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Abstract. We show that for the standard nearest neighbor spin-flip dynamics in
one dimension with the constraint of constant energy the spin-spin correlation
function decays as exp [ — c|/ί] for large t. We prove an upper and lower bound.
The coefficient c of the lower bound is given as the solution of a variational
problem and is conjectured to be exact.

1. Introduction

Experimentally it is found that in many materials the decay to equilibrium is not
exponentially fast but better fitted by a stretched exponential of the form
exp [ — (ί/τ/], 0 < β < 1 . This is known as the Kohlrausch- Williams- Watts law. In a
well known paper Palmer, Stein, Abrahams, and Anderson [1] tried to find a
general, material-independent explanation. They argued that in systems consisting
of many components which decay in parallel the decay has to be exponential,
provided of course each component individually relaxes exponentially. However if
there are dynamical constraints, which they imagine to be of a hierarchical nature,
then stretched exponential decay is likely to occur.

Presumably the simplest model for parallel decay are independent spin-flips.
Each component has then only two possible states and flips between them at
random times. This yields exponential decay on the average. We are interested in
how the relaxation is modified when a local dynamical constaint is imposed. Such
models have been used in order to understand properties of glassy dynamics and of
the glass transition [2,3]. We study here the one-dimensional case only. It is
physically of its own interest as describing relaxation in solid amorphous polymers
[4,5].

Let us consider then a one-dimensional spin flip process. The spin variable σ(x)
at site x takes the values ±1. The state space is therefore { — 1,1 }z. A spin
configuration is denoted by σ. σx is the configuration σ with σ(x) replaced by — σ(x)
( = spin flip at x). We make a specific choice of nearest neighbor flip rates, namely

c, σ) =1(1 _ σ(x _ i)σ(x + 1)) + κ(\ + e

2β) (1 + σ(x - l)σ(x + 1))

(1.1)
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κ^0, βeR. The (pre-)generator, L, of the spin flip dynamics is given by

Lf(σ) = Σ c(x, σ) [f(σx) -/(σ)] (1.2)
X

acting on local functions / eL\ ί^O, is a strongly continuous Markov semigroup
on C({ —1,1}Z

5JR), the space of bounded, continuous functions on { — 1,1}Z.
Therefore the full stochastic jump process corresponding to L can be constructed
by standard methods [6]. This spin flip process is denoted by σt.

The flip rates in (1.1) were chosen in such a way that an invariant measure of σt

is the Gibbs measure of the nearest neighbor Ising model with inverse temperature
β and zero magnetic field and such that σt is reversible with respect to this measure.
We prescribe the nearest neighbor energy by

HN(σ)=-ϊNΣ σ(x)σ(x + l). (1.3)
x=-N

Then the Gibbs measure is defined by

~exp[-^»] (1.4)

in the limit iV->oo. This Gibbs measure is denoted by < >/S. Note that ( }β does not
depend on K. In fact, if κ>0, then <•>/? *s the unique invariant measure of σv For
K = 0 the flip rates are independent of β. The measures < }β, — oo < β < oo, are then
precisely the extreme invariant measures of σt [6, Chap. VII, Example 1.48]. [In
addition to the < >/s there are four invariant measures which are concentrated on
a single configuration. These configurations are σx(x) = 1 for all x, σ2(x)= — σ^x),
<73(x) = 1 for x even and σ3(x) = — 1 for x odd, σ4(x) = — σ3(x).j We are interested
only in the stationary process, i.e. the initial distribution of σt is <->̂  and σt is
extended to £<0 by reversibility. Averages with respect to this stationary σt are
also denoted by < >̂ .

One of the most basic dynamical quantity of a spin process is the spin-spin
correlation function defined by

<σt(0)σo(0)>β = SβJt). (1.5)

Of particular interest is its long time behavior. We note that by reversibility there
exists a measure, v, with total mass one such that

] " . (1.6)

Therefore SβfK>0 and SβfK(t)~Sβκ( — t). Equivalent to the long time behavior is
then the small λ behavior of the spectral measure v.

Our specific model is covered by a theorem of Holley [7]. Provided κ>0 he
establishes that the spin-spin correlation decays exponentially, i.e. there exists a
positive constant c such that

SβJt)£e-M. (1.7)

The problem we want to investigate here is the long time decay of SβiK in the
border case K = 0. K = 0 means that only energy conserving flips are allowed. In this
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sense the dynamics is constrained. The simplest example to see the importance of
the constraint is to consider a long segment of -{-spins. Without constraint it
dissolves by spin flips in the interior. However with energy constraint, K = 0, only
the two boundaries of the segment can move. They do so random walk like hence
slow. Of course, in the stationary measure such a long segment is exponentially
unlikely. We have to understand then how these two effects balance. A crude
argument runs as follows: In equilibrium a segment of + spins around the origin of
length L has the probability e~f{β)L with /(/?) a free energy. On the other hand the
time, ί, it takes until the spin at the origin is allowed to flip is typically of order L2.
Hence Sβt κ=0(ί) = exp [ — j/ί/τ]. It is not clear how to fix the coefficient τ. We would
need the (typical) time of absorption at the origin of a random walk starting at L.
Unfortunately, this time has an average which is infinite.

