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Abstract. We investigate the BRST cohomology of the NSR string. We prove
vanishing theorems for the full and relative (sub)complexes generalizing the
work of Frenkel, Garland and Zuckerman for the bosonic string. Using these
results we give simple proofs of the "no-ghost" theorems for both sectors.

1. Introduction

In [1] Frenkel, Garland, and Zuckerman computed the BRST cohomology of the
open bosonic string after identifying it with a particular semi-infinite cohomology
for which they had proven a key vanishing theorem; that is, that the BRST
cohomology is zero except at zero ghost number. Their vanishing theorem did not
just apply to that particular representation of the Virasoro algebra but to a large
class of graded Lie algebras (including Kac-Moody algebras) and to a large class of
their representations. In the present paper we extend their result to the represen-
tations of the super-Virasoro algebras appearing in the NSR string. The theorem
admits some generalization which, lacking the string theoretic relevance of this
special case, will be presented elsewhere. This way we can devote ourselves to the
cases of current physical interest and therefore give a clear presentation of the
method without needless generalizations.

The proof uses the algebraic machinery of spectral sequences. Since this lies
somewhat outside the physicist's bag of tricks we thought it would be convenient to
devote the next section to take a brief look at this powerful gadget. That section also
serves to clarify the notation and the concepts concerning differential complexes
that we use in this paper. We define the notion of a filtered complex and quote the
main theorem concerning the spectral sequence associated to it. A very important
special case of a filtered complex, and one for which we will find ample use, is the
double complex. We will see that there are two canonical filtrations associated to a
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double complex and that the early terms of the spectral sequences associated to each
of the filtrations are very easy to describe in terms of the two original differentials of
the double complex. These theorems form the basis for the results in this paper.
Since they are standard we refer the reader to the appropriate literature for the
proofs.

The rest of the paper is organized as follows. Section 3 discusses in detail the
vanishing theorem for the relative BRST subcomplex of the Neveu-Schwarz sector
of the NSR string. In Sect. 4 we consider the Ramond sector. This is somewhat
more complicated because of the existence of the superconformal ghosts' zero
modes. In fact there has not appeared in the literature a unique treatment of these
zero modes and thus we treat them in two different ways. The cohomologies turn
out to be isomorphic although one of them does not admit a grading by ghost
number. Therefore for this latter case the vanishing theorem does not make sense. In
order to prove the vanishing theorems we use a basic result from the cohomology
theory of Lie super algebras. We have never seen a published proof of this theorem,
although Fuks [2] hints that it is a straightforward generalization of the similar
theorem for Lie algebras. We fill in the details in the first appendix for the special
cases we need in this paper.

In Sect. 5 we use spectral sequences again to infer the vanishing theorem for the
full BRST complex. This complex is half-integrally graded and what we show is that
its cohomology is trivial except at ghost number + \. The spectral sequence used in
this case is the one associated to one of the two canonical filtrations of a double
complex. In Sect. 6 we prove the "no-ghost" theorems for the NSR string using the
vanishing theorems proven earlier. Specifically what we prove is that the inherited
norm on the BRST cohomology of the relative subcomplex (ignoring the ghosts'
zero modes) is positive definite. This is a straightforward application of the method
introduced in [1 ] and discussed in [3,4]. We will make constant use in this section of
the contents of [4] to which we refer the reader. To be able to apply the results of [4]
we need to show that we can find a positive-definite inner product for the Fock space
where the BRST operator acts. The second appendix briefly describes this inner
product.

2. Spectral Sequences

In this section we discuss briefly the basic notions of spectral sequences. For the
proofs of the theorems we quote in this section, the reader is referred to the books by
Lang [5], and Griffiths and Harris [6]. A more unified treatment of spectral
sequences using Massey's concept of an "exact couple" can be found in the books by
Bott and Tu [7], and Hilton and Stammbach [8]. A complete treatment with
applications can be found in the book by MacLane [9].

A spectral sequence essentially allows us to approximate the cohomology of a
complex by computing the cohomology of bigger and bigger chunks. By definition a
spectral sequence is a sequence {(Eri dr)}r=01} of differential complexes1 where

1 For our purposes a differential complex consists of a pair (E, d) of a vector space E and a linear
map d:E->E, called the differential, obeying d2 = 0
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Er+1 is the cohomology space of the preceding complex (Er,dr). That is,

( 2 1 }

In many cases of interest one has that forr>R,Er = Er+l=' = EOD.ln this case one
says that the spectral sequence converges to E^ and one writes (Er)=^>Eao.

The following is the typical use to which spectral sequences are put to in practice.
One generally finds oneself in the situation where the cohomology H of a certain
complex, is to be computed. Then one shows (usually by very general arguments)
that there exists a spectral sequence converging to H, whose early (first or second)
terms are easily computable. Thus one begins to approximate H. It may be that after
the first or second term the differentials {dr} are identically zero. Then that term is
already isomorphic to the limit term E^, in which case the spectral sequence is said
to degenerate at the Eγ or E2 terms. In that case we have reduced the computation of
Hio the computation of the cohomology of a much simpler complex. We will see an
example of this application in Sects. 4 and 5.

Sometimes however we are not so lucky and the spectral sequence does not
degenerate early, yet it still provides us with a lot of useful information. In particular
it can be used to obtain vanishing theorems. This will be the use for them in Sects. 3
and 4. It is worth elaborating on this point.

Usually complexes come equipped with a grading under which the differential
acquires a well-defined degree. Let us suppose for definiteness that E= ®nE

n and
d:En-+En+ι. Then the cohomology is also graded: H=@nH

n, in the obvious
manner. In the cases that will occupy our attention the spectral sequence converging
to H will respect the grading, and therefore we will have convergence in each
dimension: (E?)=>Hn for all n. From the definition of the spectral sequence we
notice that E"+1 is a subquotient of En

r and hence if for any r we have a vanishing of
cohomology, say, E? = 0 for some n, then the vanishing will persist and Hn = 0. This
propagation of vanishing of cohomology is, in a nutshell, the essence of the
vanishing theorem of Frenkel, Garland, and Zuckerman and of our generalization.
Indeed we find that there is a vanishing theorem for the E1 term in a spectral
sequence converging to the (reduced) BRST cohomology of the NSR string.

We now describe in some detail the spectral sequences arising in this paper. They
are all special cases of the spectral sequence which arises from a filtered complex, so
we start by considering these.

Let (C, d) be a differential complex. By a filtration of C we mean a sequence (not
necessarily finite) of subspaces FC={FPC} indexed by an integer2 p - called the
filtration degree - such that, for all/?, FPC^FP+1 C and such that upF

pC=C. We
will deal exclusively with filtrations which are bounded: that is, there exist pQ and/?t

such that
(C for p<p0

JO for p *>/?!

If the differential respects the filtration, that is, dFpC^FpC, then (FC, d) is called a
filtered differential complex.

2 This is only for definiteness. In this paper, for instance, we will use both integral and half integral
filtrations



108 J. M. Figueroa-O'Farrill and T. Kimura

Let FC be a bounded filtered complex. Then each FPC is, in its own right, a
complex under d and, therefore, its cohomology can be defined. The inclusion
FPC^C induces a map in cohomology H(FPQ^H(C) which, however, is
generally not injective. To understand this notice that a cocycle in FPC may be the
differential of a cochain which does not belong to Fp C but to Fp~1C. Therefore the
cohomology class it defines may not be trivial in H(FPQ but it may be in H(C).
Let us denote by FPH(C) £ H(C) the image of H(FPQ under the aforementioned
map. It is easy to verify that FH(C) defines a filtration of H(C) which is bounded
if FC is.

