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Abstract. Solutions are presented for the Klein-Gordon and Dirac equations in
the 2 + 1 dimensional space-time created by a massive point particle, with
arbitrary angular momentum. A universal formula for the scattering amplitude
holds when a required self-adjoint extension of the Dirac operator is specified
uniquely. Various obstacles to a consistent quantum mechanical interpretation
of these results are noted.

I. Introduction

There has been completed recently a quantum-mechanical analysis of two-body
scattering in 2 + 1-dimensional [planar] gravity [1,2]. This generally covariant
theory has no propagating gravitational degrees of freedom, because in the absence
of sources it is solved uniquely by flat space-time. Curvature is created by sources,
but only locally at their position; elsewhere space-time remains flat. Consequently
there are no gravitons, and forces are not mediated by graviton exchange; rather,
they are geometrical/topological in origin, arising from global properties of space-
time, which is not Minkowskian in the large, even when it is locally flat. For this
reason, planar quantum gravity gives us the opportunity for examining the inter-
relation between geometrical and quantum concepts, without the complication of
graviton propagation. Moreover, the theory is physically realized in the presence
of infinite cosmic strings [3].

The quantum mechanical results that have been established concern relative
motion in a two-body, spinless system [1], and equivalently [1] motion of a spinless
test particle in the presence of a [heavy] spinless source [2]. In this paper, we
extend the results about test-particle motion by allowing the source and/or the
test particle to carry spin, i.e. we solve the Klein-Gordon and Dirac equations.
In Sect. II, we recall the space-time of a spinning source [4], and discuss classical
motion. Our strategy for studying quantum scattering on a cone is presented in

* This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under

contract #DE-AC02-76ER03069



230 P. de Sousa Gerbert and R. Jackiw

Sect. III. We review the results for a spinless test particle scattering off a spinless
source [2]. Also we present a qualitative analysis of classical wave diffraction to
supplement the previous quantitative discussion [1,2] and to enhance physical
insight. Sections IV and V are devoted to exploring the effects of spin: the Klein-
Gordon equation with a spinning source is solved in Sect. IV; the Dirac equation
with a spinless and spinning source in Sect. V. It is found that the effect of spin
is to introduce energy and spin dependent phases into various amplitudes, which
can be given a universal form. Moreover for spinning sources, unitarity of the
quantum theory is problematical. Also there are mathematical intricacies: the Dirac
Hamiltonian in the presence of a spinning point particle is not self-adjoint, while
a self-adjoint extension introduces a new physical parameter, whose significance
remains obscure. Final remarks comprise Sect. VI. Some partial results about
scattering off two sources are given in the Appendix; our analysis makes use of
an orbifold.

II. Spinning Source and Classical Scattering

The space-time produced by a point source with mass M and angular
momentum [spin] S gives rise to the line element [4,5]

(ds)2 = gμvdx»dx* = (cdt + c-'GSdΘ)2 - (dl)2, (2.1)

(dl)2 = R~2GMl(dR)2 + R2(dΘf\ = R~2(1 -\{dR)2 4- R2(dΘ)2l (2.2)

Here c is the velocity of light, G "Newton's constant," and α [0 < α ̂  1] is 1 — GM.
[We have rescaled G by a factor of 4 relative to our previous papers, [2,4] where
α is given by 1 — 4GM.] We call this a spinning cone.

In (2.2), the spatial interval is presented in conformally flat spatial coordinates,
with R and Θ possessing the full radial and angular range, 0 ^ J R ^ o o , 0 ^ 6 > ^ 2 π .
Alternatively, one may use imbedded coordinates,

r = Kα, θ = 6>, (2.3a)

which also extend over the complete range, 0 ^ r ^ o o , 0 ^ θ ^ 2 π , and describe a

cone imbedded in flat three-space with the constraint z = y/(oc~2 — l)(x2 + y2),

(dl)2 = (x~2(dή2 + r\dθ)2. (2.3b)

Finally there are the spatially flat coordinates,

p = α"V, φ = α ( 0 - π ) (2.4a)

with a limitation on the angular range, viz. a wedge, determined by the conical
angle α, is excised from the flat plane; 0 rg p ^ oo, — πα ̂  φ ^ πα,

(2.4b)

Then spin may be hidden by redefining time,

T = t + GSΘ/c2 = t + GSΘ/c2 = t + α" ιGSφ/c2 (2.5)
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so that with the flat spatial interval (2.4), space-time is locally Minkowskian,

(ds)2 = c2(dT)2 - (dp)2 - p2(dφ)2. (2.6)

Of course the attributes of the source—mass and spin—are coded in the global
properties of the locally flat variables. All the information thus resides in non-trivial
boundary conditions, a fact that will be crucial in quantum mechanics: φ is excluded
from the angular domain 2πGM; since (ί,r, θ + 2πn) is identified with (ί, r, θ) it
follows from (2.4) and (2.5) that (T, p, φ) is equivalent to (T + 2πnGS/c2, p,φ + 2πna).
Describing physical consequences of this "time-helical" structure of the locally flat
coordinates [4] is one of the goals of the present work, and is given below.

The classical equations of motion are determined by the geodesic equation,

The overdot indicates differentiation with respect to any convenient affine variable
τ that parametrizes the path xμ; τ satisfies dsccdτ, where the proportionality
constant vanishes for massless particles. With imbedded coordinates, we learn
from (2.1) and (2.3b) that the non-vanishing components of the connection are

Γ% = - GS/rc, Γr

θθ = - α2r, Γ% = ί/r, so that (2.7) implies [5]

t-2GSrθ/rc2 = 0, (2.8a)

r-oc2rθ2 = O, (2.8b)

θ + 2fθ/r = 0. (2.8c)

Clearly the solution for r and θ in terms of τ makes no reference to spin, which
affects only the relation between time t and τ. A first integral for (2.8a) is obtained
with the help of (2.8c),

i + fθ = C. (2.9a)

The affine parameter may be chosen to be T in which case C = 1. Together with
the remaining integrals of motion, involving the constants / and υ,

θ = μ, (2.9b)

a-2P + l^ = v2, (2.9c)

the equations may be integrated once more to provide a description of the motion,

ί-to = Γ-To-^(β-βo)» (2.10a)

r2 = L + v2<x\T - Γo)
2, (2.10b)

tan α(0 - 0O) = — (T - To). (2.10c)
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It follows that the scattering angle ± ω is the same as in the absence of spin;

Δθ ΞΞ 0 f inβl - 0 i n i t i a l = ±πa~\

±ω = ΔΘ + π = ± π ( o Γ 1 - l ) , (2.11)

[the sign depends on which side the source is passed] so also is the orbit,

r2cos2oc(θ-θ0) = ~, (2.12)

which is traversed at a rate that is influenced by the spin, according to (2.10). In
terms of the coordinate T the equations are the same as in the absence of spin.
The spinning source introduces a time delay At that is determined by Eq. (2.10a),

Δt = ΔT-^-ΔΘ, (2.13a)

where AT is the delay of the variable T and Δθ is the angular deflection given in
(2.11). It is evident from (2.10b) or (2.10c) that AT vanishes; whence the time delay
is only non-zero when the source carries spin,

At=+%-. (2.13b)
<r α

The scattering angle (2.11) is presented in the imbedded coordinate system,
where it measures the deflection in the asymptotic motion on the cone as projected
onto the x — y plane of the embedding three-space. In flat coordinates, where the
connections vanish, a particle is undeflected, Δφ = φ f i n a l — φ i n i ti a l = π; to arrive at
the scattering angle one must subtract the forward direction which subtends the
angle πα, giving the result π(l — α), which is in agreement with (2.11) when
transformed according to (2.4a).

