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Abstract. We consider the energy dependent super Schrόdinger linear problem
N ' N

0, £ λί(εidφ + ηiψ) = Q which is a direct general-

ization of the purely even, energy dependent Schrόdinger equation discussed in
[1]. We show that the isospectral flows of that problem possess (JV + 1)
compatible Hamiltonian structures. We also extend a generalised factorisation
approach of [2] to this case and derive a sequence of N modifications for the
2N component systems. The nth such modification possesses (N — n + 1)
compatible Hamiltonian structures.

1. Introduction

In this paper we generalise the results of [1, 2] to a super extension of the
Schrόdinger linear problem. The present paper follows very closely the format of
[2], so we omit much of the motivation, concentrating on the features which
distinguish the super and purely even cases.

We start with Kupershmidt's spectral problem:

Q, (1.1)

for the following bi-super Hamiltonian sKdV equation [3] :

wf = τ(uxxx + 6uux + 1 2ηηxx) ,

iΊt=4(4l1xxx + 6uηx + 3uxη).

In Sect. 2 we generalise (1.1) to its "energy dependent" counterpart (2.1). The
corresponding 2N component isospectral flows can be written in Hamiltonian
form with respect to (JV + 1) compatible, locally defined Hamiltonian structures.
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The general class of equations we present contains, as special cases, a number of
interesting examples, both known and new. Among the previously known
examples [apart from (1.2)] are the super Harry Dym [4] and super dispersive
water waves (sDWW) [5] equations, respectively bi- and tri-Hamiltonian. We
remark that Kupershmidt only presents 2 Hamiltonian structures for the sDWW
equations. One of the new equations is a super-Ito equation, which is tri-
Hamiltonian.

In Sect. 3 we present the Miura maps associated with the equations of Sect. 2.
For the purely even case it is possible to construct these through the factorisation
of the Lax operator JL [2], but this is not easily carried out for the operator (1.1)
and its generalisation (2.1). However starting with Kupershmidt's Miura map [3],
M, for (1.2):

u=-Vχ-vi-$$χ9 η=-$χ-v$^ (1.3)

we generalise the corresponding factorisation of the second Hamiltonian structure

°f(1'2): B^mί-DJm't, (1.4)

where m = M° is the (even) Frechet derivative of M [see (1.5) below], mst is its

super adjoint and D= ί 1 is the first (and only) Hamiltonian structure of the

corresponding sMKdV equation. The Frechet derivatives of the generalised
Miura maps are constructed out of copies of the 2 x 2 blocks m and msΐ of (1.4). In
this way Kupershmidt's Miura map for the sDWW equations [5] is constructed in
a natural way out of his Miura map for (1.2). Kupershmidt's modification is, in fact,
only the first. We also present the second modifications for these equations, thus
giving a natural super generalisation of the well known results for the purely even
case [2, 6]. The existence of a 2 step modification is a natural consequence of the
existence of 3 Hamiltonian structures for the sDWW equations.

Some of our 2N component system are shown to have a sequence of N
modifications. This is a direct generalisation of results presented in [2].

The basic facts concerning (even) Hamiltonian structures can be found in [2].
The super Hamiltonian formalism is slightly more complicated because of the
presence of odd variables. For basic super-linear algebra and super matrix theory
we refer to [7]. For basic super Hamiltonian theory we refer to [4].

In this paper, however, we only need the notions of the Frechet and variational
derivatives. Let U = F[V] be a change of variables (invertible or otherwise). The
Frechet derivative of F is defined in the usual way (with τ an even parameter):

nV]W=^F[V + τW]U, (1-5)

where V and W are even vectors. The notation F° is that used by Kupershmidt [4],
who calls this operator the "even" Frechet derivative. Hamiltonian structures are
then transformed through

B-»B = F0B(F°)st, (1.6)

where sf denotes the superadjoint, defined in the same way as the usual adjoint,
but with the transpose of matrices being replaced by supertranspose [7]. With this
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definition, the skew symmetry of the Poisson bracket (related to B) is not
equivalent to the skew-superadjointness of the operator B (see Leites' discussion of
quadratic forms [7]). The conditions implied upon the elements of B, by the skew
symmetry of the Poisson bracket, are precisely those used by Kupershmidt to
define his super adjoint [4].