To every filtered vector space FC we can associate a graded vector space

GτC=ξ&pGrpC where

= FpC/Fp+1C

It is easy to see that as vector spaces C and Gr C are isomorphic although, since C is
not necessarily graded, this isomorphism does not extend to an isomorphism of
graded spaces.

If (FC, d) is a filtered differential complex then the associated graded space Gr C
is also a complex whose differential is induced by d. Notice that if FC is bounded
then Gr C is actually finite. Since d respects the filtration, upon passage to the
quotient we obtain a map, also called d, which maps d: GτpC-+GrpC, whose
cohomology is denoted by H(GτC). Notice that whereas G r C is graded, the
differential has degree zero. This cohomology is usually easier to calculate than
H(C) or H(FC) the reason being that the differential in the associated graded
complex is usually a simpler operator. It may be that parts of d have positive
filtration degree, mapping Fp C^FP+1 C, in which case this is already zero in Gr p C.

The spectral sequence of a filtered complex relates the two spaces Gr H{C) and
//(Gr C). In fact we have the following

Theorem. Let FC be a bounded filtered complex and Gr C its associated graded
complex. Then there exists a spectral sequence {(Er,dr)} of graded spaces

P

with
dr:E

p-+Ep+r

and such that

and Ep

0

Moreover the spectral sequence converges finitely to the limit term.

Now suppose that Cis a graded complex C=@nC
n- where n will be called the

dimension - such that the differential has degree 1,

d:Cn-+Cn + 1 ,

and let FC be a filtration of C. In this case we can grade the filtration as follows:
FPC= ®nF

pCn, where FpCn = FpCnCn. The associated graded complex is now
bigraded as follows: G r C = ®pnGτpCn with the obvious definition for GτpCn.
Supposing that the filtration is bounded in each dimension we get a slightly
modified version of the previous theorem:
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Theorem. Let C be a graded complex, FC be a filtration which is bounded in each
dimension and Gr C its associated graded complex. Then there exists a spectral
sequence {(Er,dr)} of bigraded spaces

Er=@Ep'q

p,q
with

dr:Er

p>q-+E?+r>q~r+1

and such that

C) , and E^q

Moreover the spectral sequence converges finitely to the limit term.

Very important special cases of a filtered complex arise from a double complex.
A double complex is a bigraded vector space K = ® P ϊ β K P f β - where, for
defmiteness, we take p, q integral, although this is not essential - and two
differentials

D':Kp>q->Kp+ί'q , D" :Kp q-+Kp q + i

which anticommute. It is often convenient to represent the double complex
pictorially as follows

T T

Hence we shall refer to D' and D" as the horizontal and vertical differentials,
respectively.

Defining the total degree of vectors in Kp'q as p + q we may form a graded
complex called the total complex and denoted by T o t K = ® π Tot M K, where

Tot"K= 0
p+ q = n

The differential in the total complex is D = D' + D" and is called the total
differential. Since the total differential has total degree 1,

Z):Tot π K-+Tot π + 1 K ,

(TotK,Z>) becomes a graded complex. We shall deal exclusively with double
complexes which satisfy a mild finiteness condition: for each n there are only a finite
number of non-zero Kp>q with p + q = n.

There are two natural filtrations associated to the graded complex Tot K. Define

© 0K ί > q and "F«TotK=0 © KpJ .
q i^p p j^q
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Fix n and define

' F ί T o t M K = © K ί ' M ~ ' and "FqΊotnK = 0 Kn~jJ .

The finiteness condition for the double complex imply that the above fΐltrations are
bounded for each n. Therefore, for each n, there exist p0, pγ, qQ, and qx - which
depend on n - such that

[ for p^
and

0 for

By the previous theorem there is a spectral sequence associated to each of the
filtrations defined above which converges finitely to the cohomology of the total
complex (Tot K, D). What makes this example so important is that the earliest terms
in the spectral sequence are easily described in terms of the original data (K, D\ D").
In fact one finds for the horizontal filtration:

Theorem'. Associated to the filtration 'FTotK there exists a spectral sequence
{(rEr,dr)}r=0Λi of bigraded vector spaces

Έr= 0 Έ™ with dr: Έr

p>q->Έr

p+r>q-r+1

p,q
such that

and

We must explain the notation. In this theorem, by "HPA{K) we mean the qth

cohomology of the complex (which appears vertically in the double complex)

whereas by Ήp("Hq(K)) we mean the qth cohomology of the complex

which is well defined since D' and D" anticommute.
Similarly for the vertical filtration we have the following

Theorem". Associated to the filtration "FTotK there exists a spectral sequence
{("Er,dr)}r=0Λ^ of bigraded vector spaces

"Er= 0 "Eq*p with dr: »Eq>p-+"Eq+r>p-r+ί
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such that

and

Similar notational remarks to the ones preceding this last theorem apply here as
well.

3. The Neveu-Schwarz Sector

In this section we define the relative subcomplexes for the super-Virasoro algebra
appearing in the Neveu-Schwarz sector of the NSR string and we prove a vanishing
theorem for its cohomology. We use a Poincare duality result proven in [4]
for the BRST cohomology of a Fock space possessing a positive definite inner
product. In Appendix B we construct this inner product for the Fock space of the
NSR string.

Let JfSf denote the centrally extended complexified super-Virasoro algebra
appearing in the Neveu-Schwarz sector of the NSR string. This is a Lie superalgebra
whose even part is the Virasoro algebra S£ = ® „ S£n. Each <£n is spanned by ln for n
different from zero and if0 is spanned by /0 and c. The Virasoro algebra is defined by

[lm,ln] = (m-n)lm+n+~m(m2-ί)δm^n , (3.1)

and by the fact that c is central. Also let us define J5f± = @±n>0J£n.
The odd part of Jf<? is graded according to 0 = © r 6 z + ^ r > where <§Y is

spanned by gr. These generators obey

(3.2)
J \ V

and
in \

(3.3)

Supplementing these relations by the assertion that c is central fully defines the
super-Virasoro algebra in this sector. Again we define Jf9?

± =£f± Θ ® ±r>o^r-
As is well known the ghost Fock space of the Neveu-Schwarz sector carries a

representation of Jf<f where ch->-15Id and /wh^Lw

ghost, grv^Gfhosi. The Fock
space of the string oscillators also carries a representation of Jf£f with the opposite
central charge (in the critical dimension) and where ln\-+L™atter and gr\-+G™atteτ.
Let us denote by Ln and Gr the operators representing ln and gr respectively in the full
Fock space (including ghosts). The formulas for these generators are standard and
can be found for instance in [10].

