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Abstract. We consider the construction of a nilpotent BRST charge for
extensions of the Virasoro algebra of the form {Ta, Tb} =fab

cTc+ Vc

a

d

bTcTd,
(classical algebras in terms of Poisson brackets) and [Tα, Th~\ = habl + fab Tc +
Vc

a

d

b(Tc Td) (quantum algebras in terms of commutator brackets; normal ordering
of the product (TcTd) is understood). In both cases we assume that the set of
generators {Ta} splits into a set {i/J generating an ordinary Lie algebra and
remaining generators {<Sα}, such that only the VlJp are nonvanishing. In the
classical case a nilpotent BRST charge can always be constructed; for the
quantum case we derive a condition which is necessary and sufficient for the
existence of a nilpotent BRST charge. Non-trivial examples are the spin-3
algebra with central charge c = 100 and the so(ΛΓ)-extended superconformal
algebras with level S = - 2{N - 3).

1. Introduction

Over the past few years it has become clear that conformal field theories in two
dimensions play an important role in string theories and in statistical systems at
the critical point (a large number of relevant papers can be found in the reprint
volume [1]). Each conformal field theory is built from a set of representations of
the two-dimensional conformal algebra, which is the product of two copies of the
Virasoro algebra. However, in actual models there is often more symmetry than
just conformal invariance. In fact, all rational conformal field theories correspond
to the Virasoro algebra or some extension of it ([2,3]). In general such extended
algebras are generated by a finite set of currents of definite conformal dimension.
A systematic study of finitely generated conformal algebras was initiated by
Zamolodchikov in ref. [4] and has been developed further by many authors.

The extended algebras that turn up in d = 2 conformal field theory are quantum
mechanical, i.e. they describe the (anti)commutation relations of operator-valued
fields. The classical versions of these algebras, where the bracket is interpreted as
a Poisson or Dirac bracket, are relevant in the study of certain hierarchies of
completely integrable systems generalizing the KdV-hierarchy [5,6].



88 K. Schoutens, A. Sevrin, and P. van Nieuwenhuizen

In some examples the Fourier modes of the currents of an extended conformal
algebra form an ordinary Lie algebra, or Lie superalgebra. The more general case
falls outside the scope of ordinary Lie (super)algebras and involves algebras that
may be called nonlinear Lie algebras. In such algebras the defining brackets contain,
in addition to linear terms, terms that are multilinear in generators (see also [7]).
There is a crucial difference between such nonlinear algebras at the classical and
the quantum level. In both cases, the Jacobi identities are satisfied, and in both
cases central extensions may be present, but at the quantum level one must define
a normal-ordering prescription for the nonlinear terms, which we will denote by
( ). As we shall see, this may result in the non-vanishing of the following
expression:

C] - (A\β9 C]) - (- Y^C\IA, C]B\ (1.1)

where σ(B) = 0 or + 1 if B is commuting or anticommuting, respectively.
In string theories, (extended) conformal (super)algebras play a dual role, because

at the classical level the generators are also constraints which the solutions of the
field equations must satisfy. At the quantum level the generators correspond to
restrictions on the Fock space of states. In the modern approach these restrictions
are implemented in a covariant quantization scheme, where for all generators ghost
and antighost fields are introduced which are used to construct a nilpotent BRST
operator. The physical sector of Fock space consists of nontrivial representations
of the cohomology defined by this operator.

The constructions of nilpotent BRST operators for Kac-Moody algebras,
Virasoro algebras and for some extended conformal algebras that are Lie
(super)algebras have been discussed in the literature [8-10]. In this paper we
consider the construction of nilpotent BRST operators for a special class of
quadratically nonlinear extensions of the Virasoro algebra.

At the classical level these algebras are defined by a set of generators Ta which
satisfy the following brackets:

{T.,Tb} = fΛ*Tt + V*TiTc. (1.2)

We make the assumption that the set of generators can be divided into a set of
subalgebra generators Hi and a remaining set of generators Sα, which satisfy the
following brackets

{HhHJ}=fij

kHk,

{Sx, St) = /„'/*, + fJS, + V^HjH,. (1.3)

No ordering of the last term in (1.3) is needed as the generators commute at the
classical level (the bracket may in that case be viewed as a Poisson or Dirac
bracket). The Jacobi identities for (1.2), (1.3) read

f[ab Jc\d = 0,

it* V + V&fcy? + f&'V'M = 0. (1.4)
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Jacobi identities containing two V objects do not occur since, according to (1.3),
no two V symbols can be contracted. From (1.4) it follows that fab are the structure
constants of a Lie algebra.