For a test particle with mass m, Eqs. (2.8) also follow by varying the Lagrangian,

L=-mc~. (2.14)
at

This has the virtues of identifying τ with 5 and providing a definition of the

energy,

_ dr dL dθ dL

d— o—~
dt dt

The last identity is easily verified using (2.8b) and d/ds^(dT/ds)(d/dT)=^
(l — v2/c2)~1/2(d/dT). The possibility of using this suggestive special relativistic
notation is due to local flatness: when everything is expressed in the coordinates
(T, p, φ\ S disappears, only α remains in the combination Z/α and v can be identified
with the velocity.
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Note that while the metric for the spinning cone possesses closed time-like
contours [e.g. dt = 0, dr = 0, dθ constant with r < GS/c], there are no closed time-like
[or light-like] geodesies. Nevertheless the occurrence of these contours entails on
the classical level causality problems close to the source when non-gravitational
forces are present. In quantum mechanics, which senses all paths not just geodesies,
the closed time-like contours give rise to untoward unitarity problems, as will be
seen below.

III. Overview

The following strategy for determining the quantum motion on the cone has been
successfully implemented in the spinless case, [2] and will be used in Sects. IV
and V for the problem with spin.

Imbedded coordinates are used because the full angular range allows for con-
ventional partial wave analysis and identification of phase shifts in the wave equa-
tions that we solve. There are no interactions—the equations are free—except
that derivatives are properly covariant with respect to the imbedded metric. The
relevant equations of course depend on the spin of the test particle.

For a spinless source and spinless test particle, the Schrodinger equation was
analyzed [1,2]. This involves only the covariant Laplacian, and serves equally
well as the analysis of the Klein-Gordon equation, which is equivalent to the
Schrodinger equation in this simple case. When the source possesses spin, the
presence of off-diagonal time-space components in the metric tensor renders the
Schrodinger equation inapplicable for the spinless test particle; rather the covariant
Klein-Gordon equation is solved. In either case, because the background metric
is time-independent, the time-dependence of the wave function may be separated
as e~ίEt/h, and one is led to a stationary problem at fixed energy E, Moreover,
rotational invariance of the background allows separating the θ dependence with
the Ansatz eιnθ, where n is an integer because θ possesses the full 2π range and the
wave function is required to be single valued, i.e. angular momentum, / = — ίhdθ,
is diagonalized with eigenvalue hn. Thus it remains only to solve for the radial
function un, and its large-r asymptote

^ J + ί.) (3.1)
2 4

determines the phase shift δn. Here K is related to the energy; see below.
The scattering solution is constructed as a superposition of partial waves,

appropriate to the planar problem,

^(r) = £ ei(δn+nπ/2)un(r)einθ. (3.2)
n

This may be decomposed into an incoming wave and a scattered wave,

Ψ = Ψin + ΨS» (3.3)

the latter defining the scattering amplitude / as
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ΦsM • l-f(θ)eiκr. (3.4)

r-+co ^J r

Ordinarily, the incoming wave is taken to be a conventional plane wave,

ψin(τ) = eiκrcosθ. (3.5)

It then follows that the scattering amplitude is given by

f(θ) = S—Σ (e2iδn - 1V"Θ- (3-6)

For scattering on a cone, δn increases with n, owing to the persistence of the
"interaction" at large distances—the test particle is never out of range of the source
because space is not asymptotically Euclidean. Consequently, (3.6) must be regu-
lated, for example by multiplying the summand by a convergence factor e~^ε and
setting ε to zero at the end of the calculation. This results in a well-defined,
expression for / , which however contains angular delta functions [2].

An alternative procedure yields a scattering amplitude without the delta
functions. It is recalled that the large-r asymptote of a plane wave is a radial wave,
times a "scattering amplitude" that is an angular delta function in the forward
and backward directions. Therefore, we can consider that portion of φsc leading
to delta functions in / as belonging to the asymptote of a plane wave, and move
its contribution to the incoming wave. In other words, we can present a
decomposition alternative to (3.3), (3.4) and (3.5), [2]

Ψ = Ψin + ψSC, (3.7)

such that φin is a superposition of plane waves, φsc still tends to a radial wave

(3.8)

and / coincides with /, except for the delta functions.
To find the alternative decomposition, (3.7) and (3.8), we construct the scattering

solution (3.2) by evaluating the partial wave sum with the help of a contour integral
representation for un. This results in a contour integral representation for φ9 from
which φin and ^ s c are easily determined [1],

For a spinless particle of mass m moving on a spinless cone, the Schrodinger/
Klein-Gordon equation in embedded coordinates reads [2] [henceforth we set c,
G and h to unity]

- ί-drrdr + \d2)un(r)einθ = a2κ2un{r)ein\

jlmE Schrodinger
neZ, (x2κ2 = < 2 2 . . (3.9)

' E2 -m2 Klein-Gordon
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The radial wave function is a Bessel function,

(3.10)

whose asymptotic form determines the phase shift,

\n\ω. (3.11)

From (3.5) the scattering amplitude is found [2],

f{Θ) = --^L= Σ(δ(θ + ω - 2πn) + δ(θ-ω- 2πή)- 2δ(θ- 2πή)) + /(0), (3.12a)

1 sin co

The singularity in/at 0 = ± ω [plus periodic repetitions] is a principal value, while
the delta functions emerge when the regulator ε is set to zero.

To evaluate the sum over angular momentum eigenstates in the scattering
solution (3.2), the Bessel function is represented by the Schlafli contour integral.
The summation is then elementary and one finds, after some adjustment of contours
[2], the following expression for the scattering solution [1],

The superscript / denotes the wave function transformed by (2.4a) to flat
coordinates ρ = (— pcosφ, — psinφ), k = (xκ so that kp = κr. The vector k(z) is
rotated by complex angle z, k(z) = (k cos z, k sin z) and the contour over which z
ranges is depicted in Fig. la and equivalently in Fig. lb.

It is clear that φf satisfies the free, flat equation — V2

pφ
f = k2φf, while some

further manipulation with the contour shows that φf(ρ, φ + 2πα) = ψf(p, φ).
The equivalent contours in Fig. lb give the decomposition of φf into ίj/{n and

φ{c. The former is the contribution from the [negative] Cauchy contour around
the poles of (1 — eιz/a)~λ at z = zn = 2πnα and leaves a superposition of plane waves,
with variously rotated incoming momenta,

φ{n(Pf φ) = α £ ' eWn) P = α £ ' e-ikpcos(φ-2nna)m (3^4)

The prime on the sum indicates that zn must lie in the internal [— π + φ9π + φ].
The integration over the vertical contours gives φ{c. The integral has not been
evaluated in closed form, but its large distance asymptote is found to give a radial
wave, with scattering amplitude / of (3.12b), which in flat coordinates reads [1]

(3.15)

The above formulations will be used in Sect. IV, where we solve the Klein-
Gordon equation on a spinning cone. An obvious generalization to a spinor wave
function is utilized in Sect. V for the Dirac equation.
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Im z
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-TΓ + φ ΊΓ

Im z

-7Γ+φ

Rez
TΓ+φ

Fig. 1. a—Integration contour for the representation of ψf(ρ, φ). b—Integration contour for the
representation oίψf(ρ,φ) equivalent to that in Fig. la but giving rise to the alternative decomposition
ψf = φ{n + φ{c. The incoming wave ψ{n, is given by the [negative] Cauchy contour around the poles at
z = 2πna, indicated by heavy dots. The integrals along the left and right vertical contours determine
the scattered wave ψ{c, whose large distance asymptote defines the scattering amplitude / /
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Fig. 2. a—Qualitative pictorialization for scattering of waves on an obstacle at the origin. The sharp
lines are classical trajectories with scattering angle + ω, the sign depending on which side the trajectory
passes the source. The envelope to the right of the source, formed by heavy diagonal lines, is the sharp
geometrical shadow. Broken lines represent diffraction on two sharp edges, even though no edge is
actually present—the source [conical defect] provides the "edges." b—Fraunhofer diffraction around
an edge—heavy vertical line. The horizontal lines are the light rays of geometrical optics. Half of them
are cut off by the edge, thus forming the geometrical shadow—medium heavy horizontal line. The
diffraction is indicated by broken lines

Next we present a qualitative discussion of wave diffraction around a sharp
edge, which gives an intuitive, physical understanding of the above formulas. For
the remainder of this section we restrict ourselves to the case S = 0, i.e. T = ί, but
we shall later comment on the general situation. In optics, whose terminology we
shall often use, the classical geodesic equation corresponds to the approximation of
geometrical optics. These classical trajectories, obtained from (2.10), are shown as
lines in Fig. 2a. They are a function only of the impact parameter, but not of the
energy, viz. they only depend on the initial y-coordinate, which is l/v. The scattering
angle + ω does not vary with the impact parameter, except in its sign that depends
on which side the test particle trajectory passes the source.

