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Abstract. Bilinear residue formulas are established for the super-KP hierarchy
and the ortho-symplectic super-KP hierarchy. Furthermore, superframes
corresponding to the ortho-symplectic super-KP hierarchy are completely
characterized. Soliton solutions to the super-KP hierarchy are given.

1. Introduction

This paper is devoted to algebraic study of super-wave functions and soliton
solutions of the super Kadomtsev-Petviashvili (SKP) hierarchy and the ortho-
symplectic (OSp) SKP hierarchy.

The SKP hierarchy was first introduced by Manin-Rudal [12] and was
extensively studied by Ueno-Yamada [17-20], Yamada [21], Mulase [13], Ikeda
[9] and Radul [14]. Especially, in [19] we proved that the SKP hierarchy
equivalently leads to the super-Grassmann equation that connects a point in the
universal super-Grassmann manifold USGM with an initial data of a solution. In
that argument, the Birkhoff (Riemann-Hilbert) decomposition in the group of
super-microdifferential operators plays a key role. However this operator formalism
is rather inconvenient for treating geometrical solutions such as soliton solutions
and super-quasi-periodic solutions. We therefore require a super-wave function,
as in the case of the ordinary soliton theory.

The theory of the KP hierarchy itself is explained as follows [2,6,15,16]: Let
0t be the ring of formal power series over C, M = C[[x, ί]] (x is a space variable
and t = (tl9t2,t3,...) an infinite number of time variables.). The algebra 01 is a
differential algebra with a derivation dx = d/dx. By S@ we denote the ring of
microdifferential operators over M,

X, t)eβt\
)J

A wave operator

W = W(x,ί,dx) = f wj(x, t)dx~
j (w0 = 1) (1.1)

7 = 0
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is a monic element in SΛ of O-th order satisfying the Sato equations

dW
-—- = BnW-W x.

(1.2)

where Bn = (Wdx

nW~1)+ (=the differential operator part of Wdx

nW~x). The
compatibility conditions for (1.2) give rise to the Lax or the Zakharov-Shabat
representations of the KP hierarchy. A wave function and its dual version are
introduced by

w(x, ί, λ) = W(x, t, 3Vexp (xλ + £ tnλ
n)\ (1.3)

w*(x, ί, λ) = (W*{x, ί, δj)"* fexp f -xλ - j ^ t^ΛY (1.4)

where W* = £ ( — 3JC)"~
 /w/ (x,ί) is the formal adjoint operator of W. (In general,

7 = 0

for PsS®, P* stands for the formal adjoint operator of P.) A wave function for
the KP hierarchy and its dual are completely characterized by the following bilinear
residue formula (BRF):

Resλ= Jdλwίx, ί, λ)w*(x\ t\ λ)) = 0. (1.5)

This BRF is obtained through consideration on the duality of the Laplace transform
[a primitive communication with M. Noumi]. In the definition of the BKP
and CKP hierarchies [3-5], the even time evolutions are suppressed. Hence
t — (ί l s ί3,...). We further impose some additional conditions on a wave operator:

(BKP) W~1 = dx-
1W*dX9 (1.6)

(CKP) W~1 = W*. (1.7)

The BRF for these hierarchies are as follows:

(BKP) Resλ=TO(^Mw(x,α)w(x',ί', ~λ))= 1, (1.8)

(CKP) Resλ=ro(^w(x,α)w(x',ί', -λ)) = 0. (1.9)

A supersymmetric extension of differential calculus on M are accomplished by
replacing dx by D = dθ + θdx, where θ is an abstract Grassmann variable; θ2 = 0.
The operator D is a square root of dx.

The SKP hierarchy is described by the Sato equations:

Dn(W) = εn(BnW-WDnl B^iWiyW'1)^ n= 1,2,3,..., (1.10)
oo

where W = £ w7 (x,0, t)D~j is a monic super-microdifferential operator (a super-
7 = 0

wave operator), Dn are super-vector fields with the parity n and εn = (—)n(n+1)/2.
(For the precise definition, see Sect. 2.) The main results in [19] are that the SKP
hierarchy can be interpreted as a dynamical system on USGM, the Lie superalgebra
gl(oo|oo) appears as the infinitesimal transformation group on the solution space
of the SKP hierarchy. As for the super-Fock representation of gl(oo | oo), see [1.10].
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Using the so-called "2-spinor representation" of super-microdifferential operators,
we furthermore show that there is a natural projection map from the solution
space of the SKP hierarchy to the direct product of two copies of the solution
space of the KP hierarchy.