In order to define the corresponding quantum algebras, we have to specify the
normal ordered product ( ) of operator valued currents. We observe that all our
operators have a double index structure, with one index (n or r) running over all
integers or half-integers, reflecting the fact that they form a representation of the
Virasoro algebra, while the other index labels the various currents. The normal
ordering is with respect to the first index (n or r). Given a set of operators Am with
conformal dimension j9

lLm9Anl = {(j-l)m-ή}Am+n9 (1.5)

we define

(ΛnX) = An(X) if nί-j
(X)An if n>-j.

In this paper we will denote these cases by An^(X) and (X)An>9 respectively.
The quantum nonlinear algebras are now defined by

[Γβ, T>] = habl + fab

cTc + Vt{TcTd\ (1.7)

where the central charge generator / commutes with all other generators Ta.
Without loss of generality we can assume that Vc

a

d

b is symmetric in (cd) as the
antisymmetric part can be removed by redefining the fab. We shall again require
that only the V'% are non-vanishing.

Before evaluating the Jacobi identities for the quantum algebra we introduce
as in (1.1) an operator Ξabc which measures the nonassociativity of the normally-
ordered product as defined in (1.6)

Ξabc = ί(τa τb\ r c ] - (τα[τ;, r j ) - ([τ β, τ c ] τb). (i.8)

Given (1.6), one can explicitly evaluate the terms with none, one, two and three
generators. One finds the general result

p q ^ p I ) > , T i , ] - ( > ^ ) . (1.9)

The notation A^B>— ( > ^ ) indicates the combination A^B>— A>B^. The
identity A>B — AB > = A>B^— A^B> was used several times for combining terms
into commutators. Due to the index structure of ViJβ9 it is clear that Ξabc contains
terms with at most two T generators. However, for the Jacobi identities we will
only need the case that the indices α, b of Ξ lie in the iί-sector, and in this case
Ξ simplifies further to

Ξijc = Ξijc + Ξijc

dTd, (1.10)

where

(1.12)
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We recall that the notation Ta> indicates those indices whose Virasoro index n is
greater than minus the conformal spin j of Ta.

The Jacobi identities for the quantum algebra yield

/ Λ + VHΞedc + (cyclic in abc) = 0, (1.13)

fjfj + 2KgΛΛ + VtΞedc» + (cyclic in abc) = 0, (1.14)

fab

dVe

d{ + VilfJ + Vd/bfdc* + (cyclic in abc) = 0. (1.15)

Let us now show an example of an algebra of the type we described above.
Perhaps the simplest nontrivial example is the so-called spin-3 or W3 algebra
introduced by Zamolodchikov in ref. [4]. The Poisson brackets for its classical
version read

{Lm,LH}=(m-n)Lm+n9

{Lm,Wn}=(2rn-n)Wm+n,

{Wm,Wn}=(m-n)(LL)m+n. (1.16)

In this example, the Virasoro generators Lm span the subalgebra, while the
generators Wm form the set {Sα}, and Vc*h appears indeed only in {W, W} = VLL.
In fact, the classical algebras that are found in ref. [5,6] are more general since
they include a central extension, which due to the non-linearity, induces some
changes in the other structure constants. However, the BRST construction for
classical algebras which we will discuss in our next section, works only for classical
algebras with vanishing central extension.

The commutation relations for the quantum spin-3 algebra are given by

LLm,LJ =j^m{m2 - l)δm+n + (m- n)Lm+n,

ίLm,Wn]=(2rn-n)Wm+n,

+ β(m-n)Λm+n, (1.17)

where

Λm = χL m _ Λ L n -A(m + 3)(rn + 2)Lm, (1.18)
n

and

( U 9 )

(The deviation of this expression from the expression in Zamolodchikovs original
paper [4] is due to a difference in normal ordering convention).