From this picture it is now easy to understand the quantum scattering
[Fig. 2a]. Instead of a sharp geometrical shadow [indicated by heavy diagonal
lines], each half of the incoming wave-packet [approximated by plane waves]
gives rise to a diffraction pattern [indicated by broken lines] after passing the
source at the right or at the left. For the scattering amplitude we thus expect two
parts:

1. The contribution that is already present classically, i.e. two wave packets with
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half the flux in the directions ± ω. In the scattering amplitude (3.12a) these corres-
pond to the first two delta functions. The third delta function arises from the
forward wave, which is present in conventional scattering theory [hidden in
exp(ίkrcosθ)] but absent in our problem and thus has to be subtracted.
2. / represents true quantum mechanical scattering. Each summand in Eq. (3.12b)
comes from the diffraction pattern of the upper or lower part of the wave. This
is analogous to Fraunhofer diffraction on a sharp edge [heavy vertical line in
Fig. 2b]. Thus one can use the standard approximation methods based on Huygen's
principle to obtain the leading singularities of /. Superposing the well-known
1/sinθ result in the directions ±ω yields an approximation that reproduces
correctly the leading singularity of / close to the + ω directions,

In fact Kirchhoff 's formulae and thus Huygen's principle, on which the argument
is based, yield only the correct leading amplitude close to the geometrical shadow
region [6]. This is insensitive to the [unspecified] orientation of the edge that
serves to cut off half the wave. Removing this arbitrariness gives rise to subleading
corrections, which assemble into the complete scattering amplitude /.

The above picture also allows us to understand the absence of diffraction for
α"* = integer [2]. In this case the classical scattering angle ω is an integral multiple
of π and the two shadow lines in Fig. 2a precisely overlap, combining into a
dispersion free scattered wave. Thus the quantum mechanical scattering amplitude
/ vanishes, leaving the classical result. For α~1=even integer [classical back-
scattering] our time-independent formulation of scattering results in a standing
wave [2].

Having thus interpreted the main features of the scattering amplitude (3.12),
let us formulate what one would expect for a test particle with spin: A rotation of
the wave function of a particle with spin shy ±ω introduces the additional phase
exp (+ isω). We thus expect this factor to multiply the delta function and diffraction
contributions of the two respective "half-waves" propagating in the directions ± ω.
In the case of a spin ̂ -particle this will be demonstrated to be the only modification.
An "exchange" argument will also allow us to understand the results for a spinning
source.

In conclusion, let us remark that there is an approximation involved in the
above qualitative analysis. In the embedded coordinate system that we employ,
plane waves do not [locally] solve the wave equation, even far away from the
scatterer; exp (ικr cos θ/a) should be used to represent monochromatic waves.
Asymptotically and close to the direction of propagation [which is the region
relevant for scattering] the two however are identical. Note that our exact quanti-
tative analysis results in an incoming wave that superposes precisely such mono-
chromatic waves; see (3.14). Alternatively one can present an analogous discussion
in locally flat coordinates (2.4) where exp (ικr cos θ/a) becomes the plane wave
exp (ίkp cos φ\ but pictures lose their simplicity due to identifications of angles
depending on which side the source is passed. The shape of the scattering amplitude
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/ is insensitive to these coordinate changes, because radial waves are not distorted
by a conical metric, and one just multiplies all angles by α.

IV. Klein-Gordon Equation on a Spinning Cone

We solve the equation

(Π+m2)ψ = 0, (4.1)

where • is the covariant d'Alembertian in imbedded coordinates,

^ M d2 drd -1D = ~ ^ N M = d2 - — drrdr - 1 (Sdt - dθ)\ (4.2)
r rr r

v »

The Ansatz

φ(t;r) = e~ιEtφ(r) (4.3)

reduces (4.1) to
α2 (ES-idθ)

2~\ Ί -
drrdr H 2 φ{r) = (E2 — m )φ(r). (4.4)

Observe that a solution to (4.4) is

ψ(t;r) = e - ί

where (/^5=0 is a solution in the absence of spin, e.g. any of the solutions considered
in the previous section: the partial wave with definite angular momentum un(r)einθ

of (3.10) or the scattering wave function in (3.2). However, such solutions are not
acceptable because they do not satisfy proper boundary conditions: Since ψs = o
is periodic in 2π, the above is not periodic but obeys φ(t; r, θ + 2π) = φ(t + 2nS; r, θ)
[ES is not necessarily an integer [7]]; equivalently in locally flat coordinates,
φf(T;p, φ -f 2πα) = ψf(T;p, φ). Moreover, since φs = o(ΰ,θ)=l, the above is ill-
defined at the origin.

On the contrary, according to our discussion following Eq. (2.6), we impose the
boundary conditions

φ(t;r,θ + 2π) = φ(t;r,θl (4.5a)

φf(T + 2πS; p, ψ + 2πα) = φf(T; p, φ). (4.5b)

Thus the correct solution is periodic in θ and the time coordinate T, not ί, jumps.
This produces a non-trivial dependence on S, in contrast to the solution with
improper boundary conditions whose spin dependence is merely a phase, which
is unobservable in a closed system.

To construct a periodic solution of (4.4) we proceed, as in Sect. Ill, by making
an Ansatz with angular momentum eigenvalue n,

φ(r) = un(r)eίnθ, neZ. (4.6)

The radial function satisfies
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rr ^fyn{) M \ (4.7)
with the regular solution given by a Bessel function,

- [ £ S ] ,

| | / r ) , n<-iES\

whose phase shift is

(4.9)

Here [x] is the largest integer less than or equal to x. The scattering amplitude is
found from (3.6), which after regularization yields

i L = £ (eiπESIaδ(θ + ω - 2πή)
λ/2πκ: n

e~iπES/ctδ(θ - ω - 2πή) - 2δ{θ - 2πn))+J(θ). (4.10a)

• / -i[ES](θ + ω) -i[ES](θ-ω)\
[ JπES/cc f - inES/cc f \ (Λ 1 QU)

The result (4.10) is similar to the S = 0 expression (3.12), except that each of the
two terms in / is multiplied by different S-dependent phase factors, which are
discontinuous in energy [for fixed S]. However, the full / is continuous, as is the
delta function contribution to / .

Two comments are in place here:
First, we observe that for a massless spinning target particle (α = 1, S φ 0) Eq. (4.7)
coincides with the Schrodinger equation governing the motion of a charged (e)
particle moving in the field of an infinitely thin solenoid, which carries a magnetic
flux Φ, when the replacement

eΦ
ES<->— (4.11)

2π

is made. When α # l , (4.7) together with the replacement (4.11) describes the
combined gravitational and Aharonov-Bohn interaction. For further elaborations
on this analogy to the Aharonov-Bohm effect and on the corresponding "gauge-
in variance" in the gravitational case see ref. [7].

Second, one correctly obtains the time delay (2.13b) [with c = 1, G = 1] in the
presence of a spinning target from formula (4.9) by using Wigner's result [8]
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The sign of the time delay is determined by [and is opposite to] the sign of the
angular momentum in intrinsic coordinates, which describes the side on which the
classical trajectory passes the source.