It was proven by Brower and Friedman [11] that this representation is fully
reducible. That is, it can be written as an infinite direct sum of Verma modules
whose highest weight vectors are obtained by repeated application of the creation
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operators in the full spectrum-generating algebra.3 Since the BRST operator
commutes with the {Ln} and the {Gr} it respects this decomposition, and hence we
may restrict our attention to one such Verma module at a time when computing the
BRST cohomology. Let Jί denote one such Verma module. Following [1] we
denote the BRST (or semi-infinite) cohomology4 of the JίSf superalgebra with
coefficients in Jί by H^ (Jftf Jί). This is the cohomology of the BRST operator Q
acting on the graded complex C^(Jί^\Ji)= @nC

n^{Jί^\Ji), where

Cl(^y JΪ) = CU^y)®^ , (3.4)

where C^ίJft?) is the subspace of the ghost Fock space at ghost number n.
Let us define a subcomplex of C^(Jf£f\Jί} - called the subcomplex relative

to JS?O - by
0} . (3.5)

For the sake of notation let us abbreviate C^ (JfSf^ £?o\Jί) with C^. Notice that
C^ is finite dimensional. From the identity {Q, bo}=Lo we notice that this indeed
defines a subcomplex. That is, QC^^C^. We denote its cohomology by

Let

| i j , * ,/ ,m,ί>=Π y-r Π β±r Π cbn Π bbn\0>®Π G+Ψ Π L*\py
r^-k r^i n>0 π>0 r^i n>0

(3.6)

denote a vector in C^ with \py a highest weight vector of momentum/? such that

for some non-negative integer N. Define the filtration degree as

,kJ,rn,qy = Σ(kn-ln-mn)n+ £ (ir-jr-qr)r . (3.8)

This allows us to define a half-integral filtration of C^ by

^ } . (3.9)

First of all notice that FpCO0^Fp+^Ca0 and that the filtration is bounded.
Finally we must check that this indeed defines a filtered complex, that is,
QFpCO0

<^FpCoΰ. This is done by examining the filtration degree of the homo-
geneous terms in Q and making sure they are all non-negative. From (3.8) we can
read off the filtration degree of all the oscillators which make up Q and we find them
to be the following:

3 Strictly speaking, this is not true for the case of zero center of mass momentum. In this case the
highest weight vector is also annihilated by Gί?| t t e r, and hence does not generate a Verma module.
For this case the theorem in Appendix A does not hold and neither does our proof of the vanishing
theorem. Here, however, the BRST cohomology is easy to compute explicitly
4 To be precise, this is the cohomology relative to the center. In other words, from now on
denotes the unextended Neveu-Schwarz algebra
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Operator Filtration degree

cn

K
yr

βr
rmatter

s~< matter

\n
-\n\

V
-V

n
r

Therefore it is trivial to verify that all terms in Q have zero filtration degree
except for the terms LJJ

natterc_n for n > 0 which have filtration degree In the terms
G r

m a t t e ry_ r for r > 0 which have filtration degrees 2r; the terms cmcnb_{m+n) for
sign (m) φ sign (ή) which have filtration degree \m\ + \n\ — \m+n\ the terms γrγsb_{r+s)

for sign(r)Φsign(s) which have filtration degree \r\ + \s\ — \r+s\; and finally the
terms yrcnβ_(r+n) for sign(r) Φsign (n) which have filtration degree \r\ + \n\ — \r+n\.
Hence all terms have non-negative filtration degrees and {FpCo0} indeed defines a
bounded filtered complex.

By the theorem in Sect. 2 there exists a spectral sequence converging finitely to
H^{Jί^,^Q\Ji) whose E1 term is the cohomology of the associated graded
complex GrCoΰ = @pGrpCo0, where Gr^C^ =FpCo0/Fp+iCO0. The differential in
this complex is precisely the part of Q with zero filtration degree since the terms with
positive filtration degree will automatically map to zero in G r C ^ . By the above
discussion the induced differential can be seen to be the differential on the complex

(3.10)

where C{yV&?

+) denotes the Lie superalgebra cochains5 of JίSf+ with coefficients
in the trivial representation, ()L° denotes the Lo invariant subspace and Jί is to be
thought of as a respresentation of only Jί^.. We remark that this particular
expression makes it very easy to keep track of ghosts and antighosts separately. In
fact, the subspace of CL° with c ghost and b antighosts is just

We now compute this cohomology. Since Lo is diagonalizable in C,

C = CL°®L0(C) , (3.12)

where L0(C) denotes the image of C under Lo. Since Lo commutes with Q we
deduce that

(3.13)
and

(3.14)

Now suppose that ω is an Lo invariant cocycle. If ω = Qφ then we can choose φ to be
Lo invariant as well. To see this notice that if φ is not Lo invariant already then by

5 Strictly speaking we mean here cochains of finite support. That is, super-symmetric linear
functional of finite rank. They correspond to polynomials in the ghost creation operators
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(3.12) φ = φo + ψ, where φ0eCLo and φeL0(C). Then ω = Qφ = Qφo + Qψ. By
(3.13) and (3.14) Qφ = 0 and therefore ω = Qφ0. Hence we have proven the inclusion

The reverse inclusion is easier. If [ω]eH(C)L° then Loω = (Qbo + boQ) ω = 0 since
Qω = 0 and b0 ω = 0. Therefore ω e CL° defines a class in H(CL°) which, if trivial, is
trivial also in H(C)Lo. Therefore we conclude that

(3.15)

But by the Kϋnneth formula

whence, keeping track of ghosts and antighosts separately, the Ex term in the
spectral sequence is

(3.17)

In Appendix A we prove that Hh

m{JT^_ J() = 0 for bφ0 and H%
Thus,

Γ = 0 f o r m < 0 .

But (^m) =>H™(jry,Se^\M\ thus H%{JfST,^0;^) = 0 for m<0. Taking into
account all the Verma modules Ji we find that H™(Jf5f, J5?o j f ) = 0 for m < 0 ,
where ^f is the full Fock space (including ghosts) of the Neveu-Schwarz string.

Now in Appendix B we show that there exists a positive definite inner product in
£?. This and the obvious fact that J f breaks up into finite dimensional subspaces
stabilized by Q allow us to use the Poincare duality theorem proven in [4]:

(3.18)

which gives the vanishing theorem for the relative subcomplex

(3.19)

In the Sect. 5 we will prove that this induces a vanishing theorem in the full complex
s well.

4. The Ramond Sector

Let ^ denote the centrally extended complexified super-Virasoro algebra appear-
ing in the Ramond sector of the NSR string. This algebra is very similar to the
Neveu-Schwarz algebra except that the odd part 3F = © „ e i3Fn is integrally graded,
where 3Fn is spanned by fn. The even subalgebra is still given by (3.1). The rest of the
algebra obeys

\ ( ^ m ^ n , (4.1)
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and

( f ) m + n (4-2)

Again we impose that c is central and as before we define 0t±= if + 0 ® ± n > 0 ^n

The ghost Fock space of the Ramond sector carries a representation of M with
ch^-15IdJn\-^Lξhos\fn^Fξhost. The Fock space of the string oscillators also
carries a representation of 01 with the opposite central charge (in the critical
dimension) and where /Mh->LM

matter and fn\-+F™tteτ. Finally, let us denote by Ln and
Fn the operators representing ln and fn respectively in the full Fock space (including
ghosts). Again the formulas for these generators are standard and we refer the
reader to [10].

In [11] Brower and Friedman claim to have proven full reducibility of this
representation, although they do not write down the explicit spectrum generating
algebra. Therefore, just as in the Neveu-Schwarz case we can decompose the string
Fock space into Verma modules and thus restrict our attention to one such Verma
module at a time when computing the BRST cohomology .6

Let Jί be one such Verma module and let H^{β\M) denote the BRST
cohomology7 on the graded complex C ω ( f ; J ) = 0 n C ^ ( ^ ; ^ # ) , where again

C£(Λ;ΛT) = C£0*)®Λr , (4.3)

where Cn^{β) is the subspace of the ghost Fock space at ghost number n.
There are two natural subcomplexes to consider. One could consider the

subcomplex relative to the zeroth subalgebra ^ 0 = if0 0J^O

 o r relative to just the
even part if 0 . The choice of subcomplex has to do the choice of Hubert space Jf for
the zero modes of the superconformal ghosts. The reason is the following. In order
to consider the subcomplex relative to the full zeroth subalgebra we have to be able
to impose the condition βoω = 0. This may or may not be possible as we shall
now see.