It was shown by Thierry-Mieg in ref. [12] that for c = 100 a nilpotent BRST
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charge for the algebra (1.17) can be constructed. The major goal of our present
study is to understand better the construction he gave and to extend it to all
algebras in the class we described above.

Other examples that we will treat are the series of so(ΛΓ)-extended super-
conformal algebras proposed by Knizhnik [13] and Bershadsky [14] and further
studied in ref. [15]. Surprisingly, an analogous series of u(iV)-extended algebras
does not allow the construction of a nilpotent BRST charge.

The outline of this paper is as follows. In Sect. 2 we will construct the general
classical nilpotent BRST charge Q for the algebras in (1.2) and (1.3). In Sect. 3 we
deduce the conditions for the existence of a nilpotent BRST charge Q at the
quantum level. Details of some calculations are given in Appendices A and B. In
Sect. 4 we apply these results to the W3 algebra and to the so(N)- and w(iV)-extended
superconformal algebras. In Sect. 5 we state our results and briefly discuss
cohomology and possible applications to string theory.

2. The Classical BRST Charge

There exists an algorithm for the construction of a nilpotent BRST charge for
general classical Lie algebras, linear or nonlinear, due to Fradkin and Fradkina
[16]. We will apply this algorithm to the quadratically nonlinear algebras with
only nonvanishing V*Jfi. We will treat the formalism for bosonic algebras; the
formalism for superalgebras is obtained as a straightforward generalization. For
a clear review of the classical BRST formalism, see ref. [17].

For each generator Tα, one introduces an anticommuting ghost ca and antighost
ca. They satisfy the bracket relations

{cV} = 0, {ca,cb} = δa

b, {ca,cb}=0,

{ca,Tb} = {ca,Tb}=0. (2.1)

We do not introduce separate ghosts and antighosts for the quadratic elements
Ta Tb in the algebra because in variance of a theory under Ta implies invariance
under TaTb at the classical level [18].

The BRST charge Q satisfying {β, Q} = 0 is given by

β= Σ i-r*+ι <?ιuΐL^mι'"^' eur (2-2)
« = o

The structure functions U follow from the Jacobi identities, and identities derived
from these. For each n, one first determines a function D(n) which is totally
antisymmetric in upper indices and lower indices and which vanishes when
contracted with T generators

r\(n)aι...an _ /„

Given D(n\ one obtains Din+ί\ and hence U(n+2\ by evaluating the bracket
{Din)-(n+ l)ί/(n+1)T, Tbn+3} and antisymmetrizing in all b indices. In our case,



92 K. Schoutens, A. Sevrin, and P. van Nieuwenhuizen

one easily finds for the first three structure functions

b1b2~~ 2\Jbib2 ^ y b i b 2

l p h

= 0 (2-4)

The only further nonvanishing structure functions is C/(3)

ui3)a

b\lliib4 = - A vξ% vι%f%. (2.5)

This follows from the general formula for D{n)

1
τ\(n)en...an _ _ Y^ / _\np + 1 Γ T τ(p + l ) α i . . . α p τj(n-p)ap+ι...an Ί

U bι...bn + 2~~ o Z J V / \ U b!...bp+1>
u bp + 2...bn + 2)

^ ρ = 0

n ^ (2.6)

The resulting expression for Q is

β = caTa - yab

cccc
acb - £ KSJ Tccdc

βcb - ^ VZ Vrjv*crcsctc
achcccd. (2.7)

One may directly verify that Q is nilpotent by using the fact that

pq<\ (2.8)

which follows from applying (1.4) twice. [The first three terms of Q produce a
6-(anti)ghost term in Q2 which is canceled by the contraction of the first and last
term in Q. No 12-(anti)ghost terms are present in Q2 due to the special form of V,
while the eight-(anti)ghost terms cancel due to (2.7)].

We finally remark that, if a more general form of the classical algebra (1.2) is
assumed, including a central extension hab9 it can be shown that the condition
Q2 — 0 will fix the coefficient of the extension to be zero. In other words, the critical
central charge of the classical algebras with central extension is zero.