We define a super-wave function associated with a super-wave operator W by

φ9 θ, t, λ, ξ) = W{x, θ, t, D)(exp H(x9 0, ί, λ, ξ))

with an appropriate phase factor H(x, 0, £, λ, ξ). where (λ, ξ) are (11 l)-dimensional
spectral parameters (λ is even, ξ is odd). One of the main results in this paper
is the characterization of a super-wave function and its dual of the SKP hierarchy
by the following BRF:

Resλ=«>(Δ (dλ/dξ)w(x, 0, t, A, ξ)w*(x', 0', f, A, ξ)) = 0, (1.11)

where Δ (dλ/dξ) is the super-volume form on the (λ, £)-space (odd quantity). To
show this BRF, we establish the theory of the super-Laplace transform and its
duality.

By adding a symmetry condition for a super-wave operator of the SKP
hierarchy, one obtains the OSp-SKP hierarchy which is related with the infinite
dimensional Lie superalgebra osp(oo|αo). As in the case of the SKP hierarchy,
there is a projection map from the OSp-SKP hierarchy to the direct product of
the BKP and the CKP hierarchies. The BRF for the OSp-SKP hierarchy is also
obtained.

This paper is organized as follows. Section 2 outlines the theory of the SKP
hierarchy [19], including some new results: We establish the one-to-one cor-
respondence between formally regular solutions to the hierarchy and points in the
biggest cell of USGM. Furthermore, we describe the hierarchy in the 2-spinor
picture. In Sect. 3, we will introduce a super-wave function and its dual for the
SKP hierarchy. Through analysis of the super-Laplace transform, we prove the
BRF for super-microdifferential operators (Theorem 3.6), and for a super-wave
function and its dual (Theorem 3.7). Section 4 is devoted to a study of the OSp-SKP
hierarchy, especially the BRF (Theorem 4.1). We also give a characterization of
the OSp-SKP hierarchy by superframes in the biggest cell of USGM (Theorem 4.6).
In Sect. 5, we construct soliton solutions to the SKP hierarchy by means of
the so-called direct method.

2. The SKP Hierarchy and the Universal Super-Grassmann Manifold

In this section we review the theory of the super-KP hierarchy developed in [17-19].
We will omit proofs of the propositions except for Proposition 2.3 and Proposition
2.5. For the details, see [19].

Let stf be a Grassmann algebra of finite or infinite dimensions over C, and
t = {tl9t29...) super-time variables (t2k are even, t2k-1 are odd). The supercom-
mutative algebra £f of superfields is, by definition

We introduce naturally the Z2-gradation of £f, <? = £f 0 © Sfx and define the body
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map ε by the canonical projection

where [Sf^ is the ideal generated by the subspace Sf^ A super-differential operator
D = (d/dθ) + θ(d/dx) and super-vector fields

D — - D — ? - + y t — d —
U2l — a, •> u2l-\ — ^ ^ Lal2k-\^ι2lΛ 2k-2

act on if. They satisfy the following commutation and anti-commutation relations
[12]:

[2>,J>ι](-).-ι = 0 , [ D 2 I , D 2 J = [ί>2 ί,ί>2 ) k-i] = 0 ,

We define the algebra 2f of super-differential operators by 3f = «5̂ [2>]. Adding the
formal inverse element D1 =θ-h(β/δθ)(δ/βχ)~1 to 3f9 we obtain the algebra of
super-microdifferential operators. Precisely,

The algebra structure of δ is prescribed by the generalized super-Leibniz rule [12]:

jj=o\j

for any integer k and feSf&. The algebra <f is endowed with a natural Z2-gradation,
δ = δQ®δv Namely an "operator P= ^ Pj(x,θ,t)Dje£a (α = 0,l) if and

— OO<J«OO

only iϊPj(x,θ,t)e^a+j for any;. Moreover we define the body part ε(P) (we use
the same notation as the body map on Sf) by

