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Abstract. We investigate the special properties of Mandelstam metrics in regard
to changing weights in path integrals and relations between determinants of
different spins. Regularizations of determinants are discussed along the lines
of Sonoda. Weyl anomalies developing at zeroes of metrics in reparametrization
invariant regularizations are evaluated in terms of Arakelov metrics. Holo-
morphic forms are constructed, and determinant identities for Arakelov and
Mandelstam metrics rigorously established for any weight and generic even
and odd spin structures.

1. Introduction

Determinants of Laplacians are playing an increasingly important role in diverse
areas of physics and geometry. The foundations of their theory have however been
developed mostly for compact manifolds and regular metrics. In this paper we
wish to examine properties of determinants on certain surfaces with degenerate
metrics and punctures which arise as Feynman diagrams in string theory.

It is a fundamental principle of string theory that scattering amplitudes depend
only on the conformal class of the Feynman diagrams and not on particular choices
of metrics within the class. Nevertheless it is sometimes useful to select a privileged
representative to carry out explicit computations. For surfaces, two metrics arise
which in some sense are opposites of one another: metrics with constant curvature,
and metrics with all curvature concentrated at isolated points. The former are
familiar from hyperbolic geometry, and their determinants now well understood
in the compact case, as special values of the Selberg zeta function [1]. Examples
of the latter are | v+1 4 or |ωj2, where v+ and ωz are respectively a meromorphic
spinor [2] and a meromorphic form [3,4]. Their poles can be viewed as punctures
on the surface indicating external string states, and their zeroes as interaction
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points in a Feynman diagram representation. Such surfaces are known as
Mandelstam diagrams, and we will refer to their metrics as Mandelstam metrics.
For Mandelstam diagrams with at least two punctures, physical parameters given
by interaction times, twist angles, internal and external momenta in their natural
ranges provide a single copy of the corresponding moduli space. This is basic to
a light-cone gauge formulation of string perturbation theory [3,5].

Relations between determinants of different spins for Mandelstam diagrams
are central to the issue of unitary of the Polyakov string. At a formal level, a
relation between scalar and spin 2 ghost determinants, as well as the equivalence
between light-cone gauge and Polyakov approaches for the bosonic string was
derived in [6]. A careful treatment of this case together with modifications dictated
by regularization procedures was provided later by Sonoda [7]. Formal relations
between Dirac and spin 3/2 superghost determinants have been obtained
in [8].

In this paper we investigate this type of relations for any spin. We provide a
heuristic argument for them in the spirit of Witten's arguments for multiplicative
Ward identities [9]. In the present context however, the conformal anomaly is
crucial since we deal with path integrals over fields of different spins. Thus the
identities hold only for Mandelstam metrics, as it should be expected. At the
rigorous level, we follow Sonoda in defining the determinant ratio

for Mandelstam metrics by scalings to a regular metric. We show that the
reparametrization invariant regularization of the Liouville action develops a Weyl
anomaly at each zero of the Mandelstam metric. Elimination of the Weyl anomaly
leads to equivalence with Sonoda's coordinate-dependent regularization, and the
proper definition for (1.1) is thus completely unambiguous. Bosonization [10,11,12]
and Sonoda's methods can then be applied to establish the conjectured identities,
for any spin and both odd and even spin structures. For surfaces with punctures,
coordinate-dependent regularization is the only reasonable procedure, and the
same analysis can be applied to produce similar identities.

Finally we note that for spin 1/2 the determinants of zero modes in (1.1) is finite,
so we get a genuine notion of determinants for Laplacians on spinors with respect
to Mandelstam metrics. It would be valuable to know whether this notion admits
spectral theoretic interpretations or other characterizations besides the identities
discussed here. For hyperbolic surfaces with cusps, an interesting candidate for a
determinant based on scattering data has been suggested in [13].