3. The Quantum BRST Charge

For the construction of a nilpotent BRST charge β, we must define a normal-
ordering prescription not only for the generator Ta, see (1.6), but also for the ghost
and antighost modes. Furthermore, multiple contractions are now needed, and, as
it turns out, the central extensions must be nonvanishing. (The fact that the central
charge must be nonvanishing at the quantum level is well-known from the Virasoro
algebra where c = 26.) There does not seem to exist a general algorithm for the
construction of a quantum BRST charge, hence we will use the classical BRST
charge as a starting point and make modifications where they appear necessary.
As in our previous section, we present the formalism for bosonic algebras; the
adaptations required when we are dealing with a superalgebra are easily obtained.

Usually, one introduces, given a generator Tm of conformal dimension j , ghost
modes cm with conformal dimension (1—j) and antighost modes cm with conformal
dimension; satisfying [cm,cπ]+ = δm+n0. It is easier to work with modes cm = c_m
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which satisfy [cm, cw] + = δ™. In those cases where there are several currents labeled
by /, we define ca = cj1 = c_ w / = ca. The normal ordering defined in (1.6) for ca and
cb9 yields the following result for ca and cb:

where the symbols > and ^ refer again to the Virasoro index n. Explicitly, α>
stands for n> —j and a^ stands for n^ — , both for ca and ca.

We are now ready to tackle the construction of the quantum BRST charge.
The minimal change in the classical BRST charge would occur if only the constants
fab and VCX were to be replaced by new constants Fab and Wc^b which depend
again on fab\ Vc/b and hab. (Recall that Ξabc is not an independent operator, see
(1.10)—(1.12).) Due to the fact that fab and hab always increase the difference between
the number of lower and upper indices, it follows that fab can at most be modified,
except for overall constants, by an /Ύterm, while Vc

ab cannot be modified at all,
since any contraction between two V symbols vanishes. This leads to the following
ansatz for the quantum BRST charge:

Q = caTa- \Fbc

a{cac
bcc) -1 Vci Tc(cdc

acb)

Wn (3.2)

For the evaluation of the anticommutator [Q, Q] + we derive two lemmas which

follow from (3.1):

Lemma I.

l(cac
bc% {c/c")-] + = 2δf{cac

bVc») - 2{cpc
bccc*)δ*

+ 2{δa<<δp>i
c-{> ^)){cbΨ)~2{δa<

uδp>

[c-{> ^)){cbV).

(3.3)

Lemma II.

[_{cac
bc% ( c p c β c r £ * Λ V*)] + = 6δp

c(cacqcr<*<?<?c°cw) - 4δa

t(cpcqcrc
bcccucv

Cη

cucυc™\ (3.4)

where the right-hand side of (3.4) is to be antisymmeterized in be, pqr and
tuvw. These identities follow straightforwardly from Wick's theorem applied to
each of the two products of normal-ordered operators, where one uses that
<0|cαcb |0> = δa>

b and <0|c bcJ0> = δaύ

b.

We shall now analyze the contributions to [ β , β ] + order by order in the
(anti)ghosts. We begin with the 2-ghost terms, and end with the 8-(anti)ghost terms.
All higher terms vanish since c\ c", c\ cw in the last term of Q in (3.2) all have coset
indices, while cp, cq, cr all have subalgebra indices.

Terms in Q2 with two ghosts arise from single contractions of the first term in
Q with itself and with the second and third terms, and double contractions of the
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second and third terms among themselves. The result is proportional to

S β (3.5)

where we used that TcTd - (TcTd) = [Γ c > , T J . These terms cancel if and only if

Fab

c = fab

c + δfah\ (3.6)
where

δfab

c = (fae>dVfib - ( ύ >)) - a~b, (3.7)
and

Kb = l-Fd

ac>Fdύb

c + (S>)l (3.8)

Note that the right-hand side of (3.8) is antisymmetric in (ab).
The first of these equations determines the modification of the structure

constants while the second fixes the central extension. Due to the fact that only
δfaβ

ι is non-vanishing, the F factor in the last term of Q reduces to /. It remains
to be checked that the condition (3.8) is compatible with the Jacobi identities
(1.13)—(1.15). In fact, one can show that (3.8) together with the last two Jacobi
identities in (1.14) and (1.15) implies the first Jacobi identity (1.13), so that (3.8)
takes the place of (1.13).

