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Abstract. The partition function for a one-dimensional system of Bosons with
repulsive delta-function interaction is investigated. We prove that if the Bethe
Ansatz eigenfunctions form a complete set then the grand canonical pressure
is given by the Yang-Yang formula. The proof uses a probabilistic formalism
to express the partition function as an expectation with respect to a probability
measure on a Banach space of measures; the asymptotic behaviour of the
expectation in the thermodynamic limit is determined by the Large Deviation
Principle. This method is applicable in situations in which the Hamiltonian
can be diagonalised using the Bethe Ansatz.

1. Introduction

Often, in mathematical physics, we are faced with the problem of determining the
asymptotic behaviour, for large I, of a sequence

{traceexp[ — po#']|1=1,2,...},

where f is a positive real number and {#"|=1,2,...} is a sequence of self-adjoint
operators on some Hilbert space. The problem arises, for example, in many-body
theory; here ' is the Hamiltonian of the system, f is the inverse temperature and
the volume V, of the system increases as I increases. In this setting, there are not
many cases in which the problem has been solved. For a long time, only for the
free quantum gases, boson and fermion, was an explicit expression known for

.1 .

llir?o iz Intraceexp [ — " ].
In 1969, Yang and Yang [1] made a notable advance: they developed a
thermodynamic formalism for dealing with those interacting systems whose
Hamiltonians can be diagonalized with the help of the Bethe Ansatz. Yang and
Yang [1] applied their formalism to the quantum non-linear Schroedinger model
whose Hamiltonian had been diagonalized six years previously by Lieb and Liniger
[2]. In recent years, as more and more problems have succumbed to the Bethe
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Ansatz (see [3] or [4] for a review), the use of the Yang—Yang formalism has
spread; for example, it has been used to determine the thermodynamic functions
in the Kondo problem [5, 6,7] and to compute the central charge of the Virasoro
algebra associated with critical two-dimensional classical statistical mechanical
systems such as the Potts model and the Ashkin—Teller model [8].

The core of the Yang—Yang formalism is their derivation of an expression for
the entropy density of the system; as they themselves point out, this derivation
unlike the rest of their paper, is far from rigorous. It is, in fact, an ingenious
elaboration of the derivation given by Landau and Lifshitz [9] for the non-
equilibrium entropy density of a free quantum gas. Our aim in this paper is to
give a rigorous proof of the Yang—Yang trace formula. We see little hope of doing
this by supplying the needed rigour at each step of the Yang-Yang argument
(any more than we could for the Landau—Lifshitz derivation). Instead, we use a
probabilistic formalism to express trace exp [ — f#'] as an integral

| efV1St™K, [dm]

E

with respect to a probability measure K; on a topological space E and we use
Varadhan’s theorem [10] to determine the asymptotic behaviour of the integral.
Varadhan’s theorem is an extension to regular topological spaces of Laplace’s
theorem on the asymptotic behaviour of integrals over the real line. By checking
that the hypotheses of Varadhan’s theorem are satisfied, we are able to give a
rigorous proof of the Yang—Yang trace formula.

At first sight, the probabilistic formalism which we use may seem far removed
from the Yang-Yang thermodynamic formalism. In fact, they are close in
spirit, since Laplacian asymptotics (the method of the largest term) is at the
heart of thermodynamics. Moreover, the Landau-Lifshitz expression for the
non-equilibrium entropy density of a free Fermion gas appears naturally in the
course of checking that the hypotheses of Varadhan’s theorem are satisfied, and
the Yang—Yang expression is related to it by a simple transformation.

In this paper, we apply the probabilistic formalism to the non-linear quantum
Schroedinger model; we emphasize that it has the same wide applicability as has
the Yang—Yang thermodynamic formalism. Nevertheless, it would not be profitable
to display this work as an application of some general scheme, since the details
may vary greatly from model to model. The classical non-linear Schroedinger model
requires very different techniques; recently it has been treated rigorously by
Lebowitz et al. [11].

Many-body theory is characterized by the existence of a number operator: for
each Hamiltonian #, there is a self-adjoint operator /"' whose spectrum is the
set 0,1,2,... and which commutes with #". The operator ./ is interpreted as the
observable corresponding to the total number of particles in the system; the
eigenspace of A" corresponding to the eigenvalue N is called the N-particle
subspace. Since #' commutes with 4", we may regard #"' as the direct sum
of a sequence {Hy|N=0,1,2,...} of operators, where Hy is the restriction
of #" to the N-particle subspace. To investigate the asymptotic behaviour of
traceexp { — '}, it is convenient to generalize the problem slightly: we examine
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the behaviour of trace exp {f(uA"' — #")}, where u is a real number. Put

1
i) = g Intrace exp (Bt — #)} (L1)
1
and, denoting by tracey the trace over the N-particle subspace, put
1
Jip) = — 5 Intraceyexp { ~ BHY, (1.2)
1

where p = N/V,; we have
exp {BVipu(k)} = trace exp { BN — A7)

= Y  eNtraceyexp{— BHYy}
N=0,1,2,...

= ¥ exp{BViup — fi(p))}. (1.3)

N=0,1,2,
In many models of physical systems, the limits p(u)= lim p,(u) and f(p)=
-

lim f,(p) exist; the function p() is called the grand canonical pressure and the
-

function f() is called the canonical free-energy. For | sufficiently large, the main
contribution to p,(1) comes from the largest term in the summation on the

right-hand side of (1.3) and, in the limit, we have
() = sup {up — [(P)}- (1.4)

p
The crux of the thermodynamic formalism is the possibility of making an indirect
evaluation of f(p). We illustrate this first in the case of the free Fermion gas.

In the case of a free gas, the N-particle Hamiltonian HY, is the sum of N copies
of the single-particle Hamiltonian H' . Suppose that the single-particle Hamiltonian
is the one-dimensional Laplacian with periodic boundary conditions on the interval
[0, V;]. The eigenvalues of H), are given by

EN(k)=|k|>=k% + - + k3, (L.5)

where
2n
In the case of Fermions, the k; are distinct: k; # k;if i # j. As [ increases, V; increases
and the possible values of the momenta k; become increasingly dense in the real
line. It is argued that, in the limit [ — oo with p = N/V/, fixed, the “eigenvalues” are
described, not by vectors k, but by continuous distributions p(’). These are
functions satisfying p(k) 2 0, { p(k)dk/2n = p; the energy density corresponding to
R

a distribution p is given by
dk
— 2
ulpl= l{ k=pl)5 -

in the limit | - co. But now we must count multiplicities. The entropy, the logarithm
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of the multiplicity of an eigenvalue, can be estimated in the limit [—» o0 by a
combinatorial argument (see Landau and Liftshitz [9], Sect. 54, p. 154) which gives
its density as

dk
s[pl = — [ {p(k)In p(k) + (1 — p(k))In(1 — p(k))}ﬁ. (1.6)
R
A second application of Laplacian asymptotics then gives the following
expression for the free-energy density:
fp)=  inf {ulpl—p~'slpl}- (1.7)
{peL L (R)lliply =5}

This argument leads to the well-known formula

P = 51 [In(1 +ePms) 26 (18)
R 2n
for the grand-canonical pressure of a free-Fermion gas.

Next we sketch briefly the extension of the thermodynamic formalism needed
to deal with Hamiltonians which can be diagonalized with the aid of the Bethe
Ansatz. Consider the non-linear quantum Schroedinger model: its Hamiltonian
can be written symbolically as

H = i {0:0*(x)0(x) + 2c(¢*(x)(x))* } dx, (1.9)
where ¢(x) is a one-dimensional Boson field satisfying
[¢(x), #*(1)] = d(x — y), (1.10)
and ¢ = 0. The number operator .4 is given by
JV=lj;¢>*(x)qb(x)dx. (1.11)

It commutes with ## and the restriction of J# to the N-particle space, which we
identify with I2(R"),,,,, can be written as

N
Hy=— ) 03,+2c 3, o(x;—x;). (1.12)
=1 j

i>j
N
For ¢ = oo, we interpret Hy to be — ) 9%, with Dirichlet boundary conditions
=

on the surfaces x; = x;, (i # j).

We restrict the system to a finite interval of length V,, impose periodic boundary
conditions and denote the resulting Hamiltonian by HY,. The eigenvalue problem
for HY was solved by Lieb and Liniger [2], using the Bethe Ansatz. They obtain
the remarkable result that the eigenvalues are given by

ENK)=K2 + - + K2, (1.13)

with the I~cj solutions of the equations

N ~ ~
ji

=1
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where
k
0.(k) =2arctan(z> (1.15)

and the k; are given by

2

k,.=7”m,., mieZ, if Nis odd,
j

and

2

T -
k;=—(@m;+3), meZ, ifN iseven.
1

V
In other words, the eigenvalues of the N-particle Hamiltonian of the non-linear
Schroedinger model can be labelled in the same way as the eigenvalues of
the N-particle Hamiltonian of the free Fermion gas: there is a one-to-one
correspondence between eigenvalues of Hy and N-vectors k= (k,,...,ky) with
distinct entries taken, in this case, from the set {...—2n/V,,0,2n/V,,...} when
Nis odd and from {..., — 3n/V,, — n/V,,n/V,,3n/V,,...} when N is even. Yang and
Yang [1] assumed that, just as in the free Fermion case, the “eigenvalues” can be
described, in the limit [ — co with 5 = N/V, fixed, by a distribution p(k) satisfying

- ~dk
p(k)z0, § plk)—=p.
R (4

The energy density is now given by

~ ~dk
ulpl=| kzp(k)%.

