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Abstract. Using the Feigin-Fuchs representation of minimal conformal models
in a form introduced recently by one of us, the braid group representation
matrices, describing the analytic continuation properties of conformal blocks,
are computed. In a suitable normalization, their matrix elements are shown to
essentially factorize into pairs of Boltzmann weights of critical RSOS models
in a certain limit of the spectral parameter. These Boltzmann weights are related
to quantum group K-matrices by the vertex-SOS transformation. We show
that the crossing symmetry of the four-point function in left-right symmetric
models follows from a quantum group relation, also called crossing symmetry.
This observation gives a simple way to evaluate the structure constants.

1. Introduction

In recent times, much study was devoted to the connection between conformal
field theory and representations of the braid group [1-11]. The reasons for this
interest are two-fold: First, understanding the braid group representation carried
by the conformal blocks is necessary to complete the conformal bootstrap program
[12] in the general case. Second, this method, possibly in connection with modular
invariance, might ultimately lead to a classification of two-dimensional conformal
theories, at least of rational theories.

Some time ago, Tsuchiya and Kanie [1] found a connection between the braid
matrices describing the monodromy of conformal blocks of the fundamental field
in the SC7(2) WZW model and the Temperley-Lieb-Jones algebra. The same
structure was seen to arise [4] for the braid matrices of the φ(12) field in minimal
models [12]. These matrices are connected by the vertex-SOS transformation to
the spin^ /^-matrices of exactly solvable vertex models in a certain limit of the
parameters. By the fusion procedure, Λ-matrices corresponding to higher spin

* Supported by NSF grant DMS 8610730
** Address after March 1989: Theoretische Physik, ETH-Honggerberg, 8093 Zurich, Switzerland



648 G. Felder, J. Frohlich and G. Keller

representations were constructed ([13] and references therein). In the quantum
group [14-17] language, these Λ-matrices appear as generators of the commutant
in a tensor product representation of the quantum group Uq(SU(2)).

Since higher primary fields are constructed out of fundamental fields by a fusion
procedure, it has been conjectured [1,4,18] that braid matrices of the higher spin
fields in the Si/(2) WZW model are given by ^-matrices corresponding to higher
spin, and that braid matrices of primary fields φ(n ̂  of minimal model factorize
into pairs of SU(2) WZW braid matrices.

In the first part of this paper, we compute the braid matrices explicitly for what
we call Dotsenko-Fateev models [19-21]. These models have a Feigin-Fuchs
representation and, at rational values of a complex parameter αl, they reduce to
minimal models [12]. We show that the braid matrix elements essentially factorize
into two factors corresponding to quantum group representations with quantum
group parameters q = exp2τriα2_ and q = exp2πiαl2.

A peculiarity of braid group representations arising from quantum group
representations is that they produce knot invariants [21]. This has recently led to
the proposal [22] that rational conformal theories should be understood in terms
of three-dimensional generally covariant theories.

In the second part of this paper, we show, in the example of minimal and
Dotsenko-Fateev models, that an essential property of conformal field theory,
namely crossing symmetry, follows from a quantum group relation also called
crossing symmetry. The latter property is essential for the application to knot
theory. It would be interesting to understand it from a three-dimensional point of
view. We also show how this relation can be used to compute structure constants
and prove the consistency of the solution.

The last part of this paper is devoted to the minimal model limit αl ->p/p',
where some care has to be taken to avoid singularities of braid matrix elements.

The class of models we consider in this paper consists of the Dotsenko-Fateev
(DF) models [19] parametrized by a complex number αl, related to the central
charge of the Virasoro algebra by c — 13 —6αl — 6αl2. For generic αi, these
models are neither rational nor unitary and the interesting limit is when αl tends
to a positive rational number p/p'. In this limit one recovers the minimal models
of [12]. If |p — p'\ = 1 and min(p,p') ̂  3 [23], minimal models are unitary.