Through Eqs. (3.2), (3.6), (3.7) the expression for Q in terms of the tensors h,f
and V has been fixed completely. We will now show that also the higher order
terms in ghosts and antighosts in Q2 vanish if the condition (3.8) is satisfied. This
shows that the condition (3.8), together with the Jacobi identities (1.14) and (1.15),
is sufficient for the existence of a nilpotent BRST charge. We shall analyze the
contributions to Q2 in increasing order of ghosts and antighosts.

The terms proportional to cccc arise from single contractions of the first with
the third term, the second and third terms in Q among themselves and triple
contractions of the second and third terms with the fourth term. The result reads

ίVab

dehce + FjFbn cdc
acbcc. (3.9)

Double contractions of the type TTcc vanish identically due to the fact that V1^
is symmetric in ij. With the Jacobi identity (1.14) Eq. (3.9) is rewritten as

ίVab

dehec + VJ'Ξ S + δfjfc + fae

dδfbc<Ycdc
achcc. (3.10)

The strategy is now to substitute the result (1.12) for Ξefc

d into the second term
in (3.10), and then to rewrite this term such that it cancels all other terms in (3.10).
The details of the calculations are involved and relegated to Appendix A.

The terms proportional to cccccc in Q2 come from the following terms in Q:
the simple contractions between term 1 and 4, and between term 3 with itself, and
further the double contractions between term 2 and term 3 with term 4. The
resulting expression is

flcacrc
tcucvc™. (3.11)

This result looks simple, but it requires involved algebra to show that the sum of
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these terms indeed vanishes. The details of this calculation are relegated to
Appendix B.

The remaining terms to be analyzed are the terms proportional to cccccccc.
They arise from simple contractions between the second and third terms with the
last term in Q. Due to the index restrictions on V only the / term in F survives
the contractions. For the same reason the contractions between term 3 and the
last term vanish. The remaining contributions, due to term 2, are thus proportional
to / times VVf, and are exactly the same as in the classical computation. To show
that they cancel one only needs the second and third Jacobi identities. The Jacobi
identities are, of course, modified at the quantum level, but in this case the extra
terms in the Jacobi identities do not contribute due to the index structure of V.
This concludes the proof that the quantum BRST charge Q in (3.2), with F as in
(3.6)—(3.7), is nilpotent if the condition (3.8) is satisfied.

4. Examples

In this section we apply our results to the examples that we already announced

in Sect. 1.

4.1. The Quantum Spin-3 Algebra. The structure constants ft,/, V for this algebra
read in explicit form (we write T(Om) = Lm9 T ( l w ) = Wm)

360

J ( O ) ( l ) = \Am ~(Om)(ln) •

f(Op)
J (lm)(lΛ) •

V \ 1 J i V V J

= β(m-n)δ?n

+

+

q

n, (4.1)

where β was defined in (Eq. 1.19) Pί and P2 are polynomials given by

P^m, ή) = (m- ή)(m + n + 3)(m + n + 2),

P2(m, w) = (m - n)(m + 2)(π + 2). (4.2)

A straightforward calculation shows that the modified structure constants

M) are given by

\ + n . (4.3)

Working out the condition (3.8) for this algebra leads to two independent conditions
on the central charge c, corresponding to the components h(Om)(On) and ft(im)(iM),
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respectively,

c-50
c = 26 + 74 = 100, c = ̂ ( 1 - 11 β) = 1044 -. (4.4)

5c -f 22

These conditions are simultaneously satisfied for c = 100. The nilpotent BRST
operator takes the following form:

_ If™ — vΛF Λ0m)Λ0n)

t (m, ή) - hP2(m, n))c(O(m+B))c<lm>C<1">

- 2tϊ(m - n) TMm+n^c(lr)c^c^\ (4.5)

The ccccccc terms, which in general occur in the expression for β, are identically
zero in this case. Our result for Q agrees with the expression obtained in ref. [12].