Next we construct the scattering wave function from (3.2). The Bessel function
is represented by the Schlaffϊ contour integral, the sum is evaluated, and the
contours are shifted in the same manner as in the spinless case [2], to produce
the final result, which we present in locally flat coordinates,

ψ'(p, ψ) = *~ W J g ^ ' f ^ (4.13)

The contour is the same as for (3.13) [Fig. 1], as is the notation k(z) and p; {x}
is the fractional part of x: {x} = x — [x]. Finally, the complete time-dependent
solution

ψ'{T;p, φ) = e-ίEψ(p,φ) = e'ίET j^eik(z)-p^—-^ (4.14)

clearly satisfies the flat Klein-Gordon equation and depends on the characteristics
of the source—mass and spin—through the weight function in the integrand. This
is as it must be, so that the boundary conditions (4.5) are satisfied. That they indeed
hold, can be easily verified from (4.13) and (4.14). [For the verification, it is
convenient to change the contour of Fig. la, by shifting its φ dependence into the
integrand.]

The integral $(dz/2π)(eί{ES}Φ/(l -eiφ)) over our contour is zero when ES is
not an integer. Then the wave function (4.13) or (4.14) vanishes at the origin—a
centrifugal-like barrier is responsible for this. An exception occurs when ES happens
to be an integer, because then J(dz/2π)(l/(l -eiφ)) = 1 and ψf(0,φ) = e~

iESφla.
[This follows also, but less reliably, from the series representation (3.2): each partial
wave (4.8) vanishes at the origin, except for integral ES, where the nth partial wave,
with n = — ES, leads to Jo(0) = 1.] Consequently the φ-dependent phase in (4.13)
causes no problem at the origin in contrast toφs=0. The S-dependent phase factors
in the integrand of (4.13) and (4.14) are discontinuous in ES: {ES} vanishes when
ES approaches an integer from above, but equals unity when the same integer is
approached from below. Nevertheless, the wave function is continuous, because
the potential discontinuity, proportional to \{dzβπ)eHz)'p{\ - eiz/a)/(l -eiz/a) =
J(dz/2π)eιk(z)p, integrates to zero on our contour.

The alternative contour of Fig. lb gives the alternative decomposition (3.7).
The poles of the integrand are at their spinless locations z = zn = 2πnoc; the
[negative] Cauchy contour around the poles determines {j/in,

~ikpcos(φ-2πna)e-i(ES/<x)(φ-2πn<x)

As in the spinless case, the sum is restricted so that the poles lie in the interval
[— π + φ, π + φ\ and the incoming wave is a superposition of plane waves, with
variously rotated incoming wave vectors and spin dependent relative phase factors.
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Note that ψ{n is continuous in energy, but discontinuous in φ, as in the spinless
case. The latter discontinuity is a consequence of the separation in (3.7): ψ{c is
similarly discontinuous, while φf of (4.13) varies continuously with φ. The contribu-
tion from the vertical contours defines φ{c, whose asymptote is determined as in
the spinless case [1,2]. We find (3.8), with scattering amplitude / of (4.10), which
in locally flat coordinates reads

/J
^ λ _ g W / a ( c t n g + ! . Λl ( 4 1 6 )

V 2α J2α J \ 2oc

Even though the various phase factors are discontinuous in energy, / is
continuous, and the description of scattering by the Klein-Gordon equation on
a spinning cone shows no untoward features, other than the divergence of the
total cross section—the angular integral of |/|2—owing to the singularities in /.
This was already observed in the spinless case, and is attributed to the long range
nature of the "interaction." As a consequence, the optical theorem is inapplicable
[2].

Nevertheless, it must be appreciated that a complete quantum mechanical
framework does not naturally accompany solutions of a relativistic spinless wave
equation that is second order in time. Moreover, an attempt to construct such a
framework for our problem runs afoul of the closed time-like paths mentioned at
the end of Sect. II. Let us observe that the Klein-Gordon equation (4.1), (4.2) may
also be presented as

- ((1 - S2/r2γ'2dt + (1 - S2/r2y ^2 ^ dθYψ{t; r)

= (-ydrrdr-(r2 -S2)-^2 + m 2 W r ) (4.17)

A quantum mechanical equation should be first order in time, so one is led to
consider the "square-root" of (4.17),

- S2/r2)ί/2idt + (1 - S2/r2) ~1/2 % ί

= / - ~ drrdr - (r2 - S2)- '31 + m2 φ(t; r), (4.18a)

which may also be written as

iδtψ = Hφ,

H = (1 - S2/r2)~ 1/2( - dtf^dj + m2)1/2 - (r2 - S2)' HSdβ. (4.18b)

In (4.18b) the metric with superscript "2" refer to the 2-space metric tensor
-0yof(2.1) and (2.3b),

ρW = (1 - S2/r2)(dίJ - fΨ) + u.~2rΨ, (4.19a)

giw = (1 - S2/r2)~ ψj - fΨ) + a2fψ, (4.19b)

0<2> ΞάeXφf = oΓ 2 (l - S 2 / r 2 ) . (4.19c)



Classical and Quantum Scattering on a Spinning Cone 243

Equation (4.18) is not mathematically equivalent to (4.17), because the
differential operator on the left-hand side of (4.18a) does not commute with the
operator on the right-hand side. Nevertheless, (4.18) may be independently moti-
vated by constructing the Hamiltonian corresponding to the Lagrangian (2.14).
One finds

H = (1 - S2/r2y ll2{ViQ{2)ijVj + ™ψ2 + (r2 - S2)~ Ήε'Vp^ (4.20)

where

Λ = - ^ T ( 4 2 1 )

44
dt

Clearly the Hamiltonian operator in (4.18b) corresponds to a particular ordering
of (4.20).

The natural measure for computing the inner product between solutions to
(4.18) is i 2 r v / ^ ί = d 2 r α " 1 ( l - S 2 / r 2 ) 1 / 2 . With this inner product, H of (4.18b)
would be self-adjoint, except that in the region r < S the square root of 1 - S2/r2

is imaginary, spoiling hermiticity of H and reality of the norm. The closed time-like
contours of the metric (2.1) also inhabit this domain of r.

We shall see that for the first order Dirac equation on a spinning cone, whose
quantum mechanical interpretation is much more immediate than for the second
order Klein-Gordon equation, similar problems in the region r < S interfere with a
consistent quantum mechanical framework.

V. Dirac Equation on a Spinning Cone

1. Preliminaries. To begin, we review the 2 + 1-dimensional free Dirac theory and
describe the appropriate modification to the conical scattering formalism outlined
in Sect. Ill [9].

We take 2 x 2 y-matrices appropriate for 3-dimensional spacetime: y° = β = σ3,
y1 = iσ2 and y2 = — iσ1, obeying the relation

yayb = ηab~iεabcya (5.1)

where ηab is the Minkowski metric tensor and εabc is the 3-dimensional Levi-Civita
symbol (ε 0 1 2 = 1). In our index conventions, Roman letters from the beginning of
the alphabet denote Minkowski vectors, from the middle they represent spatial
[coordinate] two-vectors and Greek letters denote space-time vectors.