The algebra obeyed by the ghost zero modes is the Heisenberg algebra

fo»A>] = l > (4.4)

and the hermiticity conditions are such that γ0 is anti-hermitian and β0 is hermitian.
The unique8 representation of this algebra as operators in a Hubert space (i.e. with
a positive definite inner product) is the Schrodinger representation in which Jf is
isomorphic with if2 (IR,ί/x) and where β0 is represented by the multiplica-
tion operator: (βoh)(x) = xh(x) and y0 is i times the momentum operator:
(γoh)(x) = h'(x). If this is the case we cannot impose the equation βoω = 0 because
the multiplication operator has no eigenvalues in if 2(IR, dx). In this case we would
look at the subcomplex relative to if0.

6 Just as before the vanishing theorem as it stands does not apply to the case where the center of
mass momentum is zero. In this case the cohomology is again easy to compute explicitly
7 Again this should be relative to the center. Therefore from now on ^ denotes the unextended
Ramond algebra
8 Strictly speaking the uniqueness is proven for the Weyl form of the Heisenberg algebra
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If on the other hand -like many other authors, notably Henneaux [12] -we treat
y0 and β0 as creation and annihilation operators (respectively) the Hubert space is
now (the completion of) the polynomial algebra in one variable <C[yo] In this case
the hermiticity conditions that induce a positive definite inner product are such that
y0 and β0 are mutually adjoint. In this case we can consider the subcomplex relative
to the full zeroth subalgebra ^ 0 . It may seem unnatural to alter the hermiticity
properties inherited from the classical fields, but for operators which do not
correspond to physical observables the hermiticity properties are not too crucial.
There is however a major drawback. Changing the hermiticity properties of y0 and
β0 changes the hermiticity properties of the BRST operator: it is no longer
hermitian. This means that it is no longer guaranteed that the cohomology space
inherits a well-defined (i.e., independent of the representative) inner product.

On the other hand keeping the original hermiticity conditions has one major
inconvenience: the cohomology is not graded by ghost number and hence the
vanishing theorem makes no sense. This is due essentially to the fact that the ghost
number operator has no eigenvalues in i f 2 ( lR,Λ). Still, we can find a particular
class of representatives which does admit a grading. In this case the cohomology
agrees with the one obtained by altering the hermiticity properties of y0 and β0, for
which we can prove a vanishing theorem.

Therefore we will consider both choices of hermiticity properties. We will see
that both cohomologies are isomorphic as ungraded vector spaces; and we will
prove a vanishing theorem for the graded case.

The Henneaux Representation
Let us first assume that Jf = <C[y0]. It is then possible to consider the relative
subcomplex C^ {β^ @tQ\jffl). This complex, which we abbreviate by C^, is given by

Ca3 = {ωeCoo(<%;Jί)\F0ω = b0ω = β0ω = 0} . (4.5)

Just as in the Neveu-Schwarz case, it is finite dimensional. Hence a typical vector in
C^ is a linear combination of monomials

\ij,k,ι,m,qy= π y\ Π βj-n Π ck»n π bbn\o
n>0 n>0 n>0 n>0

where \p) a highest weight vector of momentum p such that

kP2= - Σ (in+Jn+qn+K+

Π Fq\
x x — n

i that

= -N ,

Π L^nn>0

(4.6)

(4.7)

for some non-negative integer N. Define the filtration degree as

,kJ9m9qy = Σ(in-L-qn+kn-ln--mn)n ( 4 8 )

Just as in the Neveu-Schwarz case the filtration defined by this degree is
bounded and defines a filtered complex. Therefore the theorem in Sect. 2 applies,
yielding the existence of a spectral sequence which converges finitely to

)\ and whose E1 term is the differential for the complex

. (4.9)
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In this case, however, we cannot use the arguments used for the Neveu-Schwarz
case because Fo does not act reducibly. In fact, in the subspace left invariant by Lo,
Fo is nilpotent and not identically zero. Therefore keri^nimi^ΦO and a decom-
position a la (3.12) is impossible. Therefore we follow a completely different line
of approach. We find a spectral sequence converging to H(CFo) which preserves
the grading by ghost number and for whose E1 term we can prove a vanishing
theorem.

The spectral sequence in question will be that associated to one of the canonical
filtrations of a double complex. The double complex is constructed as follows. For
any ghost number p the space ( C p ) L o naturally affords a representation of Fo.
Moreover since F% = Lo the action of Fo is nilpotent and its cohomology may be
defined. We define

Kp>q = Cq(^0;(Cp)L<>) , (4.10)

the ^-cochains of the &0 with coefficients in (CP)L°. Let δ : Kp>q-+Kp>q+1 to be the
coboundary operator for #"0 cochains. It is defined by

δ{U)q®ω = {U)q+1®Foω , (4.11)

for ωe(Cp)L°. Similarly define d:Kp>q->Kp+Uq to be the trivial extension of the
differential Q for C L °:

for ω e ( C p ) L o . Therefore the double complex can be represented as follows:

t T

Since Q and Fo anticommute so do d and δ. Therefore D = d+δ is nilpotent
and computes the cohomology of the total complex K = ® m K m where

COlΓ== CO) X ζ P > P

Because CLo is finite-dimensional its grading by ghost number is bounded and
therefore the total complex is finite in each dimension. Therefore we can use the
results of Sect. 2 and deduce that there exist two spectral sequences converging to
the total cohomology in each dimension. We now compute the early terms. We first
look at the vertical δ cohomology. The space Zfq of (/?, g)-cocycles of δ is just
( / o ) β ® ( C p ) L o whereas the (p,g)-coboundaries are (fό)q®Fo(Cp)Lo for q>0
whereas for q = 0 there are no coboundaries since there are αo — 1 cochains.
Therefore the vertical cohomology is

®(C"Y° for ,7 = 0

\(fό)q®HFo((C)L°) for<7Φ0, ^ Λ ό )

where HFo((Cp)L°) is the cohomology of the nilpotent operator Fo in (Cp)Lo. This
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space, however, turns out to be trivial [12]. In fact, one can9 define an operator K
such that {Fo, K} = 1. Therefore the vertical cohomology is zero except in dimension
zero where it is isomorphic to CFo.

The spectral sequence associated to the horizontal filtration has as Έί term the
vertical cohomology and as Έ2 term Hd(Hδ). Therefore this is zero everywhere but
in dimension zero and there it is just H(CFo). Because d2 maps already between
different rows we see that it is identically zero and so are all the higher rf/s. Hence the
spectral sequence collapses and we have that the total cohomology is

H%^Hm(CF°) . (4.14)

If we take the vertical filtration the first term in the spectral sequence is the
horizontal cohomology Hd. Therefore the "E1 is precisely

"E^p = {f^y®Hp(CLQ) , (4.15)

where by an argument identical to that in the Neveu-Schwarz case we can show that
Hp(CL°)^Hp(C)Lo. By arguments identical to the ones in the Neveu-Schwarz
sector -i.e., using the Kϋnneth formula and the theorem in Appendix A - it follows
that Hp(C)Lo is zero for/?<0. Therefore

" £ Γ = θ # m - β ( C L o ) . (4.16)

Since HP(CL°) = 0 for p < 0 we have that "E™ = 0 for m < 0. Therefore "E™ = 0 for
m < 0. But by the theorem in Sect. 2, this limit term is also the total cohomology.
Therefore Hm(CFo) = 0 for m<0. But this is the Ex term in a spectral sequence
converging to H^{β,3tQ\Jί). Therefore we conclude that H™(@,@o;Jΐ) = 0 for
m <0 and the same for H^iβl, 01$ 3tf). By the Poincare duality of [4], this implies
the vanishing theorem

Φ O 0 • (4.17)

We will see in the next section that this implies a vanishing theorem for the
cohomology of the full complex C^(β

The Schrδdinger Representation
Now let us assume that Jf = i?2(]R, dx). We find it convenient to work in a dense
domain in which γ0 and β0 are defined. To this end let us introduce the operators a
and β t defined by

βo = -L(ai-a) , yQ = ~{a^ά) , (4.18)

1/5 1/5
and let X be the completion of the polynomial algebra C [a*]. Combining (4.4) and
(4.18) we find that a and af obey [α,αt] = l.

