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Abstract. We investigate the hydrodynamic behaviour of a one-dimensional
Ginzburg-Landau model with conservation law in the presence of random
conductivities. It is found that there is no interference between nonlinearity and
randomness the conductivities average out in the same way as they do in the
case of the underlying random walk in the given medium. This means that we
have an effective conductivity specified as the harmonic mean of microscopic
conductivities. Some extensions including multidimensional systems in a small
electric field are also discussed.

1. Introduction

The idea that it might be possible to derive the macroscopic laws of hydrodynamics
from microscopic principles by mathematical methods goes back to Morrey [1 1 ]. A
general reformulation of the problem in terms of infinite systems and Gibbs states
was presented by Dobrushin [3] , see [1 , 2, 4, 1 3] for the first results concerning some
more or less explicitly solved models. General methods are available for stochastic
models only, all tractable systems are at least subordinated to a reversible model, see
[6-9] and [5, 10]. The main purpose of this paper is to investigate such models where
the deterministic part of the microscopic current is not the gradient of a potential. In
the case of random conductivities even a formal identification of the limiting
equation is somewhat problematic. As in our previous papers, we apply some basic
tools of the theory of parabolic equations. A different, very effective approach was
proposed simultaneously by Varadhan [17].

Let us consider a one-dimensional lattice system of continuous spins ωk e IR,
keZ. The evolution is defined by

(1.1)
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where V: R->1R is a convex potential, wk, k e 7L is a family of independent standard
Wiener processes, and ck, keΈ is a fixed set of positive numbers. In the physical
picture, see [6] for further references, V is a chemical potential, thus ck should be
interpreted as the conductivity between sites k and k + 1. In the present, one-
dimensional case ck may be very arbitrary, we only need a law of large numbers for
ί/ck9 the resistance. We are interested in the limiting behaviour of the rescaled
density field Sε(φ,σε) as ε->0,

ωε(x)=ω[x/ε](t/ε2) , σε = ωε

0 , (1.2)

where [u] denotes the integer part of u e R. This problem can be exposed as follows.
Let cε(x) = c[x/φ wε

t(x) = εw[x/ε](ί/ε2), and introduce a difference operator, Vε, andits
adjoint by

Vεφ(x)=ε~ί[φ(x + ε)-φ(x)] , V*φ(x)=ε~1[φ(x-ε)-φ(x)] , then

Sε = dMε-^(Vεφ(x))cε(x)VεV
f(ωε

t(x))dxdt ,

The martingale part M ε vanishes as ε->0, but there is an interplay between this
vanishing randomness and the growing singularity of the drift part. As a
consequence, V'{af) converges only in a weak 1L2 sense; this is a characteristic
feature of all hydrodynamic limit problems. On the other hand, cε is assumed to be a
rapidly oscillating function, thus we have to evaluate a product of weakly
convergent functions, cε and Vε V'(ωε) both converge in an H " 1 topology. In such
situations it is not really surprising that the limit of the product shall not coincide
with the product of limits. We shall show that the behaviour of this product is
essentially the same as in the trivial case of V'(x) = x, when the problem reduces to
the central limit theorem for the related random walk in medium c. More exactly, if
PciβJΛ) denotes the transition probability of the random walk with generator
1L= —(1/2) Vfc Vl9 and ρk is the mean value of ωk given the medium, then (1.1)
implies ρk(t) = Σρj(O)pc(t,j,k). Therefore the diffusive scaling (1.2) results in a
limiting equation dρ/dt = (c/2) d2 ρ/dx2, where c is the effective diffusion constant of
the random walk. For example, if ck is an ergodic sequence, then c is just the
harmonic mean of c, that is l/c = <l/cfc>. This simply means that the resistance, the
additive quantity averages out in a direct way. The general case happens to be quite
similar, an equivalent hydrodynamic behaviour is obtained by replacing ck by the
effective conductivity, c above. A more convincing explanation of this situation is
presented at the end of the next section.