For generic αl, the space of states of a DF model is a direct sum of irreducible
representation spaces for a pair of Virasoro algebras

Jf = 0Jfj®.#V (1.1)

The sum runs over all degenerate highest weight representations with given central
charge. The label / stands for a pair (z', i) of positive integers and the corresponding
highest weight is

*/ = Vo = i('"2- 1)«- -i(*'i- l) + i('2- l)oC2. (1.2)

Primary field operators of weight hj split into holomorphic and antiholomophic
components

Φj(z, z) = £ D'JK V'JK(z) <g> V*JK(z). (1.3)
IK
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The component VjK(z) maps J f κ to J f / and (iϊ non-zero) is determined, up to
normalization, by its commutation relations with Virasoro generators. In the case
of minimal models the sum in (1.1) becomes a finite one: (i'ΐ) run over 1 ̂  i' ̂  p' — 1,
1 ̂  i g p — 1, and there are finitely many primary fields.

In [24] a new version of the Feigin-Fuchs representation was given: the spaces
Jf j were identified with cohomology groups of a certain BRST operator on Fock
spaces and chiral primary fields VjK(z) act as BRST invariant "screened" free field
vertex operators. We compute the braid matrices in this formalism. We first show
how to construct general screened vertex operators by fusion of "fundamental"
fields. This gives an expression for braid matrices for general fields in terms of
fundamental braid matrices. The latter are then computed by contour deformation.
We note here that some of the braid matrices were computed in [25] in a different
setting, to compute all structure constants.

A similar analysis could be done for more general models such as the
Fateev-Lykyanov models [26]. What is missing in that case is the theory of the
structure of Fock spaces as modules over extended algebras.

Finally, we note that DF models have also been studied in the context of the
quantum Liouville theory [27].

2. Fusion and Braid Matrices of Screened Vertex Operators

In [24] chiral primary fields of DF models were expressed in terms of screened
vertex operators

n';ω = Kjz)κα>;)...^^^^ (2.1)
i',i

with charges απ,π = ̂ (1 — n')α_ + i(l - n)α+, α + α _ = - 1. The operator VΛ(z) is the
familiar Wick-ordered exponential of the free field

TΛzΓ> exp f α f a_nz
n/n} exp ( - α £ 0.2' n/n\

\ i / \ i /

[αw,αm] = 2n(5π>_m, [αn, TJ = 2δπ>0αTα. The contours of integration, C of M and Ct

of M ί5 are depicted in Fig. 1. Since the integrand is many-valued, we must specify
a convention to make it uniquely defined. We require that the expectation value
of the integrand between highest weight states be real when the variables are
ordered on the positive real axis (0 < ur < ••• < u^ < u'r> < ••• < u\ < z) and the
charges are real. The value of (2.1) is then unambiguously defined if we give a path
of analytic continuation in Cr+r> + 1 — (J {zα = zβ}, going from a point where the

Λ<β

variables are ordered on 1R+ to a point on the integration domain. This path is
represented by a dashed line in Fig. 1.

The precise definition of screened vertex operators involves an analytic
continuation from a region of αl -plane where the integrals in (2.1) converge. This
region is given by [20]

-i<Reod<0. (2.2)

Since α + α _ = - 1, we see that this region does not contain any real points. We
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Fig. 1. The contours of integration C\ of u\ and C, of ut in (2.1). The dashed lines represent the
analytic continuation paths

compute the braid matrices in this region and then extend the results by analytic
continuation in αi .

The braid matrices can be computed recursively in terms of "elementary" braid
matrices by using "fusion":

= lim (C -

' ί i'iω = e-*0*-*** lim (ζ -
ζ-2

) = lim (ζ -

"+<v"lim(C-:

(2.3a)

(2.3b)

(2.3c)

(2.3d)

The phase in (2.3b) comes from changing the reference point for the analytic
continuation from 0 < ur < < u\ < z < ur < ζ to 0 < ur < - - - < u\ < u' < z < ζ, u'
being the integration variable in F^?. The same applies to the phase in (2.3d).
Equations (2.3) are valid in the region of complex αl -plane described above. They
follow from the standard operator product expansion of vertex operators. The
crucial point is that the contours over which vertex operators with charge α+ and
α_ are integrated can be interchanged without changing the value of the integral
(2.1), as noted in [20] in a slightly different language. The reason for this is that
the difference between (2.1) and the integral with, say, the wt-contour and w^-contour
interchanged contains a term1

α_
(2.4)

which, being integrated over ul9 gives a vanishing contribution.