Let us define the subcomplex

= b0ω = 0} . (4.19)

9 Strictly speaking, this in only possible for states whose center of mass momentum is different
from zero. In the Ramond sector any such on-shell (Lo invariant) states correspond to one of the
degenerate vacua and hence it has manifestly zero ghost number
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To study the cohomology of this complex it is convenient to discuss the differentials
occurring in the various complexes under study. The differential in the full complex
C^(β Jt) is the BRST operator Q. Making the dependence on the ghosts' zero
modes manifest we can write it as

(4.20)
where

(4.21)

We don't need the explicit expressions for these operators but only the following
relations which follow from the nilpotency of Q:

Q 2 = 0 F2 = L0 [F09T] = K (H2=2LOT+FOK , (4.22)

and all other (anti)commutators vanish; in particular, [T,K] = 0.
The differential in the relative subcomplex C^{β, «Sf0 J() is Q. Isolating the

representation space of the superghosts' zero modes, this subcomplex can be written
as C(x)(C[<2t] which defines C. According to this decomposition the differential
becomes

^ ^ (4.23)

In this subcomplex the following identities are satisfied

F2 = 0 ®2 = F0K . (4.24)

Hence the space CF° is a differential complex with respect to (2. Notice that this
complex is isomorphic to C^iβ, MQ Ji) in the Henneaux representation. There-
fore their cohomologies are isomorphic as well. We will now prove that the
cohomology of this complex, denoted by Ha(CF°) is isomorphic to H^ (β, J£o JC).
But first we need a preliminary result.

Because [Fo, T] = K and [T9 K] = 0 we can write

Fo + K=e-τFoe
τ , (4.25)

which is well defined as it stands because C is finite dimensional. Also because C is
finite dimensional any operator with non-zero ghost number1 0 is automatically
nilpotent. In particular, since T has ghost number 2, it is nilpotent and therefore
exp (α T) is an isomorphism for any complex number α. Because Fo is nilpotent,
Fo + K is also nilpotent and its cohomology is isomorphic to that of Fo : exp (— T)
gives the isomorphism by (4.25). Since the cohomology of Fo is trivial, as proven
in [12], so is the cohomology of Fo + K.

We now proceed to prove the isomorphism of H&(CF°) and H^{β, £?0 Ji).
Let Ψ be a cocycle in C®C[« r ]- Then we can write it as a polynomial with
coefficients in C as follows

where φneC for all n. Then the fact that it is a cocycle implies that (Fo + K)ιl/N = 0.By
the vanishing of the cohomology of Fo + ̂ Γthere exists a cochain φ such that φN + (Fo

' Here ghost number does not take into account the zero modes
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4- K)φ = 0. Therefore adding the coboundary Q (φ (x) (a* )N ~x) to Ψ we get rid of the
Nth order term in Ψ. Continuing in this fashion we can reduce Ψ to a constant
monomial φ ® 1, which is still a cocycle cohomologous to Ψ. The fact that it is a
cocycle implies that @ψ = 0 and (Fo + K)ψ = 0. Therefore, using the fact that [Γ, ffi]
= 0, we see that exp(T)φ obeys

(&eτφ = 0 Foe
τφ = 0 , (4.27)

hence it defines a class [exp (Γ)^] in Ha{CFo). It is straightforward to verify that if
this class is trivial then the class [Ψ] in H^ (&, <£0 Jί) is also trivial. Therefore we
have an injection H^{β, if0 Jί) c^H&(CFo).

We now prove the reverse injection. Let φ define a class in H&(CFo). Then
[exp (— T)φ <g) 1 ] defines a class in 77^ (^, J5?o </#). Now suppose that this class is
trivial that is,

e~τφ®\=(^Ξ for some Ξ. (4.28)

Just as before we may add coboundaries to Ξ in such a way that (4.28) is still obeyed
and such that Ξ gets reduced to a constant monomial ξ (x) 1. In that case, i^exp (7") ζ
= 0 and φ = &Qxp(T)ξ; whence [φ] = 0. This gives the reverse injection and
concludes the proof of the isomorphism.

Notice that the isomorphism is only an isomorphism of ungraded vector spaces.
In particular the cohomology space H^ {β, <£0 Jί) is not graded by ghost number
since the ghost number operator on (C [αf ] is of the form j((a^ ) 2 — a2) and therefore
has no eigenvalues. As a consequence, a vanishing theorem has no meaning in this
representation. This is not a serious drawback when it comes to proving the "no-
ghost" theorem as we shall see, although it takes away some of the structure.

One can also show that every cohomology class in jff^ (β, £?0\Ji) has at least
one representative of ghost number zero. This uses a straightforward generalization
for the NSR string of a result proven in [13] for the open bosonic string which states
that every cohomology class in Ha(CFo) has a representative annihilated by T. If this
is the case then it is also annihilated by K and therefore it defines a class in
H^{β, £fQ Jί); and by the vanishing theorem for Ha(CF°) it has ghost number
zero.

5. Vanishing Theorems for the Full Complexes

In this section we prove vanishing theorems for the cohomology of the full
complexes C^(β;2tf) and C^{JfSf\2tf\ For the Ramond sector we only work
with the Henneaux representation since for the Schrόdinger representation there is
no vanishing theorem. First we will prove that

(5.1)

Then we will prove that

Γ
otherwise
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Several remarks are in order before we start proving these results. The first is to
notice the rather surprising fact that the BRST cohomology of the Ramond sector
has the same finite degeneracy as the one of the Neveu-Schwarz sector despite the
fact that at the level of cochains the Ramond sector is infinitely degenerate due to
the existence of the zero modes for the superconformal ghosts. Secondly we notice
that the grading of the full complex is half integral. This is the choice that makes the
full ghost number operator hermitian. Thirdly, because the proofs of (5.2) and (5.3)
are virtually identical we will only present the one for the Ramond sector: this being
the more involved of the two. Finally, the proof of (5.1) is similar to the proof of the
isomorphisms of the relative BRST cohomology of the Ramond sector in the
Henneaux and Schrόdinger representations. In fact, part of the proof already
appears in [12].

With these remarks behind us we proceed with the proofs.

Proof of (5.1). Let us isolate the space in which the zero modes of the superconformal
ghosts act by writing C^{β,Se^ \2tf) as C^°®C[y0], which defines C. Then
C^{β, ^ 0 Jf) may be identified with CF° and embedded in Co o(^, £?Q tf) as
CFo(χ)l. That is, if φeC^{β,Mo 3ft), then ^ l e C ^ ^ , ^ ; ^ ) . Suppose
that Ψ is a cocycle in C^iβ, <S?0 Jf7). Then Ψ is a polynomial in y0 with coeffi-
cients in CL°

Y=Σ Ψn®yno ΦneCL°Vn , (5.4)
n = 0

such that, in particular, FoφN = 0. Since the cohomology of Fo is trivial, there exists
φeCLo such that φN + Foφ = 0. Therefore Ψ + Q(φ®yo~ι) is a cocycle cohomo-
logous to Ψ but lacking the highest order term in γ0. Continuing in this fashion we
can reduce Ψ to a constant monomial φ (x) 1 still cohomologous to Ψ. The cocycle
condition translates into

Θφ = O Foφ = 0 ; (5.5)

hence it defines a class in H^{β, ^ 0 3tf). Suppose that this class is trivial; that is,
φ = Qζ where Fo ζ = 0. Then φ®\=Q{ζ®\) and thus Ψ represents the trivial class.
Therefore we have an injection H^M, if0 Jtf) c^H^i^, % Jf).

