]1/2. (5.5)

Let us estimate P(x). It follows from (5.2)-(5.2") and the inequality /*M(x,0,r)
^ / ^ ( x , 0,0) that

for X > ] / 2 7 L , (5.6)

for \x\<]/ϊβL, (5.6')

P(3c)£^-]p for all xei?1. (5.6")
P

These estimates together with (5.4) and (5.5) imply that for x ΞΞ 2L]/β

if L = L(ε) is sufficiently large. Lemma 2 is proved.
Let us apply Lemma 2 with f(x)=fn(x\ β = 2βn and M = Mn. Since
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with some Ci > 0 hence in order to carry out our inductive procedure it is enough
to show that

This can be deduced from the inequality

βn+1(x + mn)
2 + Kβnβn+1^βnx

2 (5.7)

with sufficiently large K > 0 if ε > 0 is chosen sufficiently small. Since \mn\ < CM~ *

fovn^N, \mn\ <-^rr + C12~n/2 for n>N and βn> 10 one gets formula (5.7) with the
2M

help of simple calculation from (4.13) and (4.13').
The proof of formulas (2.7) and (2.7') is based on the following

Lemma 3. Let the function f(x) satisfy the conditions of Lemma 2. Let some numbers
r > 0, β > 0, and a>0be given in such a way that r>β>10,β< γόMn and J^Q < α < 1
— ε1/8. Let us assume that the function f(x) satisfies, beside the conditions of
Lemma 2, the estimates

- ^ x 2 j for -r<x<-L]/β, (5.8)

4 = e x p { Λ ' « 2

for -2-"l2M<x<-r. (5.8')

Put dt = min((l+ε)α, 1 - ε 1 / 8 ) , δ = (l +e 1 / 8)ά and

If r<]/2r then

Q 5 f M / ( x ) ^ — e x p j - — x 2 j for -r<x<-2L]fβ9 (5.9)

2 r Λ

^—expj-

for -2{n + ί)f2M<x< -r. (5.9')

The proof of Lemma 3 is similar to that of Lemma 2. The main difference is that
in Lemma 2, i.e. when x > 0, the main contribution to the integral QΠ,M/(X) i s given
in a small neighbourhood of the point (u,v) = (0,0). For x<0 this statement
remains valid only for x > — r. For x < — r the main contribution to this integral is
given in a small neighbourhood of the points

(u,υ) = (0, ±v*) with ι;*2 = 2 n / 2 {(M-2- ( n + 1 ) / 2 f ) 2 -(M + 2- ( n + 1 )x) 2}.
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Proof of Lemma 3. Define the function

iJLexpj-i^J for \x\<-]/ϊβL

K(x)=
y β

exp ] - — x2> for x>L\β or -r<x<-]/ΐβL

for -2n/2M<x<-r.

Some calculation shows that for fixed x the function

K(x, v) = exp { - oίv2}K2(l±M(x, 0, v))

takes its maximum in the point v = 0 for x > — —τ= and in the points + v* satisfying

the equation /ί M(x, 0, v*) = -τ= for x < —. ( At this point we need the condi-
1/2 j/2 V

tion r<]/2r which guarantees that the estimate (5.8) holds in the point —=.
1/2.

The function P(x) defined in formula (5.3) can be estimated in the following way:

P{x) S j exp {- ε11 sυ2}K{x9 v)dv ̂  ε " 1 / 4 | / π sup K{x, v).
V

Hence we obtain that

l l
-2β x\ for - ( 5 1 0 )

ε 7 / 4 π
^ e x p ^ ^

for - 2 ( M + 1 ) / 2 M < x < r . (5.10')

We estimate the integral in (5.4) with the help of (5.5), (5.6), (5.6'), (5.10), and (5.10').