2. Formulation of the Problem and Main Result

The law of large numbers we are going to prove for the rescaled field Sε can be
formulated in the most natural way in terms of a scale of weighted 1L2 spaces, 1L2,
reWL. The basic configuration space is 1L2 defined as the locally convex space



Hydrodynamics in a Symmetric Random Medium 15

where ΊLj denotes the Hubert space of locally integrable w:R-»R with norm
$ = (θ(x))r, and 0 :R-(O,1] is

determined by θ(x) = ί if | x | ^ l , θ'(x)/θ(x)= -sign x if | x | ^ 3 , and θ'(x)/θ(x)
= — (x —sign x)/2 if 1 ̂ | J C | ^ 3 . 0r is a smooth version of e~rlxK ΊL2

e is a reflexive
space, and IL^* is its dual with respect to the usual scalar product < , >0. The
spaces of absolutely continuous u: R-»R such that w, u'eί.1, or w, u' e \}*, will be
denoted by H* and H**, respectively.

In view of (1.1)—(1.3) we consider ω\ as a Markov process in Ωε, the space of
ueJLl such that u(x) = u(ε[x/ε] ); the distribution of ωε

t is a Borel probability
concentrated od Ωε. Suppose that με, ε > 0 is a family of probability measures on 1L̂
such that με(Ωε) — 1, and observe that if φ e lL2

e*, then φ(σ) = J φ(x)σ(x)ί/x is με-a. s.
a normalized sum. We say that με satisfies the law of large numbers with asymptotic
mean ρe\?e \ΐ φ{σ)-+φ{ρ) in probability as β->0, for all φe 1L^*. If με is tight, then
this is equivalent to \g(σ)dμε-^g(ρ) whenever g : lLg->R is weakly continuous and
bounded. This motivates the role played by the weak topology of 1L̂  in the proofs.

Our conditions on the evolution are listed as follows. F : R - > R has three
continuous derivatives, V" is bounded, and we have a constant αe(0,1) such that
I V"(x) -11 ^ α for all x e R. The medium is specified for each ε > 0 by some cε e ί2ε

such that |c8(x) — l | ^ α for x e R , and there exists a continuously differentiable
c: R->[1 — α, 1 +α] such that c' is also bounded, and

lim $ φ(x)/cε(x)dx = $ φ(x)/c(x)dx for φeMl* . (2.2)

The limiting equation can be described as follows. As explained in [6,7,10], due to
some large deviation effects of the vanishing martingale part of dSf, the microscopic
chemical potential V should be replaced by its macroscopic average, Jf = Jf(m),
where m=m(t,x) is the limiting density, and /'is the derivative of

J(ρ) = sup (λρ-F(λ)) , F(λ) = log j eλx~v^dx . (2.3)
A

Independent of this nonlinear effect, the conductivity averages out just as in the
linear case, thus the equation for m becomes

where dt and dx denote differentiation with respect to t and x. Since c and / " are
both strictly positive, (2.4) is uniquely solved in the following sense, see e. g. [7]. For
each ρ e H g there exists a continuous trajectory, m(t, •) in \}e such that
m(0, •) = £?> m(t> ")eHg a.s., \m(t9 )l? is locally integrable for each r > 0 , and

dt\φ{x)m{t,x)dx= -\\ φ'{x)c{x)dxJ'{m(t,x))dx a.s. (2.5)

whenever φ e Ml. Now we are in a position to state the main result some extensions
are to be discussed at the end of the paper.

Theorem. Suppose that the initial configuration, σε converges weakly in \}e to some
ρ e H g as ε->0. Then Sf(φ, σε)->J φ(x)m(t,x)dx in probability for each
where m is the weak solution to (2.5) with initial condition ra(0, *) = ρ.



16 J. Fritz

Notice that the statement for / > 0 is slightly weaker than the initial condition.
The initial configuration need not be random, this is due to V" > 0, cf. [6,7,9,10].
This suggests that there must be a local ergodic theorem behind. The proof follows
the approach of [6,7] with some modifications, there are three basic observations.