It remains to obtain an expression for the entropy density s[p]. In the free-Fermion
case, we can interpret the term

dk
- l{ plk)In p(k)5—

as the contribution to the entropy density from the occupied k-values and the term

dk
—l{(l = pk)In(1 —p(k))5—

as the contribution from the unoccupied k-values (the “holes”).
We could make this explicit by introducing p,,, the density of holes, and writing

dk
ste1=[{(o+pp)In(p+pi) —plnp —pylnpy}>— (1.16)

together with the side-condition

p(k) + pulk) = 1. (1.17)

In the case of the non-linear Schroedinger model, Yang and Yang give a
combinatorial argument which, in the limit /- oo, yields the same formula (1.16)
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for the entropy density, but with the side-condition (1.17) replaced by
~ ~ ~ ds
p(k) + py(k) =1 +592(k—5)p(8)ﬂ' (1.18)
R

Notice that, in the limit ¢ — oo, the free-Fermion side-condition (1.17) is recovered.
Using these expressions for u[ p] and s[p], it is not difficult to solve the variational
problem and obtain the Yang—Yang trace formula:

1
lim — Intraceexp { — f#'} = [In(1 + e"”s"‘;’”)%, (1.19)
|4 R 2n

I-o0 ¥V

where ¢(k; f) satisfies the integral equation
elk; B)=k*— B~ {0k —s)In(1 + e"’”‘“ﬂ))g—i. (1.20)
R

Notice that, since 0,(s) = 2¢/c? + 52, the free-Fermion result is recovered in the limit
¢— oo and the free Boson result is recovered in the limit ¢ — 0.
We now turn to the probabilistic formalism. Our aim is to express

trace exp {B(uAN" — A1)},
in the case of the non-linear Schroedinger model, as an integral

[ eIk [dx]

by suitable choices of topological space E, functional G[-] and probability measure
K,. This will be accomplished using two propositions:

(1) In the case ¢ = oo, the limit
1
p°(u) = lim ﬂ—Vlntraceexp {BuN™t— #"} (1.21)
1= 1
exists and is given by the free-Fermion expression
0 -1 Bu—k?) dk
pPP(w)=p""[In(1 + &Pe~*)—. (1.22)
R 2n

(2) The eigenvalues of the Hamiltonian of the non-linear Schroedinger model for
0 < ¢ < oo are in one-one correspondence with the eigenvalues of the Hamiltonian
for ¢ = o0, and given by the Lieb—Liniger formula (1.14).

The first proposition is a well-known result; for completeness we give a proof
in Sect. 2. Up to now, the status of the second proposition has been uncertain; the
results presented in the Lieb—Liniger paper [2] are rigorous, but they do not claim
that the Bethe Ansatz eigenfunction form a complete set; Yang and Yang [1] make
such a claim, but only sketch an argument, based on continuity, to support it. Our
proof of the Yang-Yang trace formula is complete modulo a proof of this
proposition. We will return to the problem of completeness of the Bethe Ansatz
eigenfunctions in another publication.

Since the strategy of proof which we adopt to verify the Yang—Yang thermo-
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dynamic formalism is not yet well-known among theoretical physicists, we first
give an informal sketch of it. Consider, first, the case ¢ = co: We can write the trace
(1.3) as a sum over configurations by introducing the space (2 defined by

Q={O‘2Z—>{0,1}IZO'J-< oo}, (1.23)
JjeZ
and the functions k': 22— R” defined by
2n
7 if ) o;is odd;
k(@)= , ez (1.24)
Tmtd), it Yo is even.
Vi jez
Then
exp {BVipi (1)} = ZQ exp {ﬂ 2. ol — k(o) } (1.25)
o€ neZ
Introducing the ¢ = co-occupation measure on R by
1
m[A;0] = 7 Y. 6,04, [Al, A<R, (1.26)
1 neZ
we can re-write (1.25) as
exp {BVipY(W} = Zﬂ exp { BV f(n— k*)mldk; o] } (1.27)
o€ R

The corresponding expression in the case ¢ < oo is obtained by the following device:
for an arbitrary bounded positive measure m, define the function f,, as the unique
solution of the equation

Slk) =k = [0.(f (k) = fru(k))m(dK); (1.28)
then we have
exp {fVipi(p)} = Zﬂ exp {ﬁ Vif (= f(k)*)my[dk; 0] } (1.29)

(It is here that we have to assume that the Bethe Ansatz eigenstates form a complete
set.) But this can be re-written as

exp {BVip()} = deXp {ﬁ ViJ (k2 —f (k) )m[dk; 0] }'eXp {ﬂ Vi § (u—k?)my[dk; 6]}
age R R

=exp {BVipl (W)} ;ﬂ exp {ﬁ ViJ (k2 — fn (k) )m [ dk; 0] }Pi‘ [o], (1.30)

where P{[.] is the probability measure defined on the countable set 2 by

Pi[o] =exp {—BVipi (1) }exp {ﬂ Vi (u— k*)m[dk; o] } (1.31)
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This, in turn, induces a probability measure K{ on the space E=
{mey (R)|[k*m(dk) < o0},
R

K¢ = Phom, !, (1.32)

since m, is a measurable mapping from 2 to E. Introducing the functional G defined
on E by

G[m] = [(k* — fn(k)*)m(dk), (1.33)

we have, finally,
exp {BVip1)} = exp {BVipP (1)} "MK} [dm]. (1.34)
R

The measure P is in fact the grand canonical measure for ¢ = oo, and we call the
induced measure K# the Kac measure. (See introduction to [12] and [13] for the
historical background.) But these interpretations carry no hidden hypotheses: for
the purpose of the proof, P} is the measure defined by (1.31).

The next step in the programme is to determine the asymptotic behaviour of
K# for large [. If we were able to define Lebesgue measure on E, we might aim to
prove that, for large I, K} behaves as exp { — fV,I*[m] }dm for some non-negative
functional I*[m], and then apply Laplace’s theorem to conclude that

lim —l—ln eV StIK i [dm] = sup {G[m] — [*[m]}. (1.35)

[Aadd] 1 E

In the absence of a suitable reference measure on E we have to settle for a more
technical description of the asymptotic behaviour of K:

Definition. Let {K;|l=1,2,...} be a sequence of Radon probability measures on a
regular Hausdor(ff space E and let {a,|] = 1,2,...} be an increasing sequence of positive
numbers diverging to + co. The sequence {K,} is said to obey the large deviation
principle with constants {a,} and rate function I.E — [0, o0] if the following conditions
are satisfied:

(LD.1) I[.] is lower semi-continuous.
(LD.2) The level sets {xeE|I[x] < b} with 0 <b < o0 are compact.
(LD.3) For each closed set C c E,

1
lim supa—ln K,[C] =< —infI[x].
1

1= xeC

(LD.4) For each open set O — E,
1
lim inf—InK,;[0] = — infI[x].
1= a[ xe0

In place of the Laplace theorem, we have Varadhan’s theorem. We state a version
which covers all the situations that arise in this paper:
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Varadhan’s Theorem. Let {K,|/=1,2,...} be a sequence of Radon probability
measures on a regular Hausdorff space E satisfying the large deviation principle with
rate function I:E— [0, c0], and constants {a)|]l=1,2,...}. Suppose that G:E—R is
continuous and

L 1
lim limsup—In |  €"9™K;[dx]= — 0. (1.36)

A= 1o A1 (eE|G 2 4)

Then
1
lim —In [ e#™K;[dx] = sup {G(x) — I(x)}.
E xeE

1-0

We prove in Sect. 3 that the sequence {K}} satisfies the large deviation principle
with constants V), and rate function I*[.], where

1“[m] = p°(p) + f°Lm] — ulim]. (1.37)

Here p°(p) is the free Fermion pressure (1.22), and f°[m] is the free-Fermion free
energy,

fOlm] =ulm] — B~ "s[m], (1.38)

where u[m] = jkzm(dk) is the internal energy and s[m] is the entropy density,
R

dk dk
- {—I{plnp+<l—p)ln(1—p)}ﬂ, if m(dk) = p(k)5—and p(k) < 1;
s\m| = R

— o0 otherwise.
(1.39)
After some reduction Varadhan’s theorem yields the formula
p(w) = Sug{u lml —fm1}, (1.40)
where
fIm] = [ fulky’m(dk) — B~ s[m]. (1.41)
R
Using (1.40) it is not difficult to show that
—pg-1 ~ petis g K
p(u) =B~ [In (1 + e~ Pl —, (142)
R 2n
where ¢(k; B, u) satisfies the integral equation
ek ) =k*—p— P[0,k —s)In(1 + e"”““”’“’)—j—z. (1.43)
R

In this way the Yang—Yang trace formula is established. We recognize (1.39) as
the Landau-Lifschitz expression for the free-Fermion entropy density.