Let us first consider the case — 2(n+1)/2M<x< —r and integrate in the domain

{u>0, x + γlu< —f}. This integral can be estimated in the following way:

p7/4l/π

{u>0,x
exp{-2-n / 2(l-α)M2}dw. (5.11)

}

We give an upper bound on the right-hand side of (5.11) by replacing α with ά in it
and multiplying the expression by exp{ — (α — ά)|r + x|}. The integral in this
expression can be estimated by the rather rough bound \r + x\. These estimates



Large-Scale Limit of Dyson's Model 63

show that the right-hand side of (5.11) is much less than the expression at the right-

hand side of (5.9'). To estimate the integral $P(x,u)du in the case — 2{n+1)l2M<x

< — r in the domain {x + ]/2w > — f} observe that some calculation yields that

2/5

| ^ ^ + 2 ) / 2 ) 2 j (5.12)

because of the definition of r.
Because of this identity the estimates (5.10) and (5.10') enable us to estimate the

integral J P(x, u)du in this case similarly to the estimation of (5.11), only in this case
the last term in (5.12) helps us to bound the pre-exponential term. Similar
calculations enable us to bound the integral (5.4) for x> — r and to deduce the
estimates (5.9) and (5.9'). Lemma 3 is proved.

Formulas (5.8) and (5.8') hold for f(x)=fo(x) with j3 = 2/?0 = 20, α=χ£o,
M = M0, and r = \/2ocβM. If the conditions of Lemma 3 are satisfied for fn(x)
with M = Mn, β = 2βn and some an and rn, then Lemma 3 gives an estimate
on Qn,Mnfn(x) An argument similar to that given after Lemma 2 gives an estimate
when the operator Qπ,M n is replaced by QM?Mn. In such a way we get by induction
the estimates (5.8) and (5.8') for fn(x) with β = 2βn, an increasing sequence αΛ which

tends to 1 — ε 1 / 8 and a number rn which is a small perturbation of the expression
β

given in (5.8"). Since — has a positive limit n-»oo, the number r = rn which
n

appears in the estimates (5.8) and (5.8') for fn(x) during this induction has the
order m By rewriting these estimates for qn(x) with the help of (3.1) we obtain the
estimates (2.7) and (2.7') (with β1 / 8 instead of β).

6. The Proof of Theorem B

The proof of Proposition B is the same as that of Lemma 1 in Part II of [2], hence
we omit it. The proof of Theorem B is also very similar to the method of Part II in
[2], only the number c must be replaced by ]/2 and M by the constant M defined in
(1.9) everywhere. The main difference is that now we have a weaker control about
the tail behaviour of the density function of the average spin pn(x). As a
consequence, we can prove some estimates only in a weaker form. Nevertheless,
they are sufficient for our purposes.

Let us discuss this question in more detail. Introduce the functions pn(x) and
gJixlxeR1 as f .

pJtx) = Kn exp 1 ^ - 2«/2M2 j pn(x), x = (x, 0) e R2, (6.1)

gn(x) = 2-^2pn(M + 2-n'2x), (6.2)

where pn(x) is defined after formula (1.6), the number M in (1.9), and Kn is the same
norming constant as in (1.7). By formula (1.7)
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hence Theorem A yields that

(6.3)

with K
\RM^-J= (6-3')

\Γn
On the other hand, we get by rewriting Proposition A for gn(x) that there are

some numbers B>0, D>0 and Rn, —Cίn<Rn<—C2n with some C 1 > C 2 > 0
such that

for x>Rn, (6.4)

and

n w

for -2~nl2M<x<Rn. (6.4')

We have to choose B= ^ , #M = 2"/2l/ — ( r M - M ) , and D= I 1 - ε - — -̂ )-^ in
|_ T [/ a1 \ 2aJ T

Proposition A. We may assume that D > 0 by choosing ε in (2.7) sufficiently small.

The estimates (6.4) and (6.4') are the natural counterparts of the estimates (4.1 Γ)
and (4.11") in Part II of [2]. The function fn{x) defined by formula (4.11) of that
work is the analogue of our function gn(x).

The bound given on gn(x) decreases at infinity slower than its counterpart in [2]
because of the multiplying term 1/n in formula (6.4). Another, and even more
important difference between the two cases is that in the points x~— constn
relations (6.4) and (6.4r) give no better bound on the function gn(x) than exp{Cn}
with some positive C>0. As a consequence, in several estimates we have to
multiply the upper bound by an exponential term instead of a constant, as is the
case in [2]. But these estimates suffice for us, because in the final estimates we have
a double exponential term which compensates this effect.