(i) The dynamics is so smooth that time averages like

Xl{σ,g) = ] e-«g{ω\)dt , z>0 (2.6)
o

happen to be weakly continuous functions of the initial configuration σ = ωε

0 this is
due to the parabolic structure of (1.3). Let Σ c J?e be convex, and denote CW(Γ) the
space of weakly continuous and bounded maps of Σ into IR. We say that fe <CW(Σ)
has a continuous functional derivative, D/, if D / is a weakly continuous and
bounded map of Σ into JL2

e* such that

f(σ)-f(σ) = ] lδ(x)Ώf(x,σ+sδ)dxds (2.7)
o

whenever σ, σ e Σ, δ = σ — σ. It is easy to check that D / is uniquely defined, the space
of differentiable / is denoted by E>(Γ). Suppose now that ceΩε, \c(x) — l | g α ,
a(ί, ) e Ωε, \a(t, x) — 11 ̂  α for all t and x, and denote/?*,cfo * t, y) the fundamental
solution to

(2.8)

i.e. /?£ c(^, x;5, y) = \/e if [x/ε] = [y/ε], and it is 0 otherwise. Since εpε

a c

= dωε

t(y)/dωε

s(x) if c = cε and Λ(/, ^ ) = V"(ωε

t(y)\ we have DXz

ε = P^;c

εA0 with Σ = Ωε

and Aί(j;) = D^(>y,ωε), where

IPί;cβA.W = ϊ ezs-zt\plc{s,χ uy)ht(y)dydt . (2.9)
s

The range and the domain of this operator will be specified in the next section. It is
absolutely crucial that P^;ε admits some bounds that do not depend on the
smoothness of the coefficients in fact, they depend only on α. Parabolic estimates of
this kind allow us to conclude that Xε is weakly continuous, and this property is
uniform in ε > 0. Therefore, the law of large numbers applies also to Xε, but this is
not enough to reach a conclusion.

(ii) To identify the limit poits of Z ε , we have to control g(ωε) also for fixed times,
which is the same as understanding the behaviour of the time averages of <Sεg(ωε

t),
where (Dε denotes the generator associated to our Markov process, ω ε. More
exactly, if fε

z(σ) = Έ[X%(σ,g)], then we have a resolvent equation

g(σ) = zfε(σ)-(Sjεf
ε(σ) , σeΩε , z>0 , (2.10)

at least if g is a smooth cylinder function. Notice first that the resolvent equation for
the semigroup generated by (2.4) is just

; (2.11)

(2.12)
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for smooth / and σeΩε. We wanted to pass from (2.10) to (2.11). The factor ε in
(2.12) is certainly encouraging; the structural difference between (2.10) and (2.11)
immediately disappears if we introduce random initial conditions, the family of
local equilibrium distributions. For each ε > 0 and λeΩε we define a Borel
probability, μλε on \}e by postulating exp [λ(x)u - V(u)-F(λ(x))] as the Lebesgue
density, qx(u) of the distribution of σ(x); σ(x) = σ(y) if [x/ε] = [y/ε] they are
completely independent otherwise. Obviously, μλε(Ωε) = l. This family plays a
distinguished role because of the following symmetry property, see [6,7]. Let μ°v ε

denote the measure with λ(x) = v for all x e R . Integrating by parts we see that fljε is
symmetric in ]L2(μ° ε ), and

f/i<B«/2<Ke = H J ίVεJDfί(x,σ)]cε(x)VεΌf2(x,σ)dxdμo

v>ε , (2.13)

thus (2.10) can be rewritten into a weak form such that only one functional
derivative is involved. Taking the expectation of both sides of (2.10), by (2.13) we get
for all λsΩε and smooth g

,σ)dxμλ>ε(dσ) . (2.14)

Since λ is just as arbitrary as σ, (2.10) and (2.14) are equivalent. The advantage of
(2.14) consists in the fact that it is much less singular than (1.4), and the structure of
(2.14) is essentially the same as that of the limiting equation (2.11). Indeed, we have
an identity, ρε(x) = J σ(x) μλ ε(dσ) = Ff (λ(x)), while the inverse function of F' is just
/ ', i.e. λ(x) = J'(ρε(x)) revealing the structural similarity of (2.14) and (2.11). The
weak equicontinuity of D / / and that of VεΏfz

ε will be proven by means of parabolic
inequalities, thus we can pass to (2.11) as soon as we understand how cε averages
out.