There is an alternative expression for the local free energy f[m] which makes
the connection with the Yang—Yang result a little clearer: for an arbitrary measure
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m, define the function h,, by

ho(k) =k + [0k — K')m(dK). (1.44)
R
In Sect. 2 we show that h,, is the inverse of f,,. Defining
m=meof 1, (1.45)
we have
u[m] = [ f(k)y*m(dk) = [k*m(dk). (1.46)
R R
When #(dk) = (k)(dk/2r), we have
plk) = (B L) (k) f (k) = pROR(R) ™, (1.47)
so that

stm] = — [{p(k)(In p(k) — In (k)
~T\/(TY— 1 ~ (T~ 1 /”dk
+ (1= AU ()™ HIn (1 = A (k)™ ) (k)

= [{HEn K (®) — ()10 58 — (W (E) — H0) (K (E) - ﬁ(%))}f;% (1.48)

Making the identification p(k) = p(k) and #'(k) — p(k) = p,(k), we see that (1.44) and
(1.48) together are equivalent to the Yang—Yang expression, (1.16) and (1.18), for
the entropy.

The advantage of the probabilistic formalism which we have sketched is that
we are able to make each step rigorous. The first objective is to prove that the
large deviation principle holds for the sequence {K}{'} of Kac measures for free
Fermions. To do this, we first find a candidate for the rate function. When E is a
topological vector space, there is a standard trick which often works: if {K}'} were
to satisfy the large deviation principle with some rate function I*[.] and Varadhan’s
theorem were to hold for the linear functional G[m] = {t,m), then we would have

1
C*[1] = lim C}[¢] = —— In ["*™ K} [dm]
1= BVI E

=sup{<t,m) — ["[m]}. (1.49)

meE

This relationship between C*[.] and I*[.] is satisfied by the Legendre transform
of C*,

I*[m] = sup {<t,m) — C*[£]}, (1.50)
teEx

so this expression is the usual starting point of a rigorous proof of the large
deviation property. (See [13] for a counterexample.)

Here is the structure of the paper:
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In Sect. 2 we define carefully the sequence {K}'} of Kac measures for ¢ = o0 and
calculate the limit C* of the sequence of cumulant generating functionals (Propo-
sition 2.1). As we have seen, the Legendre transform (1.50) of C* is an obvious
candidate for the rate function I* of the sequence {K/}, but first we must find a
more useful expression for I*; this is carried out in Sect. 3 where formula (1.37) is
established (Theorem 3.1). In Sect. 4 we prove (Theorem 4.2) that the sequence
{K{} satisfies the large deviation principle with rate function I*. The results of
Sects. 2, 3, and 4 concern the ¢ = co — Kac measures and are of independent interest
since trivial modifications yield the same results for the free-Fermion Kac measures.
The remaining sections are concerned with checking that the other hypotheses of
Varadhan’s theorem hold. First we prove (Proposition 5.3) that the finite-volume
trace, given by (1.29), is well-defined; then we prove (Proposition 6.2) that the
functional m— G[m], given by (1.33), is continuous; finally, in Sect. 7, we put it all
together and prove the Yang—Yang trace formula. The main result of this paper
is the following:

Theorem. Let #" be the Hamiltonian of the quantum non-linear Schroedinger model
on the interval [0, V,] and let HY be its restriction to the N-particle subspace. Then,
assuming that the eigenvalues of Hy are given by (1.13), we have, for all Be(0, ),

-0 V]

1 dk
lim —Intraceexp { — fA#"} = 51;1 (1 + e Petkibn "
|4 R 2
where &(; ) is the unique solution of the equation

2c ds
. —L2_pB1 — Be(s; )
ek B)=k2— B £072+(k~s)21n(1+e )

2. Definition of the Kac Measure

In the introduction we have defined the underlying probability space Q of
occupation numbers:

neZ

Q={0:Z—>{0,1}|Zan<oo}. @.1)

We endow it with the product topology of {0,1}*: a sequence {c™}2_, in Q
converges to ¢ if and only if, for all n, there exists m, such that ¢! = g, for all
m2=m,. Qs a countable subspace of {0, 1}%. It is useful to define 2,44 and 2.,., by

Q4= {GE-Q]Z 0,= 1(mod2)},

neZ

and

DQoven= {ae!)[ Y. 6, =0(mod 2)}.

neZ

Since {0, 1}* is Hausdorff space and € is countable, every subset of £ is a Borel
subset: #(02) = 2(Q).
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We define a wavevector k™ as in (1.24): it is a map k®:02 — R? given by

KO(o) = {Znn/ Vi if 0eQ, 44

2n(n+3)/V,, if ceQ
The occupation measure m, is the map m,: Q2 — 4% (R), the positive, bounded Radon
measures on R, given by (1.26):

2.2)

even*®

1
m[A,0]= v z o-nékg)(o)[A]a (2.3)

I neZ
1 if xeAd;

0 if x¢A.
We define the ¢ = co grand canonical measure P# on €2 by

where 9, is the Dirac measure supported at x:5,[A] = {

PILA] =" Y exp {ﬁ Y oulu— k;“(a)Z)}, 4

neAd neZ

where the ¢ = oo pressure p?(u) is defined by

pr(w) = Lln[ Y, exp {ﬁ AR kﬁ”(a)z)}} 2.5
BV

e 2 neZ

We have

2
(n —%)2>}), (2.6)

from which it follows that

P10 = im p) = 5 In(1-+ 2~ )T )
As explained in the introduction we want to transfer the measures P{ to the space
E = {me /" (R)| [k*m(dk) < o0}, (2.8)
which we equip with the weak topology induced by the functions feF, where
F={f:R->R|f(k)=(1 + k?)p(k) with p%(R)}. 2.9

(%,(R) denotes the space of real continuous functions vanishing at infinity.) This
is the weak-* topology; that is E = F* as a Banach space. Given te F we define the
functional p?[t] by
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prlad = L 2. €xp {B Y. a,(t(ki(0)) — kﬁ)(a)z)} (2.10)
,BVI ae neZ

Lemma 1. Let teF. Then p°[t] = lim p?[t] exists and is given by
1=

1 . dk
or— = B0~ k2)
p°Lt] ﬁl_gln(1+e )5 2.11)

Proof. Theintegral in (2.11) clearly converges since, for | k| large, (1+k?) ™ !|t(k)| <3.
This also shows that the tails of the sum in (2.10) are small. But, for |k| < A,

1
== ), In(1 +exp[B(tQan/V)) — 2nn/V)*)])
ﬁVl IS V,A2n
converges as a Riemann sum to the integral

ﬂi/, [ In(1 + et~ k2>) N

With the above remark that every subset of € is a Borel subset it follows
immediately that the mapping m;: Q— E is Borel. The image measure m,(P}) = K
is therefore well-defined on E by

K{[B] =P{[m '[B]], (2.12)

for BeZ(E). We are going to prove that the sequence {K}} satisfies the large
deviation property, and towards this end we prove

Proposition 1. For teF put

Cit] = ﬁ —In j VMR R dm). (2.13)
1
Then C*[t] = lim C{[t] exists and is given by
1=
CHt] = p°Lu + 11— po(w). (2.14)

Proof. We have

Cit]= ﬂiln fexp {[3 Yo t(k"’(a))}P"[da]

neZ

=pllu+t]1—pP(W->p°lu+t]1—p°p). W

3. Properties of the Rate Function

As we argued in Sect. 1, we have the following candidate for the rate function:
14[m] = sup{<t,m) — 1]}, (3.1)
teF

where F is the space of functions f(k) = (1 + k?)¢p(k) when ¢pe%,(R). In this section
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we derive an explicit expression for I*[m] and find some useful properties along
the way. First of all we have

Lemma 3.1. If I*[m] < co then m is absolutely continuous with respect to Lebesgue
measure.

Proof. Suppose that the singular part mg of m is not identically zero. Choose 4 > 1
and let K be a compact set of Lebesgue measure zero such that my(K) # 0. Choose
an open set U o K satisfying

1 B+ A—k2) .
—ﬂljlln( +e )——2 <1

(This is possible since K has Lebesgue measure zero.) By Urysohn’s lemma

there exists a continuous function ¢ satisfying 0<tk)<A for all k, and
A for kek;

=47 """ “™ With this function ¢ we have
0, for keU-

CHtl=plu+1t] —p(‘u)<l§1n(1 +eﬂ(,4+,4_kz))d_k<1,
BU 21

so that {t,m) — C*[t] = Am(K) — 1. Taking A — oo we find I"[m]=0c0. W
Note that, when ¢ is continuous with compact support K we have the estimate

CHt] = %Ij;ln(l + eﬁ(u+r(k)_kz))4_k_ < 1

S+ IElIKL (32)

Lemma 3.2. If I*[m] < co and m has a density (2r)~'p with respect to Lebesgue
measure, then 0 < p(k) < 1 for almost all k.