Applying the same argument as in [2] we get that Theorem B follows from an
analogue of Proposition Γ in Part II of [2] which is obtained if c is replaced by j/2
and M by M in this result. For the sake of convenience we also make the following
modification. From now on we shall work with the function

Γ a )
Kn

 e x P ) ̂ r~ 2W/2M2 > pn(x) instead of the original function pn(x) and we denote it in
the same way. This modification influences only the norming constant Ln in the
Radon-Nikodym derivative.
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The proof of this modified version of Proposition Γ of [2] is very similar to the
original one. We have to estimate certain integral expressions in the domains ΩJ,,
Ϊ = 1,2,3, defined in (2.14)-(2.14"). We rewrite these integrals in a polar coordinate
system and first estimate the integrals on a circle of fixed radius r. This can be done
in the same way as in [2]. Then the integrals with respect to r can be estimated with
the help of formulas (6.4) and (6.4') instead of formulas (4.11') and (4.1 1") in [2]. We
get in such a way slightly weaker estimates than those in [2], but they suffice for
our purposes. Lemmas 2 and 3 of Part II of [2] remain valid after the replacement
of c and M by ]/2 and M in the following weaker form: In Lemma 3 the multiplying
term K and in Part a) of Lemma 2 the multiplying term cn before the exponent
must be replaced by Kn, where K is some appropriate constant depending on t and
T. Also the estimates of Sect. 5 of Part II of [2] remain valid. The only place where
the argument of the proof must be slightly changed is Part a) where S*/(x) is
estimated for xeΩ^. The argument of [2] works if we show that the expressions
Jn,ε(xi) defined by the formula

{tx(X) g )

|ί|<ε2° 3" I T V 2 j

with some sufficiently small ε>0 satisfy the following relations:

Jn^x^) = (\+0(2-°Λ»))Jnrε(M) if xeflj, (6.6)

and

Jnrε(M)>Kί>0. (6.7)

Relation (6.7) simply follows from (6.3) if we restrict the domain of integration in

(6.5) to the domain |ί| < ——Vrclogrc. [The corresponding estimate (5.11) in Part II
3 M

of [2] also contained an upper bound on Jnl{M\ but we do not need this bound.]
Then relation (6.5) follows from the following observations: The ratio of the
integrands in the expressions Jn g(x(1)) and Jn -ε(M) are closer to 1 than const2 0 0 5 π if
|ί |<2° O 5 π and x ( 1 ) eθj and therefore |x ( 1 ) -M|<2-° 2", and the contribution of
the domain | ί | > 2 0 0 5 " to these integrals is less than exρ{-const20 0 5"}. The
remaining part of the proof works with some natural modification of the proof
given in [2], hence we omit it.

7. The Proof of Theorems 1 and 2

To prove Theorem 1 first we show that for all q, 2~0Λ<q<l there are some
thresholds n0 and N0(n,q) such that if n^n0 and N^N0(n,q) then

2n

- Σ *j{Xu ...,X2n)— Jn,

aμn

with

fn%(x) = Ln exp {g2"/2(x(1) ~ M) + Λ2nl2x{2)2 + εn(x)} for x e Ω\, (7.2)
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(7.2')

for xeΩ2, (7.3)

if x>M + 2-°-2\ (7.4)

if 0 < x < M - 2 - ° 2", (7.4')

with the numbers g and A appearing in Proposition B and some appropriate
norming constant Ln which satisfies the relation

C1<2~n/4Ln<C2 with some 0 < C 1 < C 2 < o o , (7.5)

where Ln = LnKnexp<—^2n/2M2> with the same norming constant Kn as in (1.9).

In the proof of this statement we argue just as in Sect. 6 of Part II of [2].
Because of Theorem B and Proposition B the constants gn and An can be replaced
by g2"/2 and A2n/2 in (2.15)—(2.17) by slightly changing the error terms. To show
that Ln = Ln(N, hN) can be chosen independently of N and hN we observe that a
calculation analogous to that in Sect. 6 of [2] yields that

^fN(Ωn

2uΩπ

3) ί Ln(N, hN) exp {- K20-3"}, (7.6)
and for

Tn = 1 exp {g2"/2(x{1) - M) + A2"l2x™2}pn(x)dx, (7.7)

the relation
^n-:^x) = Ln{N,hN)Tn(\+O(q")), 2-°Λ<q<U (7.8)

holds. The estimate

Cί2-nl4<Knexp\^2n/2M2\τn<C22-nl* with some 0<C 1<C 2<oo.