(iii) In view of (ii), for each ρ e H * we must find a λeΩε in such a way that μλ ε

satisfies the law of large numbers with asymptotic mean ρ as ε->0. Perhaps the most
natural choice is λ(x) = J'(Iερ(x)), where Iερ(x) denotes the integral mean of ρ over
the interval [ε[x/ε],ε + ε[x/ε]). By means of a more sophisticated construction we
can compensate the irregularity of the medium, too. In the one-dimensional case it is
quite easy to choose λ in such a way that cεVελ be smooth. More exactly, define
λeΩε by

(2.15)

and denote μλ ε, ε > 0 the associated family of product measures. It is easy to check
that μλε satifies the law of large numbers with asymptotic mean ρ; this is the point
where (2.2) will be exploited.

Now we are in a position to outline the main steps of the proof. Since the
diffusion coefficient of (1.3) is a constant, while its drift is uniformly Lipschitz
continuous, the existence and uniqueness of strong solutions in Ωε follows by the
most standard iteration procedure, see [7] for further references. The same method
implies also (2.10), at least for functions g of type

g(σ) = h(φ1(σ)9φ2(σ),...,φn(σ)) , σeΩε , (2.16)
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where φkelL2

e* and /z:Rn->R has two continuous derivatives with compact
support. By means of the parabolic estimates of the next section we show that //,
ΊDfz

ε and VEJDfz

ε are all uniformly bounded and weakly equicontinuous on the
bounded sets of \}e. Since the bounded sets are weakly precompact in \}e, the
Arzela-Ascoli theorem allows us to select uniformly convergent subsequences. In
view of (ii) and (iii) we can now pass from (2.14) to (2.11) simultaneously for all

g. Since (2.11) is uniquely solved, we have

lim J ϊ e-«Vgg(σ)Λμλtg(dσ) = ] e'Λg(m{t9 -))dt , (2.17)
ε->0 0 0

where Ψ\g(σ) = E [g(ωε

t\ωε

0 = σ], and m satisfies (2.4) with initial condition ρ. Again
by a parabolic inequality, we show that j Ft

εg(σ)dμλεis an equicontinuous function
of t, at least for g of type (2.16) with φ k eIH**, which implies j Ψlgdμλε-+g(m(t, •))
for such g. Now the final conclusion follows by showing that Ψ\g(σ) is a weakly
equicontinuous function of σ. Unfortunatelly, we are not able to show that the
conditional distribution of ωε given ωε = σ remains tight as £->0, thus we can not
extend the statement for all weakly continuous g.

3. Parabolic Estimates

We consider the operators (2.9) in some weighted HΛspaces, JLj?(R+). Let
R+ = [0, oo) x R, r e R, 1 ̂  q < oo, then 1L Ϊ(R+) is defined as the space of locally
integrable h: R+ ->R with norm

\\r,q >

\\r,q ί (\K\r,t)
qdχ σ:R-+R. (3.1)

If q = 2 then the second subscript will be omitted: llr,2

Lemma 1. Suppose that csΩε, a(t, )eΩε, \c(x) — l | ^ α and\a(t,x)~l|^α/or all
t^>OandxsWi.Ifa<l, |rε|gl and z^Cj2 then for all AelL^(R+) we have

where Ca is a universal constant depending only on a.

Proof. Observe that us = ̂ l]εhs satisfies a backward equation,

- 3 s w + z w + | V*cVeu = h , (3.2)

thus

-zdM
whence

On the other hand, Vεu satisfies a self-adjoint equation. Since \VEθr(x)\^3\r\θr(y)
if \x—y\^ε and | r ε | ^ l , we have an "integration by parts" formula |<Fεw,v}r



Hydrodynamics in a Symmetric Random Medium 19

— <w, Fε*t>>r |^3|r| |w|r|ι>|r; thus by an easy calculation

-δAVεu,cVεu}r + 2z(\-a)\Vεu\ΪHl-*)\Vε*cVεu\2

^\2\r\\Vεu\r\Vε*cVεu\r + \2\r\\Vεu\r\h\r

+ 2\V*cVBu\M , (3.3)

whence

1 ~ " A l l 2 , (3.4)

which completes the proof by an easy calculation.

This lemma bounds DX\ and VεΈ>Xε

z, thus the weak equicontinuity of X\ will
follow by the next statement, see Lemma 6 of [7].

Lemma 2. For each boundedBczJLl, β>0, r>0 andK< + oo there exists a weak
neighborhood UofO in \?e such that \φ(δ)\<β whenever φeΩε, \φ\_r + \Vεφ\_r^K
and δ e Ur\B.