<**)= Σ tpjixΛtW2,
jj .even

which is a microdifferential operator with coefficients in 01.
Now we introduce the SKP hierarchy [12,17-19]. Let L be a super-micro-

differential operator

L = fj
t = 0

with M0 = 1, D(ux) + 2u2 = 0. The SKP hierarchy is a system of the Lax equations:

2l-uL]+-2L21}, 1=1,2,..., (2.1)

where Bι = (Lι)+ ( = t h e super-differential operator part of li\ and Dι{L) =
1'*. The system (2.1) is equivalent to a system of the Zakharov-Shabat
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equations:

(-)kD2k(B2l) - (-)ιD2l(B2k) + [B2 I, B2k\ = 0,

(-)^2^2/- l) - (-)'D2I- 1̂ 2*) + [*2I- 1 > ^2 J = 0,

(-)*02*-l(B21-l) + ( - ) ^ ^ ^

U = U , . . . . (2.2)

The first equation in (2.2) with k = 2, / = 3 gives rise to the SKP equation, which
is regarded as a supersymmetric extension of the single KP equation: Set

B4 = D* + 2v3D + 2v4,

B6 = D6 + 3v3D
3 + 3υ4D

2 + v5D + v6 ip^Sf).

Then the SKP equation reads

3D4(ι;4) = - 3v4ίXX + 6υ3vXx - 4v3υ5 + 2υβ^

D4{υ5) + D6(v3) = v5iXX - 2vXxxx - 6v3D(v3J - 6(v3v4)x - 2D{v3υ5),

D4(υ6) + D6(v4) = v6>xx + 2v3D(v6) - 2υ4,xxx - 6v3D(v4J - 6v4υ4,x + 2D(υ4)υ5.

Before describing the procedure of integrating the SKP hierarchy, we consider
a matrix representation of the algebra S. Let

be an algebra homomorphism defined by φ(P) = (ιA(P)μv)μ,v6z(^G^?

the matrix entries prescribed by

D»P=ΣΨ(p)μvD
v (2.3)

More precisely, letting P = ΣPJ(X, θ, t)Dj,

fc=0

= Σ
fc = O

From the definition (2.3) and the associativity of the multiplication in <?, it is easy
to see that φ is actually an injective algebra homomorphism. (Furthermore φ
becomes a superalgebra homomorphism under an appropriate Z2-gradation of

Now let us integrate the SKP hierarchy. One first finds a monic super-micro-
differential operator (a super-wave operator)
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satisfying

L=WDW~\

Dn(W) = sn(BnW - WD% n = 1,2,..., (2.4)

where εn = (_)n(w+1)/2. Equations (2.4) are referred to as the Sato equations for the
SKP hierarchy. Introducing

one readily sees that the operator W =WΨ solves

Apart from this, consider the following equations:

Dn(Y) = snBnY,

where Y is a super-differential operator of the infinite order

with an initial condition Y\t=0 = l. Putting U = W ~17, one sees that the coefficients
of U are independent of ί, and that

Y = WZ. (2.5)

Here the operator Z is defined by

Taking the (-) part of (2.5) (for PeS, (P)_=P- (P)+) yields the following equation:

(WZ)_=0. (2.6)

Introduce a Z x Nc matrix 2£ by

Then Eq. (2.6) reads

'wiT = 0, (2.7)

where w = (w-;)JsZ, w;- = ŵ  ίx, θ, ί) for j ^ 0, wy = 0 for j < 0. The matrix !% solves

2,..., (2.8)

, (2.9)

w h e r e A = ( < W , , , v ε Z , r = ( ( - ) ' V . A . * ^ = ( t . ) , W a n d ^ ^ ( ^
(for / = / o + / 1 e ^ > = ̂ o ® ^ P w e s e t / t = / o - / i ) From these equations, the
matrix 2£ is represented as
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where

( 2 f tnΓ
n\ (2.10)

and Ξ is a constant Z x N c matrix

Ξ = {ξμv)μeZ>veNceMat(ZxNc;Λ?) with ξμyesiμ+y.

One can see that £μ v = δμv for μ ^ v. Therefore we have the following proposition.