4.2. Quantum so(N)Έxtended Superconformal Algebras. These algebras, which
were first written down by Knizhnik [13] and by Bershadsky [14], are generated
by Virasoro generators Lw, supercurrents Gι

rJ= 1,2,...,JV and so(N) generators
J£,α = l,2,...,iV(JV-l)/2, where r e Z + 1/2 (Neveu-Schwarz sector) or reZ
(Ramond sector). The (anti)commutation relations read

[Lw, L J = —(™3 - ™)$m+n + (m - n)Lm+n,

( m \
— r j O^m+r),

9 Jan J = ~ n^a{m + n) >

[Gir, G j s] + = I ( r 2 - i)a«£ r +,

+ l/2K(r - s)ί?,.Jfl(r+s) + yir*{JaJbUs,

\Jam >Girl = tji G j ( m + r ) ,

[Jam, Λ J = ~ Sm<5^ m + π + f^Jcim + n), (4-6)

where ί£ and / α b c satisfy

[ί«, th~\ = /αδcf, ίr(ί f lίb) = - 2<5fl&,

ίy ί i = «»^i ~ Wjk> fabcfaM = 2{N - 2)δc\ (4.7)

and the tensor Πf^ is given by

Ufi = tUij + t\mta

mj + 2δabδυ. (4.8)

This algebra is associative if and only if the constants c, B, y are chosen as
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follows:

6S + N 2 - 1 0 B KS
S + N_3 , B = KS,

leaving S as a freely adjustable parameter.
We will use the notation T(Om) = Lm, T(ir) = Gι>5 T(am) = Jam. When applying the

results of Sect. 3 to this algebra, we have to keep in mind that the present algebra
is a superalgebra, which implies that the signs in various expressions are different.

The structure constants fffiφ) are renormalized according to the expression

(3.6). We find

(ir)(js) — \ r b ) ι i j ° r + s' V*Λ vj

Observe that in this example the renormalization f-+F boils down to a scaling
of the structure constants f$βjS) with a factor (iK)~ι.

If we now inspect the condition (3.8) we find that three conditions have to be
satisfied

• (from the components hiOm)(On))

c = 2(13 -±fN + 1/2(JV2 - JV)) = N2 - 12N + 26. (4.11)

This critical charge is obtained as the sum of contributions 2 ( - l)2λ(6A2 — 6λ + 1)
from each generator of conformal dimension λ.

• (from the components hiir)ijs))

B=16-6N (4.12)

• (from the components h(am)ibn))

S=-2(N-3). (4.13)

These conditions are compatible with the relations (2.8) that were needed for the
associativity of the algebra. We may therefore conclude that the following
charge, constructed from currents in a representation having S = — 2(JV — 3), is
nilpotent (the ghost/antighost for the generators Lm,Gι

r and Ja

m are denoted by
cw, bm9 yίr, βίr, Cam and Bam, respectively)

Q = cmLm + yirGir + CamJam - l/2(m - n)bm+nc
mcn + (^ -

+ nBa(m+n)c
mCan - br+sy»γ* - l/2(r - s)ήjBa(r+s)y

iryjs

- l/2fabcBc{m+n)C
amCbn- l/2yΠ$Ja{r+s_m)Bhmyiryjs

-^y2Π$Πilfaceδ?+s\γ+uBbmBdnBe^ (4.14)

The existence of a nilpotent charge at S = — 2(N — 3) was already announced in
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ref. [15]. We notice that the 7-(anti)ghost term in Q is non-vanishing in this example.
In this respect this example is more generic than the example of the spin-3 algebra.

4.3. Quantum u(N)-Extended Superconformal Algebras. These algebras have a
bosonic part which is generated by Virasoro generators Lπ, and generators
^Am = {^am^om}y a — 1> 2,..., N2 — 1, generating an ύ(N) Kac-Moody algebra.
There are 2N supercurrents Gar,Gar, α = l,2,...,iV. The (anti-)commutation
relations read

[Lm, L J = (m - n)Lm+n + — (m3 - m)δm+n,

(r2 - i)δaβδr+s + 2δΛβLr+s + ί/2K(r

l/2β(r - s)λ% J 0 ( r + s )

^aβ^β(m + r) J

Van,, ΛJ = - ( φ

Uom,Jonl = -Smδm+n, (4.15)

where the generators Λ,̂  of the group SU(N) in the fundamental representation
and the U(ί) generator λ°aβ = iδaβy/{N — 2)/N are antihermitian. In the summation
over repeated indices A, B,... the zeroth components are taken with a minus sign;
( 5 0 0 = - l . We have

\_λ\ λh~\ = f a b c λ \ tr(λaλb) = - 2<5Λί>,

/α 6 c/α M = 4JVn ^ μ ^ = - 2<5α,^y + δaβδγδ. (4.16)