The weak equicontinuity of VJDf is more problematic. Let ά(t, y) = V"(ώε

t{y)\
where ώε denotes the solution with initial configuration σ e Ωε, δ = σ — σ. From (3.2)

while a — a vanishes in a mean sense as c)->0, thus we need

Lemma 3. Under conditions of Lemma 1 we have some qa>2 and Ca < + oo such that
| ^ l and2<*q<qa, then

h\\rf(ι for all heΊL«(K2

+) .

Proof Let Q^ = Fε* cFfiPf * and denote q\ its kernel. If c = 1 then we have an explicit
expression:

I +π

I(t,ή)=— I (1 — cosφ)^~ f(l — cosφ)cosnφdφ .
7t — π

Integrating by parts and using φ 2 /5^1 — cosφ^φ 2 /2, we obtain that \I(t,n)\
y1/2 if H + 0, | 3 t / ( ί , 0 ) | ^ C r 2 . On the other hand,

Qϊ AβW = f f ί ί (J, x ί, y)ht(y)dydt
s [y/ε] = [x/ε]

+ ε~2 J I(tε-2-sε-2,0)I&ht{x)dt .
s

The first term can be estimated directly by the Young inequality, while a basic
theorem on Hubert transforms applies in the second case, see Theorem 1 of
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Chap. 2.2 in [15]. We obtain that || Qf | |0,β < + °o for each q > 1, and the bound does
not depend on ε. Since | |Q j | | 0 = 2 by the Plancherel theorem, the Riesz-Thorin
interpolation theorem yields some qa>2 such that α | | Q ί | | 0 > β < 2 if 2^q<qa.
Therefore, choosing a = c, ά = c = l in the perturbation formula (3.5), we get
IM.IPc'ί ||o.β< + oo if ge [2, qa\ where Δε = - V* Vε= - Vε Vε*. Introduce now Kε,
the inverse of Vε in ΩεnlLg*,

KΛσ(x) = ε *Σ Iaσ(ek) , n=[x/ε] . (3.6)
k=-oo

The adjoint of Kε is defined by

K*σ(x) = ε £ Iεσ(εk) , n = [x/ε] + ί . (3.7)

Therefore, if Ω^ = ΩεnΊL2

e*, then the last bound of 4P c

z ; ί yields

||A||o>ί , (3.8)

if heΩf , 2 ^ ^ < ^ α . (3.9)

In view of (3.8)—(3.9), we wanted to bound Qε

c by means of the Stein
interpolation theorem, see Theorem 4.1 of Chap. V in [16].

(3.10)

is an analytic family of operators, thus the conditions of Stein's theorem reduce to

oo for σeΩε, qs[2,qα) . (3.11)
yeR

This problem is essentially independent of ε, ( — Δ^ can be represented as
convolution with q = q(n), neΈ, where

+ π

q(n) = (2π)-ί J (1 - cos φ)iy einφ dφ , (3.12)

that is, we are faced with a discrete version of the Hubert transform. Integrating by
parts we see that

j g(φ)h(φ) sinnφdφ , (3.13)

where h(φ) = sinφ(l —cosφ)ίy \ while g is smooth. Observe that \h(φ)\^5/\φ\,
W(φ)\ ύ 10(1 + \y\)φ " 2 , and the integrand is bounded by C \n\ on ( - π/n, π/n), thus
integrating by parts on the remainder we obtain that (1 +n2)\q(n + l) — q(n)\
^C'Xl-fl^l)3, whence we obtain a universal constant C such that

£ \q(n-m)-q(n)\£C(l+\y\)3 forallmeZ, (3.14)
neA™

where Am is the set of n e Z such that |w|^



Hydrodynamics in a Symmetric Random Medium 21

Since |(1 — cosφ)iy\^2, we have just verified the conditions of the Corollary
to Theorem 1 of Chap. 2.2 in [15], which implies \(-Aε)

iy\OtqSC(l + \y\f for all
1 < q < oo thus we have (3.11). Now we are in a position to apply Stein's theorem,
we obtain an IΛbound for R 1 / 2 . On the other hand, the kernel of (-AE)~ll2Vε

and that of its inverse, Kε( — Δε)
1/2> are explicitly calculable, and each of them

happens to be invariant under scaling. For ε = l we have convolutions with
q(n) = C(l + 2n)~1 and q(n) — C(\ — 2n)~1, thus the above remark on the discrete
Hubert transform implies the statement for a = 1 and r = 0.