Proof. Let m(dk) = p(k)(dk/2%) and suppose that there exists a subset S = R with
positive Lebesgue measure: |S| > 0, such that p(k) = p, > 1 for all keS. Given ¢ >0
we choose C = S compact and O o S open such that |O\C| < ¢ and we take teé(R)

A, f :
such that 0 < t(k) < 4 and t(k) = { o fzz :Zg; Then

1 1
Cmy — Ct] 25— poA|Cl— - A(lul + A)|0]

1 1
;EA{(po — DIS|—(po + 1)e} — 5 HISI+ ),

using (3.2). Since p, > 1 we can choose ¢ so that (p, — 1)|S| — (po + 1)e > 0. Letting
A— oo we conclude that I*[m] = oo if p(k)>1 on a set of positive Lebesgue
measure. W

Lemma 3.3, Let meE be such that I*[m] < co. Then
I*[m] = sup {{t,m) — C*[t]}.

tes!
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Proof. We first truncate a given teF with

1, if [kl<mn
oc,,(k)={—|k|+n+1, if nZ|k|En+1;
0, if |k|=2n+1.

and put t,=oa,t. Then t,e4(R) and {t,,m)— {t,m) and also C*[t,]— C*[t].
Therefore 1%(m,t,) — I*(m,t). We conclude that
I"[m] = sup {<t,m)— C*[t]}.

te%R)
Now %,(R) is dense in £*. Let te.#*. Then {t,m) is well-defined since m(dk) =
p(k)(dk/2m) with pe #>, and C*[t]=p°[u+ t]— p°u) is well-defined because, if
t,€6 R) and t,—t in L', then |C*[1,] — C*[t]| < [lt,(k) — t(k)|(dk/2m) using the
fact that |[In(1+e")—In(1+¢))=<|x—y|. We also have |{(f,,m)—{t,m)|=<
(1/2m)||t, —t]l; because 0= p(k)<1. This shows that I*(m,t,)— I*(m,t), which
proves the lemma. B

Lemma 3.4. Define, for teF or te £*,
1
1 +exp {B(k* —u—1k)}
The Fermi—Dirac measures m**'(dk) = p**'(k)(dk/2m) satisfy
[+ = (e, m 1y — CH[e]. (.4)

Proof. Clearly I"[m**'] = <t,m"**) — C*[t]. It remains to show that, for any other
feF respectively fe 1, {t,m**'> — C*[t] = <, m***> — C*[f]. Given «, xR define
Fdox k)= xp* k) — (1/B)In (1 + eP#+*~*) Then xi—f,(x, k) is concave and x =«
is a stationary point. Hence f,(x, k) < f(a, k). Now put o =#(k) and x = #(k), and
integrate. W

p" (k) = (-3

Let us define an entropy function s(x) by

_f=xlnx—(1-x)In(1-x), if O0<x<l;
“n‘{q if x=0 or x=1. (3.5)
We then have the following identity:

s(p"(k)) = Bp*(k)(k* — 1) + In (1 + P ~+9). (3.6)

Inserting in (3.4) we obtain

1 dk
I“[m**1] = o) + [(k> — pym**'(dk) — EI S(p“+‘(k))2—- 3.7
T
Next we show, by approximating a general m by Fermi-Dirac measures, that this
formula is generally valid.

Theorem 3.1. Let meE be such that I"[m] < co. Then
I"m] = p°(w) + £ °[m] — p|im], (3.8)
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where
fOlm] = [k*m(dk) — p~*s[m] (3.9)
R

and
sm] = — [{p(k)In p(k) + (1 — p(k)) In (1 — P(k))}g%- (3.10)

Proof. We first show that I"[m] < f°[m] + p®(u) — u | m].
dk 1 dk
3 = __ Bu+1(k)—k?) 0
1"[m] S,g,?{jt(k)p(k)h ﬁjln(l +e )2n}+l’ (W)

< I%sup {tp(k) — %ln(l + e""‘“_"z))} +p°(w)

reR

d
= f{kzp(k) - %S(p(k))}g + p°(w) — pllm| = p°(u) + f°[m] — plim|| < co.

To prove the reverse inequality we define ¥ as follows. Given M >0 and n > 1
we subdivide the real line into the four regions: R, = {k| |k| > M}, R, = {k| |k| <M
and p(k)<p""(k)}, Rp={kllk|sM and p* "(k)sp(k)<1-1/n}, and
Ry = {k||k| <M and p(k) > 1— 1/n}, where p* was defined in (3.3). We put

0, if keRy;
1. 1—pk) .
kK2—p——In——=, if keR,;
ta (k) = FTET ok 2 (3.11)
—n, if keRy;
k*—p+In(n—1), if keR;.

Clearly tMe #?, so that by Lemma 3.3, I*[m] = {t¥,m) — C*[tM]. But
P°(w) + fO[m]l — plim| — (& ,m) + C* 1]
dk

1 ) 1
f ﬁ{ﬁ In (1 +¢~) o+ K2p(k) — 5 s(p (k) — up(k)}

dk 1 dk
b Blr—n—k2) 2
+nRj1p(k)2n+ﬂRj‘ln(l+e )27r

, dk 1 dk dk
+I§1 k p(k)ﬂ—mfl S(p(k))g~uR§1 plk)

1 dk 1 dk 1 dk
——In(n-1 k)—+-1 ——— k))—. 3.12

=0 [ oty +glnn [ 02 T sl) . (12
The integral over R, approaches zero as M — oo because the corresponding integral
over R converges. Furthermore, we can omit all negative terms in the bound on

the right-hand side of (3.12), and
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1 dk
—_—
1+exp{p(k®+n—p)2n

dk dk
<o) — = 0 >
n Rfl p(k) 5 =1 [ p* (k) = n as n-— oo,

.. dk
1jln(l+e”““""‘’);i—gp"(,u—n)—m as n- o,
R> YA

and

dk k? 0
@ 0.
2n 1+exp{Bk* +n—p)}

dk
2 <
RG]
We are left with

1 dk dk
E{lnnlg3 ﬁ——ln(n— 1) ziL p(k)z—r}

1 1 1 dk
§B{n_l1nn—ln<1—;)}ip(k)g—>0 (n—>o0). W

As a corollary we have

Theorem 3.2. (Approximation theorem). Let meE be such that I"[m] < 0. Then
there exists a sequence t,eF, n=1,2,... such that the corresponding Fermi—Dirac
measures m, defined by

dk
my(dk) = p"* (k)5 (3.13)

satisfy

(@) lim m,=min E,
n—oo

(b) lim I*[m,] = I*[m].
Proof. Put t,=tM" as in (3.11), where M, is still to be determined. Then,
by Lemma 3.4, {t,,m,>— C*[t,]=1"[m,]. We have shown that, as n— oo,
{t,,my— C*[t,]—I[*[m]. But

dk

[<ty,m—m, | <n [ |p(k)— P““"(k)lz—
R: T

1 dk
+ [ o) = p* () k> + |ul + ZIn(n—1) 5~ (3.14)
R3 ﬂ 2
If keR, then t,(k)= —n, so p**™(k) = p*~"(k). The first term on the right-hand
side of (3.14) is therefore bounded by

) dk
nf(1+ e _“+”))_IE—>O.

In the second term p**'"(k)=1— 1/n, so that this term is bounded by
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1, dk
;Rf {k +|u]+ﬁln(n——1)}

1

<
n—1 pa21-1/n

p(k){ku 14l +%

This proves (b) for the measures m, of the form (3.13) with t, = t*= of the form (3.11).
To prove (a) let teF and write ¢(k) = (1 + k2)~1¢(k). Then

In(n— 1)}%—»0 as n— 0.

Kom=m>Is [ 10 1p0)— o)

RgUR{UR;

The integral over R, vanishes as M — oo because

dk
I(l + k%)p(k)— < oo
2n
and

1+ k? dk
L+exp{Bk*+n—p)} 2

f(1+k*) "(k)—— |

The second term is bounded by

1+k2 %
L+exp{pk*+n—p}2n’

which converges to zero as n— co. The third term is bounded by

dk dk
2 (1= < 2"
lgsk {p(k) ( >}27T "lkléMnk 2’

which converges to zero as n— co when we choose M, =f/;t.

Next we approximate t¥ by te%,.(R) = F. Since €,(R) is dense in £, there
exists, given ¢ >0, a te%,(R) such that ||t —t¥||, <e. In the proof of Lemma 3.3
we have seen that

ol |

1
[C*[t] — C“[tM]l< ||t~tM||1<8/27f
Also

M M
[0y — CaM % S| [ 3,y 4 e, mi ey — (ol ey )|

<51+ pswpla )

keR

because
P10k — o (R)] < Bl — £ (K1
Since tM is bounded we find, using Lemma 3.4, that
|[*[m#**] — I“[m"+™' ]| < const. &.

This proves the approximation theorem. M
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4. The Large Deviation Property

In the proof of the large deviation property for the Kac measure defined by (2.12)
we need the large deviation property for the distribution of the mean density p
and the mean energy ¢ = [ k?p(k)dk/2n. This is a so-called first level large deviation
result. The final result about the measure (2.12) is a second level large deviation
property. Let us now state the first-level result. Let K/ be the image measure of
K for the mapping m— (p, ¢), where

p=I|ml|, and &= [k*m(dk). (4.1)
(Note that this mapping from E to [0, c0) x [0, co) is Borel but not continuous.)