We will prove that

Sβ(t) = Sβ,κ=ome-c^ - (1.8)

for long times (a precise statement is given below). The long time decay is a
stretched exponential with exponent 1/2.

In passing we briefly have to mention another example which beautifully
illustrates the concept of locally constrained dynamics. We consider the two-
dimensional Ising model at low temperatures in the + phase with the usual spin-
flip dynamics. We would like to know the long time decay of the spin-spin
correlation (σt(0)σo(0)}+ — <σo(0)>+. We approximate this expectation by only
taking single Peierls contours, γ, around the origin into account. The equilibrium
distribution of the contours is Z~ιe~β^ with β sufficiently large. \γ\ denotes here
the length of the contour. Thus a very long contour is exponentially unlikely. But,
as in our model, its shrinking to zero [which would cause a spin flip of σf(0)] is
heavily constrained: the deformation of the contour must go through single spin
flips. As before the competition between the unlikely occurrence in equilibrium
and the dynamical constraint has to be understood. A rough argument of the same
structure as above suggests that the decay is exp[ — j/ί/τ] [8]. Sokal and Thomas
[9] prove that the generator of the contour dynamics (with rate growing slightly
slower with \γ\ as the physical rates) has no spectral gap at zero.

2. Result

We will prove upper and lower bounds on logS^ί) proportional to j/ϊ but with
differing prefactors.

Theorem. Let Sβ(t) be the spin-spin correlation function (1.5) with κ = 0. (i) (upper
bound) We have

lim sup-UogS^t)= -c+(β) (2.1)
^ yt

with

^ 1 . (2.2)
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(ii) (lower bound) We have

lim inf4-k>gS,(f)= -c_{β). (2.3)
'-« yt

is defined through a variational formula to be explained below. In particular
^3 and c_(/J) agrees with c+(β) for |jff|—•oo.

Remark. We conjecture that c_(/J) is actually not only a lower bound but the
precise asymptotics. A proof would require an extension from an interval to the full
line of the large deviation result by Kipnis, Olla, and Varadhan [10] for the weakly
asymmetric exclusion process. At present this is not available.

We explain the variational formula for c_(/0 and prove boundedness. Let us
consider mass transport in one dimension. The density, ρt(q), is governed by the
equation of conservation type

()+ |[ώ)(id))%)-|^)] =o. (2.4)

The current, ρ(l —ρ)F— — ρ, has two contributions. There is a diffusive current
dq

proportional to the density gradient (Fick's law) and there is a current of the form
σF induced by the space-time dependent force field F. The conductivity, σ, is a
quadratic function of ρ which vanishes for ρ=0,1. We assume that

F(q,t)=--^V(q,t) (2.5)

with V(q, t) once continuously differentiable and of compact support in q. Let 3F be
the set of all such sorce fields. We solve (2.4) with the initial condition

l for q<0,

θ for

The solution is considered only over the time interval [0,1]. With our assumption
on F, Qt is well defined, 0 ̂  ρt(q) ̂  1, and ρt(q) is continuous in both variables, t > 0.
Qualitatively mass leaks into the half line [0, oo). In particular ρt(q)-*l as q-+ — oo
and Qt(q)-+0 as q-+oo.

The constant c_(/J) is defined by

M/9= inf f(21og|coth(j8/2)|)]dqQι{q)+ϊ)dt\ dqF{q,t)2

Qt{q){\-Qt{q))\. (2.7)

To understand the structure of the variational problem (2.7) let us first set F = 0.
Then the initial step diffuses out. The total mass in [0, oo) (times the prefactor) is an
upper bound for c _(/?). Imaging now that F is pointing to the left, F^0. This
suppresses mass transport into [0, oo) and makes therefore the first term smaller.
On the other hand we have to pay a price through the second term.
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oo

We note that the prefactor of J dρ^q) diverges logarithmically at β = 0. Thus, in
o

principle, also c_(jS) could diverge leaving undecided the long time decay at β = 0.
An upper bound on c_(β) independent of β would be achieved, if there exists a
solution ρt to (2.4), (2.6) such that ρ1 = ρ0 and such that the price to be paid, i.e. the
second term, remains finite. [I am grateful to S. R. S. Varadhan for pointing out
this argument.] We set then

for 0^1/2,
for ( Z 8 )