Solutions to the free massive Dirac equation in Minkowski space,

% (5.2)

can be expanded in plane waves. For positive energy these are

(5.3)
E-m eιθoj

where the normalization is fixed by φoήfφ0 = 2E. Here kx + iky =
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/celθo = *JE2 — m2 el6*° and the associated current is

j α = ψyaψ = 2(£, k). (5.4)

[The Dirac adjoint of spinors is defined by \jj = \jj^ya=0.'] Alternatively one can
diagonalize the angular momentum operator,

f=-idQ + k°\ (5.5)

yielding partial waves with angular momentum n + %,

u°n(r)e~iEt = exp {i{n + \ - \σ*)θ}u°n{r)e~iE\ (5.6a)

WJJ^Ϊ&IX neZ. (5.6b)

The expansion of the plane wave (5.3) in this basis is

n

We emphasize that the positive energy, two-component solution of the massive
Dirac equation has only one degree of freedom, whose spin is 1/2 [as seen in the
rest frame] and the theory is parity violating [10]. Therefore, in the presence of
interactions we shall find only a single set of phase shifts δn and one scattering
amplitude /. To determine it, eigenfunctions of / are constructed, as in the scalar
case,

(5.8)
\iyjE — m un \κr) j

whose asymptote

nπ π

%κr \ 2 4
( 5 ' 9 )

[with K a function of energy £ ] determines the phase shifts δf, which will be shown
to obey the relation <5(

M

υ = <5(

n

2) = δn. The scattering solution [with θ0 = 0]

^ / 2 ) W n ( r ) ( 5 . 1 0 )
n

defines the scattering amplitude via the decomposition

ψ = φ i a + ψSQ, (5.ii)

and

where the above spinor gives rise to a purely radial current. Taking the incoming
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wave to be a plane wave in the x-direction [(5.3) with k -» κ(E) and θ0 = 0] gives the
previous scalar formula (3.6) for / in terms of the phase shifts δn.

2. Solutions of the Dirac Equation on the Cone. It would seem that a way to obtain
solutions of the Dirac equation on the spinning cone is to solve first the flat equation
in the coordinates (T, p, φ) and then to impose the proper boundary conditions (4.5).
It turns out however, that for S ^ 0 the behavior at the origin is non-trivial.
Requiring the wave function to be regular does not lead to a self-adjoint
Hamiltonian. In order to study this question further we have to construct the
Hamiltonian and therefore the Dirac equation in the coordinates (ί, r, θ).

We take the dreibein in (ί, r, θ) coordinates to be [11]

1 0 0

S 1
— sin θ α cos θ — sin θ
r r

S
k c o s θ αsinβ
V r

-cosθ
r

(5.13a)

)

with the inverse

b - 0

0 0

- cos θ - sin θ
a a

— rsinθ r cos θ

(5.13b)

!
The usual relations are obeyed,

= ηab, (5.14a)

= gμ\ (5.14b)

The spin connection ωμ.ab = — ωμ.bω which forms the covariant derivative for a
spinor, Dμ = dμ + ^ωμ]abσ

ab, σab = ^[ya,yb\ may be written in three dimensions

as ωμ;ab = εabcωμ

c. Also from (5.1), σab =-l-εabcyc. Hence Dμ = dμ-
l-ωμ

aya. The

form of ωμ is determined by

With (5.13) the only non-vanishing component is

The Dirac equation

(iyaE/Dμ-m)ψ =

on the spinning cone reads

(5.15)

(5.16)

(5.17a)

(5.17b)
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where yr = cos θγ1 + sin θγ2, yβ = — sinθy1 + cos θy2.
The rotational invariance of (5.17b) enables us to choose positive energy solu-

tions that are simultaneously angular momentum eigenfunctions, with eigenvalue

e~iEt, neZ, (5.18)

and (5.17b) reduces to the following system of coupled equations.

\

•i i 9 1 \ E S +

x | " tt,Λl = ° ( 5 19>

The solutions for E2 > m2 are

'«n(v/«+l)V (5.20)

Here v = n + ES + (1 — α)/2, K = l/oc^jE2 — m2, εn = ± 1 and the same sign has to
be chosen for the upper and lower component. The asymptotic form of the Bessel
functions determines the phase shifts; as claimed they are identical for the upper
and lower components and are given by

π/v

(
(5.21)

The choice of the sign εn for arbitrary S will require some discussion. We shall
therefore first describe the results for S = 0, which are quite interesting in themselves,
and on that basis proceed to discuss arbitrary S.

Let us remark that just as in the scalar case the replacement (4.11) converts
(5.19) into the Dirac equation in an Aharonov-Bohm field, without gravity for
α = 1, with gravity for α < 1.

2.a Results for a Spinless source. For a spinless source (S = 0) the orders of the
Bessel functions appearing in Eq. (5.20) are (εn/oϊ)(n + (1 + α)/2). Since 0 < α ̂  1, we
must choose εn = sign(n + (1 — α)/2) = sign n, (sign 0 = 1) to have both components
regular at the origin.

We now rewrite our formulae for the phase shifts in a way that allows deriving
results for the present case from the calculations of Sect. IV. At the same time,
this suggests a conjecture for the case in which both the test particle and the source
carry spin.

The phase shifts δn from (5.21) can be written as
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+ (l-α)/2). (5.22)

On the other hand, the phase shifts in Eq. (4.9) can be given by

(5.23)

Comparing these formulae we see that the present result is related to the corres-
ponding expression for a spinless particle on a spinning cone by the replacement

ES^{\-a)β = ~. (5.24)

Since the integral part [(1 — α)/2] vanishes, the scattering amplitude for the Dirac
particle in the field of a spinless source is [from (4.10)]

fiβ) = -^L £ (eiω/2δ(θ + ω - 2πn) + e' iω/2δ(θ - ω + 2πri) - 2δ(θ - 2πn)) + f(θ%

[We postpone the contour representation for the wave function and the alternative
decomposition ψ = ψin + ̂ s c, until the next sub-section.]

These results can be described by the wave picture, presented at the end of
Sect. III. As anticipated in that discussion, the diffraction is given by the same
amplitude as for a scalar test particle [Eq. (3.12)]. except that the parts stemming
from the two half waves continuing in the + ω-directions are multiplied by a phase
factor exp (+ (ί/2)ω) appropriate for a spin 1/2 particle rotated by that angle. This
produces of course some appreciable physical changes, e.g. while the scattering
amplitude / still vanishes for α" 1 = odd integer, it no longer vanishes for α" 1 =
even integer [classical backscattering], because the two half waves differ by a sign
and thus no longer combine to a dissipation-free wave.

The phase shift formulae (5.22) and (5.23) can both be represented by a universal
expression,

δn = - εn£- ((1 - Φ1 + EΊS) =-sn^- (Esr + EΊ%
Zee lot

εn = sign (an + £V< + EfJs). (5.26)

Here E and J denote energy and total [i.e. orbital and spin] angular momentum,
s and t label source and test particle respectively and we use the relation Es = M =
1 — α between source mass and deficit angle. Thus the above wave picture also
allows us to relate to the results of the spinless test particle scattering off a spinning
source by interpreting Eq. (5.24) as an "exchange" of the "source" and "test" labels
ES = E'S'-^E'S' = Mil = (1 - α)/2, where S denotes the respective spin.
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The above leads to the conjecture that Eqs. (5.26) remain valid if source and
test particles carry spin, i.e. these formulae provide a universal description for the
scattering of spinning particles. Let us now see how this compares with our results
for a Dirac particle on a spinning background.

2b. Results for a Spinning Source. We rewrite the orders of the Bessel functions
in (5.20) as (επ/α)(n + ES + £(1 - α)) and (εn/α)(n + ES + i ( l + α)), giving the phase
shifts

δn=" ε " έ ( ( 1 " α ) ( " + > ] + E s y (5 27)

Apart from the rule that fixes εΛ, which is still to be determined, (5.27) is of the
form (5.26), thus partially confirming the conjectured universal description. How-
ever specification of εn is complicated by the fact that for

n + i ( l - α) < - ES < n + i ( l + α), (5.28a)

or equivalently

£ S = - ( n + i ( l - α ) + »yα), 0 < ι y < l , (5.28b)

there is no choice for εn which renders both components of the wave function
regular at the origin. [For non-integer λ, Jλ(z) behaves as zλ at the origin.] The
singular solutions must not be rejected altogether, because as we now show this
would lead to a Hamiltonian that is not self-adjoint. Indeed in order to preserve
self-adjointness of the Hamiltonian the regularity requirement at the origin must
be relaxed [12].