The tensor PΛ

β is given by

i 5 ^ = KΛ + Wβ + 2δABδaβ. (4.17)

The algebras are associative if and only if the constants c, B, K9 Q9 γ and S are
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chosen as follows (JV φ 2):

S)y, Q = 4Nγ,

If we now inspect the condition (3.8) for the components of h corresponding to
Jam and J O m , respectively, we obtain the following conditions on S,S:

S = - 4(JV - 1), S = 2{N - 2). (4.19)

The combination of these conditions is in conflict with the associativity condition
S = — N — S. We therefore conclude that there is no choice for S possible such
that the BRST operator (3.2) is nilpotent.

This result is rather surprising. In all previous examples, including for example
also pure Virasoro and Kac-Moody algebras, the condition (3.8) could always be
satisfied by tuning the central charge parameter to an appropriate critical value.
Here we have an example where the condition is violated for all values of the
central charge parameter, such that our construction of Q breaks down. It would
be very interesting to understand better the reason why the BRST construction
works for the so(JV)-extended superconformal algebras, but fails for the u{N)-
extended series.

5. Summary and Conclusions

The main result of this paper is the explicit construction of a nilpotent BRST-
operator for quadratically non-linear Lie algebras of the form (1.7), that are
characterized by the tensors hab9fab

c, and Vc

a

d

b9 with the special index-structure of
V assumed. Associativity of this algebra is equivalent with the Jacobi identities
(1.13), (1.14) and (1.15). We showed that a nilpotent BRST-charge can be constructed
if the conditions (3.8), (1.14) and (1.15), which together imply also the first Jacobi
identity (1.13), are satisfied. We showed some examples where (3.8), (1.14) and (1.15)
are satisfied if the central charge is tuned to a critical value. We also showed the
example of the u(JV)-extended superconformal algebras, where the associativity
conditions (1.13)—(1.15) are satisfied, but the condition (3.8) is violated for all choices
of the free parameter.

For those cases where the conditions (3.8), (1.14) and (1.15) hold we can construct
the cohomology of the operator Q in the Fock space, possibly restricted to a well
defined ghost number. We expect that this restricted space corresponds to the
"physical Hilbert-space" for some model where the symmetry algebra is realized
locally (as a gauged symmetry). As the Virasoro algebra is part of the algebra, we
expect an interpretation of such models as string theories. For the case of the
so(ΛΓ)-extended superconformal algebras these would be a new type of N-extended
superstrings.

Let us mention some comments concerning these ideas. For the spin-3 algebra
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the critical value for c is in the unitary domain. However, we do not know how
to obtain a representation actually realizing this value. The spin-3 algebra is realized
as a symmetry algebra of the 51/(3), k = 1 Wess-Zumino-Witten model. However
one has then c = 2. The tensor product of c = 2 matter multiplets is not possible
due to the nonlinearity of the algebra; here the analogy with ordinary bosonic
strings breaks down. Furthermore, an interpretation in terms of string-geometry
of the higher-spin symmetries is still lacking. For the so(JV)-extended super-
conformal algebras the level for a critical representation is negative, which implies
that such representations can never be unitary. It is not clear to us how far this
is an obstruction for attaching a physical interpretation to the BRST-cohomology.
Also here a problem is that explicit realizations at the critical level have not been
constructed.

Clearly, a lot of work on the BRST-construction for quantum nonlinear Lie
algebras remains to be done. The class of algebras we chose to analyze in the
present paper contains some interesting examples, but not all of them. In particular,
all the so-called Casimir algebras [19], except the simplest ones associated with
su(2) and sw(3), fall outside this class. (In general, in the product of a dimension-s
operator Q{s) with itself a term Ts~ι is expected. Therefore, if operators of spins > 3
are present, the algebra is no longer quadratic.) Still, it seems likely that also for
these algebras a nilpotent BRST-charge can be constructed along the lines
developed in this paper. For the Casimir algebras associated to simply laced
classical Lie algebras an explicit expression for the critical central charge was
proposed in [9].

It will be clear that a direct generalization of the method we used in the present
work to more general nonlinear Lie algebras will lead to enormous calculational
complications. Possibly, a scheme where a BRST current Q(z) is constructed directly
from information contained in the operator product algebra of the currents Ta(z%
without passing to a commutator algebra in terms of Fourier modes, will be easier
to work with. We leave these matters for future investigations.