The variational derivative is defined in the usual way, but remembering that all
derivatives are assumed to act from the left.

2. Evolution Equations and their Hamiltonian Structures

We consider here the isospectral flows of the energy dependent super-Schrόdinger
equation:

Q9 (2.1)

where, ε, u, ψ are even and η, φ are odd variables. We specify the A-dependence of ε,
M, and η to be

β=Σ*fl> u=£t<Λ η=ίniλ\ (2.2)
0 0 0

with ε,- being constants and ui9 ηt functions of x and with spectral parameter λ being
even. We postulate the linear time evolution of the wave functions ψ, φ of the
form

ιpt = 2pψx + qψ + γφ, φt = ριpx + σιp + rφ, (2.3)

where the even p, q, r, as well as the odd ρ, σ, y variables are functions of the
potentials ui9 ηt and of λ. If we time-differentiate (2.1) (assuming λt = 0) and use (2.3),
(2.1) to remove all time and higher order x-derivatives of ψ and φ, we are left with

(ηt + ηq-ηr + εσx -uρ)ψ + (2pη + ερx + εσ)ψx + (ηγ + ηρ + εrx)φ = 0 ,

(ut - 4upx - 2uxp + εqxx + ησ + 2ηyx + ηxγ)ψ + (2εpxx + 2εqx + ηρ + ηy)ψx

- 2ηxp + εyxx + uy)φ = Q. (2.4)

Since (2.4) must be satisfied identically, all coefficients of φ, ψX9 and φ must
vanish. Thus we obtain

y=-ρ, εσ=-2ηp-ερχ9 q=-pX9 r = 0, (2.5)

where we put inessential constants of integration equal to zero, and

+ 2uxp + 3ηρx + ηxρ ,

ηt = 3ηpx + 2ηxp + ερxx + uρ.

N

Introducing the operator J= £ Jkλ
k with:

o

_ fεkd
3 + 2ukd + 2duk 2ηkd + dηλ

Jk~(

we can rewrite (2.6) as

Ut = JP (2.8)



490 M. Antonowicz and A. P. Fordy

with P = (p,ρ)τ and U = (u,η)τ. If we choose P to be a polynomial in λ:

P= Σ ίW' = (2-9)
i = 0

with Pi and ρt being functions of HJ and η^ only, then (2.8) decomposes into

and

It- 0 m-l 1 m ? (2JQb)

Comparing (2.10a) and (2.1 Ob) we see that the recursion relation (2.10a) permits us
(in principle) to determine P0, . . ., Pm_ ^ while Pm is arbitrary. This corresponds to
the freedom of gauge in our linear problem (2.1). There are two distinct cases:

i) UN = constant = — 1, ηN = (odd) constant = —y.
The last equation of (2.1 Ob) is then added to (2.10a), enabling us to determine

Pm. The remaining equations of (2.1 Ob) form the equations of motion for
C/o, ...,[/#_!. We refer to this choice as the (generalised) sKdV case.

ii) u0 = constant, 7/0= (odd) constant.
This requires Pm = 0 and is referred to as the (generalised) super Harry Dym

case.

Since both cases are identical from the point of view of underlying algebraic
structure we concentrate, in what follows, on the (generalised) sKdV choice.

Further development is almost the same as in the purely even case [2]. The
only difference is that now Ui = (ui,ηi)

τ and Pi = (pi,Q^Γ are 2 component vectors
rather than scalar functions and Jk are matrix (not scalar) differential operators.