Thus the proof can be completed by interpolation and perturbation. We apply
first the Riesz-Thorin theorem to get α | |Qc | | 0 , β <2 f° r s m a 1 1 a>2- τ h e n t ί i e

perturbation identity (3.5) yields the statement for general coefficients, a, but we still
have r = 0. Since (3.4) solves this problem for each r with q = 2, the final statement
follows now by a direct application of Stein's theorem.

Consider now the initial distributions μλ ε with λ = λB defined by (2.15). They are
product measures with uniformly bounded variances, thus the law of large numbers
reduces to the asymptotic behaviour of the mean values, F'(λε).

Lemma 4. If ρeMl then limF'(λε) = ρ in \}e as ε goes to 0.

Proof. Observe first that both / ' and F' possess strictly positive and bounded
first derivatives. Let Kεσ(x) = Kεσ(x) — Kεσ(O); it extends to a bounded map of
ΊL2

e into itself, see (3.6). We have λε(x) = Jf(IBρ(x)) + δB(x)9 δε(x) = Kεσ(x) with
σ = (c(x)/cε(x))VεJ'(Iερ(x)). Equation (2.2) implies immediately

lim J φ(x){l -c(x)/cε(x)}dx = 0 for all φeΊL^Wi) , (3.15)

and (3.15) remains in force even if φ varies in a compact subset of 1L1 (R) therefore
both δε and Vεδε go to zero weakly in 1L̂  as ε-»0, which completes the proof by the
dominated convergence theorem.

As we shall show in the next section, the above results allow us to pass to the
limiting resolvent Eq. (2.11); the time average can be removed by means of the
following estimate.

Lemma 5. Let a and c be as in Lemma 1, us(x) = §pε

a c(s,x;t, y)ht(y)dy for s^
2 | ^ l , then

Proof Since dsu-\-(a/2)V*cVεu = 0, like in the proof of Lemma 1, we obtain

which completes the proof.

The tools summarized above enable us to follow the lines of the proof of
Theorem 1 of [7]. For the reader's convenience we reproduce the main steps in the
next section in the present, notationally much simpler situation.
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4. Proof of the Main Result

We start with the derivation of (2.17) it is sufficient to consider functions g of type
gφ(σ) = g(φ(σ)), where φeMl, φ(σ) = j φ(x)σ(x)dx, and #:IR->IR is bounded
together with its first and second derivatives. We want to select uniformly
convergent subsequences from each of Xε, DXJ, VεlDXε as ε-»0. Since the bounded
sets are weakly precompact both in Ά?e and in IL2 *, we have to show that Xz, D Z |
and VεΈ>Xε

z are all bounded and equicontinuous when σ varies in a bounded set of
ILg. Xε is obviously bounded, while Lemma 1 applies to DJ z

ε and VJDXε

z. Their
equicontinuity with respect to z can be shown by estimating their derivatives. The
case of XI is again trivial, but (t — s)pε

ac(s,x t, y)ezs~zt is just the kernel of the square
of P*;J thus (3.14) and Lemma 1 yield bounds also for the derivatives of Έ>Xε

z and
VJDXI with respect to z.

Now we turn to the problem of continuous dependence onσeB, where B is an
arbitrary ball in ΊLl σeB means that \σ\r^LR(r) for all r > 0 with some increasing,
but finite R: (0, oo)->(0, oo). Let ωε and ώ\ denote strong solutions to (1.3) with
initial configurations σ and σ, δ = σ — σ, ά(t,y) = {Vf(ωε

t(y))—V'(ώε(y))}
{ωfW-ώfW)}' 1 ; taking the difference of two copies of (1.3) with identical
Wiener trajectories, for any A:elL^(R+) with r < 0 we get

j j {ωε{y)-ώε

t{y)}kt{y)dydt = \ δ{x) j ^pε

r>c(O,x;t,y)kt(y)dydtdx . (4.1)
o o

Let kt = e~zt{ωε-ώε}, then by Lemma 1 for z^2C α r 2 , r>0,

z J e-zt\ωε-ώε

t\
2

rdt^2CM (4.2)
o

thus by Lemma 1 and Lemma2 for each β>0 and Z^ICJ2 we have a weak
neighborhood U=Uz