First we derive the "measure" for spatial integrals of our spinors. The current

Γ (5.29)

is covariantly conserved,

^ ^ = 0. (5.30)
9

Hence the spatial integral over the density p [here and in the following
σr = cos θσ1 + sin θσ2; σθ = - sin θσ1 + cos θσ2]

μ = 0 f « = 0 μ = 0 \( S θ\

is time independent and gives a suitable measure. The eigenvalues of (1 — (S/r)σθ)
are (1 ± (S/r)); thus for r < S the measure is not positive definite. This difficulty,
which arises from the region of r with closed timelike contours, prevents a consistent
quantum mechanical interpretation and points towards second quantization where
p is interpreted as the charge density.

From the Dirac equation (5.17b) we can construct the Hamiltonian by isolating
the time derivative,
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. (5.32)

Time is separated in the usual way and the angular dependence is removed by
working in an eigenspace of the angular momentum J(5.5) with eigenvalue n + 1/2,

φ(t; r) = exp {i(n + \ - ^σ3)θ}χ(r)e-
iEt. (5.33)

In this eigenspace the Hamiltonian can be represented by a radial operator h
x(1)(r)

(2)
A, V / /

Hφ(t;r) = exp {i(n + \ - ±

acting or radial spinors χ(r) = I ( 2 )

y ^ ^ (5.34)

The measure for the r integral of radial spinors is

±σ3)θ} = (l~-

(5.35)

Because Jί~λ appears as a factor, the radial Hamiltonian is singular at r = S.
Nevertheless h is unambiguously defined for r < S and the eigenfunctions (5.20) do
not reflect the singularity at this point.

The loss of positivity of the measure means that we cannot apply the usual
apparatus of von Neumann deficiency subspaces in order to check the self-adjoint-
ness of h and/or construct its self-adjoint extensions, because this theory relies on
positive definiteness of the inner product of a Hubert space. But we can examine
these questions directly and construct an appropriate domain for h to be self-adjoint.

Let us restate the general problem: In order to establish symmetry of h we have
to prove for two arbitrary radial spinors χ and χ that

J rdrχ\r)JΠιχ(r) = J rdrχ\r)Vjiχ{r) = J rdrχ\r]hJfχ(r), (5.36)
0 0 0

where the first equality defines h} and the second is true for symmetric h [arrows
indicate the direction of derivatives, which act only on the spinors]. This equality
can easily be established, as long as the boundary term from the radial partial
integration vanishes,

lim r{χ\r)σιχ{r)) = Urn r(χ(1)*(r)χ(2)(r) + χ(2)*(r)χ(1)(r)) = 0. (5.37)
r^0 r->0

[We always assume everything to be well-behaved at oo.]
A symmetric Hamiltonian is self-adjoint when its domain coincides with the
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domain of its conjugate. It is seen from Eq. (5.37) that if the domain of h consists
of spinors χ(r) regular at the origin [and square integrable with the measure Jf\
the domain of tf is larger, since the spinors χ{r) could diverge as r*"1, ε > 0 , yet
still satisfy Eq. (5.37) and remain square integrable. We thus have to posit a
condition that assures (5.37) and is symmetric in χ and χ. An acceptable criterion
involves two parameters 0 ^ η ^ 1 and - (π/2) <λ<± (π/2); we demand that both
χ and χ satisfy

lim {mr)ηχλ{r) cos λ = Him (mr)ι~ηχ2{r) sin λ (5.38)
r->0 r->0

[m is inserted in order to assure proper dimensionality].
For fixed values of λ and η the radial energy eigenfunctions [see Eq. (5.18) and

(5.20)] are

fo, , < - „ « , (5.39b,

un(r) = sin μwn

+ (r) + cos μu ~ (r) for v = - jyα. (5.39c)

Here again v = n + ES + (1 — α)/2. As M is an integer, the last case only occurs for
special values of E. For η = 0,1 the parameter μ is irrelevant, as wM

+ = wΠ~ in
(5.39c). Otherwise μ is fixed by (5.38), when we recall that Jη{z) —^ {z/2)n \jΓ (1 + η),

,5.40,

The solutions (5.39) remain square integrable [at the origin], even in the limiting
case η = 0,1, since J_ x = — Jγ is regular there.

The corresponding phase shifts are given by

K = δf Ξ - ^-((1 - a)(n + i ) + £5) n > - (£5 4- i ( l - α) + ιyα), (5.41a)

^w = ί" s ^ ( ( 1 - oc)(n +1) + £5) rc < - (£5 +1(1 - α) + ι,α). (5.41b)

If £ is such that an equality sign can arise in the above definition of the domain
of the solutions, the remaining phase shift is determined from Eq. (5.39c),

n= - ( £ S + i ( l - α ) + ι/α), (5.41c)
tan μ + 1

where δ* are defined in (5.41a,b).
The scattering amplitude is
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f(θ) = -^^Σ&inBS/a+ω/2)%β + ω - 2πn) + e-
i{πESI«+ω/2)δ(θ -ω- 2πn)

/2

-2δ{θ-2πn)) + J(θ). (5.42)

For energies E different from the special values in (5.41c) one has

-a)/2+ηά\(θ + ω)
/a + ω/2)

On the other hand if there is an n* eZ such that E = E*= ~ 1/S(n* + (1 - α)/2 +
then / reads

( pUπES/a + ω/2)

\

p-i(ES + (ί-a)/2 + ηa)(θ-ω) \
_j_ e-i(πES/a + ω/2)_ e2iδn*e-i(ES + (l-a)/2+ηa)θ \ |

where an explicit expression for the last summand is obtained from Eq. (5.41c)
with the help of the identity exp(2i(5n*) = (1 + ΐtan<5π*)2/(l + tan 2 δn*).

We observe that for generic η the scattering amplitude is discontinuous in
energy at such a special value E*. Upon defining /f*(#) = lim/£*± ε(#), it

£-•0

follows from Eq. (3.6) [or with more effort from Eq. (5.43a)],

in*θ

' x ' ~ =(exp(2ia,i) - exp(2ί<5n-*))

- sin ηπ.

This vanishes only for

17 = 0,1. (5.45a)

With Eq. (5.41) the last equation can be restated as

exp 2iδ£ = exp 2iδ~* = exp 2iδn* = ± 1. (5.45b)

Thus when Eq. (5.41a) is satisfied we have indeed /#*(#) = /E*(Θ) = fE*(θ\ i.e.
Eq. (5.43b) coincides with the upper and lower limit in (5.43a) and the scattering
amplitude is continuous in energy.

The wave function depends on the parameter λ via Eqs. (5.39c) and (5.40), but
for η = 0 or 1, u^(r) in Eq. (5.39) coincide [possibly modulo a sign] at v = - ηa = 0
or — α respectively and thus the scattering amplitude is in fact independent of λ.

The value η = 0 is further preferred, because then the present phase shifts fit
the universal form (5.26) in agreement with the conjecture following that equation.

From now on we take η = 0, λ = 0. With this particular choice for the self-adjoint
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extension, the upper ["large"] component always is regular at the origin, while
the lower ["small"] component can diverge, but remains square integrable and
satisfies (5.38) with η = 0, λ = 0.