To prove that the recursion relation (2.10a) has a solution of the form (2.9) for
any m^O we consider the formal power series solution:

^ = Σ/y-" (2.H)
o

of the equation J^ = 0. Then

P = (λw^)+, (2.12)

where ( )+ means only terms with non-negative powers of λ, is of the form (2.9) and
satisfies (2.10a). Explicitly, the equation J^ = 0 is

+ 2uxp + 3ηρx + ηxρ = Q, (2.1 3a)

3ηpx + 2ηxp + ερxx + uρ = Q. (2. 1 3b)



Super-Extensions of Energy Dependent Schrόdinger Operators 491

Multiplying (2.13a) by p and (2.13b) by ρ (from the right), adding the resulting
equations together and integrating once we get

2up2 + 3pηρ + ε(ppxx - ±p2

x - ρρx) = C(λ), (2.14a)

uρ + 3ηpx + 2ηxp + ερxx = 0, (2.14b)

where C(λ) is a constant of integration which we choose to be CλN. The recursion
relation resulting from (2.14) [when substituting (2.11)] is solvable whenever % = 0
since the leading term coefficients oΐλN~n are then 4p0%

 I(UN — 3ηNηNx)pn and uNρn.
The series starts with

(2.14c)
ρ0 = - 3% lp0xηN - 2%

Thus we have proven the existence of an infinite power series solution (2.11) of
Eq. (2.13) with pt, ρ; being differential functions of ut, ηt, provided εN=0. We note
that the above proof holds for the KdV as well as Harry Dym case. Equations
(2.1 Ob) and (2.12) give us an infinite series of flows isospectral to (2.1):

where

I — R P(m) m — 0 1Jίm — **N* , /n — u, i,...,

Λ

Ό

(2.15)

(2.16)

To prove that (2.15) gives us an infinite hierarchy of Hamiltonian flows we need
to know that EN is a Hamiltonian operator and that P(m) are variational derivatives
of some functionals ̂  P(m) = δJ^m, where δ stands for (<5αo, δ^,..., δUN _ 1? δηN _ f . It
is possible to check both properties directly, but we prefer the more instructive
methods employed below.

The hierarchy (2.15) is, in fact, not just Hamiltonian but actually (JV + 1)-
Hamiltonian. The recursion relation (2.10a) can be written as a bi-Hamiltonian
ladder

K Jr —- JS ι M? \ 2* 1 / 1n n — i \ /

in N different ways corresponding to n = l , . . . ,AΓ in (2.17). The Hamiltonian
operators BM are given by

0 Jo

«'θ n - 1
(2.18)
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and satisfy Bfl = RBπ_1, with

o o

o 1

(2.19)

being the recursion operator (JN

1 is the formal inverse of JN, well defined if εN = 0).
From (2.17) it follows that (2.15) is the (JV + l)-Hamiltonian system

U, =BN-,δJ#L+l9 ί = 0,...,JV. (2.20)im iv l ΠΊ~Γ i ? -> ? \ /

A simple proof that all the differential operators BM of (2.18) are Hamiltonian
will be given in the next section. Now we will show that the JV-tuples P(m) obtained
from (2.12), (2.14) are indeed variational derivatives of some functionals Jfm. Our
proof will be constructive. Let us consider the Riccati equation

u + ε(yx + y2 + ζζx)
 = 0, η + ε(ξx + yξ) = Q.> (2.21 a)

satisfied by y= — 9ξ= — as a consequence of the linear problem (2.1). The formal
ψ ιp

power series solution of (2.21a):

>> = £' !%£', (2-22a)

i = 0
(2.22b)

where ζ2 = λ and s = N — r(ris the largest n such that εMφO), gives us an infinite
series of conserved quantities yt. Half of these (those with odd i) are trivial while the
others (with i = 2n) can be chosen as our Hamiltonians JίCn. To prove that
Hamiltonians defined this way are compatible with the multi-Hamiltonian ladder
(2.17) we consider (2.21 a) as a change of variables

(2.21b)

Then according to the well known rule (compare with [4]) δy = (F°)st^ί7 we have:

V
δy

= _ ξ

δy δy
Introducing p= —-, ρ= — we rewrite (2.23) as

ou oη

δy

δu

δy

δη

(2.23)

(2.24a)

(2.24b)
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Differentiating (2.24a) twice and (2.24b) once and making use of (2.21) to eliminate
y and ξ we end up with Eqs. (2.13). Since p and ρ defined above differ from the

variational derivatives -—, -— only by a factor λk, we see that the variational
δuk δηh

derivatives of the Hamiltonians J π̂ satisfy (2.13) and thus are compatible with the
multi-Hamiltonian ladder (2.17). In fact, comparing the initial conditions for the
relevant recursion relations, one can show that the variational derivatives of the
formal power series (2.22a) coincide with the formal power series solution of (2.13)
constructed previously.