Theorem 4.1. The sequence {I~(;‘|l= 1,2,...} of probability measures on [0, 0c0) x
[0, o) satisfies the large deviation property with constants fV, and rate function

“(p,e)= sup {ap+xe— C*a,x)}, 4.2)
“nsiy
where
CH(ex) = (1 — %)~ 2p(u + &) — p°(u). (4.3)

Proof. The lower semicontinuity of I* follows immediately from the expression
(4.2) and the fact that C* is continuous. Furthermore, C* is convex, so that we can
obtain the supremum in (4.2) by putting the partial derivatives equal to zero:

p=(1—=x)""2p"(u+a)
{8=%(1 —x)7 2P (u + ). “9

Inserting into (4.2) we obtain, writing o = o + L,

(p,8) = a1 — x)7*?p%(0) + 3x(1 — %) ">p°(0) — (1 — %) " *2p°(0) + p°(w). (4.5)
Clearly, if p— oo or ¢— oo, then either x—>1 or a—oco. If x—1 then obviously
I*(p,€) - 00. For a— oo, we use the asymptotic behaviour of p°(s) and p®(c):

dk 1

’ _100 ~—gl2
PO = T rep =] " (46)

and

2 k2dk 2,
== ~ 2 g302

AT BE—a " m @7
to conclude that T¥(g, &) - co. This shows that the level sets K, = { (5, )| T*(5, &) < b}

are bounded and therefore compact. We can actually determine the essential domain
[14] of I*:

p°(o)

Lemma 4.1. The essential domain of I* is the set
D(I*) = {(p,e)eR?|p 2 0;¢ = §n?p*}. (4.8)

Proof. We first note that, if 5 <0 or & <0 then I*(j, &) = 0o, because we can take
o— — oo respectively x —» — co. Now put t = fk? and t = o, and change variables
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in the integrals (4.6) and (4.7). We obtain

1 o (124¢
O(s) — _ R—3/2
p°(9) 7'CB gl_i_el"t
0 3/2
_2 pon L 49)
3n o1+ )1+
and
t12dt
0/} — - B 1/2 4.10
P I(1+e‘ )L+ *10
Since
®© dt

=4(1 + tanh 1),

Javemasem

we can use Holder’s inequality to find

rost(3re) o <(Fre) @

This means that (4.4) has a solution only if
e>3in?p3. 4.12)
Suppose now that ¢ < 4n? p3. Then we can optimise in the a-direction by solving
p”(0) = p(1 —x)!'%. (4.13)

The derivative in the x-direction is then negative so that the supremum is attained
as x — — oo and ¢ — oo satisfying (4.13). Since the derivative is bounded by a strictly
negative number, it follows that I*(j,¢) =

We still have to consider the boundaries. If p =0 then we can optimise in the
a-direction by taking « —» — co. Then taking x — 1 we find

1#(0,8) = & + p°(u). (4.14)

For the case ¢ = $n? p* we need the second terms in the asymptotic expansions for
p°(c) and p®(o):

p°(0) ~ =312 + d5np2a 2 4 ..
. 4.15)
pOI(a)NEO.l/Z_Z_l;‘_nﬁ—ZO._3/2+

We conclude that along the curve (4.13),

_5 P°(0)
p%(0)®

0
~1p {3 - 50

~—1gntpPpT e (4.16)

e—3(1—x)"¥*p°(0) =3n°p* —3p
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Since the integral | 0~ 2do converges we conclude that I*(5,1n25%) < co. M
1

Let us now proceed with the proof of Theorem 4.1. It remains to show that
LD.3 and LD.4 are satisfied. (See Sect. 1.) This is standard: see e.g. Ellis [15] or
[16]. In the proof of LD.3 one uses the following

Lemma 4.2. (Ellis [15]). Given (a, x)eR? with x <1 and yeR define H . («, x,7) by
H., (2,%,7) = {(5,€)e[0, 00) x [0, 0)|p + xe — C*(@, x) Z 7}
If C is a closed subset of R® such that y <I*(C) then there exists a finite set

(1, %), -5 (o, x,) such that C < | ] H (%, x;,7).
ji=1
Using Markov’s inequality we find

RI[CI< Y RECH . (07,%;9)]

¥ ~u o0 o0
< Z e PniC (a,-,xj)ﬂ}j jeﬂVz(a,Mx L(dp, de)
ji=1 00

= T expL— V() +7— Ctlay )}

so that 1
lim sup ﬂ_V InKe[cy< —o.

[ Aade] 1

But y < I*[C] was arbitrary; hence

lim sup ﬁ—ln K:[Ccl< —T[C],
-0 1

which is LD.3.
It remains to prove LD.4: for any open set O < [0, o) x [0, c0),

lim 1nfﬁ—ln Ki[0]= —I*[0].
1= o0 1

This is trivial if O < Q(I B If On Q(T BY#£0Q theg there exists a point (pg,&)€G,
where G = int (O n D(I*)) such that I*(p,, &) < I*[0] + 6.
Let (a4, Xo) be the corresponding solution of (4.4) and define the shifted measures

K5 ,(dp, de) = exp {BVi(00p + xo& — Cl'(0tg, %) } Kt (dp, ).
Lemma 4.3. For [ sufficiently large, K& ,[B;] > %, where
B;=Gn{(p,e)l (P — Po) + xo(e — &o)| < 0}
Given this lemma we have

Ki[B,] = exp {BV,Ci(eg, Xo)} | exp{— BVi(etop + xo8) } dKY ,(dp, de)
B;

> Lexp {BVi(Cl(eto, Xo) — %o Do — Xo€o — )},
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so that
1 - ~
lim inf‘ﬁ? ln Kf‘ [0] g C"(OCO, xo) - 0!0/30 - x080 - 6
1= 1
== Tu(ﬁoﬁ:o) —02— 'fu[o] —26.
This proves LD.4 since > 0 was arbitrary.
Proof of Lemma 4.3. We calculate the Laplace transform of K‘g,,z

e~ ~“K4 (dp, de)

=exp{— ﬁVtéf‘(“OaXO)}jeXp {BK((% —%)ﬁ-{—(xo—ﬁtV)e)}m‘(dﬁ, de)
1 ]

~ ~ N t
=¢eXp { = BV Ch (g, x0) + ﬂth‘(% - ﬁ—Vs Xo —W>}
1 1

~ ~
w u

oC oC
—eXpq — S%‘(ao,xo) - tg(ao,xo)

=exp{—spo— &}
This means that K&,—»émo’%) asl—-oo. W

The proof of the large deviation principle for the second-level measures {K}'}
is very similar:

Theorem 4.2. The sequence {K}'|l=1,2,...} of probability measures on E defined
by (2.12) satisfies the large deviation property with constants SV, and rate function
I* given by (3.1).

Proof. The lower semicontinuity of I* follows from the fact that it is a Legendre
transform. Since the topology on E is the weak-* topology, LD.2 follows if we can
prove boundedness of the level sets K, = {m|I*[m] < b}. But if I*[m]<b then
{t,m) < C*[t] + bforevery teF and therefore |{t,m)| < C*[|t|] + b, which proves
that K, is weak-* bounded and hence bounded. In the infinite-dimensional case
Lemma 4.2 is not valid, but the corresponding statement for compact sets is true:

Lemma 4.4. Let K = E be compact. Given teF and yeR we define
H,(t,7) = {meE|{t,;m) — C*[t] 2 y}.

If y < I*[K], then there exists a finite set t,,...,t,€F such that K U H.,(t;,7).
=1

J

The upper bound
1
limsup—InK}/[K] £ — I*[K]
- B Vl
then follows as before. If C < E is a general closed set we can make use of the large
deviation result, Theorem 4.1 above. Indeed, the sets

Br = {meE|[(1 + k*)m(dk) < R}
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are compact subsets in E so that the upper bound holds for Cn Bg. But

K¢[Be1<K![(p,8)lp+e=2R]1< — inf T#(5,)»> —o0 as R—oo.
p+e=R
Therefore,

lim sup W mK¢[Cl= hm sup ﬂ_ In {K¢[CnBr]+K¢[B]}

-

1 ~
<limsup —InK{[CnBg] v limsup —

[ Aade] »BVI 1= .Bl

= lim sup ﬁ——an, [CABR]1=< —I*[CnBg]1< —I*[C]

-0

In K¢ [Bg]

In the proof of LD.4 we make use of the approximation theorem: Let O < E be
open. Then Theorem 3.2 says that, given é > 0, there exists a Fermi-Dirac measure
me(dk) = p**'°(k)dk/2r such that maeO and I*[m,] < I*[0] + 6. Again we define
the shifted measures

8 [dm] = exp {BVi(< to, m) — Ci[te]) K [dm],
and prove
Lemma 4.5. For [ sufficiently large, K4 ;[ B;] > 3, where
B;=0n{meE||<{m—my,t,)| <d}.
Given this lemma the proof proceeds as in the proof of Theorem 4.1.
Proof of Lemma 4.5. Since By is open, there exists a finite set ¢,,...,t,€F such that
Us={meE||{t,m—my)|<dfori=12,...,r} =B,

Let Q, be the marginal distribution of the variables {t;,m),...,{t,,m). We
compute its Laplace transform as in the proof of Lemma 4.3:

f e“““‘*“'”'"r’oz(dul,...,du,)=exp{’W(Cf‘[t‘) 7, &5 ]_ Cr[t"])}

Viish
—»exp{

=exp{— Z:l Si<tiam0>}'