^A > (7.9)
also holds true.

The proof of (7.9) is similar to that of (6.9) in [2], only one has to observe that g
a M

equals -^=-> i.e. — 1 times the coefficient of x in (6.3)-(6.4')? and this causes some

cancellation if we express pn(x) through gn(x) in the integral (7.7). Since μ^N(R2) = 1,
relations (7.6) and (7.8) imply that Ln can be chosen as T~1, and then (7.9) implies
(7.5). Theorem 1 can be proved with the help of this information in the following
way:

Fix some integer fc^O, and define for all n^k and measurable sets
the cylindrical set A(n) = A x{R2)2n-2kc{R2)2n. Put

f _ n / 2 2«" ( i ) _ _ _ 3 π / 2 / 2 « \2Ί

A(n) I J=1 \J=1
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with Ά(n) = A(n)n{(xu...9x2n), 2'n Σ Xj^Ωn}- W e P r o v e similarly to [2] that if
n > n0 and N > N0(n, q\ then j = *

with some K > 0 independent of the set A.
Theorem 1 can be proved with the help of the above relation similarly to [2].

Moreover, this argument also yields the following

Corollary of Theorem 1. Let μn denote the projection of the measure μ constructed

in Theorem i to (R2)2n. There is some function fn(x) such that

Let n>n0 with some threshold n0 > 0. Then relations (7.1)—(7.5) remain valid if f^N

N is
replaced by fn(x) in them.

Now we turn to the proof of Theorem 2. Let us introduce the Hamiltonian J^k

in the volume (R2)2k by the formula

Let σ = {σ(j) = {σ^), σ2(j)\j e Z} be a μ distributed vector and consider the random
vector {(^πσ(1)(}),^nσ

(2)(/)), 1^7^2fe} defined by formulas (1.3)-(1.5) with
An = 2nl2γn and Bn = 23nl4r. The argument at the beginning of Sect. 7 in Part II of
[2] also shows that the density function hnJc(xu ...,x2k) of this vector can be
expressed in the following way:

exp I - ~ Jek(2n^xu ..., 2«/ 4x 2^| _Π

with

/ 2 |Ax ( 1 ),2-" / 4x ( 2 )) for x = (x{l\x{2)). (7.10')

Let us define the sets WncR2 and WncR2 by the formulas

!i2^<|x|<M+£
oiVi oM

We claim that for all j = 1,2,..., 2k

if n ^ n 0 . (7.11)
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and
1 / 9 )

if XjeWn for all ; = 1,2, ...,2\ (7.12)

where hk(xl9 ...,x2*) is the function defined in (1.11) (with s = 2).
Relations (7.11) and (7.12) together imply Theorem 2. Relation (7.12) can be

proved with the help of the following estimates:

Ίn+1M2
M2n

if xeWn, (7.13)

since in this case we can put the O( ) term into the exponent by appropriately
decreasing the power of n in it,

—(|x |-M) 2 = - ( x ( 1 ) - M ) 2 + O(n-3/10l/ϊog^) for xeWn, (7.14)
n n

and

2"l2xW2 = 2"l2M2 + 2-2"l2M(xw-M) + O{2-'"2n\ogn) for xeWn.
(7.15)

We also have

Σ 1 Σ φjΓ3/2xί2)xf
> = 1 J = > + 1

+O(2-"/2nlogn)

if XieWn,j = ί,...,2k, (7.16)

since £ rf(ijΓ3/2 = a0(l-2~ fc/2) for all l^ i^2*, and

in this case.

Because of the corollary of Theorem 1 and the relation g =
T '

f Σ x f Y ) + O ( ^ ) | if XjeWnJ = i,...,2k. (7.17)
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Relation (7.12) follows from (7.10), (7.13), (7.16), and (7.17). Relation (7.11) can be
proved in the same way as it is done in Sect. 7 of Part II of [2], only the relations
| | x | -M|<c-° 4 π and | x ( 2 ) | < c " 0 4 5 " must be replaced by

and |x<2) |<2-"/4n1/5 and |x ( 2 ) |<2-" / 4n 1 / 5

in the definition of the set &„. We get a weaker bound in (7.11) than the
corresponding estimate in [2], but it is sufficient for our purposes. Theorem 2 is
proved.
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