Remark. The possibility of expanding solutions of (2.13) in the powers of λ rather
than ζ is explained by the fact that the odd yi are trivial (i.e. their variational

(δy δy\τ

derivatives vanish) and thus do not contribute to the series for ^= —, — .
\ou δηj

3. Miura Maps

In this section we generalise our construction [2] of Miura maps associated with
the energy dependent Schrόdinger spectral problem. The factorisation of that
operator, presented in [2], does not survive the super extension to (2.1), but we can

N

still factorise our basic operator J= £ Jkλ
k of (2.7) as:

= (m0,...,mN)(-D)Λ : , (3.1)

where Λ is a symmetric (^-dependent) (N+ 1) x (N+ 1) matrix,

and

•
-*kd-2vk -

mk=\ (3.3a)
-

akd-2vk
mk ~

are copies of the Frechet derivative of the elementary Miura map

u=-aιυx-v2-9>ax, η=-<*»x-υ9. (3.4)

Remark. This elementary Miura map is a slight modification of Kupershmidt's
map (1.3) so is easily seen to be non-degenerate.
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Choosing A to be

ι=Λ=

we obtain the following maps V-+U,

" 1 . . A'"1

λr'-1' o

0

0

0 λr

λr'. . . A N _

(3.5)

for fc = 0, ...,r — 1, and

N-k

0

N-k

for k = r, ...,N, where

"'=*?
N-k

ηk=ί Σ '
0

~ α A*

Equations (3.6) and (3.7) result from the formula

(3.6a)

(3.6b)

(3.6c)

(3.7a)

(3.7b)

(3.7c)

(3.8)

" I . (3.9)

The analogy between the above construction and that for the purely even case
[2], is so complete that we need not repeat the details of the calculations here, but
concentrate on the results only. The essential difference between the two cases is
that J, mk, D are now matrices rather than scalars. As in [2], we explicitly present
the (generalised) sKdV case (%= — 1, ηN= — γ) only, leaving details concerning
the super Harry Dym case to the reader. The sKdV choice is compatible with the
factorisation (3.1) with A = Λr for r=0,..., N (in the super Harry Dym case we must
choose r = l,...,N + l). Assuming VN= — 1, BN= —γ we rewrite (3.7) as:

N-k

Σ (3.10a)
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and

" = -

Σ

(3.10b)

(3.10c)

for fc = r, ...,JV — 1. We denote by V(r) modified variables corresponding to the
Miura map U = Mr[V(r)] defined by (3.6), (3.10).

Proposition 1. // the factorisation (3.1) with Λ = Λris consistent (meaning that ε is
such that Eqs. (3.6a), (3.10a) can be solved for ak, k = 0, . . ., N) then the operator Br is
Mr-related to a constant coefficient Hamiltonian operator Br,

(3.11)

where

" 0 -D

-D 0

0

0

0 D

D 0.

(3.12)

N-r

Proof. The proposition follows from the formula (3.9) and the fact that the Frechet
derivative of the transformation Mr takes the simple form:

m 0

' m o

mN-

0

(3.13)

Corollary. For any choice ofεQ,...9 εN all the operators Bn of (2.18) are Hamiltonian.

Proof. If we assume that ε0εNΦθ, then Eqs. (3.6a), (3.10a) can always be solved for
αw. Thus any Br with ε0εNφO is Miura related by (3.11) to a constant coefficient
Hamiltonian operator Br of (3.12) and thus (since Mr is nondegenerate) is itself a
Hamiltonian operator. Taking the limit ε0->0 and/or εN->0 we see that all the BM

are Hamiltonian.