2. Formal Considerations

We shall be mainly concerned with determinants of Laplacians acting on fields
b, c of ranks n and 1 - n on a Riemann surface M. More precisely the Cauchy-
Riemann operator dz sends b(dz)n and c(dz)1"" to d-bdzdzn and dzcdzdzl~n. If we
choose a metric ds2 = 2gzzdzdz to represent the complex structure of M, then the
covariant derivatives V" and Vί can be written as
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(2.1)

With respect to the pairing

\\c\\2 =

it is readily seen that
Laplacians

(0"~) "cc, (2.2)

= -V;~S (V") f=-V*+ 1, and we can form the

It is evident that the spectra of Δn 9Δ±n9 and Δί _„ are identical, so henceforth we
shall restrict to determinants of A ~ for 1/2 ̂  n. For n half-integer, proper definition
of rank n tensors requires selection of a spin structure on M, and we always assume
this has been done. The genus of M will be denoted by h.

The relations between determinants of different weights we are looking for are
suggested by a change of variables in the chirally symmetric path integrals over
anti-commuting fields b and c

Zn(zι, - -, WM) = f D(bbcc) exp (- /„(&, c))

Here the action is given by

1

2π 2

M + ) „

Π (2.4)

(2.5)

and Yn is the index of the Laplacian A n which gives the violation of fermion
number. Recall that the Riemann-Roch theorem asserts that

Tn = (#b zero modes) - (#c zeromodes) = - \(ln - l)χ(M), (2.6)

where the dimensions are taken over complex numbers. To pass from a rank n
tensor b to a rank n + 1 tensor bf we need a holomorphic one-form ωz so as to set

b' = ωj>, c' = ω^c. (2.7)

For this transformation to be an isometry with respect to the pairing (2.2), the
metric ds2 = 2gz-dzdz cannot be any metric but must be chosen to be the singular
metric

2\ωz\
2\dz\ (2.8)

We shall refer to metrics of the form (2.8) as Mandelstam metrics. A holomorphic
form will have 2h — 2 zeroes, and we shall assume for simplicity that the zeroes of
ωz are simple, and denote them by Rα. To preserve locality of the path integrals,
we must require c' to be continuous, V to vanish at Ra. Vanishing of the fermionic
field b' at Ra can be insured by an insertion of b'(Ra), and we are thus led to

2

M 2/ι-2

» / > Π

M

(2.9)
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Note that the fermion number violation is now Tn + (2h — 2) = Tn+l9 as it should
be. However the expression (2.9) cannot agree with the original expression (2.4)
since their tensor types at Ra are different. To remedy the situation, we introduce
powers of the non-vanishing rank two tensor at Ra,

dω(Ra). (2.10)

The naive powers to go with (2.9) would seem to be |δω(JRα)| (n+1}, and they would
be correct if the determinants of Δ~ were scalars as in the case of regular metrics.
Here the requirement that (2.7) be an isometry has forced us to take singular
Mandelstam metrics (2.8). We shall see in Sect. 4 that any regularization consistent
with Weyl scalings will force the determinant ratio

Wn(\ωz\
2) =

detM:
(2.11)

to transform as a tensor of rank(cw/12,cn/12) at each zero Ra of the metric. Here

cn = 6n2 — 6n + 1

is the familiar coefficient of the conformal anomaly, and φn

a are a fixed
basis of zero modes for V*. It follows that the proper correction factor is
|^(#jr(w+1)~(Cn+1~Cn)/12 = \Sω(Ra)\-2n~l. Thus the change of weight formula in
path integrals should be

M+Yn M

Π M^ΠΦv/)
1 1

2

= fD(fcftcc)exp(-/B+1)

M+rn 2 Λ - 2 M 2

Π t(2() Π b(Ra)l\Φj)
1 1 1

M

Y[ ω(Wj)
1

M+rn

Π ω(Zi)

2

2 Λ - 2 -2n-l

J~[ δω(#α)
1

(2.12)

To derive relations between determinants we consider (2.12) with the minimal
number of insertions to absorb all zero modes. For simplicity we discuss now only
the case of weight n > 1, so that there are no c-zero mode, the number of fc-zero
modes is Γπ, and we may set M = 0. The result is

*̂ ̂  l ^ n i t . / **/ \ 11 vlC U LΛ M .μι . < , f », _ι_ 1 x ^ - » \ ι θ

2Λ-2

1
(2.13)

It is worth observing that with the regularization we shall adopt for the determinant
ratio l^n(|ωz)|2) will scale as

- ί)cnμ) (2.14)
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for constant μ and fixed choice of zero modes, so that (2.13) is indeed independent
of any normalization for the holomorphic form ωz. It would otherwise carry little
information.