Thus Q, converges to the d-measure on ({t,,mg),...,{t,, mq ). It follows that,
with uf = (t;,mg >,

Ki[B;12K[U,1=Q[luy;—ul|<6]~>1. W

séi C“[to-f-st]}

IIM*

5. Existence of the Finite-Volume Pressure

After all the preliminary work in Sects. 2—4 we can finally start considering the
interacting model. As explained in the introduction the N-particle Hamiltonian
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(1.12) can be diagonalised with the help of the Bethe Ansatz, and the eigenvalues
can be labelled by the sets {k,,... ky} of distinct momenta k; = (2n/V)I; with I; = n;
if Nis odd, and I; = n; + 7if N is even. We have seen that, assuming the completeness
of the Bethe Ansatz eigenstates, the eigenvalues are given by

N ~
E({kss k) = 3 Bk k), (5.1)

where the k;(ky, ..., ky) are defined as follows.
Define, for any measure meE, the function f,,: R — R as the unique solution of

Jmlk) =k — [0f k) — fu(k))m(dK’). (5.2)
Let m, be the occupation measure,

1
m[A;0] = v Z Unakf,(o)[A] (5.3

I nez

with g, =1(j=1,2,...,N) and 6, =0 if n # n; for any j. The kl(c) are defined by
(1.24). Clearly kf,}(a) = k;. Given all this, k; is defined as

k= fulk;). (54)

Presently we show that f,, exists and is unique. First we establish this in the
I%-space:

Proposition 5.1. Let meE. Then there exists a unique solution f,,e L*(R,dm) to (5.2).

Proof. This is a rigorous version of the argument of Yang & Yang [1]. We define
a functional B:L*(R,dm)—R by

BLf1 =3 f(k)*m(dk) — [k f(kym(dk) + 3| [ @ (f (k) — f(K'))m(dk)m(dK’), ~ (5.5)
where

O (k)= ’f()c(k’)dk’. (5.6
0

We calculate the Gateaux derivative:
DB[ f1g = | f(k)g(kym(dk) — [ kg(k)m(dk)
+ [§0f (k) — f(K))(g(k) — g(K')ym(dk)m(dK’)
= [{f() =k + [0.f (k) — f(K))m(dK)} g(k)m(dk). (5.7
Since geL*(R,dm) is arbitrary, we find that
DB[f]=0<f(k)=k—[0f(k)— f(K))m(dk)) for m—ae. k. (5.8)

A simple calculation shows that B is strictly convex. Furthermore, using the fact
that | @ (k)| < | k|, we have

BLf1Z I fI12 = I £ I(f k2 mdk)) /2 — m|| £ I | m||*/2, (5.9)

so that B[ f] is bounded below. It also follows from (5.9) that B[ f]— co as
[l f | = co. We can now apply Theorem 1.2 of Barbu & Precupanu [14] to conclude
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that B[ f] attains a unique minimum at f,,e L*(R, dm). (See also Remark 1.1 and
Remark 1.2 below Theorem 1.2 in [14].) The minimiser f,, clearly satisfies (5.8). B
Proposition 5.2. Let meE. Equation (5.2) has a unique solution f,,e€°(R)n L*R.dm).

Proof. Let f,e%*R,dm) be a solution of (52) for m—ae. k. Then fo is
m-measurable and the image measure # = f,(m) is well-defined. Now define
h,:R—R by

ho(k) = k + [0.(k — KYAi(dK). (5.10)

Clearly he®é® and h'(k) > 1. Hence h is invertible. Let f,, be the inverse. Then
fn€¥€® and f,, satisfies (5.2) for all k. This equation implies

| fulK) — k| S | [m]| (5.11)
so that f,e Z2(R,dm). M

Given the solution f,, the eigenvalues (5.1) are fully determined and the
expression (1.1) for the finite-volume pressure p,(u) becomes

exp {BVip(W)} = Z ey e PP, (5.12)

ke?,

where

={lg={k1, kN}lke Z1les odd, andke (Z+%) if N is even}.

(5.13)

Warning: {k,,...,ky} is meant in the sense of sets, i.e. it is an unordered N-tuple
of distinct k;’s.

Presently we show that the series in (5.12) converges, so that the finite-volume
pressure is well-defined. We write (5.12) as follows:

xp BV} = 3 Y exp{—ﬂz a,.fm,<k£,.(o))2} (514

{0eR(Y 0,=N} neZ

We need an estimate on the function f,, (k). Differentiating the defining relation
(5.2) we obtain

Fonll) =11+ JO.(f (k) — fu(k))m(dk)] 1. (5.15)
A very simple estimate can be obtained in the following fashion. Since
2c 2
()= ———— <=
(k) PR (5.16)
we have
> > (p=
12102 50 P=Iml) (517)

We order the set {k;} so that kj<ijr1 and define Ak;=k;., —k;. The set
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~

{k;|j=1,...,N}is then also ordered since % = fm(k;) and f,, is increasing. Putting

~ ~

Ak;=k;,, — k we conclude from (5.17) that
~ . 1
Akjgaﬁkj with (X:m. (518)
We can then use

Lemma 5.1 If Ak, = aAk;, then
N [ 1 N _\? 5 N 1 XN 2
Z kj———z ki) za Z <ki—ﬁ.z ki> . (5.19)
ji=1 i=1 ji=1 i=1
Proof. Let A;=Ak;; Zj:A%j. We have
2

N 1 XN 2 1 N [i=1 N-1
Sy S k) ~g s (Tia-"T -}
ji=1 N & N*i= j=1 j=i

This is a homogeneous, second order expression in the 4; (j=1,...,N —1). The
coefficient of A7 is Nj(N — j) and the coefficient of 4,4 (i <j)is 2i(N* — Nj —j) > 0.
All coefficients are therefore positive and (5.19) follows. W

We also have, from (5.2),

§ fuRym(dk) = [ km(dk), (5.20)

which in the case m =m,, reads

Mz

(5.21)

N
k=
Together with Lemma 5.1 this implies that
N
Z 2>a Z (5.22)

For fixed N, p and hence « is fixed. Thus (5.22) gives

Y eXP{—Bi EJZ}_S_ Y exp{—ﬁaz % kf‘}<oo. (5.23)
ji=1 i=1

lge?’,N I_cefﬂ’,N

]

Jj 1

However, the bound (5.22) is not sufficient to ensure that convergence of the sum
over N in (5.12). This fact can be appreciated by restricting the sum in (5.23) to
the ground state:

kj?=#<——+j> (j=1,...,N). (5.24)

Then Z k; = O(N?), while o = O(N~ ") so that

Jj=

Z ey, exp{

ke@,
This expression diverges for large u.

m
]
INg
»
<o
——
v
18

BN o= BON) (5.25)
0
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We can improve on the bound (5.22) by the following iterative procedure. We
reinsert (5.18) into (5.15).:

N R 1 -1 2 X 1 -1

Next we show that the sum in this expression can be bounded by the corresponding
ground state sum:

Lemma 5.2. We have
N (N—1)/2 e \2 -1
Z {2 +oik—k)*} 1< Z {cz + <—> jz} s (5.27)
i=1

j=-F-1y2 Vi
provided that V, is large enough.

Proof. By shifting over multiples of 2n/V it is clear that it is sufficient to prove
this inequality in the case that 0 £k < (2n/V)). Now let j be the index such that
k;<0and k;,, =2(2n/V) (j=0 if k; 2(2n/V) and j= N + 1 if ky <0). We push
the k; with i £j to the right and the k; with i = j + 1 to the left to conclude that

N J o 2)-1
Zl {2+ aPk—k)*} < ;1 {cz + a2<k +7(i - i)> }

N 2 2y-1
+ ), {cz+a2<—n(i—j)—k> } .
i=j+1 v,

The lemma now follows from Lemma 5.3. W

Lemma 5.3. There exists a constant A such that, for a> A,
(N-1)/2 1 (N=-1)/2 1
2 \2 é 2 -2
j=-O-vpa*+{@—j) " j=-Gtuopa+j

for all positive integers N, and peR.

Proof. By symmetry we may assume that 0 < p<1. We calculate the derivative
and distinguish between N odd or even. If N =2m + 1 is odd we write

o 1 _ -2 +§{ —2Ap—)) —2Ap+j) }
opit=ma’+(p—j)* @+p)* S @+ @—i)T [@+0+))T
_ g, 20 (02 )+ 5)

@+p?* "= [+ (- P’ +(p+))T

When N =2m is even,
o mym 1 _ p"’”(l’z’(l4+2(l72 —j?a* +(p* —jA)Pp* +3j?)
opj=-mtama*+mp—j)y i£12 [@®+ (=) [a® +(p +)) T

In both cases it is sufficient to prove that the sum in the final expression is positive
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irrespective of m. Since 0 < p <1 these sums are bounded by
i a* — 2j%a? — 3j*
i=tesp.ap[@® +720P[a® + (j +3)°]°

=\ 2

1-3(2

N )
03j=1”59'(1/2)a<1+<£>2><1+<j+a1/2>2>2.