Remark. The non-degeneracy of this Miura map follows from the simple structure
of its Frechet derivative (3.13) (see the discussion following (3.10b) of [2]), together
with the non-degeneracy of the map (1.3). This is also true of the other Miura maps
discussed in this paper.
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The form of M, shows that Mr is a non-invertible transformation (and thus a
genuine Miura map) only when α0 or % are different from zero. Since the very
existence of the (generalised) sKdV hierarchy requires εN = 0 and thus αN = 0 the
only Miura maps correspond to α0φO, say UQ = \, and consequently ε0 = ί.

In what follows we limit ourselves, for the sake of simplicity to the case ε0 = 1,
εk = 0 for fc>0. This guarantees the solvability of (3.6a), (3.10a) for any r = 1, ..., JV
(with the solution α0 = 1, αk = 0 for k> 0) and thus Proposition 1 gives us N distinct
Hamiltonian Miura maps Mr relating Br to the constant coefficient operator Bn

r= 1, ...,N. The "ultimate" Miura map MN is the most interesting one.

Proposition 2. i) The Miura map MN decomposes into N consecutive Miura maps
Mn

N,n = l,...,N:MN = Mi

No...oM%, each Mn

N

+ί being amapU(n+1^U(r» givenby

(3.14)
4") = 4«+1)? ηw = η(n+v for feφWs

where W%+ί\ ff^+1) are defined by (3.8) with w|M+1), η\n+l) instead of vb θf. In
particular we have U(0) = U, U(]V) = V(Λ°.

ii) Each Miura map Mn

N is Hamiltonian and the nih modification U(n) possesses
N + ί—n compatible Hamiltonian structures:

where k = n+ 1, ..., N (the first Hamiltonian structure BJJ of the nth modification is
not the image of any local Hamiltonian operator under the map Mn

N

+1). This is
illustrated by the Fig. i.

< * u( 1 } < . . . < j u(n) < j . . . < u(N) = v(jv)

— 1*0 . Tjl .
N = BN4 - J5^ ....... <

B -B?< - Bί ......... < - B"

Fig. 1

iii) The chain of modified systems is given by

I, / = 0,...,JV-n, m = 0,l,..., (3.16)

where J^" = ̂  o M^ o . . . 0 M^ are the modified Hamiltonians.

Remark. The only difference between the sKdV and super Harry Dym cases is that
in the latter the map M, is derived from the factorisation (3.1) with A = Λr+1 rather
than Λr.
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4. Examples

We present, in this section, a few of the simplest super extensions of well known
classical integrable systems corresponding to JV=1 and N = 2 in our general
scheme. We limit ourselves to coupled KdV systems leaving their Harry Dym
analogues to the reader. Thus throughout this section we assume that UN= — 1,

The 2-Component System

If TV = 1 our construction reduces to a one (odd) parameter extension of the super
Schrόdinger linear problem of Kupershmidt [3]. The isospectral flows of that
problem are bi-Hamiltonian with Hamiltonian operators given by B0 = — Jv and

3yd 0

1=

where we write ε, M, 77 instead of ε0, w0, f/0. If ε = 1 the corresponding hierarchy is a
one (odd) parameter extension of Kupershmidt's sKdV [3] while ε = 0 gives its
dispersionless limit. We concentrate on the case ε = l here. The first two
Hamiltonians are

Jf0 = i" , .#! = X + ±ηηx - luyηx , (4.2)

and the first nontrivial flow is given by

"* = 4 (uxx ~ ?>ynxxx + 3 u2 + 1 2ηηx + 9uxyη - 1 2uγηx)x ,

*lt = τ(*nxxx ~ ?>u

xxxy + 3uxη + 6uηx - 3uuxy + 9yηηxx) .