We choose ψ such that tp(<2) = l — ψ( — q) and such that ψ(q)-+ί for q-+ — oo,
ψ(q)->0 for q^>oo sufficiently rapidly. The force field is then also of scaling form

^ ) for

with F 1 ? F2 determined by ψ through (2.4), (2.8). By a straightforward computation
we obtain

c.(β)ύ]/2 1 dq(ψ(q)(l -ψ(q)Vι j ψ ' ( # + (ξ J dq^iVXβ!^J. (2.10)

We make the ansatz ψ(q)=^e~yq,q^0, and optimize with respect to γ. This yields

M/9^3. (2.11)

For comparison, the maximum of c+(0) at jS = O is approximately 0.6.

3. Mapping to the Symmetric Exclusion Process

The symmetric exclusion process on Z is a particle dynamics where particles jump
with equal probability to a neighboring site provided it is vacant. The occupation
variables are ^(x) = 0,1. The state space is {0,1 }z. η stands for a particle
configuration and ηxy is the configuration η with occupancies at x and y
interchanged (= jump either from x to y or from y to x). The (pre-)generator is then

Lf=Σ(f(nxx+1)-f(i)) (3 i)
X

The exclusion process is denoted by ηt.
From now on we set κ = 0 and fix β. Let us define

ηt{x)=&σt{x-\)-σt{x))2. (3.2)

Then, in law, the so defined ηt is the symmetric exclusion process. [Note that by
(3.2) σ and — σ are mapped to the same particle configuration η.J Expectations are
denoted by E. Of course, ηt is stationary and reversible. Under the mapping (3.2)
the Gibbs measure (1.4) goes over to the Bernoulli measure for ηt with Έlηt(x))

Let J([0, ί]) be the current through the bond (0,1) integrated over the time
interval [0, ί], i.e.
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J([09 ί]) = number of particles which jump from 0 to 1

— number of particles which jump from 1 to 0 during [0, t]. (3.3)

Then

^(0)σo(0) = ( - l ) " > (3.4)

and

S/?(ί) = E((-l) J ( [ 0 ' ί l ) ). (3.5)

(3.5) is not yet a tractable form. Using the stirring process [6, Chap. VIII.4] it
becomes possible to average explicitly over the initial measure.

Lemma 3.1. Let

l for x^O,

θ for X*U

and let EL be the expectation for symmetric exclusion with η0 = ζ. Let nt = £ ηt(x) be

the number of particles in [1, oo) at time t. Then

Sβ(t) = Έζ(Qχpl-ant-]) (3.6)

with

α = 21og|coth(j?/2)|. (3.7)

For 0 = 0,

So(t) = Έζ(χ({nt = 0})), (3.8)

where %({•}) denotes the indicator function of the set {•}.

Proof We represent symmetric exclusion in terms of the stirring process. Initially,
there is a particle at each site (labeled by that site). To each bond (x, x +1) we assign
independent Poisson processes with rate 1/2. At the event times of the Poisson
process for (x, x +1) the particles located at x and x +1 are interchanged. Let ξf be
the position of the particle initially at x (i.e. with label x). Then, in law

y})> (3.9)
y

η0 = η. Thus if in (3.9) the rfs are distributed according to a Bernoulli measure, then
ηt is a realization of the stationary symmetric exclusion process. Expectation for
the stirring process is denoted by E s and the initial Bernoulli measure by μ.

We note that a stirring particle initially and finally to the left (or the right) of the
origin makes no contribution to the current (3.3). Therefore

E((- l)'«°,Φ ) =j μ(dη)Έs((-1)»), (3.10)

where

)= Σ η(χ)χ({ξ^i})- Σ η(χ)χ({ξϊm) O " )
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Let Nt be the number of stirring particles which are at time t to the right and
initially to the left of the origin. This must be the same as the number of stirring
particles which are at time t to the left and initially to the right of the origin. We
condition on Nt and average over the initial Bernoulli measure μ. Then

= f μ(dη)Έs (exp pπ ( J Q iK*M{ff ^ 1})- Σχ iMz{ί? ̂  0}

Σ + χ ) j ^ *
= exp[-αiVί], (3.12)

provided β + 0. We conclude that

« 0 ^ (3.13)

For jβ = O the average with respect to μ is different from zero only if Nt = 0.
We use again (3.9), this time with η = ζ. Then Nt = nt in distribution and our

claim follows. •

4. Upper Bound

We use an inequality of Liggett, which estimates symmetric exclusion in terms of
independent random walks. Let

/(*!,...,*„)= Π exp[-αχ({x^l})], (4.1)