Proposition 2.1. The coefficients Wj(x9θ,t)€^j ( j ^ l ) of a super-wave operator
We$™°™ solve a system of an infinite number'of linear algebraic equations

{wΦΞ = 0. (2.11)

Equation (2.11) is referred to as the Grassmann equation for the SKP hierarchy.
The Grassmann equation has a unique solution for matrix Ξ in the set of
superframes:

SFR(Nc;si) = {Ξ=(ξμv)μsZ^ceMat(Z x N _ ^

3 m e N such that ξμv = δμvfor μ < — m, μ g v,

ξμv = 0for — m ? g v < 0 , μ g — m , and ε(Ξ) is of maximal rank}.

The resulting solutions w7- belong to the quotient algebra J of 6f. Let δΆ be the
superalgebra of super-microdifferential operators with coefficients in Ά.

Proposition 2.2. For a solution *w to the Grassmann equation with ΞeSFR(Nc\stf\
00

setW= Σ wJD~je{£1£oni\ Then the operator W solves the Sato equations (23) for

the SKP hierarchy with Bn = (WDnW~1)+.

We introduce the supergroup SGL (Nc; s/) by

SGL(NC; ^) = {g = (gμv)μ^eMat(Nc; ^)\gμve^μ±1,
3meN such that gμv = δμvfor μ ^ v, μ < — m,
gμv = Ofor -m ^ v < 0, μ ^ -m, and (ε(gμv))-mύμ,v<0 is invertible}.

This supergroup acts on the space SFR(NC; srf) from the right. The universal super-
Grassmann manifold USGM is by definition, the quotient space of SFR(NC; stf):

USGM = SFR(NC; <zf)/SGL(Nc; si).

From the formula of solutions to the Grassmann equation (Theorem 2.4), we can
see that the biggest cell of USGM,

USGMΦ = {Ξ= (ξμv)eSFR(Nc; si)\ ξμv = δμv for μ g v}/SGL(Nc; si)

provides super-wave operators with coefficients in Sf. We denote by W(Ξ)εSΆ the
super-wave operator associated with a superframe Ξ in Proposition 2.2. It is
obvious that, if two superframes Ξ9 Ξ' determine the same point in USGM, the
associated super-wave operators W(Ξ) and W(Ξ') coincide. There arises a natural
question whether, if two super-wave operators W(Ξ), W(Ξ') coincide, the super-
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frames Ξ and Ξ' determine the same point, namely Ξ = Ξ' mod 5GL(NC; si). The
answer is "yes," at least for superframes that belong to USGMΦ.

Proposition 2.3. Suppose Ξ,ΞΈUSGMΦ, and W{Ξ)=W(Ξ'). Then Ξ = Ξ'
mod SGL(NC;^).

Proof. We note that, for a superframe Ξ in USGMΦ, there exists a matrix
geSGL(Nc;^) such that (Ξ g)μv = ζ v (μeZ,veN c ) with ξμv = δμv if μeN c. We

~ ~ °°
call such a superframe S = (<fμv) Z v e Nc normalized. Set W(Ξ)= ]Γ w7 (x, 0, ί)D~J

./=0 ~
(w7 (x, 0, t)e£fj). What we have to show is that a normalized superframe Sis uniquely

determined from the Grassmann equation

'wΦΞ^O (2.12)

(w = (w_;) ;eZ, w, = wj(x, θ, t) for j ^ 0, Wj = 0 for j < 0). Applying Dn to (2.12) and
setting x = θ = t = 0, we have the following equations:

f w[π]S = 0 (n = 0,1,2,...), (2.13)

where ί φ ] = D"( ί wΦ) | J C = β = t = 0 = (w[n] i) j e Z with w[n]Jes/i+IL9 w [ n ] n = l and
w M j = 0 for j > n. Equations (2.13) imply the orthogonality relations between the
vectors w[n] and the superframe Ξ. It is easy to see that each column vector of
Ξ is uniquely determined from this orthogonality. •

Thus super-wave operators in $ correspond one-to-one to points in USGMΦ.
To study the time evolution of solutions to the SKP hierarchy, introduce an

infinite number of supersymmetric derivations;

D = dθ-θdx (D2=-dx\

d - d » d
D D 2

Consider an even derivation

X = a^- + ζD+ £ cnDn9
OX n= i

where aes/Q9ζesiί9cnEs/n. X commutes with the derivations D and Dn so that
it acts infinitesimally on the solution space of the SKP hierarchy. For a superfield

f, one has

where x' = x + a + θζ, θ' = θ + ζ, tf

2ι-1 = t2ι-1-\- c2ι-χ and t'2l = t2l + c2l +

Σ hk-ic2i-2k+i Since the fundamental solution matrix Φ (2.10) has the
fc=l

multiplicative property with respect to the time evolution, i.e.,

(exΦ)(x9θ9t)=Φ(x9θ9t)Φ(a,ζ,c)9

the SKP hierarchy is translated to a dynamical system on USGM with the time
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evolution

Ξ mod SGL{W; sί) -> Φ(x, 0, ί) S m o d SGL(NC; jtf).