Conversely, let φ be a cocycle in H^ {β, M0;Jf). Then φ (g) 1 defines a class in
Hn(β,&Q\3tf\ If trivial,

^ ® 1 = Q Ξ (5.6)

N

for some polynomial Ξ = £ ξn ®yg. In particular, (5.6) implies that ^ £ ^ = 0. As

before there exists λ such that ^ + ^ = 0. Thus Ξ + Qί/ l®^" 1 ) still obeys (5.6)
but has no order N term. Continuing in this way we can reduce Ξ to a constant
monomial ξ <g) 1 still obeying (5.6). In particular, this implies that

= φ and Foξ = (5.7)
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Therefore ψ defines the trivial class in H^iM.^iJ^). This proves the reverse
injection and hence the isomorphism (5.1). •

In order to prove (5.3) and because J£?0 acts diagonally in the relative
subcomplex C^iffl, £f0 J f ) we could appeal to a suitably generalized result of
Koszul [14] which asserts the existence of a spectral sequence converging to

whose E2 term is

n Q 0 . (5.8)

This, together with the easily verifiable fact that

. * * (5.9)
0 otherwise

and the fact that - due to the vanishing theorem for H^ (Λ, Jίf0 J f ) - the spectral
sequence collapses at the E2 term, yields (5.3).

However we can arrive at the same result in a slightly more pedestrian way by
using the spectral sequence associated to a particular double complex.

Proof of {5 3). The differential in the complex C^iM J^) is the full BRST operator
given by (4.20) where Q, the differential in the complex C^ (β, &0 3tf\ is given by
(4.21). For notational convenience we define 3Γ= -2(T+jγl). Notice that since
Lo is diagonalizable and null homotopic: Lo = {Q, b0 }, we can restrict ourselves to
L0-invariants. Therefore we write the differential in C^iβ',^) as

ρ = Q + Z>0^ , (5.10)

where, due to the nilpotency of β, Q and b0, both terms anticommute. Abbreviating
to C, let us define a tri-grading on this complex as follows:

£ _ @ @ @ Qrn,n,p ^ (5.11)

where Cm>n'p consists of those cochains which are tensor products of homogeneous
terms of "reduced" ghost number m, (60,c0)-ghost number n and 03o,yo)-ghost
number^. By "reduced" ghost number we mean the ghost number which grades the
relative subcomplex C ^ ^ ^ ^f).

According to this tri-grading the relevant terms appearing in Q have the
following tri-degree:

Term Tri-degree

(R (1,0,0)
β0K (2,0,-1)
7o^o (0,0,1)
b0T (2,-1,0)
b0γ

2

0 (0,-1,2)

Defining the bigraded complex K— ® r s K r s by
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we notice that Q has bidegree (1,0) but that bo&~ has bidegree (2, - 1 ) . Hence the
complex as it stands is slightly skewed. Making a last redefinition, let us introduce
another bigraded complex K which is just a relabeling of Kby K = ® pqK

p'q, where

Then Q : Kp>q ->KP+Uq znάbo3Γ: κp>q->Kp>q + ί yielding a double complex. Decom-
posing this double complex into eigenspaces of the level operator (the momentum
independent part of Lo) we easily see that it yields an infinite direct sum of finite
double complexes. Proving (5.3) for each subcomplex and then collating all terms
proves (5.3) for the full complex. Hence from now on we are working in a given
eigenspace of the level operator so that the double complex K is finite. Notice that
the complex is only two rows high in any case, since q only takes ±j as values.

As discussed in Sect. 2 we have two canonical spectral sequences associated to
this double complex. We use the " filtration. Its E1 term is the horizontal
cohomology for which we have a vanishing theorem. Keeping track of the gradings
we have

for (p,?) = ( - U ) and (1, -£)
0 otherwise .

Notice further that dλ is identically zero since it maps vertically and by (5.14) its
domain or its range is zero in all cases. Furthermore all higher dr are also zero
because they skip at least one row and there are only two rows in the complex.
Therefore the Eι term is the limit term which is the cohomology of the full complex:

This proves (5.3). D

As remarked earlier the proof of (5.2) follows the same steps as the proof of (5.3),
but without the complications arising from the superconformal ghosts.

6. "No-Ghost" Theorems

In this section we prove the "no-ghost" theorem for the NSR string along the lines
suggested in [4]. This method was used to prove the similar result for the bosonic
string in [1] and [3]. We briefly recall the method.

Let CQO denote the appropriate relative subcomplex of the string. We use the
relative subcomplexes since the full complex - as we have seen in the previous
section - is just two copies of the relative one hence proving positive-defmiteness of
the inner product in the relative subcomplex suffices. Let # denote the conjugation
used to redefine the inner product in order to make it positive definite. The existence
of this positive definite inner product allowed us to define a BRST laplacian whose
kernel H is isomorphic to the BRST cohomology. Because <β commutes with the
laplacian it stabilizes its kernel. Moreover since # reverses ghost number it stabilizes
also H o which is isomorphic to the physical space defined as the zeroth BRST
cohomology space. From its definition (see [4] for the details and Appendix B for its
explicit construction in this case) # is the identity on states of positive norm and
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minus the identity on states of negative norm. Therefore we see that11

T r H o ^ d i m H o , (6.1)

where the bound is saturated if and only if Ho is positive definite. Since the inner
product on the cohomology does not depend on the particular representative, the
saturation of the above bound is equivalent to the "no-ghost" theorem.

As they stand, the quantities in (6.1) are hard to calculate. However, since #
mapsHp-+H_p,

Tr H o ^ = Tr H ^ (6 2 )

Moreover in the Hodge style decomposition [4] of C^ as H θ im Q 0im Q*, where
g* is the adjoint of Q with respect to the positive definite inner product, # maps
img->im(2* and back. Since the trace is basis independent we see that

Tr H o ^ = TrC o o^ , (6.3)

which is easy enough to calculate. This settles the left-hand side of (6.1). As for the
right-hand side we notice, using the vanishing theorem, that dimH0 is nothing but
the Euler characteristic χ(C^) of the relative subcomplex: the alternating sum of the
dimensions of the cohomology spaces. Using the Euler-Poincare principle we can
write the Euler characteristic as TrCoo (— 1)φ where ^ is the ghost number operator in
the relative subcomplex. This again is quite straightforward to compute. Therefore
(6.1) is equivalent to

T r C o o ^ T r C o o ( - l Γ (6.4)

Our proof of the "no-ghost" theorem will consist in proving that the above bound is
saturated for the NSR string. Since the relative subcomplex is graded by the level
operator ££ (the momentum independence piece of LQ) and each level eigenspace is
finite dimensional the following converges for q sufficiently small

T r C o o ^ ^ T r C o o ^ ( - l Γ (6.5)

Because C^ splits as tensor products corresponding to the different oscillators and
the trace is multiplicative over the tensor product, we compute each term separately
and then multiply the results. There are two terms common to both sectors: the {α}
and {b, c) oscillators and we do these now. This calculation was done in [1 ] and [3]
(for D = 2β) but we repeat it here (for Z) = 10) for completeness.