is the integration over a small circle surrounding ul
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It is convenient to introduce the notation

pi''/) , ,(Z) = e

iθΆ(m'm) yr'r ίz\ Π5)v (n'n)(m'm)W — ^ v n'nV') \£"J)

to indicate vertex operators mapping BRST states in the Fock space ¥m>m to BRST
states in Fvι. The relation between the number of screening operators r', r and the
representation labels is given by charge conservation: ί(/) = n° + mπ — 2r° — 1. In
Appendix A we review and extend the results of [24] on the BRST cohomology
of Fock spaces. The space of BRST states in the Fock space Fm,m is called 3C m,m.
It is irreducible under the Virasoro algebra. By construction, see (2.3), we always
have 0 = r(/)

 = n ( f )-l in (2.5). Moreover, since V($wl) and Kg?)(ι,) vanish
identically on BRST states for all /', / ̂  1 (See Appendix A), we conclude that all
non- vanishing operators (2.5) constructed by fusion (2.3) map 3?m>m with m', m ̂  1
to jfπ with /',/^ 1. A more detailed analysis [24] shows that V^}(m>m} vanishes
on BRST states for generic αl unless

|no _ m(')| + i ^ /o ̂  no + mo _ ι?

no + mo + /(') + 1=0 mod 2. (2.6)

These fusion rules are more severe if αl is rational as will be discussed in Sect. 4.
The phase

— παl r'(r' — m') — πα+ r(r — m)

was introduced to simplify further calculations. This phase makes the operator on
the left-hand side of (2.4) a real operator for z, αl real, in the sense that all its
matrix elements are real in a basis given by monomials of Virasoro generators
acting on the highest weight state. Relations (2.3) become

(7\ — ( 1\l/2(n + !n -1-1)1™ tγ _ 7\-2α21αn,n y(l'l) (f\y(Γ ±1,1) /\
+ l,n)(m'm)\Z) ~ (~ *) lim ls> z) v (2ί)(Γ± l,l)\(>) V (riή)(m'm)\zh

ζ->z

(2.7a)

ζ-z

(2.7b)

We often abbreviated L = (/', /), N = («', n), etc. in the following. The braid matrices
are defined by the equation

Vi,B(z) VB

NC(w) = X R(A, M, N, C)BD V$D(w) VD

MC(z). (2.8)
D

The left-hand side of this equation, valid for |w| > |z|, is understood as analytic
continuation from the region |w| < |z|,0 ̂  argz, arg w < 2π along a path such that
z circumvents w counterclockwise. The braid matrices can be computed using the
following basic identity for vertex operators:

VΛ(z)Vβ(w) = e«i2«P Vβ(vf)VΛ(z\ (2.9)

with same convention as in (2.8).
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The fusion relations (2.7) imply the following recursion relations for braid
matrices (as before A = (a'9 a) etc.):

, M + (1, 0), W, ^^

(2.10a)

^

(2.10b)

^

(2.10c)

R(A, M, AT + (0, 1), C)BD = ( - i)i/2<«'-*'+<'-''> £ R(AM(ί2)Bί)BAlR(A1MNC)BίD9

(2.10d)

These equations, represented in Fig. 2, allow us to compute braid matrices for
arbitrary M, N in terms of braid matrices involving the fields (1,2) and (2, 1) only.
We proceed to calculate the latter matrices. Although this computation may be
done by exploiting the fact that the four-point function obeys a hypergeometric
differential equation [27, 12], it is instructive to do it directly in this formalism.

Consider the product of two (2, 1) fields mapping 3? L to 2tf L>. The possible
values for L are L + (2, 0), L, L — (2, 0). In the first case these fields are represented
by vertex operators with no screening charge, and the braid matrix is just a phase

R(L + (2,0), (2,1),(2, l), (Ilia)

Similarly,
2

In the second case there is a screening operator, that may be attached to either of
the two fields. By deforming the contour of integration we can write both sides of
(2.8) in terms of the integrals

/Iι2(z,w)= j Va21(w)Vx_(u)VΛ21(z)du, (2.12)

where y1>2 are contours drawn in Fig. 3.