In order to solve the Grassmann equation explicitly, we need some algebraic

concepts. With a matrix X = (Xij\jeZ>

is associated, where the blocks are put as Xaβ = (Xij)ιe2z+<x,je2z+β Applying this
rearrangement to the Grassmann equation, it is rewritten into the form

(...,w 4,w 2,l,0,...;...,w 3,w 1,0,...) Φ 4E = 0. (2.14)

Let A = (Λc/s)α,/?=o,i be an invertible matrix with AaβeMat(ma x mβ;jtfΛ+β). The
invertibihty of such a matrix is equivalent to that of the matrices ε(A00)

an(* ε ( ^ u )
A superdeterminant (or the Berezinian) [11] of the matrix A is, by definition,

The inverse of the superdeterminant is given by

We should remark that a superdeterminant is multiplicative with respect to the
product of matrices. By virture of Cramer's formula in linear algebra, one sees that
the even unknowns w2j in (2.14) are expressed in the form of a quotient of
superdeterminants. To get the formulas representing the odd unknowns w2 j + 1 ,
we first look for the formula for w l 9 and consider the first Sato equation

= - {Bx W- WD). Then we obtain the following theorem.

Theorem 2.4. The coefficients of a super-wave operator attached to a superframe
ΞeSFR(Nc;jtf) are given by

wι=D{log(sdQt(tΞ0'Φ'Ξ))}=D1{log(sdot(tΞ0'Φ'Ξ))},

and

for j = 0,1,2,... . Here the frame Ξ2j is defined by

'Ξj 0

,0 So,

w/iere Ξ, = (δμv(μeZ;μ<- j)\δμ,v+ι(μeZ; -j^v< 0)).
Finally we describe the 2-spinor picture of the SKP hierarchy. Let

^ = C [ [ x , ί ] ] ® s i and £'g, = &'((dx~
1)) be the algebra of microdifferential

operators with coefficients in SP. Put

whose Z2-gradation if = ifQ © if χ is naturally introduced. We denote by ε the
body map, ε : ^ - > ^ , which is defined in the same way as before. The same notation
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ε expresses the body map S^-^S^, which further extends to the body map
ly'.y?->$%<§)$<%. The 2-spinor representation is a superalgebra homomorphism
%\g-*Se defined by

π(f) = diag (/, ( - )af) for

We consider the Sato equation (2.4) with n = 21 in the 2-spinor representation. Let
W be a super-wave operator in δ and π(W) = {Wij)Uj=0Λ. Each entry WtJ belongs
to (δ&)i+j9 and the body part of the diagonal entries satisfy

8 ^xru) = (-)l{KB2ι,ii)KWii)-
dt

2l

where π{B2l) = {B2ltij)iJ=0Λ. These are nothing but the Sato equations for the KP
hierarchy. Therefore we have the following proposition.

Proposition 2.5. Let iV%^ be the space of super-wave operators in $ of the SKP
hierarchy, and W&p be the space of wave operators in S\ of the KP hierarchy. Then
we have the projection p = ε^°π,

3. Super-Laplace Transform and Bilinear Residue Formula

First we discuss the concept of the "formal adjoint" in ^CCMΠ®^* ^ e s u P e r ~
integration of a superfield f(x, θ) = u(x) + θv(x) is, by definition,

where Δ(dx/dθ) is the (11 l)-dimensional volume form (an odd quantity). For a given
P = P(x, 0, D)e£Cίίxβm^ the formal adjoint operator P* = P*(x, θ,
is introduced through

lΔ(dx/dθ)P(x9 θ9 D)(f(x9 θ))'g(x9 θ)