The relation (2.13) can be simplified considerably if we choose the bases φn

a

and φa+ * appropriately. First we need a propagator, i.e., a rank n form meromorphic
form in z with a simple pole at w. Evidently two such propagators will differ by
a holomorphic n form, and thus such propagators are parametrized by Tn

parameters. If we choose these parameters to be Tn generic points on the Riemann
surface M, we can construct the corresponding propagator explicitly as

(-In(b,c))b(z)c(w)]\b(zϊ

(2.15)

Then S"(z, ω; zί , . . . , zr^ is a rank n tensor in z with a unique pole at w and zeroes
at Z;. Given a basis φ" of holomorphic rank n tensors, we can construct a basis
for holomorphic rank n + 1 tensors by letting

φ^b(z) = ωzS
n(z, Rb;zl9... 9zr)(dω(Rb))<*- ^2. (2.16)

In (2.16) the factor (dω(Rb))(n~ί)/2 is necessary to insure that φn

γ+*b be a rank
n+ 1 tensor. The reason is that SΛ(z,w;z l 5...,z r) is a rank 1 — n tensor in w, so
that lim ωzS

n(z, Rb; z1 , . . . , zr ) is a rank 2 tensor at Rb for any weight n. It is now
z->Rb "

immediately seen that the matrix φ" + 1(zi9Rb) is block diagonal, and

Thus we obtain the remarkable relation

det'dΓ detMn + l

'

2h-2

Π

(2.17)

(2.18)

With the regularizations described in Sect. 4, we shall establish later by explicit
computations that (2.18) does hold for Mandelstam metrics ds2 = 2\ωz\

2\dz\2,
together with its analogues for weights n = 1 and n = 1/2, and for both types of
spin structures. The case n = 1 is the one treated in Sonoda [7]. The presence of
the factor involving 8ω(Ra) in (2.18) is required by the fact that Ww(|ωz |

2) is a tensor
of rank (cjl29cjl2) at each Ra. Perhaps more important, the above discussion
shows that this factor also leads to invariance of (2.18) under constant scalings of
ωz. For rank n = 1 the relation (2.16) between bases of holomorphic differentials



634 E. DΉoker and D. H. Phong

and quadratic differentials simplifies, and this key scale invariance in ωz of (2.18)
can be checked directly, assuming the reasonable behavior of Ww(|ωz|

2) given by
(2.14).

3. Arakelov Green's Functions and Arakelov Metrics

To regularize determinants with respect to the metric |ωz|
2, we shall scale |ωz|

2

to a regular metric. Conformal factors between metrics of given curvatures and
their Liouville actions are most conveniently expressed in terms of Arakelov Green's
functions, so we begin with a brief study of their basic properties and scaling
behavior.

Let ds2 = 2gzzdzdz be a fixed metric on the surface M. The usual scalar Green's
function G(z, w) is symmetric and characterized by

(3.1)

Jd2z0zz-G(Z>w) = 0. (3.2)

The Arakelov Green's function GA(z, w) on the other hand will be defined by

- dzd,GA(z, w) = 2πδ(z - w) + -̂ -, (3.3)
2(tt— 1)

id2z0zfKG^(z,w) = 0, (3.4)

where R = —gzzdzdzln gzz is the curvature scalar. Equation (3.4) is just a normaliza-
tion condition. We note that GA(z, w) is invariant if we scale gzϊ by a constant.
Solving for GA(z, w) in terms of the usual Green's function G(z, w) gives

G\z, w) = G(z, w) +

+ ι6π2(h_1}2^2υd2u9vϋRG(v, u)guύR (3.5)

which shows that the Arakelov Green's function is symmetric,

G^(z,w) = G>,z). (3.6)

Let now dS2 = 2gzzdzdz be another metric conformally equivalent to ds2, with

If GA(z, w) denotes the corresponding Arakelov Green's function, it is readily seen
that the same equation (3.5) will hold, with G(z,w) replaced by G^(z,w) on the
right-hand side. Since the curvatures of the two metrics are related by

gz,R = gz,R-2dzd,λ. (3.7)

we can evaluate the right-hand side explicitly and obtain

G\z, w) = Q\z, w) + jr^-rMz) + A(w)) + — ~ SW, λ). (3.8)
\n — L) \n— i)
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Here S(g, λ) is the Liouville action