M N M

Fig. 2. Pictorial representation of (2.10)
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W

Fig. 3. The contours yv and y2 in (2.12)

Taking into account all the phases, we obtain

(2.13)

where we have used the notation x' = exp(2πia2^). Eliminating /i and I2 from the
above equations gives the braid matrix

v'1/2 — v'"1/2

(2.14)K(L,(2,

χ,lΊ2_χ,-lΊ2>

χ /(Z'±l )/2 _ χ /-(Γ±l )/2

The same expression without primes holds for the fields (1,2) with x = exp (2πiα+).
The same analysis may be carried out in the third case, L = L — (2,0), where one
has two contours of integration, to be split into parts as above. The simple result is

R(L - (2,0),(2,1),(2, l),L)L-(lf0).L-(1.o) = ̂ \ (2.15)

and similarly for (21)-»(12). We are left with the computation of the braiding of
(2, l)-fields with (l,2)-fιelds. Because of the identity (2.4) and

= 0, (2.16)

due to the regularity of the operator product expansion, we get no contributions
from screening operators and we are left with the phase exp(πz2α21α12) = i"1:

R(A9 (2,1), (1,2), C)BD = R(A, (1,2), (2,1), C)BD = Γl. (2.17)

Let us summarize what we have computed. Let x/ = exp(2πfαl), x = exρ(2πr'α+),
and, for integers /;, /,
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Then the braid matrices of screened vertex operators have the almost factorized
form

R(A9M,N,QBD

= i m n n m ( — l ) α

(2.19)

where the nonvanishing matrix elements of the "elementary" r-matrices are:

r(α, 1, n, c)ac = r(α, m, 1, c)cα = 1,

(2.20)

and the other r-matrices are given by the recursive relation

) ,̂
(2.21)

r(α, m, n + 1, c)M = X r(α, m, 2, cj^ r^ , m, n, c)Cld,
d i ^ l

for any choice of a^ and cί compatible with the fusion rules. The r' matrices are
given by the same formulae with the replacement x->x', [ ] ->[ ]'.

The reader may be worried that, although we have restricted ourselves to
representation lables (/',/) such that /',/ are positive, we may generate other
representations by braiding. Indeed, the matrix element r(1221)20 does not vanish.
The point is that the operators KjΊ'wD an(* ^(2Ϊ)(io which are generated this way
vanish identically on the space of BRST states, as shown in Appendix A.

By construction, the r-matrices have the symmetry

r(α, m, n, c \ x)bd = r(c, n, m, a \ x)bd . (2.22)

It is easy to see inductively using (2.20) and (2.21) that as a matrix

r(α, m, n, c I x) ~ 1 = r(α, n, m, c \ x ~ :). (2.23)

The recursion relations can also be written as

r(fl, m + 1, n, c)bd = £ r(α, m, n, dj^rfci , 2, n, c)Ml ,
d i ^ l

r(α,m,n+l,c)M= ^ ^m.n.c^^d^m^c)^. (2.24)

We see that these matrices coincide up to irrelevant constants with the Boltzmann
weights of critical SOS models defined in [13] in a special limit of the spectral
parameter. The exact correspondence is the following. The Boltzmann weights in
[13] depend on half periods K,iK', parameters ξ,λ, and the spectral parameter u.
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We have

• Km lim x1/2ί

M -* — i oo K' -*• oo

655

(2.25)

where x = e\p2πi(λ/2K) and we assume here that Re(A/2K) > 0. If Re(l/2X) < 0
the same result can be obtained in the limit w-> + zoo.

3. Crossing Symmetry and Quantum Groups

We have seen in the preceding section that the braid matrices of Dotsenko-Fateev
models are given by critical SOS weights in the limit where the spectral parameter
goes to — ioo. These weights are proportional to the (quantum) 6/-coefficients of
the quantum group Uq(SU(2)) [16, 17]. We will see that an importat property of
quantum groups, called crossing symmetry [16], implies the crossing symmetry of
the conformal invariant theory, which is the essential consistency condition on the
plane.