A. Appendix A

In this appendix, we bring Ξd

ef{aV
e

b

f

cλ in a form which is such that the cancellation
of the cccc terms in Q2, Eq. (3.10), becomes obvious. We start by substituting
Eq. (1.12) for 5 j / c ,

V%Ξd

efc = - Ve/b(fce^fg>/-(^ >)). (A.1)

Here and for the rest of this appendix, we assume that all formulas are
antisymmetrized in abc.

Applying the third Jacobi identity to this yields

(A.2)
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Now one uses the resummation identity

), (A.3)

to rewrite the first three terms of (A.2) as

(δftafl. (A.4)

Here the defining relation (3.7) and the relation

VZU'W = h V'ΐfM, (A.5)
where used. Equation (A.5) follows from the second Jacobi identity (1.14), the
explicit form of Ξg

edc and the properties of V. The fourth term in (A.2) is recognized as

δfcb

efj, (A.6)

while from Eq. (3.8) it follows that the least term becomes

te

bhce.
Putting all this together gives

Vte

bhce. (A.7)

Vt£3ifc = - VHhec - δfjfbc

e - fd

aeδfb; (A.8)

which combined with Eq. (3.10) shows that the cccc terms in Q2 vanish. Notice
that Eq. (A.8) implies that the second Jacobi identity (1.14) can be rewritten in the
simple form

F[ab

dFc]d

9+Vtfbhc]ίl = 0 (A.9)

B. Appendix B

In this appendix we prove the cancellation of the cccccc terms in Q2. This amounts
to showing that

{r

w-(> >))-(ftc>
qvc

q%ufe/v{'w-(^ >))

>

qf^/-{u >)) (B.i)

vanishes. Here and in the next we assume that all formulae are antisymmetrized
in ar and tuvw. Equation (B.I) follows from Eq. (3.11) where we substituted the
value of the central extension (3.8). Similar to Eq. (A.3) we have another
resummation identity

(^ ^all)-(> >all) = (^al lg)-(>all>)-(al l> ^) + (all^ >). (B.2)

Applying this to the first term of (B.I) yields

iW/e/̂ M-IV^̂  >)), (B.3)
where we used the trivial resummation identity

( g g ) - ( > > ) = (gall)-(all>). (B.4)

The last term of (B.I) together with the last term of (B.3) give

{>ύ). (B.5)
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On the terms between brackets we apply the third Jacobi identity (1.15), giving

-(fegf

qfP,
eVp

q

a

>uV
r

vί - ( > £ ) ) + {feSf

qfq>tpV%Vrl - ( > £ ) ) . (B.6)

We now concentrate on the second term of (B.I). We apply the third Jacobi identity
on Vc

q%ufe/, which yields

(/.s//,>,β»WC-(> S))-{fe/fq>t

pV"p%uV'v{-{S >)). (B.7)

Adding (B.6) and (B.7) results in

f qf PΊ/ae yrf _ f q r p yae yrb _f pf eyaqyrf , f pr eyaq yrf /τ» o\
J ef J qt v p>uv vw J e> f Jqt v puy vw J ef J q^t v puv vw * J ef J qt v p^uv vw K13'0)

If one now rewrites the ̂ f-terms in the last two terms of (B.8) using the second
Jacobi identities, one finds that (B.8) vanishes. We also used the fact that f^/Vf^
vanishes by the third Jacobi identity when p does not belong to the linear Lie
subalgebra. To resume, the remaining terms are term three in (B.I) and the first
two terms of (B.3).

Term three in (B.I) reduces to

— f vyfff ayce

Jt>c y quJ ef v vw)

and we apply the third Jacobi identity on ftc

qVζ^ giving

Now, one observes that these terms vanish if there would have been no restriction
on the summation, this because it would be symmetric in or. From this one sees
that (B.10) can be replaced by

Applying the third Jacobi identity on fcq

rVa

t[, one rewrites the first term of (B.ll)
to a form which is precisely minus term one in (B.3). A similar procedure makes
that term two in (B.ll) cancels against term two in (B.3). This completes our proof
that (B.I) and as such all the cccccc terms in Q2 vanish.
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