S(g, λ) = $d2z(λdzd,λ + gzfRλ). (3.9)

At coincident points, Green's functions will diverge as — Ind2(z,w), where
d(z, w) is the reparametrization invariant distance with respect to the metric ds2.
Thus we may regularize the Green's function G (̂z, w) by

G^(z, z) = Km (G^(z, w) + In d2(z, w)). (3.10)

Note that G^(z, z) is a reparametrization invariant scalar. For coincident points
the scaling law (3.8) becomes

GA(z, z) = G^(z, z) + — -̂ λ(z) + β c0? fy (3 ! j)

since rf2(z, w) = d2(z, w)e2λ(z) up to higher order terms for z near w.
We can now eliminate the explicit dependence on the genus by forming

combinations of Arakelov Green's functions. The simplest such expression is

- GA(z9 w) + iG^(z, z) + iG>, w)),

which is immediately seen to agree with the similar expression in terms of
the Green's function G(z,w) and its reparametrization invariant regularization
G(z,z) = lim(G(z,w) + lnd2(z,w)). This is known to be the same as the

(-1/2, -1/2) x (-1/2, -1/2) form on M x M

( z z \
F(z, w) = exp - 2π £ Im J ωβm Ω)ΰl Im J ω, | £(z, w) |2, (3.12)

\ IJ w w /

where £(z, w) is the prime form, ωt a basis of abelian differentials, and Ωu the
corresponding period matrix. A more unusual combination is obtained by selecting
any (2h — 2) points Ra on the surface M, and considering

2Λ-2

Σ <Wfl,Rb). (3.13)
α,6=l

Unless stated explicitly otherwise, coincident points are included at which the
Arakelov Green's functions are taken to be their regularized values. The expression
(3.13) now transforms as

2h-2 2/ι-2 2Λ-2

£ GA(Ra,Rb)= £ GA(Ra,Rb) + 6 £ λ(Ra) + 24%, A). (3.14)
α,h=l α,ί>=l α, fc=l

This equation will be needed when evaluating the Weyl anomaly developing at
each zero Ra of a Mandelstam metric \ωz\

2 ~ \dω(Ra)\2\z — Ra\
2.

So far we have discussed Arakelov Green's functions with respect to any metric
ds2 = 2gZ;dzdz. Some calculations simplify if we make use of some particular metric
on the surface M. Recall that M can be imbedded in its Jacobian Ch/(Zh + ΩZh) by
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the Abel map

where P is a fixed base point. The induced metric on M from the flat metric on
the Jacobian is

Λf = Σ ^(z)(lm Ω)Γjl ώM (3.15)
13

The Arakelov metric on M is a metric gA whose curvature form gffR
A

is equal to 2π(l - h)jzί/h. This condition determines g£ only up to a multiplicative
constant which we shall choose later. It is then evident that the Arakelov Green's
function GA(z9 w) with respect to the Arakelov metric is the same as the usual Green's
function with respect to the metric jz- induced from the Jacobian.

This process of passing from a metric to another metric whose curvature is
proportional to the volume form of the former can in principle be repeated
indefinitely. With suitable normalizations of the volume, it will converge to constant
curvature metrics.

Returning to the Arakelov metric proper, we note that its Arakelov Green's
function is actually rather simple. Since the form F(z,w) of (3.12) satisfies the
equation

dA-ln F(z, w) = 2π<5(z, w) - njά (3.16)

the Arakelov Green's function for the Arakelov metric must be equal to

(3.17)

up to an additive constant independent of both z and w. This implies that up to
an additive constant we have

-In gA = lim (GA(z, w) + In \z - w|2). (3.18)
w-»z

The initial constant ambiguity in the definition of the Arakelov metric can now
be eliminated by requiring that (3.18), and hence (3.17), hold exactly as they are
written there. The relations (3.17), (3.18) are sometimes referred to as residue
formulas. The usefulness of Arakelov metrics and their Arakelov Green's functions
in bosonization can now be traced to the fact that F(z9 w) is essentially the correlation
function of two normal-ordered vertex operators

(2fc)
fc2/2(2^f')2/2 (:eίkx(z)::eίk'x(^:y = δ(k + K)F(z, w)~fc2 (3.19)

in a bose theory of scalar fields x with lagrangian dzxd^x/4π. In Arakelov's original
work [14] norms on line bundles are defined by setting' ||1J| = exp(-G^(z,w))
for the canonical section lw of the point bundle 0(w). The above relations then
express the fact that for the canonical bundle the new metric defined this way will
give back the Arakelov metric.