Rather than using the general theory of quantum groups, it is easier, in this
simple SU(2) case, to rederive the quantum group crossing symmetry property
directly in the SOS language, using our explicit expressions. We find that the most
illuminating approach to this property comes from the application of quantum
groups to knot theory, which we shortly review, following [16, 17]. From the set
of r-matrices one constructs link invariants in the following way: Given a link in
IR3, we project it into a plane with a preferred direction, which we call horizontal.
To every connected component of the link and to every connected component of
the complement of its projection one assigns a positive integer label. The unbounded
component is assigned the label one. Figure 4 shows an example. One then splits
the link into elementary constituents and assigns to them functions of x:

Q X C ^>r(amnc\x)l

n n

α~ _ —
b

x)bd

l = r(amnc\x l)

α
,» »

b

(3.1)

n n
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Fig. 4. Example of a projected link with assignments

The first two constituents are called positive and negative crossings, respectively.
The last two constituents correspond to the points of the projected links with
horizontal tangent. One then sums the product of these functions of x over all
labels assigned to the regions bounded by the links and multiplies the result by
the factor

where the product is over all connected components α, with label ja9 of the given
link, and N+(α)(N_(α)) is the number of positive (negative) self-crossings of the
component α. The point is that the resulting quantity is a link invariant. This
can be shown to follow from a finite set of relations involving r and d; one of
which is the celebrated star-triangle equation. Another relation, called crossing
symmetry, determines dl

jk in terms of r-matrices. It is represented in Fig. 5 and reads:

db

mc(x)r(bmnd\x)ca = r(cnma\x (3.2)

We show in an Appendix that the solution for s

π
Z = l / 2 ( i + j-

if \i-j

ra Π ra Π
I = l/2(k+j-i + l) l = l / 2 ( i + k - j + l )

l^k£i+j-l, /c+j-i-l=0mod2,

0, otherwise; (3.3)

with the convention that the product over the empty set is one. In quantum group
language, property (3.2) expresses a relation between the antipode and the K-matrix
(see [16]), but this will not be important to us in this simple example. For
completeness, let us quote the remaining relation, which corresponds to "stretching
a loop" in the projected link,

This relation shows the role of the extra factor in the computation of the invariant.
To make contact with minimal models, let us write the relation (3.2) in terms of
full braid matrices:
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Fig. 5. Crossing symmetry relation

DB

MC(x',x)R(BMND\x',x)CA =

DMC(*'> x)= db

m'C'(x')db

mc(x). (3.4)

One iteration of this relation gives, using the symmetry (2.22), and Dffc(x', x) =

R(BMND I x', x)CA DB

MC(x', x)Dc

ND(x', x)

= R(BNMD\x\x)ACD
B

A(xf

9x)DA

ίD(xf,x). (3.5)

But this is the condition of crossing symmetry (or locality) of (left-right symmetric)
conformal field theory, relating β-matrices to the D-coefficients of the decomposi-
tion of primary fields into chiral components. It expresses the fact that Euclidean
Green functions are single valued and symmetric under permutations. We have
written D instead of D, in (3.5), since the normalization is not yet fixed. Indeed, if
DjK is a solution of (3.5), also λ^jλ^ lDjK is a solution. This freedom corresponds
to rescaling the fields and rescaling highest weight vectors. Conventionally, the
normalization is fixed by the requirement that the two-point function be normalized
as

z-w
(3.7)

and the highest weight states be normalized as

(3.8)

where Ω = ι?(1>1)® u(1>1) is the vacuum. These requirements relate the D-coefficients
to the normalization constants

>. (3.9)

The normalization conditions (3.7), (3.8) become

(M(U) \2 _ Γ J
Mv j j ) —
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With these conventions, the D coefficients read

j-ί

Π ra Π P] Π ra
l=l/2(k + j-i+l)

The structure constants of the operator product expression are related to the
D-coefficients by the relation

The normalization constants were computed in [24] in terms of Dotsenko-Fateev
integrals [20]. We give them here for completeness:

L , l ' r + T ' r ΓT W ~ ΠW Λ E*i-j]D']

Γ(/α2_)Γ(m + (/ - m>2-)Γ(n + (/ - nQα2.)