XjEZ. Clearly / is bounded, symmetric and positive definite in any pair of
variables. Therefore [6, VIII, Proposition 1.7] is applicable and implies, in the
limit n-»oo,

Eζ(e-αΠt)^Ef(e-αΠt) (4.2)

The right side is the following process. Initially every site x^O is occupied and
every site x ^ 1 is vacant. The particles move then as independent random walks
(nearest neighbor jumps with rate one) on Z with transition probability pt(x, y). nt

is the number of particles in [1, oo) at time t. Then, with xt a single random walk,

= exp

= exρ

wi+(<τα-i)Σ i
x gO V

~α-i) Σ Σ Pt(χ,

Ί

""-1) Σ xpt(O,x) (4.3)

For long times Σ ^PtΦ,x) = yt/π.
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5. Lower Bound

Using Jensen's inequality the easy lower bound is

S ^ e x p C - a E ^ ) ] . (5.1)

By duality the average is computable in terms of a single random walk as

Eζ(n()= Σ Σ Pl*,y) (5-2)
x^Oy^l

Comparing with (4.3) this is the same asymptotics with a prefactor α instead of
1 — e~a. Thus for small α, i.e. |/?|-»oo, both bounds coincide. On the other hand for
α-»oo, i.e. /?-*(), the lower bound diverges leaving undecided the question of the
actual long time behavior.

We improve the lower bound by choosing a new reference measure. The idea is
to regulate the mass flowing into [0, oo) through external forces and to optimize
afterwards. To our own surprise this leads to the hydrodynamics of the weakly
asymmetric exclusion process. We modify our notation slightly to conform with
the standard usage. We have

lim inf-rr logEΛexp [ — ocnj) = lim inf-^r ε logEΛexp [ — omε - 2 J ) , (5.3)
t-oo yt °^° yt

and we may set t= 1 at the end.
Let V be the potential of (2.5) with compact support in q. We perturb the

symmetric exclusion dynamics by a weak drift of order ε, slowly varying in space
(order ε) and time (order ε2). The new jump rates are

cVtJtx, x +1,1,) = exp [(F(εx, ε2s) - V(ε(x +1), ε2s))/2]η(x) (1 - η{x +1))

+ exp [ ( - F(ex, ε2s) + V(s(x +1), ε2s))/2] (1 - η(x))η(x +1).
(5.4)

As before, the time-dependent generator is
1 (5-5)

acting on local functions. The path measure for the asymmetric process with initial
configuration ζ and over the time interval [0,ε~2£] is denoted by P κ , the path
measure for V=0 by P.

In terms of the new reference measure,

Ec(exp [ - ocnε - 2J) = Ef ί —-y exp [ - ccnε - 2 f] ] . (5.6)

The Radon-Nikodym derivative is given by

dΨ
ί Σ {-%V(εx, ε2s) - V(ε(x +1), ε2s))J{x>x+1)(ds)
0 x

+ (exp l{V(εx, ε2s) - V{ε{x +1), ε2s))/2] - \)ηs(x) (1 - ηs(x + \))ds

+ (exp [ ( - V(εx, ε2s) + V(ε(x +1), ε2s))/2] -1) (1 - ηs(x))ηs(x +1 )ds} .

(5.7)
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J(x,x+i)(ds) is the actual current through the bond (x,x + l). This is a sum of
^-functions with weight +1 depending on the direction of the jump. Note that by
assumption the sum over x is finite. In the first term we use the conservation law

= ~Σ V(εx,ήηε-2t(x)- - Σ V(εx,0)ηo(x)

\ Σ ( ^ ) (5.8)
0 x OS J

In the second term we expand the potential difference V(εx, x) — V(εx + ε, s) up to
second order and regroup. Then, using again Jensen's inequality,

εlogEζ(exp[-αnε-2ί])

^ E J - αε Σ ^" 2t
ϊ ε

V()+ X- j-F(εx,s)+ ^F(εx,s)2)ηε-2s(x)

(5.9)

As anticipated (5.9) is of the scaling form for the weakly asymmetric exclusion
process. DeMasi et al. [11] prove in particular that for the weakly asymmetric
exclusion process with initial condition ζ in the limit ε->0 the density is almost
surely governed by (2.4) with initial condition (2.6). They also establish local
equilibrium which is needed for the last term in (5.9). Thus we conclude that

lim infε logEiexp [ — anε - 2,])
ε->0

^ - a ] dqρt(q) +\\dq V(q, t)ρt(q) ~\\dq V(q, 0)ρo(q)
o I I

Using (2.4) the desired bound (2.7) follows.

Acknowledgement. I am grateful to S. R. S. Varadhan for insight and help.
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