The right-hand side of (3.18) is a regularization procedure for G^(z,w) at
coincident points which is coordinate dependent, but does not require a choice of
metric within the conformal class. We shall sometimes denote it by :GA(z,z): to
distinguish it from the GA(z,z) of (3.10). Note that exp:G^(z,z): is a (-!,-!)
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tensor. For the Arakelov metric, the reparametrization invariant regularization
GA(z, z) vanishes

GA(z,z) = Q. (3.20)

This follows from (3.18) and the fact that the distance d^(z,w) equals
\z — w\(2gA

z)
ί/2 up to higher order terms.

This completes our survey of Arakelov Green's functions.

4. Liouville Actions and Regularization of Determinants

We turn now to the problem of defining a determinant for the surface M with a
Mandelstam metric |ωz|

2, where ωzdz is a holomorphic abelian differential.
Following Sonoda [7] we introduce a regular (i.e. with neither zeros nor poles)
metric g2i conformally equivalent to |ωz|

2,

|ωz|
2 = exp(2σ(z))0zz, (4.1)

Taking the curvatures for both sides gives an equation for σ(z), which can be solved
using the Arakelov Green's function GA(z, w) for the metric gzi

2h-2

σ(z)=-i Σ G\z,Ra)-^c. (4.2)
α=l

Here Ra, a = 1,..., 2h — 2 are the zeroes of ωz which are assumed to be simple,
and c is a constant measuring the relative normalizations of |ωz|

2 and gzz\

2Jι-2

Π
α=l

(4.3)

Formally Weyl scalings of determinants (more precisely of ratios Wn(g) of (2.11))
would suggest the following definition for W/

π(|ωz|
2):

Wn(\ωz\
2) = ^fo)exp(-2c.%,σ)) (4.4)

for fixed zero modes, S(g, σ) the Liouville action of (3.9), and

cn = 6n2 - 6n + 1

the coefficient of the conformal anomaly for tensors of rank n. However the Liouville
action diverges logarithmically for scaling factors σ(z) of the type (4.2) which have
logarithmic singularities at the points Ra. There are then two ways of regularizing
the Liouville action which we shall examine in turn:

• Cutting out a reparametrization invariant, but metric dependent disk Dg(Ra) =
(d(z,Ra) < ε} around each Ra,

Scov(0,σ) = lim J d2z(dzσdz-σ-(dzd,lngz,)σ)-^-(2h-2)lnε2. (4.5)
ε->OM(ε,g) ^

The surface M(ε, g) is the surface M with the disks Dg(Ra) removed.
The regularized Liouville action (4.5) can actually be computed explicitly in

terms of Arakelov Green's functions using the expression (4.2) for the conformal
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factor σ(z):

Scov(0,σ) = lim-|- J d2z2tΣ dzG
A(z,Ra)dfG

A(z,Rb)
ε->0 IZπ M(ε,g) a,b=l

-±(2h

An integration by parts produces

ε-»0 l^π M(ε,0) <*

2h - 2 2h-2/ -

τcΓ Σc z , a GA(z,Rb)48π 0 = ι ^(Rfl) b = ι

-2) In ε2+iφ-l). (4.6)

The first term on the right-hand side vanishes due to the normalization condition
(3.4) and the fact that M(ε,0) does not contain any of the sources Ra. As for the
second we may replace GA(z,Ra) effectively by its asymptotic -ln|z — Ra\

2. For
loφa GA(z,Rb) can be replaced by GA(Ra,Rb\ while for b = a it should be
replaced by -Inε2 + GA(Ra,Ra\ with GA(Ra,Ra) the reparametrization invariant
regularized Arakelov Green's function at coincident points. The result is