β{B) of Oel^ such that

00

j e-zt\ωε-ώε\2

rdtSβ if δeUnB , (4.3)
o

which implies immediately that ZJ is weakly equicontinuous on each ball of \?e.
The continuity problem of ΌXZ and VεΈ>Xε is more involved. From (3.5)

(σ,g φ )-DZ| z (σ, f f φ ) = Ψz

a>
ε{h-h)0 + P | ; A , (4.4)

where ^ and a are as in (3.5), ht(y) = e~zt φ(y)gf (φ(ωε

t)), his the same with ώε in the
place of ωf, 2kt(y) = e~zt{a(t,y)-ά(t,y)}V*cVeV%e

cfit(y). The weak equiconti-
nuity of the first term and that of its gradient follows directly from (4.3) by
Lemma 1, and the Laplace transform of \a(t, -) — a(t, )l? can be estimated in the
same way. Suppose now that |φ| r > β<oo for some r < 0 and q>2. Since V" is
bounded, Lemma 3 and the Holder inequality imply that ||£ ||r->0 for some r < 0 as
δ e B vanishes in the weak sense, and this convergence is uniform in ε > 0. Therefore,
Lemma 1 implies that both ΏXε and VεΌXε are weakly equicontinuous on B, at
least if\φ\r>q<oo. In view of (4.2), this restriction can be removed quite easily by
noticing that ΌXε

z(σ,gφ)-ΌXz(σ,gφ) and VεΌXz(σ,gφ)- VεΏXz(σ,gφ) are
uniformly continuous functions of φ e JLl * for δ e B, which completes the proof of
the equicontinuity problem, see [7] for technical details, if necessary.
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Now we are in a position to apply the Arzela-Ascoli theorem. Let E= \jBn be a
countable union of increasing balls, then we have a subsequence επ->0 such that
each of X\, BZJ, VεΈ)X* converges on E along this subsequence to some limit
Xz, YZ,ZZ. Moreover, the convergence is uniform on each Bn, the restrictions of the
limiting objects to balls are still weakly continuous thus it is easy to check, see (2.7),
that Yz = JDXZ and Zz = dxYz. Consider now a countable union, E' = \jB'n of balls of
Eg we may assume that μλ>ε(E) = 1 for ρ eE'. Using Lemma 4 and the associated
law of large numbers, we see that each term of (2.14) converges to the corresponding
term of (2.11) as εn-+0, and each convergence relation holds true simultaneously for
all ρ G E'. Following the proof of Proposition 2 of [7] we see that the balls B'n can be
chosen to be so large that all solutions to (2.4) remain in E\ consequently (2.11) has
only one weakly continuous solution on E, which implies (2.17) for ρ eE\ thus for
all ρ e H * , too.

Consider now mε

t(gφ) = \ Ψεgφduλ>ε, and observe that

3t*t(gΦ)=i ί ί ( ^ M ) Φ ) F,DPΛfc σ)dxdμλ,ε , (4.5)

H>0*(ω?)(x,σ) = J/>;fC(0,x;t,y)φ{y)g'{φ(ωε))dy , (4.6)

thus mε

t(gφ) is a bounded and equicontinuous function of time by Lemma 5,
consequently (2.17) implies \immε(gφ)=gφ(m(t, •)) a s £->0, for each t>0, by the
uniqueness of the Laplace transform. Finally, comparing (4.6), Lemma 5, Lemma 2
and (2.7), we obtain that lim{gφ(ωε

t)—gφ(ώε

t)} = 0 whenever δ-+0 weakly in IL2,
which completes the proof as limμA iE[\φ(σ)-φ(ρ)\> β] = 0 for each β>0 if ε->0.

5. Concluding Remarks

Our basic conditions \V"(X) — 1\^OL and \cε(x) — l | ^ α , α < l can be replaced by
QLX < V"(x)<oc2, α 1 <c ε (x)<α 2 , ax>0, α2<oo simply by rescaling time with a
constant factor. Of course, the rescaling changes the temperature of the system, but
in the absence of phase transitions, this makes no difference.