When 7 = 0 it reduces to the sKdV of (1.2). Kupershmidt's Miura map (1.3) is
unchanged:

u=-vx-v2-SQx9 η=-$χ-v$ί (4.4)

and relates E^ to the (only) Hamiltonian structure of the sMKdV:

».~»--G ;)•
The modified Hamiltonians are

^0=—2V ~2^JCJ (4.6)

î = &l + iv4 + l(v2 - vx)B9x + i^A, + |59Aχ7 + 1(̂ 2 + vx) (»xx + M + vBx)y .

The sMKdV itself is given (when γ = 0) by

)X ,

4-Component Systems

These are tri-Hamiltonian with Hamiltonian operators given by

R l"--7! -M R (J0 0\ / O J0\
0 = \ / 0 / ' 1 = l θ 7 / ' 2 = l / 7 j '\ — J2 v / \ υ J2/ Vo Jι/
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where J2 is now given by

ί-4d -3yd\
J*-(-3yd -1 )'

The first few Hamiltonians (with 7 = 0) are

(4.9)

We will concentrate on two special cases : ε0 = 1 , ε ! = 0 (dispersive water waves) and
ε0 = 0, ε1 = \ (Ito's equation).

Super DWW

Specializing our general formulae by the choice ε0 = l, ε^=0 we obtain a tri-
Hamiltonian hierarchy with 2 even and 2 odd variables and first nontrivial flow
given by

=

An invertible change of variables

X-4Wl*+2Ml*>

u - x ,

transforms (4.10) into the "super long waves" equation of Kupershmidt [5]. The
Hamiltonians and first Hamiltonian structure of sDWW hierarchy take a very
simple form when written in (q,μ,r,v) coordinates:

D θ)' (4J2a)

The sDWW hierarchy possesses two consecutive Hamiltonian modifications,
Propositions 1 and 2 giving us two Miura maps:

fΛ Λ~> \(4.13a)
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and

H>O = I>O,

IC° = β°' (4.13b)

where we write (w0, KO, w1? κ±) instead of (U(Q\ η($\ u(±\ η(^). The transformation
(4.1 3a) is equivalent to Kupershmidt's single Miura map [5].

Super Ito Equation

The choice ε0 = 0, 8^ = 1 leads to a super extension of Ito's hierarchy. The first
nontrivial flow is

x ,
(4.14a)

=

The invertible map U-M^V] (of Sect. 3) given by

u0=-r2-vvx,

ηo= — rv,
/0 (4.15)

where we write (r,v,q,μ) instead of (vQ^QyV^d^, transforms (4.14a) into

(

- 2r2 - 2vv

The system (4. 1 4b) reduces to Ito's equation when v = μ = 0 and to the sKdV when
r = 0, v = 0.

The second Hamiltonian structure of the Ito hierarchy takes a particularly
simple form when written in (r, v, q, μ) coordinates. According to Proposition 1 it is
given by

,-(-0

fl °>
The Hamiltonians Jf0, Jfl5 J 2̂ are now given by

x-$wx,

+ rμxv - ^μxμxx .
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5. Conclusions

In this paper we have generalised all the results of [2] from the purely even to the
super case. First, we have used the energy dependent super Schrόdinger operator
(2.la) to construct hierarchies of super integrable equations with 2ΛΓ components
and (N + l) compatible Hamiltonian structures. As a general class of equation, this
is completely new. However, for N = 1 and N = 2 this class includes a number of
known, but disparate, examples, such as Kupershmidt's sKdV, sDWW and super
Harry Dym equations. One of the new examples in our general class is a super Ito's
equation.

As well as the isospectral flows of the spectral problem (2. la) we also presented
a sequence of modifications. These are obtained through the factorisations (using a
sequence of quadratic forms) of the operator J of (2.8). Specifically, to the 2N
component hierarchy associated with (2.1), ε0 = 1, there corresponds a chain of N
modifications, the nih modification possessing (N — n + l) compatible Hamiltonian
structures. This should be contrasted with Kupershmidt's expectation [5] that
"... super extensions ... usually destroy the Miura maps." Perhaps this is true in
general, but we believe that our construction has wide applications, both to purely
even and super integrable equations.
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