The contour representation for the wave function is derived in the same way
as in Sect. IV. Formulae (5.20) and (5.22) together with the Schlaίli representation
for the Bessel function yield the following expression [for η = 0, λ = O], which is
defined on the same contour as (3.10) and (4.11) [Fig. 1 with φ = ot(θ — π)],

dr
\l/(t r θ) = g~iEtg~iES(θ~π) f p~iκrcos(z-α(O-π))

It is not hard to see that this indeed solves the Dirac equation (5.17b) and to check
that the proper boundary conditions (4.5) are obeyed. φf(T; p, φ) is obtained via
the coordinate transformations (2.4) and (2.5),

-a)/2}z/a /f m \

e ^ ^ l V i l ^ . (5.47)
-e ' XjE ιz)

This is not a solution ψ°(T; p, φ) of the free Dirac equation in coordinates (T; p, φ)
that one would have naively presented. The relation between these two is

ψ'{T;p9φ) = Ry(T;p9φ)9 (5.48a)

R = ei(n/2)σ^e - (iω/2π)φσ^ (5.48b)

[The first factor in the right-hand side of (5.48b) just takes care of the π in the
definition φ — a(θ — π).] This can be checked by performing the coordinate trans-
formations (2.4) and (2.5) on Eq. (5.17b) and observing that the resulting equation
is indeed related to the conventional free Dirac equation in radial coordinates by
the relation R.

m. (5.49)

Here γp = cos φγ1 + sin φγ2; γφ = — sin φγ1 + cos φγ2.
The correct φf{T; p, φ) is not a zero mode of the free Dirac operator (5.49)

[but instead is related to it via the transformation (5.48)], since these zero modes
φ°(T; σ, φ) can be only periodic in φ with the conventional period 2π—as indeed
the operator itself has this period—whereas φf{T; p, φ) has to obey the boundary
condition (4.5).

The remainder of this section is completely analogous to the scalar case in
Sect. IV. Again the alternative contour of Fig. lb gives a decomposition that can
be interpreted as an incoming and a scattered wave. Equation (5.47) shows that
the poles inside the Cauchy contour are at the same locations z = zn = 2πna as in
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the spinless case. They determine the alternative incoming wave,

253

eMZn)'pei{ES + {1~a)l2)2πn e ~

(5 5

The prime on the sum again restricts the summation so the poles lie in the interval
[— π + φ,π + φ]. The integral along the vertical contours gives the scattered wave.
Asymptotically we find the form (5.12), with a scattering amplitude that agrees
with (5.41), and in flat coordinates reads

-ct)/2]φ/cc

2j2πk L

In conclusion, we observe that for η = — v/oc non-integer and tan λ < 0 the
hamiltonian h of Eq. (5.34) also has bound states, with eigenfunctions

\

where Kη is the modified Bessel function. The energy of these states is implicitly
determined by

- v/oc)

See also the comments at the end of Sect. VI.

VI. Summary

Scattering amplitudes that we have found in various cases can be summarized
with one universal formula,

2α

- (6.1)

This possesses [principal value] singularities at φ = ± π + 2πnα, which arise from
the long-range "interaction" and interfere with the optical theorem. Furter unitarity
difficulties are present when the source carries spin Ss Φ 0, and closed time-like
contours are possible. Then the Klein-Gordon "Hamiltonian" and the natural
measure become complex and hermiticity is lost. For the Dirac Hamiltonian the
pathology is less severe. The measure loses positivity and the Hamiltonian must
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be extended into a one-parameter family to achieve a self-adjoint operator. Formula
(6.1) applies for one value of the parameter; the physical meaning of other values
is unclear.

It remains to be seen whether second quantization eliminates these pathologies.
It not, perhaps one should reject as physically unrealistic a spinning point particle
[spinning string!] or at least the portion of its spacetime r<S that contains closed
time-like contours. [The Dirac equation in a spinless conical background does
not encounter these problems. Therefore, by exchanging test particle and source
in our universal formula (6.1), the special case of a scalar test particle and Ss = 1/2
may be understood without encountering causal difficulties.]

Second quantization of the Dirac field raises new questions. It is known that
fermion loops induce a gravitational Chern-Simons term [13], which then liberates
the graviton, rendering it a propagating, massive excitation [14]. At present, it is
a mystery to us how this new degree of freedom is reconciled with the first
quantized results presented here.

Quantum mechanical puzzles remain even with spinless particles. For example
't Hooft has argued [1] that when the source is treated dynamically, the Hamil-
tonian for relative motion is H = ^Jp2 + M2 + y/p2 + m2 [where p is the relative
momentum] and H operates on a space with deficit angle given by its eigenvalue,
i.e. α = 1 — H. Thus states of different energy inhabit different spaces, and this truly
"Machian" phenomenon destroys quantum mechanical linearity and superposition.

Finally we remark that when we accept energy-dependent boundary conditions
the most appropriate choice for η in (5.38) is η = — v/α [whenever the latter can
lie between 0 and 1—otherwise there is no need for a self-adjoint extension]. The
scattering amplitude will then depend continuously on the energy for all values
of λ and bound states arise for tan λ < 0.

Appendix

In this Appendix we study a quantum mechanical particle in the presence of two
sources, and solve the relevant wave equation for the simplest example. As will
be seen, our analysis makes use of an orbifold.

The line element
(ds)2 = (dt)2-(dΐ)2 (A.1)

in the presence of N static point particles with masses Mi9 located at positions
Rj , is given in conformally flat spatial coordinates by [4]

_ " dR dR » dZdZ*
m " M IR - R J 2 M " M [z - ztnz* -znM" ι j

In the second equation we use complex coordinates Z = X + iY, Z* = X — iY9 etc.
That equation also indicates how passage to localy flat coordinates is effected.
Define

Z AϋΨ

z(Z) = ^ , (A.3)
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then

(dl)2 = dzdz*, (A.4)

and information about the sources is coded in the boundary conditions on the
locally flat variables z and z*. Near the zth source, z is approximately given by
(Z — Z)1~Mi

— \ — ~ Y\(Zi~Zj) Mj Thus when the ith source is encircled, z
1 — Mi jφi

acquires the phase e~ι2nM\ and in the vicinity of the ith source z has to be identified
with e'i2πMiz.

Henceforth, we specialize to two point particles; without loss of generality we
may assume that they are placed on the X axis, equidistant from the Y axis,
separated by a distance la. Thus, the integral in (A. 3) becomes

z = J(ir + α ) M i ( i r < 2 ' ( A 5 )

For arbitrary Mb this cannot be expressed in terms of elementary functions. But
the geometry of the variable z is easily described pictorially, in Fig. 3. The two
particles are denoted by numbered circles. The cut-out region is the shaded
domain to the left of the solid line, and the line segments marked by x are
identified, as are those marked by (x). [The first particle appears in two locations,
but they are identified.] Thus the excision consists of a wedge with opening angle
2π(M1 + M2) plus a further region between the two particles.

The integral (A.5) is elementary only when the M/s are rational and sum to
one. Setting M 2 = p/q =1 — Mx and changing variables {2£ + aj^ — a)1/q = S
transforms (A. 5) into

where the ωn(q) comprise the q roots of unity, ei2πn/q. These satisfy, for any integer
Jί that is not an integral multiple of q,

onJ/(q) = 0. (A.7a)
n = l

It also follows that

^ T =

 B fc^-"X) ' (A 7b)

which was used to arrive at (A.6).
While the integral (A.6) is elementary for any p, we further restrict the discussion

to the simplest case p = 1, q = 2, i.e., M1 = M2 = 1/2,

This maps the first particle, at Z = — a, into z = ± zπmod2πi, while the second
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Fig. 3. Geometry of space for two static particles with mass Mλ and M 2 . The cut out region at M 2

has opening angle 2πM 2, and the edges of the excised wedge are identified [ x ]. Particle M1 requires

a cut out region with opening angle 2πM l 5 which is divided into two by the [doubled but identified]

axis proceeding from M 2 . The edges are identified again [ ® ] and the total cut out region, indicated

by shading, is described by a cut out wedge appropriate to a single particle with mass M1 + M 2 located

at an intermediate point, plus a further excision between the two particles

particle at Z = a is now at z = Omod 2πi. The inverse formula

Z = αcoshz,

X = a cosh x cos y9 Y = a sinh x sin y

shows that y is a 2π-periodic variable, whose range may be taken in the interval
[ — π, π], while x extends from 0 to oo. In other words, the line y = — π is identified
with y = π; also at x = 0, y is identified with — y; see Fig. 4. The space is a
semiinfinite cylinder, with one end pinched together. When the z variable is extended
over the entire complex plane, points z and — z = Ze~ί2nMi are identified, and also
points z mod2τri are identified with each other. Our space is an orbifold. Its
underlying manifold is an infinite cylinder, which is divided by the group
Z 2 of rotations by π. The conical singularities with deficit angle π, introduced at
the two fixed points 0 and ± in of this operation, correspond to the two particles.
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Fig. 4. Geometry of space for two static particles with equal masses, M f = 1/2

It is instructive to compare this space with that of a single particle of mass
M = Mx + M2 = 1, located at the origin. In conformally flat spatial coordinates,
the appropriate line element is given by (2.2) with α = 0. Changing variables x = In R,
y = <9, gives (dΐ)2 = (dx)2 + (dy)2. The variable y is 2π-periodic as in (A.9), but x
extends from — oo, where now the particle is locted, to oo.