As a— oo this sum tends to

© 1 —3x? 7
T dx="z>0.
o™ =1">

We can bound the sum on the right-hand side of (5.26) by an integral:
If N=2m+ 1 is odd,

m 1 m o dx 1
Z 2, 2 .[ p) 2t
j==ma“ +j oa”+x a
and if N =2m is even,
m—(1/2) 1 m=(1/2)  Jx 1
2 2 2 I 2 2 T2
j=-m+@2a° +]J o a“+x a

Therefore, in all cases,
N 1 V, ™o dx 1
Z 2 2 7 < 7t 3
=1t +afk—k)* 2mac 1+x* ¢

Inserting this into the bound (5.25) for f, (k) we find an improved bound: f7, (k) = o/,
with

—nap/c

2 2 ] -1
o = [1 +—+—arctan<@a>} . (5.28)
Vic na c
Iterating the above procedure we obtain better and better bounds f, (k) = o™
with o™ =™~V As n— co, o™ approaches a fixed point a* of (5.28). Putting
u = (np/c)* we have
2 2
“arctanu=1— (1 + —)i_u. (5.29)
As p— o0, u— oo and asymptotically,
_ 2\t 5
1 2 1 —-(1 +i>-c—_u:u2~g£<l +—> L
T Vic Jnp c Vic c
From this we conclude that, for large p,

Fonk)> 1<5_>1/2, (5.30)
n\p
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and with Lemma 5.1:
Lemma 5.5. For p large enough,
N c
SE>5

This bound is sufficient to ensure the convergence of the series (5.12):

(5.31)

bllm

Proposition 5.3. For all ueR, p,(1) < co.

Proof. We write L =V, and k = (Bc/n?). Assume that the bound (5.31) holds for
N = N,. We estimate the sum (5.23) in the case N = N,,:

Sewp{ - £ R} <Tew | e § 12}

=3y exp{——KE( > i } (5.32)

{ni}iey

where n,eZ if N is odd, and n; + 3€Z if N is even. We now estimate Zn? by splitting
off the ground state:

Lemma 5.6.
N (n—1)/2 N N +1
Yrrz Y 4 ) ( z+—f—> : (5.33)
i=1 i=—(N—-1)/2 i=1 2

Proof. By induction for odd and even N separately. Consider odd N. The case
N =1 is trivial. The induction step amounts to proving

N+1)\? N+1)\? N +1)?
n%+n§+zgz<7> +<n1+—2—> +<nN+2~—2—> .

This follows from ny,,—n, 2N+1. A

Inserting (5.33) into (5.32) and using the fact that

(N=1)12
= (N —1)3, (5.34)
i=—(N— 1)/2 12

we obtain, after summing over N:

0 2 —1)3
I B D S e e

o keN

1
018

N

N 4 2
11 %, e { - zN" m? } (5.35)
1=1meZ

For « <7 we have ) e™™ <2 /n/o. Therefore

m= — oo
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0 N
Y, ey exp{ Z }
=No keN i=1
) N/2

This proves the proposition. |

n K(N 13
N }< 0. (5.36)

6. Continuity of the Functional

Asexplained in the introduction we can rewrite the expression (5.14) for the pressure
pp) as an expectation with respect to the Kac measure K¥:

exp {BVipi(1)} = exp {BVp? () }I exp { BV,G[m]}K} [dm] (6.1)
with
G[m] = [(k* — fu(k)*)m(dk). (6.2)

There remain two obstacles to be overcome before we can apply Varadhan’s
Theorem. First we have to show that G[m] is continuous, and second, that it
satisfies condition (1.36). We shall deal with the latter problem in the next
section, and prove the continuity of G in the present section. We first consider the
map m— f,, and prove

Proposition 6.1. Let F;,, be the space
Fyu={feb®)|f(k) = (1 + k*)**¢(k) with pe€o(R)} (6.3)
equipped with the norm
1S llaa =sup {(1+ k%)~ f(k)]}. (6:4)

keR
For every meE there exists a unique f,,€F3,, satisfying (5.2), and the map m—f,,
is continuous: E— F,.

Proof. The bound (5.11) implies that the unique solution f,,e€*(R)n LR, dm)
found in Proposition 5.2 belongs to F3,,. Conversely, if feF ), satisfies (5.2) then
it obeys the bound (5.11) so that it is an element of Z%(R,dm). It is therefore
uniquely defined on the support of m and hence everywhere by (5.2). Indeed,
yrk— [0y — f(k)) m(dk') is monotonically decreasing, so that the equation
y=k— [0y — f(k'))m(dk’) has a unique solution y = f(k).

Now consider a net (m,),c in E converging to meE. We shall prove that f,_
converges to f,, using the following well-known lemma:

Lemma 6.1. Let (x,),.4 be a net in a topological space X such that every subnet has
a subnet converging to xeX. Then x, converges to x.

Let, therefore, (m{}")s.5 be a subnet of (m,). It follows from the bound (5.11)
that { f, ;}1)},,53 is bounded in F ,. (Note that m,—»m=>||m§" | - | m||.) Furthermore
| fm (k)| < 1,50 that { f,, }, and hence also {(1 + k?)™%/*f, (1)(k)} sep s €quicontinuous.
The set {f, (1)} sep is therefore relatively compact in F;,,. We conclude that there
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exists a subnet (f,, ).k converging in Fy 4. Let feF, be the limit. We shall prove
that f =f,,. To this end we use

Lemma 6.2.

10Lc = y) = 0(x" = ) £ 10.(x — X)| + 0y — y)I.

Proof. If u,v 20 then 6 (u + v) < 0.(u) + 6(v), because (k) is concave for k= 0. It
follows that, for general u,veR, |0 (u)| < |0 (u—v)|+10.(v)| and |0.(u) — 0.(v)] £
10 u—v)=10u—v+2)|+]02)] Nowputu=x—y,v=x'—y,andz=y—y. R

This lemma implies that 6,( Ju@ (k) — f,@()) converges to 0.(f(k) — f()) in F34
for all keR. Next we use
Lemma 6.3. If m,—»m in E and f,— fin F3,, then {f,,m,)> - {f,m).

Proof. [{fpmyy = fym)| SISy = fym )1 + | fym,) — {fim)|. The second term
converges to zero because feF. As to the first term we have: given ¢ > 0, there
exists o, such that

a= o= |f,(k)— f(k)| < (L +k?)¥* for all keR.
But then
[ fu— fime)| S ef(1 + k*)**m,(dk),

and the latter integral is bounded because m,—»m in E and (1 + k?)**cF. A
We conclude that
k= [0S (k) — fr@(k))mP (k')
converges to
k— [0.(f(k)— f(k)ym(dk’)

for all keR. On the other hand f,a(k)— f(k), so that f satisfies (5.2) and by
uniqueness, f = f,,. The continuity of m— f,, now follows from Lemma 6.1. W

Proposition 6.2. The functional m—G[m] = ((k* — f,(k)*)m(dk) is continuous:
E-R.

Proof. In view of Lemma 6.3 it is sufficient to prove that mr—g,,(k) = k* — f,,(k)*
is continuous: E— F 4.

Let (m,), be a net in E converging to meE. Then f,, > f,,in F34. Butg, €F3,
because

1g,, (k) =k + £, () [k — £, (K) = mllmg || 2|kl + 7| m,]),
and |m,| is bounded. We also have
Im(k) = 2k § 0 (frn(k) = fra(K)ym(dK') + L[ Oo(frn(K) — frn('))m(dK') T,
hence

2c
(k) — [k

Grn(K) = 2 Ocl fnl) = full Yy(dI') + 2[5 T

k4 [0 fmlk) = fu(K))m(dK)},

)2 S (kym(dk’)
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so that

2c
+ (fnlk) — fulK))?
The last term is also bounded because, by (5.17),
| fulk) = fuk) Z (L4 2¢Hm|) " k= K| =alk— K|,

and therefore,

4
g (k)| < 27| m +7" Imll? + 21k — m(dk').

2¢
M =707

2clk—K'| 2c|k'| ,
=V o "+ e )

m(dK) < k| 5 m(dk')

2c
2+ al(k—k)?

2
<2200+ 2V m])|m] += [ IK | m(dk).