1 2Λ-2

Scm(g,σ) = - Σ GA(Ra,Rb) + &h-l)c (4.7)
^4α,b=ι

with c given by (4.3). In particular we can read off the scaling behavior of the
Liouville action, under a change from g to g = exp ( — 2λ)g with λ a regular function.
Since the normalization constants will scale as

1 2/1-2

$έ(h- L)-2S(ό,X)-- Σ λ(Ra) = &(h-l) (4.8)
o « = ι

and Arakelov Green's functions scale as in (3.14), we see that the usual additive
rule for Liouville actions in the case of regular metrices g, g and regular scalings
λ9ά9σ = ό — Λ,

) (4.9)

gets modified to

1 2Λ-2

Scm(&ό) = S(g,λ) + 8^(9,0)-- Σ λ(Ra) (4.10)
1̂  α = l

for scalings σ of the form (4.2). This particular relation can also be derived directly
from (4.5). It can be interpreted as a Weyl anomaly developing at each singular
point #α in a metric.

The net outcome is that the naive definition (4.4), (4.5) for the determinant ratio
P^n(|ωz|

2) leads to a scalar which depends on the choice of the regularizing metric
dzz We can restore independence from gzί by defining instead
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2Λ-2

Π
a=ί

2h~2

toJ exp Σ

^ χ

2h-2 2h-2

Π (>/^M.Γ1/4 Π |3ω(KJI1/3 , (4.11)

which is now a tensor of rank (cM/12, cM/12) at each Ra, a = 1,..., 2h - 2.

• Cutting out Weyl invariant, but coordinate dependent disks D(Ra) = {\z — Ra\ < ε}.
This is the choice of Sonoda, and letting M(ε) = M — (D(Ra)\ the Liouville action
is regularized by

%,σ) = lim-ί- J d2z(dzdzσ-(dzdzlngzz)σ)-±(2h-2)lnε2. (4.12)
ε-+0 12π M(ε)

It is easy to see that the additive rule (4.9) is now unchanged, and exp( — 2cnS(g, σ))
is a rank (cn/l2,cjl2) tensor at each Ra. This means that WΠ(|ωz |

2) defined by
(4.4) and (4.12) is again a rank (cM/12,cn/12) tensor which is independent of the
choice of the regular metric gzz. The same calculation leading to (4.7) now gives

1 1 2h~2

S(g9a) = —- £ GA(Ra9Rb) + — £ GA(Ra>Ra)'+τ(h- l)c (4-13)

from which the additive rule can also be verified using (3.8). We can then show
that the two regularizations (4.11) and (4.4), (4.12) lead to identical notions. Since
both are independent of gzf, we may choose gz~ to be the Arakelov metric gA

i9

upon which GA(Ra,Ra) = Q and :GA(Ra,Ra):= -lngA. We then obtain for both
regularizations the same answer

Γ 2h-2 r \ / 2 Λ - 2 \ c n / 1 2

(4.14)

Thus Weyl scaling rules lead to an unambiguous notion of determinants for
Mandelstam metrics.

5. Evaluations in Terms of Theta Functions

The goal of this section is to justify the formal rules of Sect. 2 by evaluating
explicitly the regularized determinants of Sect. 4, using bosonization formulas.

Bosonization expresses correlation functions of the form (2.4) in terms of the
function F(z9 w) of (3.12) and (3.19), or equivalently in view of (3.17), (3.18),

in terms of Arakelov Green's functions for the Arakelov metric [10-12],
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(5.1)

The theta characteristics δ = (δr,δ") are given by
Z, Wj

/"> ?/ i ?'/ X"1 f \~* f /"Λ 1 \ >4 ι /"I ' i II ίC <Λ\ί20 + d = > ω/ — ) Co/ — (2n — l)zι -I- ί2α 4- oc , (5.2)
Y P Y P

where (α', α") define the spin structure of the b(dz)n, c(dz)1 ~M, and Δ is the Riemann
vector of constants. A more precise chiral version of (5.1) is also in [12],
which is of special interest since it shows that the meromorphic propagators
Sw(z, w;z l 5...,z r ) of (2.15) can all be written in terms of theta functions:

\ T-T / s \ ^ " I β Γ Ί / V f V ί f) 1\ Λ \

tu^cwjj- Λ L«J^^ω/-^^ω/-l«- j

(5.3)

Here σ(z) is a multi- valued nowhere vanishing holomorphic form of rank h/2. The
ratio σ(z)/σ(w) can be expressed as

•w

for any choice of /z points p^ on M. The factor Z4

1 is the partition function of a
chiral scalar. The expression (5.3) is anomalous, but the anomalies will cancel in
all relevant formulas. The passage from (5.1) to (5.3) requires extraction of the
correct conformal and gravitational anomalies from the theta factors and Arakelov
Green's functions to produce the holomorphic forms σ(zt ) and σ(wj ).

As a consequence the propagator of (2.15) is given by (say n > 1)

S"(z,w;Zl,...,zr) = -

Y\E(W,Zj)\σ(W)
j

Explicit expressions for holomorphic n-forms can be obtained as well. In fact the
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operator product expansions of the b, c system imply that
rn

-w)φn

k(z) (5.6)
i

with φl(z) a basis of holomorphic n-forms. Applying (5.5) gives then

These formulas are useful in some multiloop calculations for string scattering. For
our purposes, it is better to proceed inductively as in (2.16), and we shall make
use only of non-chiral bosonization as stated in (5.1). For n > 1 recall that a basis
φn

a

+l of holomorphic (n + 1) forms can be obtained from a basis φn

a of holomorphic
n-forms by

Φn

a

+ί(z) = ωzφ
n

a(z\ a=l,...,YH9

Φ rΙΛ(z) = ωzS"(z, Rb',zl9... ,zTι)(dω(Rb))<*- 1)/2, (5.8)

where the (2ft — 2) points Rb are the zeroes of the holomorphic form ωz. For n = 1
the construction (5.8) has to be modified to account for the presence of the c zero
mode which is just a constant:

α=l, . . . ,2 fe-3 . (5.9)

Here ωl are a basis of abelian differentials, and dz (In £(z, R2h_2)/E(z, Ra)) is just the
abelian differential of the third kind with poles at R2h-2 anc* Ra- Finally for n = 1/2
we consider separately the cases of even and odd spin structures. Generically for
even spin structures, the b, c fields of rank 1/2 have no zero mode, and the (2ft — 2)
holomorphic 3/2 forms can be constructed as in (5.8),

φW2\z) = ωzSV2(z,Ra)(dω(Ra)Γίl\ a= l,...,2ft-2 (5.10)

with S1/2(z, w) the Szego kernel. On the other hand for generic odd spin structure
(α',α") the b,c fields will have exactly one zero mode ftα given by

and the (2h — 2) holomorphic 3/2 forms will be obtained by a construction more
akin to (5.9),

φ32!

h

2-2(z) = ωzhM (5.H)

and S1/2(z, w;R,Rf) is the meromorphic 1/2-form in z with poles at w and R', and
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a zero at R given by

0[α](z + Λ - w - *') £(Z,Λ)£(w,Λ') (J Π)

£(z, w) 0[α](J? - Rr) £(w, K)£(z, #')

Next, bosonization formulas give determinants of Laplacians in terms of arbitrary
insertions at a fixed number of points zt and w,-. As in the case of zero modes, it
is useful to choose these points inductively. We shall make the following choices:

tensor rank Insertion for n Insertion for n+l
rn ^n_ 2h~2

n>l Y\ b(Zi)
1 ~1

h h 2H-3

n=l Π b ( Z i ) c ( w ) Y[b(Zi) Y[ b(Ra)
1 1 1

2Λ-2

n = 1/2 even spin str. No insertion Y[ b(Ra)

2Λ-3

n = 1/2 odd spin str. b(R)c(R2h.2) [Ί b(Ra)b(R) (5.13)

With these choices it is readily seen that

det φa+1(zb) = det φn

a(zc) Y[ ω(zί) f| (dω(Ra))(n+1)/2,
i i

n > 1 or n = 1/2, even spin structure

h 2Λ-3

i i
/2/ι-3 \3/4

= ω(R)ha(R)l Π dω(Ra)J , n= 1/2 odd spin. (5.14)

Finally we need some basic relations between ωz, the Arakelov metric, and the
Arakelov Green's function which follow readily from the defining equation
QAz = lωz!2exP(~2σ(z)). At general points Zj we have

/ 2h-2 \

lω^l^exp - Π GA(Zj,Ra)-c )gA, (5.15)
V i /

while at the zeroes Ra of ω^

R κ } 2 (5.16)

Recall that we have chosen the Arakelov metric for convenience, and the constant
c as given by (4.3) gives the normalization of ωz.