The space over which we are taking the traces has the following structure
9 oo oo

C=(X) ®SZ®An , (6.6)
μ=0 n = l n = l

where S% is the one particle Hubert space corresponding to the oscillator a^ and An

is the Hubert space corresponding to the oscillators {bl.cl}. The space S% is
isomorphic to the polynomial algebra in one variable: αJJ1" whereas the space An is
isomorphic to the exterior algebra on two generators: b% and cl

1 1 As it stands this next equation is ill-defined since HQ is infinite dimensional. These quantities are
to be understood as weighted traces the dimension being understood as the trace of the identity
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Therefore using the fact that the trace is multiplicative over tensor products the
right-hand side of (6.5) becomes

T r c ( - l ) * g * = Π Π Tr^"α«+ α«x Π Tr^ n [(- l) c « t 6 «- y V ( c " 6 " + ό " C n ) ]
μ=0 «=1 n=ί

t OO / 00 \ Ί 1 0 °°

π Σ <r χΠ(i-ί"-ί'+Λ
n = l \m = 0 / J n = l

= Πd-9"Γ1 0 (l-9")2=Π(l-9"Γ8 (6-7)

As for the left-hand side we have

μ = 0 w = l n __ 1

= Π Π Σ ((-i)WTχΠ (i-ί2n)
μ = 0 « = 1 m=0 π = l

= Π (l+ί"Γ 1 ( l - ί"Γ 9 (l-9") (l+9")=Π (I-?")"8 (6-8)
n = l n = l

We see already that the identity is satisfied. This is not surprising since this is
essentially the "no-ghost" theorem for the bosonic string. Of course, in this case, the
calculation has no cohomological significance since we are away from the critical
dimension.

Having done the calculations common to both sectors we now do each sector
separately.

The Neveu-Schwarz Sector
The relative subcomplex C^(JΠ?, J5?o ^ f) , which we abbreviate to C^, has the
following structure

y) , (6.9)
where

9 oo

μ=0 n=l
00

(6.11)

( 6 1 2 )

and

je(β'γ)=®Sr . (6.13)

The first two terms are the ones over which we computed the relevant traces in the
beginning of this section. Therefore we shall concentrate on the last two terms. Here
A? is the Hubert space of the 6 r

μt oscillator and is isomorphic to the exterior algebra
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on one generator; and Sr is the Hubert space of the {β} ,y]} oscillators and is
isomorphic to the polynomial algebra in two variables.

The contribution to the right-hand side of (6.5) coming from the first two terms
00

in the above decomposition are f l 0 — #")~ 8 The contribution coming from
w = l

the Neveu-Schwarz oscillators can be computed as follows

Tr^q*W= ft Π T U Y W = Π (1+*')10 ,
μ = 0 r = i r = i

whereas the contribution from the superghosts is

T r W - u V "- Π TrSr(-l)»v-JV(Ar*+A")

oo / oo \ 2 oo

= π Σ (-<fn =π
\ /

where TV̂  (respectively iVy) is the number operator corresponding to the {βr}
(respectively {γr}) oscillators. Putting erverything together we find that

T r C β ( - l ) V = Π ( l - i " ) " 8 x Π (H-^) 8 (6.14)
Λ=1 r = i

In order to compute the left-hand side of (6.5) we use the conjugation given in the
second appendix. Once again the contribution now to the right-hand side of (6.5)

00

coming from the {a%,bn,cn} oscillators is Π (1~#")~ 8 The contribution
from the Neveu-Schwarz oscillators is n = 1

μ=0 r=%

= π π (i+(-i)*<t °9r)=π α-^-α+ί") 9

Finally we compute the contribution coming from the superghosts. Notice that
because of the nature of the conjugation # we only pick a contribution to the trace
from states whose β and y occupation numbers coincide. Therefore

00 0

= Π Σ Φn=
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Combining all results we find

Ίτcj*q*= ft (1 -<7"Γ8 x Π (1 +qrf , (6.15)

which agrees with (6.14), hence proving the "no-ghost" theorem for the Neveu-
Schwarz sector.

The Ramond Sector
We first prove the "no-ghost" theorem for the Henneaux representation. We will
then infer a similar result for the Schrόdinger representation.

The relative subcomplex C^iβ,0t^\3ff\ which we abbreviate to C^, has the
following structure

where ̂ f(α) and j ^ ( b t C ) were discussed already at the beginning of this section. As for
the rest

9 oo

μ = 0 n = l

oo

j r ( / >' y ) =©S,, . (6.18)

Here A% is the Hubert space of the dp oscillator and is isomorphic to the exterior
algebra on one generator and Sn is the Hubert space of the {βl, yl} oscillators and is
isomorphic to the polynomial algebra in two variables.

Again the contribution to the right-hand side of (6.5) coming from the first two
00

terms in the above decomposition is Π 0 — #")~8 The Ramond oscillators
contribute n = 1

9 oo oo

T S?(d) Ί—Γ l—Γ T nd^dμ i—r /Λ I « Λ 1 0

i r^(d)^ = 11 1 1 LϊAμQ I I M ' ^ J 5
μ = 0 n = l n = l

and the contribution from the superghosts is

n = l

00 00 00

Π TY ( sin\NΎ + Nβ T~T ^Γ1 ( /-,n\m +p

oo / oo \ 2 oo

= Π Σ (-«")") =Π (i+qT2 ,
n = l \m = 0 / n = l

where Nβ (respectively Ny) is the number operator corresponding to the {βn}
(respectively {γn}) oscillators. Putting everything together we find that

(6.19)Trc.(-DV= Π ( i ^ J
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In order to compute the left-hand side of (6.5) we use the conjugation given in the
second appendix. The contribution coming from the {a%, bn,cn} oscillators is once

00

again Π (1 — qn)~s The Ramond oscillators contribute
«=i

* M = Π Π TrA^q"^d

= Π Π

Finally we compute the contribution coming from the superghosts. Just as in the
Neveu-Schwarz sector we only pick a contribution to the trace from states whose β
and y occupation numbers coincide. Indeed,

00 00 00

= Π Σ q2nm=U (I-? 2 ")" 1 •
n = l m=0 «=1

Combining all results we find

' ( 6 2 0 )

which agrees with (6.19), hence proving the "no-ghost" theorem.
In the Schrόdinger representation Q and Q are hermitian and therefore the inner

product in cohomology does not depend on the particular cocycle chosen to
represent a given class. Let [Ψ] be a class in H^ (0ί, 5£0 2tf) and let φ <g) 1 denote a
representative such that Tφ = O. Then φ defines a class in H^(β, ffl0 3ΊP) in the
Henneaux representation. We can normalize the inner product in the space of the
superconformal ghosts' zero modes in such a way that the norm of φ (g) 1 agrees with
the norm of φ. Because φ, is hermitian, the norm of a class in H^{β, &0 J f ) is
independent of the representative; therefore the norm of φ is the norm of the class
[φ] it represents. But by the "no-ghost" theorem just proven, the norm of φ is
positive. Therefore the norm of [Ψ] is positive. This proves the "no-ghost" theorem
for the Schrόdinger representation.

Finally we remark that the GSO projected NSR string is also free of ghosts. This
is true because modular invariance also forces the GSO projection on the
superghost spectrum which goes hand in hand with the GSO projection in the
spectrum of the Neveu-Schwarz and Ramond oscillators. We leave the details of
this calculation as an exercise.