We conclude that {g, } and hence also {(1 +k?)™>*g, (k)} is equicontinuous.
Each subnet therefore has a convergent subnet. But since fma—> fmin Fyu=
9y, (k)= g(k) for all keR, we conclude with Lemma 6.1 that g,, >g,,in F3,. W

7. The Yang-Yang Trace Formula

Apart from being continuous, the function G[m] also has to satisfy condition (1.36)
if we want to apply Varadhan’s Theorem. In our concrete situation this condition
reads

1
lim limsup——1In ] exp {BV,G[m] }K![dm] = — 0. (7.1)
A~ 1o PVi imeE|GImz )

In proving this condition we shall use several times the following basic lemma
without always mentioning it:

Lemma 7.1. Let {a,} and {b,} be sequences of positive real numbers. Then
1 1
limsu In(a; + b)) £{ limsu Ing; ) v{ limsup——Inb, ).
l_»wpﬁ (a+b) = ( l_)wpﬂ v, z> ( l—mopﬁVl 1)

The first time we use this lemma is in splitting the integral in (7.1) into integrals
over the regions E . = {meE| |m| < p,} and E, = {meE| |m| = p,} respectively,
where p, is such that, for measures m in the support of K{ such that p = p,, the
bound (5.31) holds; that is,

ﬁ;poﬁG[m]§8—-—2pt. (7.2)

The integral over E. can be easily bounded with the help of the general bound
(5.22). With ay = (1 +2c¢ ' p,)~* we have

p <po=>G[m] = (1 —od)e. (7.3)



Thermodynamic Formalism and Large Deviations 397

We use the fact that, for 6 >0,
Voner|Gimz 4y = €XP {5/3V,(G[m] - A)} (74)
to bound the integral over E _ as follows,
1

_V]n f exp {BV,G[m]} K} [dm]
ﬁ 1 {meE .|G[m]Z A}

ﬂi jexp{ﬂv,((1+5)G[m] 5A)}KE[dm]

1
=——In | exp {{BV,G[m]} K} [dm] — A4,
BV g
with { =1 + 6. Hence, in order that
1
limsup——In | exp {BV,G[m]} K} [dm]
=0 ﬁVl (meE _|G[m]= A}
approaches — oo as 4 — oo, it is sufficient that, for some { > 1,
lim supﬁ—ln j exp {{BV,G[m] }K}[dm] < . (7.5)
=0
Now let { = (1 —a2/2)/(1 — ). Then

G710 § exp (LBV,GIm] Kk Ldn) < 2-In fexp (Vi1 — 28} Rr . do)

= CHO0, 1 = 30d) > Gd) "2 p° () — p°(w). (7.6)
The integral over E. is more difficult to control. Indeed, the simple-minded
approach in the proof of Proposition 5.3 does not work because, if we put N = AL
with L large enough so that the bound (5.31) holds, the corresponding term in the

bound (5.36) becomes of the order [*Le®™"L We improve on this by iterative use
of the following inequality,

Lemma 7.2. Let ¢ > 0 be fixed. Then, for arbitrary integer k > 0 and arbitrary real
n=0,

i exp{—o[(n+m?+ - +n+m+k?*]}
m=0

é{l +m}exp{—a[rz2+(n+ 1)2+ +(n+k)2]}
Proof. We have

0

Y exp{—o[(n+m?*+ - +((n+m+k?*]}

m=
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k
=exp[ Z (n+l)2+ak+1)(n+’k)2]
-y exp{—o(k+ 1)(m+n+3k?}
m=0
k
gexp[—a Y (n+ i)2:|.
i=0

w
{1 +ea(k+l)(n+k/2)2 J’ e—a(k+l)x2dx}

n+k/2

1
sep(—elr oW1 g

Iterating this inequality we obtain

Lemma 7.3. Let n=20, N> 1. Then

N
DR R B
n2nnyz2ni+1 nN2Znny-1+1 i=1
<N . 1 N-1 —
zkl;]l{ +Gk(2n—1+2N—k)}exp|:_al=Zo (n+l) ]

Proof. We use induction on N. If N =1 then

Y exp[— on1]<{1 +5(17—n}exp[—on2]

nizn

(which, of course, is only useful if n> 0). Now suppose that statement is true for
a given N. Then

. N+1

Yoy oy exp[—a > nf]

nyzZnny2n;+1 ny+12ny+1 i=1

< Y exp[—oni] H {14— ! }
=1

ny=n 0k(2n1 + 1 + 2N k)
exp{—ol(n +1)*+ - +(n, + N)*1}

v 1
é,ﬂ{l T okt +2N—k)}'
i
‘{1 +0(N+ 1)(2n+N)}exP{—a[n2+ <o+ (n+ N1}

N+1 1 N )
=11 {1 T ok@n 11 +2N—k)}'c"p[_“i;o("+’)2} "
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Proposition 7.1. The function G[m] = [(k* — f,,(k)*)m(dk) satisfies the conditions
for Varadhan’s Theorem, in particular (7.1).

Proof. We have shown in Sect. 6 that G[m] is continuous. Given the above bounds
on the region E . of the integral (7.1), it remains to show that

lim limsup —— | exp {BV,G[m]}K{[dm] = — o0

A2 I-w ﬁl/l {meE > |G[m] 2 4}
Using (7.2) we have

1
L | exp{BV,GIml}Kt[dm]
BV tmek,icomza)

1 -
<ﬁ_Vlln j exp{ﬁlﬁ(s %%)}K;‘(dﬁ,de)

{(p.0)lez 452 po}
! &(0)

=—1In Y exp{ﬁquﬁz(G) zﬁVz 7,(0)

ﬂVl {oeQlef0) 2 A;pi(0) 2P0}

} pP(w), (17

where ()= (1/%;) Y. 0, and &(0) = (1/V) Y. ky(0)*s,

neZ neZ
Clearly,
2“ 2wz 3
8;(6)_ Y, nP=3in*p; (6)— zpz (0)25n° 5 (0) (N22).
Vi n=—-{N-12 3N
Therefore,
81(0') <7t2>1/3 5
— > — AP =D, 7.8
o) =\ 4 @8
and hence

&(0)
Y }exp{ﬁuZan zﬂ 1_(0)}

{oeQ|e(0)2 A;5(0) 2 g neZ

< ¥ exp{ﬁﬂzan zﬁv,<(1—5)8_‘(")+5p>},
{(reQ:Za"g2 neZ ( )

using the same upper bound as in (7.4) for the indicator function. It follows that
it suffices to show that

1 c &(0) }
—In ex o,—— (1 —=90)pV,—=
ﬁVI {ae!):%ang2} p{ﬁ‘urgz RZ( )‘B lpl(a)
neZ
is bounded as [ - o0. (Comp. (7.5)) Writing L = V, and x =4c(1 — ) this expression
becomes

) K N
e/?uN ex { _— n? }’ (79)
; {n j}zj'v= 1 P LN = ’
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where the sum is over all sets of N distinct integers or half-odd integers according
as N is odd or even. In this sum we replace the negative n;’s by their absolute
value. Each n;>0 can then occur once or twice. We distinguish these cases by
additional variables #; which can take the values 1 or 2. Thus we obtain

) N
BuN _* v
p ]

{n,»}f'= 1

0 N
s$ s en{minl v w5 %
N=2 W =1 20, Z nji
X N
< ¥ oNg2uN expd ;} 710
NZ‘Z {"jz%},“él p{ 2LN & (7.10)

Next we use Lemma 7.3 to estimate the last sum in this expression:
K &, K &,
{njéz();}v:x exp{ —Zﬁj=1 g } =n12§:0 'lzz;‘” .”"Néng—ﬁl exp{ _mizl " }
N N—-1
< [ v Py o 2
- N-d L 1
<(1+2L) kUI (1 +E)6Xp{_3ZN (N — 1)3},

where L= 2L/k. We assume L2 1. It remains to estimate

2 202N U < >exp{ 3LN(N—I) } (7.12)

Again we split this sum into two parts (using Lemma 7.1) and distinguish the cases
N—1=<[L] and N = [L] + 2. In the first case we write

Ms

3L

N

I

~

N-1 T TN-1 N-1 .
n(1+%>§2M<NL—1)'é(k)”“(ﬁ%) <@ (113)

k=1

Inserting we find

1 [L1+1 5 u - 1 B
B—ln{3L Z (2e%# D < )exp|: N(N 1)3J}

< FIE In {3L(2e)X e [1.](22P#)H1+1}, (7.14)

which tends to

1
2 1+2In2+—-+2Bu )<
px e

In the second case we write
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N-1 3 (L) T\ ~-1 3 iz ~ Nl
T+ )=T](1+= 1+ )<2Ws—expiL )
kUI( k) kU1( k)HIle( k>_ (L] =1 K

§(2e)["]exp{LlnN[ A } (e )m< [L]1> < (de)leM-Vle (7.15)

© - L 1
202N N—1)
T (E B e |

This yields

1
BL
1
BL

~ 0 1 1
< 3Lde) Y (292”")"’e"’/‘2exp(——~N2 +:N)}
{ N=[L]+2 3L L
- o0 1
< {3L(4e)L Z exp(AN——..N2>}, (7.16)
N=[L]+2 3L
where
A=2p +1n2+1+1>2ﬁ +ln2+1+ !
(T ePR o =R e L’
Now

o0

1 7 - ~
) exp{lN - iNz} < exp(3l"[L]) Z e V< (1 /3nL)exp {2A*L}.
N=[L]+2 =-©
We conclude that the lim sup of the left-hand side of (7.16) is bounded by

2
—(4e+31)<o0. N
Px

Using Proposition 7.1, Theorem 4.2 and Varadhan’s Theorem, we find from
(1.34) that

P() = lim p,) = p°(u) + sup {G[m] —I"[m]}. (7.17)

This reduces to
pw) = sup {wlm| — fml}, (7.18)

using (1.33), (1.37) and (1.38); the formula
-1  petis. 0 9K
p(w)=pB~" fIn(l + e Petluy — (7.19)
R 2n
where &(-; 8, 1) is given by (1.43) then follows using standard methods of the calculus

of variations as in [1], and the proof of the theorem stated at the end of Sect. 1
is complete.
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