The case of dimensions d> 1 is a little bit more interesting. The form of (1.3) does
not change; we define Vε for φ: Rd->1R as a vector with components ε~1(φ(x + εej)
— φ(x)), where eί,e2,...,ed are the unit vectors of our orthogonal system of
coordinates in IRd, P7* is defined for ψ:WLd^>WLd by <V*ψ,φ>0 = j (ψ, Vεφ)dx,
( , ) and < , >0 denote the usual scalar products in R d and IL2 (IRd), respectively.
The extensions of Lemma 1, Lemma 2 and Lemma 5 are immediate, see [7].
Lemma 3 is less trivial because Vε and Vf do not commute if d> 1, but I do not see
any essential difficulty. The family of initial distributions, μλε can be defined as
follows. Assume that the associated random walk in the given medium cε converges
in the following sense: |lPf̂ Λ0 — IPi;iΛo|o-^0 as ε->0 for z > 0 and ht(y) = φ(y)
for all t^O if φ is smooth. In view of the last step of the proof, see Sect. 4, we may
assume that both ρ and Δρ belong to IL2(JRd). In the spirit of [12], then it is quite
natural to define λε as λε = Wl>ε

ch0, ht(y) = ΔeJ'(ρ(y)), Δε=-Vε*Vε, where
γ = γ(ε, ρ)->0 in a suitable way as ε->0. Notice that λε is just the solution of a
resolvent equation,

A = τ44/'(έ?) (5.1)
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where Iε is the integral mean over the Dirichlet cells of εZd, see [7]. From (5.1) we see
that γ\λε\Ό-+Q as y-^0, thus we can replace c = cε in (2.14) by 1. On the other hand,
'Pl\ε

c — Pίli~>^ f°Γ e a c ^ fixed y > 0 as ε->0 by assumption, thus we can choose
γ = y(ε, ρ) in such a way that \λε — λB\0-*0 as ε->0, where λε is defined as the solution
to (5.1) with cε = 1. Now an easy Fourier analysis shows that Xe-»/'(ρ) in IL2(IRd) as
ε->0, thus we can apply the law of large numbers to evaluate (2.14); we obtain
dtrn = (l/2)ΔJ'(m) for the limiting density field. The case of macroscopically
inhomogeneous conductivities is quite similar.

We have assumed only for simplicity that there is no interaction term in the
energy H(σ) = ΣV(σk). It is possible to replace H by

Hb{σ)= Σ {V{σh)+ Σ bkjU(σk-σj)} , (5.2)

where V is as above, bkj = bjk, U(x)=U( — x), bkj and the matrix of second
derivatives of U are both strictly positive and bounded. The rescaled evolution law is
obtained from (1.3) by replacing V by dHb(x, ω) = dHb/dω(x), see [6,7] for the case
of bkj = b, U=x2. Additional difficulties are technical; F, the effective free energy
should be determined as a tjiermodynamical limit. If ft = bkj is ergodic with respect to
translations of Zd, then the subadditive ergodic theorem shows that F is a
deterministic function of the chemical potential λ; it depends only on the
distribution of b; we obtain the same behaviour as before.

In the presence of a small electric field (1.3) turns into

dωε

t = V*{eεcεB(ωε

t)}dt-^V*cεVεdHb(',ωε

t)dt^V*]/^εdwε

t , (5.3)

where eε:JRd->IR is uniformly bounded, and i?:IR->IB has a bounded first
derivative. The a priori bounds for the resolvent equation can be derived in much
the same way as in the deterministic case of [8], thus we can follow the ideas outlined
above. Instead of (5.1), now we define μλε by

y(ε, ρ)λε- Fε* {eεcεB(λε)} + ^ V*ce Vελε = \ΔJεJ'(ρ) - V* {eIεB(J'(ρ)) , (5.4)

where B(λε)(x) = j B(σ(x))μλ ε(dσ), and e denotes the mean value of eε, e is assumed
to be a constant. Since λε->J'(ρ) seems to be true also in this case, we expect that eε,
the electric field averages out in the usual way; thus there is no interaction between
the randomness of the conductivities and that of the electric field the effective
conductivity remains unchanged.
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