- 2

( ' )

/ Γ(α2_)Γ(m + n - 2r + (rf - mf - ri

ΓQα2

+ - r)Γ(m' - r' + (/ - m)α2

+)/>' - r' + (7 - φ2

+)

M Γ(α2 )Γ(nί - r' + n1 + (r - m - n +j)oc2

+)

where ί(/) = π(/) -f m(/) — 2r(/) — 1. In spite of its appearance, this expression is actually
symmetric in α2 ^α2,, /'<->/, n'«->n,m'<-»m [20].

4. Minimal Models

So far, we have considered the Dotsenko-Fateev models, where the value of the
central charge is a generic complex number. These models are non-minimal (they
involve infinitely many primary fields) and non-unitary. The Virasoro representa-
tions are simply degenerate, i.e., there exists only one singular vector (besides the
highest weight vector) in each Verma module. Subalgebras of these models are
believed to describe the critical behavior of g-state Potts models and 0(N) models
with q,N non-integer [19]. As we have seen, the corresponding braid matrices are
related to quantum group representations with generic quantum group parameter.

The interesting limit is when the parameter αl, related to the central charge
by c= 13 —όα2, — 6αl2, approaches a positive rational value. In this limit, the
discrete series of minimal models with c < 1 appears.

Some peculiar phenomena arise at these rational points: the Verma modules
of degenerate representations have infinitely many singular vectors, and the BRST
cohomology of the corresponding Fock spaces becomes more complicated [24].
Chiral primary fields exist only for a more restricted set of representation triples,
and one can select a finite number of primary fields that form, together with their
descendants, a closed operator algebra. On the quantum group side, this limit
corresponds to quantum group parameters which are roots of unity. In this limit,
some matrix elements of the braid matrices diverge.
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In this section we show that divergent matrix elements to not appear in the
braiding of screened vertex operators which are nonvanishing on BRST states. It
is sufficient to check this for the elementary fields Kf12)M> ^DMJ since all other
fields are obtained by fusion. Indeed, although the rigorous theory of the
meromorphic continuation and fusion of screened vertex operators for general αl
is not yet complete, it is clear that equations (2.3) continue to be valid for αl > 0,
provided a divergent contribution in the operator product is subtracted before
taking the limit.

In minimal models, the irreducible representation spaces of the Virasoro algebra
have highest weights hn,n such that (ri, n)eK = {1 ^n' ^p' — l.l^n^p — 1}, where
αi = p/p'. By the identification with the BRST cohomology of corresponding Fock
spaces [24], the chiral primary fields are constructed by fusion of the fields Kf21)M,
V(i2)M> so that L and M are in K. Consistency requires that braiding of fields in
this family does not generate other fields. We see from the explicit formulae (2.19),
(2.20) that the braid matrices of this family of fields do not contain divergent matrix
element. On the other hand, we also see that braiding two of these fields we generate
fields Ff21)M(z), Kf12)M(z) with MeK, LeK = {0 ̂  ri ̂  p', 0 ̂  n £ p} or MεK,
LeK. The point is that screened vertex operators are BRST invariant and therefore
map BRST states of BRST states. Now, for LeK - K, the boundary of the Kac
table, the BRST cohomology of the Fock space FL vanishes and BRST invariant
operators mapping from or to FL vanish identically on BRST states.

Thus general R matrices for minimal models are given by the formulae
(2.19)-(2.21), with the summation in (2.21) restricted to d± ̂  p — 1. Moreover one
has to take into account that screened vertex operators V^M vanish identically on
BRST states unless the fusion rules n(/) + m(f) + / (/) = 1 (mod 2) and | n(/) - n(/) | + 1 ^
/ ( / )^min(n ( / )-fm ( ' )-l,2p ( ' )-w ( ' )-m ( ' )-l) are fulfilled. Let us call F(L9N9M)
this fusion rule and F0(L, JV,M) the Sl/(2)-fusion rule (2.6). For generic αl, the jR
matrix elements (2.19) are by construction nonvanishing if and only if the fusion
rules F0(A, M, B\ F0(B, N, C), F0(A, N, D\ F0(D, M, C) are fulfilled. If α2. = p/p', the
/^-matrix elements R(AMNC)BD which arise from the braiding of chiral fields
obeying F-fusion rules are those for which F(A,M,B\ F(B9N,C), F(A,N,D),
F(D, M, C) are valid. We can set all other matrix elements to zero. The following
important property follows by inspection: Suppose that, for αi = p/p\ the left-hand
side of (2.10) is nonvanishing, i.e. the corresponding F-fusion rules are fulfilled.
Then the set of labels A± and D^ so that the F-fusion rules are fulfilled for both
R matrices on the right-hand side coincides with the set of labels for which the
F0-fusion rules are fϊlfϊlled. A corollary of this property is that although some
^-matrix elements are set to zero at αl = /?//?', the nonvanishing elements are
analytic in αl at the rational points. In particular, the explicit expressions of [13]
can be taken over.