To describe a quantum mechanical test particle interacting with the double
source we must diagonalize the Hamiltonian H = Jp2 + m2. This is achieved by
diagonalizing p2—the Klein-Gordon equation is equivalent to the Schrodinger
equation. We thus solve

) = k2ψ(x9y) (A. 10)

on the plane with a restriction on the wave function that incorporates the
orbifold identification,

ψ(x, y\

φ(x, y).

(A.I la)

(A. l ib)

Note it would be insufficient to require equality merely on the identified line
segments: φ(x, — π) = φ(x, π), ^(0, —y) = φ(0, y). Of course, these conditions are
implied by (A.I 1), but they are weaker, since they merely define φ on the boundary of
the region, and do not encode the necessary identification. The unique, orthonormal
eigensolutions are

/ * Uk\'2 ..
uΛx, y) = — I i - cos (knx + ny),

π\kj

(A.12)
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There is no scattering, the waves are standing waves. They are not angular
momentum eigenfunctions, because diagonalizing (l/ί)ΰy is incompatible with the
requirement (A. 11 a). However angular momentum squared may be diagonalized,
as indeed it is in (A. 12). [Recall that for a single particle with mass M = 1/2, there
too is no scattering [2]. The partial wave (3.10) in locally flat spatial coordinates
is J2n{kp)ei2nφ and the scattering solution (3.2) sums to cosk p, when k points in
an arbitrary direction.]

One may also construct the heat kernel for the Laplacian on our orbifold,

n \n\7t

2πτ

ny)cos(knx' + ny')

2π

where

2π^

is the theta function of the third kind.

-\e- (A.13)

(A. 14)

Finally, we extend the above results to the case when the two particles also
carry spin St. The multi-particle line element [5] reduces in our case to

dR dR

dZdZ*

|R + a | | R - a | v

~ Sid\ z + a Sid\ z~aV
2 Z* + α l 2 Z*-a) J(Z2 - a2){Z*2 - a2)

(A.15)

Upon changing variables as in (A.3), (A.8) and (A.9), this becomes

(ds)2 = (dT)2-dzdz*,

_ ,SίΛ c o s h z + 1 S2i c o s h z - l

T = ί — ϊ - ^ - l n — : — - — r - ϊ — l n -cosh z* — 1

Solutions to the Klein-Gordon equation satisfying the conditions (A. 11)

are

cosh-

cosh-—

sinh-

T

-ES2/4
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~ 1 / 2

\Kn\

~112

COSL{K*Z

This is just [the time-dependent version of] (A. 12) with an additional phase
-((ESJ2) argcosh(z/2) + (£S2/2)argsinh(z/2)). In the second equality above the
phase is hidden in T.

Note added. After this manuscript was completed, we received a paper by M. Alford and F. Wilczek,
Phys. Rev. Lett. 62, 1071 (1989), where they solve the Dirac equation in a Bohm-Aharonov field.
These authors did not remark on the need for a self-adjoint extension, but implicitly picked one value
of the parameter that labels the extension. For further discussions see Ph. de Sousa Gerbert, MIT
preprint, CTP # 1653, October 1988.

Acknowledgements. We have benefited from conversations with S. Deser, C. Isham, P. Mazur and
G. *t Hooft. Useful instruction on orbifolds, which we encounter in the Appendix, was given to us by M.
Bershadsky, H. Feshbach and C. Vafa. We are grateful to these colleagues for their assistance. One of
us (R.J.) acknowledges the hospitality of the Aspen Center for Physics, where part of this work was
completed.

References

1. 't Hooft, G.: Commun. Math. Phys. 117, 685 (1988)
2. Deser, S., Jackiw, R.: Commun. Math. Phys. 118, 495 (1988)
3. Gott, J.: Ap. J. 288,422 (1985); for a review see Vilenkin, A.: Phys. Rep. 121, 263 (1985). The spinning

cosmic string was considered by Mazur, P.: Phys. Rev. D34, 1925 (1986), and simultaneously to
our work by Harari, D. and Polychronakos, A.: Phys. Rev. D38, 3320 (1988)

4. Deser, S., Jackiw, R., 't Hooft, G.: Ann Phys. (NY) 152, 220 (1984)
5. The generalization to arbitrary numbers of spinning point particles is given by Clement, G.: Int.

J. Theor. Phys. 24, 281 (1985), who also studies classical motion
6. Sommerfeld, A.: Math. Ann, 47, 317 (1896) and Optics. New York, NY: Academic Press 1954
7. We see no reason for energy to be quantized or time I to be periodic as has been claimed by

Mazur, P.: Phys. Rev. Lett. 57, 929 (1986). Our objections to the reasoning in that paper coincide
with those raised by Samuel, J., Iyer, B.: Phys. Rev. Lett. 59,2379 (1987) and are apparently accepted
by Mazur, P.: Phys. Rev. Lett. 59, 2380 (1987)

8. Wigner, E.: Phys. Rev. 98, 145 (1955)
9. A mathematical investigation of Dirac operators on spaces with conical singularities is by Chou,

A.: Trans. Am. Math. Soc. 289 1 (1985)
10. Deser, S., Jackiw, R., Templeton, S.: Ann Phys. (NY) 140, 372 (1982) The normalization in

(5.4) is chosen so that a well-defined zero mass limit may be taken. But recall that the interpretation
of the massless theory is quite different, as might be expected since spin is discontinuous when m
passes through zero. A redefinition of the fields in the massless Dirac theory

. (Jkx-iky 0 \ ί π .
φ(k)e'kr= V y , expi-Ze1

V 0 Jkx + ikJ U
exhibits their almost scalar nature, with discontinuous behaviour under rotation ,

φ(k) >Λ _ ~~ ~~
RΘ I— φ(Rn *k) if 2 π < Θ < 4 π



260 P. de Sousa Gerbert and R. Jackiw

because the functions Jkx + iky are double-valued; see Binegar, B.: J. Math. Phys. 23, 1511 (1982).

Parity is not violated in this case

11. One has to choose the dreibein that yields the proper flat space limit \_S — 0, α = 1], with solutions

to the Dirac equation that are single-valued and periodic in θ. This would not be the case if in

(5.13)0 = 0

12. Similar problems have been studied in monopole physics by Goldhaber, A.: Phys. Rev. D16, 1815

(1977) and Callias, C: Phys. Rev. D16, 3068 (1977), who found that the s-wave radial Dirac

Hamiltonian is not self-adjoint. Chou in ref. 9 recognized the possible loss of self-adjointness of

the Dirac operator on conical spaces, but did not study extensions

13. Alvarez-Gaume, L., Delia Pietra, S., Moore, G.: Ann. Phys. (NY) 163, 288 (1985); Goni, M., Valle,

M.: Phys. Rev. D34, 648 (1986); Vuorio, I.: Phys. Lett. B175, 176 (1986)

14. Deser, S., Jackiw, R., Templeton, S.: Phys. Rev. Lett. 48, 975 (1982) and Ann. Phys. (NY) 140, 372

(1982

Communicated by B. Simon

Received August 31, 1988