= μ(dx/dθ)f(x9 Θ)-P*(x9 θ, D)(g(x9 θ)l

for f(x9θ)9 flf(x,θ)e(C[[x,θ]]® J / ) Q . Then we have

(w/)«)* = ( - Γ snD
n- w (we(C[[x,

and, in general,

We introduce a super-wave function and its dual version. Let

H(x, Θ,t,λ,ξ) = xλ+Σ(~ )lt2ιλ' + (ξ + Ht, ξ))(θ + 1-1 h{t, ξ)),
1=1

where
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Here (A, ξ) are regarded as (11 l)-dimensional spectral parameters. For a super-wave
00

operator W = W(x9 θ, t,D)= £ w, (x, θ, t)D~j (w0 = 1), define a super-wave function
j=o

and its dual by

w(x, θ, t, λ, ξ) = W(x, θ, t, D)(exp (H(x, θ, t, K ξ)))9 (3.1)

w*{xΛuλ,ξ)=W*{xΛUD)-\exv{-H{xΛtAΛ))) (3.2)

Note that

= Aexptf, Dn(expH) = £/1Z)w(expH),

λ~μexpH, D~2μ+1(cxpH) = λ~μ(λθ -ξ- h)expH.

By the Sato equations (2.4), a super-wave function and its dual satisfy the linear
equations

Dn(w) = e B B » , DM(w*) = - εn£n*(w*). (3.3)

We consider the duality of the super-Laplace transform. Let V = Vc ® si be
an ^/-module, where

Vc = j Σ ^c μ | c μ €
\. — oo«μ< co

with basis elements eμe(Vc)μ. The j^-module V has a natural pairing <, >: V ® V
defined by

(u,aυ) and <w,i;α> = (u9υ)a,

for w, UGV, αGĵ /. We identify an element w = £ eμαμ with a super-microfunction
— oo«μ<oo

M(X, 0) = X <5(μ) (x, 0) α _ μ _!, where we have defined the super-delta function by

δ(χ, θ) = θδffiand δ{μ)(x, θ) = Dμ(δ(x, θ)) (μeN). More precisely, one has
x9 θ) = 0S/(δ(x)),

δ(-2μ-2)^ Qj = feμ 7(X)/μ!, <5<-2μ- D(Xj 0) = ̂  Y(χ)/μ\,

for μcN, where 7(x) is the Heaviside function. Set

— oo«μ<0

= \u(x,θ)=
I 0^μ«oo

Define the super-Laplace transform of δiμ)(x,θ) by

μ(dx/dθ)exp(- λx -

Note that (ξ + λ(δ/a^))2 = A. Hence we can rewrite (3.4) as

eμ(λ,ξ) = μ(dx/dθ)exp(-λx- ξθ)eμ =
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For a general element u = Σeμaμ> we set ύ(λ, ξ) = £έ μ (λ, ξ)aμ. By the super-Laplace
transform we get the identification

Vaiφc, θ)\-^ύ(λ, ξ)eC((λ~ \ ξ))®^. (3.5)

For ύ(λ,ξ) = Σλ<iaμ + ξΣλμbμeC((λ-\ξ))®s/, set

To show the bilinear residue formula, we have to present some lemmas on the
residue calculus, the super-Laplace inverse transform and the formal adjoint of
operators.

Lemma 3.1. For u,ve\, we have

(u,v} = RQsλ=o0(Δ(dλ/dξ)ύ(λ,ξ)v(λ,ξ)\

Proof. It is easy to see that

ResΛ = „ (Δ(dλ/dξ)eμ(λ, ξ)e.^ x μ, ξ)) = 0

if μ — v is odd. If μ — v is even, then

For a super-microdifferential operator PeSό

clixm^^, we define a super-
differential operator of infinite order Pe^^-i ξ)]<S)J2/ through the super-Laplace
transform: P(ύ(λ, ξ)) = {Pu){λ, ξ). For example,' (Dμf = {D)μ = {ξ + λ(d/dξ))μ for
μeZ, and (d/dθf = {. And / = / ( - d/dλ, ( - ) a ' x d/dξ) for a superfield / = /(x, θ)e

For a column vector {aμ)μeZ that corresponds to an element u = YJeμaμ of V,
set (aμ(x,θ))μeZ = Qxp(ΘΔ + xΛ2)(aμ)μeZ. Then one sees that

aμ(x9 θ) = Res λ = «, (Δ(dλ/dξ) exp (λx + ξθ)Dμ(ύ(λ, ξ))), (3.6)

D(aμ(x,θ)) = aμ+1(x,θ). (3.7)

Lemma 3.2. An element ue\ belongs to Ύφ if and only if

Res Λ = ^ (Δ(dλ/dξ) exp (λx + ξθ)ύ(λ, ξ)) = 0.