The same reasoning is valid for the structure constants. In the recursive
definition (B.5)

— V—
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if the fusion rule is fulfilled for the labels on the left-hand side, then the value of
/! for which F0 holds for both D's on the right-hand side are the same as the
values for which F holds. In particular, the explicit formulae (3.10), (3.11) for the
structure constants are valid for minimal models provided F(I,J9K) is fulfilled. If
F(I, J, K) is not fulfilled, D2

JK = Cf

JK = 0.
Summarizing, we have shown that, for αi = p/p\ the braid matrix elements

R(AMNC)BD and the structure constants D*JK vanish unless the fusion rules
F(A, M, B\ F(B, N, C\ F(A, N, D\ F(D, M, C) and F(/, J, K) are fulfilled. If they do
not vanish, they are given by the same expressions (2.19)-(2.21) and (3.10), as for
generic αl.

Appendix A

We describe here the BRST cohomology of Fock spaces needed in this paper. The
computations are based on the results of Feigin and Fuchs [28] on the composition
series of Fock modules. For details see [24]. Let us first recall the definitions. The
Fock space Fm,m is a module over the infinite dimensional Heisenberg algebra
[απ,αm] = 2n<5M>_m. It is generated by a vacuum vector vm,m such that anvm>m = Q9

n > 0 and a0vm,m = 2αm,mt;m,m, with αm,m = £(1 - m')α_ - i(l - m)αlx.The definition

Ln = ̂ Σan-^k- Ko(n + IK, n φ 0,
fceZ

oo

LO = i Σ α-Λ + iαg - α0α0, (A.I)
k = l

where 2α0 = α_ — αl1 gives Fm,m the structure of a graded (by L0) Virasoro module
with highest weight /vm = i(fw'2 — l)αl — %(m'm — 1) + £(m2 — l)αl2 and central
charge c = 13 - όα2. - 6αl2. Let Vhm,mtC be the corresponding Verma module with
highest weight vector wOT,m, and φm,m be the canonical homomorphism of graded

Virasoro modules mapping wm>m to υm>m.
Let us first consider the case where αl eC\Q. By the Kac determinant formula,

if m'm ̂  0, Vhm,mtC is irreducible, so Ker φm,m = 0. Thus, since the dimensions of
the subspaces of fixed degree of Vhm,mtC and Fm,m coincide, φm,m is an isomorphism
and Fm>m is also irreducible. If mr < 0 and m < 0, Vhm,ntC contains the irreducible
submodule generated by a singular vector χ of weight hm,m + nϊm = hm,5_m. The
BRST operator Q-m'.Fm, _m->Fm,m is an injective homomorphism of graded
Virasoro modules. This can be shown by explicitly checking the sufficient condition
<2_miV9 _w φ 0 (see the Appendix in [24]). The image of υm,f _m is a non-zero singular
vector of Fm.m and generates an irreducible submodule. Now, either φm,m is an
isomorphism or it is not [A more careful analysis shows that the first possibility
is realized]. If it is, β_mϋm %_m must be proportional to φm>mχ, and the irreducible
factor module Xm.m = Vhm,JVhm,m+m^c is isomorphic to Fm%m/β_wFm,>_w. If φm,m

is not an isomorphism, φm,mχ vanishes, β_mι;m%_m<£ Imφm,m, and φm,m projects to
an injective homomorphism from J^m m to Fm,tJ Q-mFm, _m. Counting the
dimensions shows this homomorphism is also surjective, and we have the
isomorphism of graded Virasoro modules

f'm'.-m (A.2)
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The latter space is called the space of BRST states. The case m' > 0, m > 0 is treated
using duality. The dual (or contragradient) module F*,m with Virasoro structure
defined by ίLrl = L_π is isomorphic as a graded Virasoro module to F_ m % _ m .
Moreover, with this identification, one has tQm = Qm. In this case the isomorphism is