We can now apply the bosonization formulas (5.1) with the above choices of
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zero modes and insertion points. Since the .Rfl's are the zeros of an abelian
differential, they satisfy/^ -f —\-R2 h_2) = 2Δ, and all theta factors will cancel in
ratios Wn+i/Wn. Using (5.15) and (5.16) we can also eliminate explicitly all
dependence on the insertion points zj9 w, R, and just leave dependence on insertion
points #α, 0 = 1,..., 2/z — 2. The net results are

wn
2h-2

- £ GA(Ra9Rb)]exp(3n(h-l)c), n^l, n = 1/2, even spin
2 α,b= 1

l

n = 1/2, odd spin. (5.17)

These are relations between determinants of different weights for Arakelov metrics.
They can be rewritten more explicitly as

detM; 2Λ-2

Z £

α , b = ldetMJ

For n = 1/2, odd spin, the relation becomes

2Λ-2

^rakelov, n ̂  1 or n = 1/2, even spin.

J l / 2

3/2

-, n=l/2. (5.18)

To pass to Mandelstam metrics we note that the defining relation (4.14) and Eqs.
(5.15), (5.16) imply

2/1-2 \/2h-2

i Σ G^α,£b) Π ί
α,6=l A 1

(5.19)

Combining (5.17), (5.19) gives the desired result,

Wn+l

wγγ n
ω,r) =

2Λ-2

Π
α= 1

2/1-2

Π

, n ̂  1 or n = 1/2, even spin structure,

1/2 (5.20)

\ "α I "α/ Arakelov

odd spin structure.

6. Surfaces with Punctures

The above analysis can be extended to the case of surfaces with punctures
M* = M — {ZA}, i.e., metrics |ωz|

2, where ωz has poles at points zA9A = l9...,N.
As shown by Sonoda, one can still define the ratio P^n(|ωz|

2) by regularizing the
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Liouville action, the only difference between zeros and poles of ωz reflecting itself
in the relative signs of the Dirac point masses in the curvature. The new subtlety
lies rather in the fact that for surfaces with punctures ZA the zero modes should
also include meromorphic forms with simple poles at ZA. This difficulty is taken
care of by noting that given a coordinate system around each zA9 a basis of
meromorphic forms mA can be singled out by requiring that mA be orthogonal to
holomorphic forms and have singularity δAB/z — zB near ZB. The regularized
W«(lωzl 2) °f (2.11) for a choice of holomorphic zero modes φ" can then be viewed
as the regularized W7(|ωz|

2) for the basis (φn

a,mA) of holomorphic n-forms on M*.
Altogether W*(\ωz\

2) is then a tensor of type (cΛ/12 - n + 1, cn/12 - n + 1) at each
ZA. In particular the ratio W%+1/W*(\ωz\

2) is a scalar in ZA. Its dependence on

the scale of \ωz\
2 dictate that it be proportional to (ψ- -2n

where OL is the

residue of ωz at ZA, which is a scalar. This means that the change of weight formula
for Mandelstam metrics with both zeroes and poles should read

M+Yn M

M+Tn 2h-2+N

Π «**,) Π

M

Π
M+rn

Π ω(z,)

2 2h-2 + N

Π
1

N \ 2 n2"~Mrκ (6.1)

Careful duplication of the arguments for zeroes of ωz shows that indeed (6.1) holds
with precisely this additional factor on the right-hand side. Thus

Wr r M .

w

W*/2
CO^ ) =

2h-2 + N

Π
α = l

2H-2+N

Π
α = l

A=\

-2n

t ̂  1 n = 1/2, even spin structure,

1/2 '^2r2)'2 Π I J-1, odd spin. (6.2)
\ ''α I ''α / Arakelov ^ 4 — 1
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