Appendix A. Computation of H^i^- J()

In this section, we show that //™ (Sf_ Ji) vanishes unless m = 0, where £f_ is either
- or J L superalgebras and Ji a Verma module of the respective algebra.12

1 2 In actuality, this theorem holds for any superalgebra with values in a free module but we shall
omit the general proof of this result so that the reader is not distracted by needless generalizations
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A lie superalgebra decomposes into odd and even subspaces so we can write 9*_
= ̂ fven © <?Zdd. Let us choose a basis in each subspace and denote them by {et}
and {/α}, respectively. A basis for the Verma module, Jί, is then given by the
highest weight vector together with the monomials

where all of the subscripts are integers satisfying ίγ ^ / 2 ' " = h a n < ^ α i < α2'' * < αm
for some positive integers m and n. Notice that we have omitted writing the highest
weight vector explicitly in order to simplify the notation. A basis for the cochains

is given by

'K®eheh'''ejJλJλ2-fλn} , (A.2)
where

i1<i2<"'<h , and α 1 ^ α 2 " ^ α f c ,

Jiύjiύ' 'ύjm , and λ1 <λ2< -<λn .

It is understood that the antighosts are acting upon the usual ghost vacuum.
One might have expected to see some c's and y's in the above expression but we recall
that ^ _ is only "half of the full superalgebra and the corresponding c's and
y's to this part of the superalgebra are the annihilation operators in those oscil-
lators. Therefore, there are no such terms in ^ ( ^ \Jί).

Having characterized the cochains, we proceed to construct a spectral sequence
which converges to //00(e9

?_ \Jί). Let's define

We then define a filtration degree on ^ ( ^ Jί) via

fdegΩ = # + L + M+iV . (A.4)

This gives us a filtration of Ό ^ - Jί)

. (A.5)

In the case of the Neveu-Schwarz algebra, this is a half-integral filtration while in the
case the Ramond algebra this is an integral filtration. We shall proceed as if this
filtration were integral throughout the remainder of this section in order to avoid
unnecessary clutter. The arguments for the case of the half-integral filtration are
exactly the same.

It is quite easy to see that F^^i^f^ \Jί) is a filtration since it satisfies

Fp<$a0(&'_;Jί)^Fp+1<<gO0(&'-;Jί) Vp , (A.6)

and all of the terms in the coboundary operator, d, have filtration degrees that are
nonpositive. Furthermore, we observe that Lo is diagonalizable on <$^(£f_\Ji)
and commutes with d. Let us denote a subspace of ^ (y_ Jί) with Lo eigenvalue μ
by ^ ( ^ - ^ f s o that
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then their associated cohomologies break up into

This decomposition is interesting because the dimension of ̂  (5^_ ;J#)μis finite at
every value of μ. This implies that fdeg is bounded. Hence, the above filtration when
restricted to a particular Lo value, μ, forms a bounded filtration. Therefore, there
exists a spectral sequence which converges finitely to H^ (5^_ Jί)μ. Suppose we are
able to show that H™ (&>_ ;Jί)μ = 0for all μ and m Φ 0 then it is certainly true that
H™ (£f_ ;Jί) = 0 unless m + 0. We will now show that this is, indeed, the case. Unless
otherwise mentioned, it will be understood that we are restricting ourselves to
cochains and cohomologies at a particular value of μ and shall hitherto drop all
references to μ.

Let us compute the Ex term in the spectral sequence. Recall that
Ex = H(Gr <$„ (Se_ Jt)) where Gr ̂  (^_ Jί) carries the differential induced by d
on F(£O0(£f_ Jί). The only terms in d which have fdeg = 0 are

<f=Σci®*i+Σy«®/« ( A 8)
i α

These are the only terms contributing to action of the induced differential on
^ . \Jί). M o r explicitly, we can write

Σ J l Λ l J l J t t ι - f l i r . (A.9)
α

Two remarks are in order. First of all notice that the above sums are actually finite
and second that the terms above are to be taken modulo Fp~1%>aQ(5f_ Jί). Now
define a linear map Γ:Gτ<£%(&_ ; ^ ) - ^ G r ^ " 1 ( ^ ? - ',->#) for all m>0 by

1 = 1

+ Σ (-^"'βlβl-βlΛ-bi^^-ej^-JZ , (A.io)
1 = 1

where an element with a "over it means that it is missing from that term. A
calculation shows that this map satisfies the relation

(dΓ + Γd)Ω = (K+L + M+N)Ω . (A.ll)

So, consider any i 2 G ^ ( y _ ; J ) where m>0 and dΩ = 0 then the previous
equation implies that

(A. 12)

Since ra>0, this means that K+L + M+NφO which implies that

Hm(Gr^QO(9?_;Jί)) = 0 if mφO . (A. 13)
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Because we have the convergence of the spectral sequence (E™) => Hm we are able to
conclude that

= 0 if m φ O . (A. 14)

Appendix B. A Positive-Definite Inner Product for the NSR Fock Space

In [4] we proved a Poincare duality theorem which requires two things: first that the
Fock space decomposes into a direct sum of finite dimensional subspace which are
stabilized by the BRST operator and second that there exists a positive definite
inner product in the Fock space. The first point is obvious since there are only a
finite number of states of a given level. We address the second question in this
appendix, where we construct a positive-definite inner product explicitly. The inner
product is defined from the original one imposed by the quantization procedure by
the introduction of a self-adjoint involution ^ in such a way that the new inner
product is

(B.i)

where <,> is the original inner product and φ and φ are vectors in the Fock space. On
the ghost and anti-ghost oscillators this conjugation ^ plays the role of the Serre-
Hodge ^ operator in complex geometry [13] and therefore is consistent with the
"semi-infinite" form interpretation of the ghost Fock space.

First a word of caution. Our ghost oscillators are not the natural ones but are
unitarily related to them. In our conventions the mode expansion of the conformal
ghost and antighost fields at τ = 0 are the following:

b(σ) = bo+ Σ
m>0

m>0

and similarly for the superconformal ghosts. This seemingly unnatural choice of
mode expansion turns out to be the natural one in our context. It will allow us to
identify the involution <€ above with ghost conjugation when acting on ghosts and
antighosts.

For the {a%,bn,cn} oscillators we define # as follows

<gpr<e=piί , (B.2)

^a°n^=-a°n , ^ 4 ^ = 4 , VΪ = 1...9 and V«φθ , (B.3)

Ήcn

c£ = bn , (€bn
c€ = cn , ( V M E Z ) . (B.4)

For the Neveu-Schwarz oscillators the conjugation with the desired properties
turns out to be the following

(B.5)

(B.6)

V Γ G N - 4 , (B.7)
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and for the R a m o n d oscillators it is very similar:

(-l)δ^°d^ VmeZ (B.8)

A, , %βnv=yn , (B.9)

For the ghost zero modes {β0, y0 } there are two possibilities depending on the

choice of Hubert space that we choose for their representation. As discussed in

Sect. 2 we can choose the Hilbert space in which they are self-adjoint in which case

we already have a positive definite inner product and therefore # acts leaves them

inert. On the other hand, following Henneaux [12], we can treat them as

annihilation and creation operators, in which case β0 and γ0 are mutual adjoints. It

is interesting to remark that in this case there is no self-adjoint involution # which

yields this adjointness property from the original ones for β0 and y0. However these

are the only operators acting in this space and hence there is no need - in order to

compute adjoints - for the operator # itself to exist.

To show that the new inner product defined by (B. 1) is indeed positive-definite is

completely straightforward and is left as an exercise for the reader.
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