^m'm = Ker (βm: Fm,m -> Fm, _ J. (A.3)

Let us next consider the role of the BRST operator if rri or m are zero. Although
this case was excluded in [24], the computation of the Appendix to [24] shows
that Qm: F0>m->F0 _m is injective and, since /ι0>m = /ι0 _m it is an isomorphism. For
later purposes let us extended the definition of Qm to m = 0 by setting Q0 = l:

FmΌ-^FmΌ-
The rational case αi = p/pf is more complicated and was analyzed in [24]. One

consider the BRST operators

*m'—p',p — m * m'm *m',—τn V * V

for 1 ̂  m' ^ p' — 1,1 ̂  m ̂  p — 1. Note that αm,-P',m-P

 = αm'm It was shown in [24]
that QmQp-m

 = Q and that the irreducible foactor module J*fW'W, which is the
quotient of the corresponding Verma module by its maximal proper submodule,
is isomorphic to the space of BRST states

^m,m^Kerβm/Imβ,_m, 1 ̂ m<'^p<'>-1. (A.5)

This ends our discussion of the BRST cohomology of Fock spaces. We turn to
screened vertex operators.

Let us abbreviate (w', m) by M and (m', — m) by M. Screened vertex operators
are BRST invariant:

QιVL

NM(z)=VL

Nύ(z)Qm, /,m^0. (A.8)

Actually there is a phase in this formula which can however be absorbed in a
redefinition of the BRST operator. If m or / vanish in (A. 8) the formula continues
to be valid provided one identifies β0 with the identity operator. In this paper we
are concerned with operators VχM with /', /, m', m ̂  0 and n', n ̂  1, for generic αl
and with 0 ̂  /(/), m(/) ̂  p(Ί and 1 ̂  n° ̂  p° - 1 for αi = p/p'. We see that these
operators map BRST states to BRST states and

V$M(z) = 0 (A.9)

on BRST states if αl is generic and /', /, m' or m vanish. If αl = p/p' a complete
analysis would require computing the BRST cohomology in the case where
/ ( / ) = 0 mod p°; this case was not analyzed in [24], and is a little tricky. Fortunately,
however, to establish that some screened vertex operators vanish, it is not necessary
to know the whole structure. Consider the operator

By (A.8), it maps the kernel of βm to the kernel of β0 = 1. Thus it vanishes on
BRST states. Similarly, the operator
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maps the image of Qp-m to the image of Q0 = 1, and vanishes on the cohomology.
We see that the operators

with L,N,R,SeK and M = (m\p) or (m',0), that are generated by braiding, vanish
on BRST states. By the fundamental symmetry αl<-> α+, (n',n)<->(n,tt'), the same
conclusion can be drawn if, in (A. 10), M = (p',m) or (0,m).

Appendix B

This appendix contains the proof that (3.3) is a solution of (3.2). First we solve

db

2c(x)r(b22d\x)ca = r(c22a\χ-1)dbd
a

2d(x). (B.I)

The special case

4"i(*M/±2,2,2J|x)I±u^^ (B.2)

gives the recursion relations

Λί + 2 /γ\ Jl + lΛyΛ J/-1 ___± / //-2 / D ^ \
"2,1+1 W — Γ / _ I T α2,l W> "2,ί — — rrή - "2,ί-l V0-^/

which can be easily solved. The solution is checked to be consistent by inserting
it back into (B.I). The unique solution of (B.I) normalized by ά\± — 1 is

j (B.4)

The other d-coeffϊcients are given by fusion

ι,*M (B-5)

The last factor enforces the normalization dj

n = 1.
The crossing relations (3.2) are verified inductively using the recursive definition

of r-matrices and (A.5). We do here the most complicated induction step explicitly:

r(α,w+ l,n,c\x)bdd
a

m+l,b(x)

r -|

Γ "1

= Σ Σ r(β> 2' W' rfl I *)tfr

(B.6)
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It is not difficult to prove by induction that (3.3) is the solution of the recursion
relation (B.5).
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