Proof. A direct consequence of (3.6) and (3.7). •

Lemma 3.3. Let p(x,0)e(C[[x,0]]®s/)y. If μ-v is even, then

d d'

Proof. Let both μ and v be odd. For even superfields f(λ, ξ) and g(λ, ξ),

\Δ(dλ/dξ)((βD")(f))g =

The other case (μ, v are even) is similarly checked.
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Lemma 3.4. (I)")*(exp (Ax + ξθ)) = ( - Df (exp (Ax + ξθ)),

(D")(exp ( - λx - ξθ)) = ( - )*(D*)*(exp ( - Ax - ξθ)).

Proo/ is straightforward. •

Lemma 3.5. Let ^ e ^ C [ [ x θ ] ] ( g ) ^ is an even operator. Then

P(exp (λx + ξθ)) = P*(exp (Ax + ξθ)),

P*(exp ( - Ax - x0)) = P(exp (-λx- ξθ)).

Proof. Without loss of generality, we can set P = p(x,θ)Dμ, where p(x,θ) has the
parity μ.

ξθ)) = (^) p^l, A

The other one is similarly checked. •

Now we can state the bilinear residue formula (BRF) in

Theorem 3.6. Let P,QeSc^xffn<^^ are even operators. Then P β e ^ c [ [ x θ ] ] Θ ^ if and
only if the BRF

Resλ=,,(Δ(dλ/dξ)P(exp(λx + ξθ))Q*(exp(-λx'~ ξ&)) = 0

holds for any (x,0), (x\θf).

Proof. The condition PQeΘ is equivalent to PQ(e-k-1)e\φ for all fceN, and also to

R e s λ = „ (4(dA/dξ)((Pβ)>(exp (Ax + ξ θ ) ό . t . , (A, ξ)) = 0 (3.8)

for all feeN. Here we recall that e_k_ί(λ,ξ) = λk/2 (fc:even), = ξλ(k~1)/2 (fc:odd).
Multiplying (l/k\)(-x'f12 (fc even), ((-^/(Jfc-l)!)(-x') ( k " 1 ) / 2 (fc:odd) from the
right of (3.8), and summing up over fceN, we have a generating function expression

Res λ = 0 0 (Δ(dλ/dξ)((PQ)y(exp(λx + ξθ))exp(- Ax' - ξθ')) = 0.

This and Lemma 3.5 complete the proof. •

We are in the position to state one of our main results in this paper.

Theorem 3.7. Formal super fields w(x,θ, ί,A, ξ) and w*(x,0,ί,A,ξ) of the form (3.1)
and (3.2) are a super-wave function and its dual for the SKP hierarchy if and only
if they satisfy the BRF

R e s λ = n (Δ(dλ/dξ)w(x\ θ\ t\ A, ξ) w*(x, θ, ί, A, ξ)) = 0 (3.9)

Proof. From Theorem 3.6 it follows that

R e s λ = „ (Δ(dλ/dξ)(DT(w(x\ θ\ ί, A, ξ)) w (x, 0, ί, A, ξ)) = 0. (3.10)
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Equations (3.3) show that, for any multi-index α = (aί, α 2 , . . . ) ,

Res A = n (Δ(dλ/dξ)(Dt)«(w(x\ ff, t, λ, ξ))w*(x, θ, t, K ξ)) = 0,

where we have put (Dt)
a = Dtί

aiDt2

Λ2 ~. The BRF (3.9) follows as a generating
function expression of (3.10). Conversely, if (3.9) is satisfied, we have

ResA= „ (Δ(dλ/dξ)(Dn - εnBn)(w(x, θ, t, λ, ξ)) w (x', ff, t, λ, ξ)) = 0.

Note that

(Dn - 8nBn)(w(x, θ9 ί, A, ξ)) = {Dn(W)W~1 - εnB
c

n) ^ ( e x p (fl(χ, θ919 A, ξ))\

where Bc

n= - (WDn W~ x ) _ . Then Theorem 3.6 implies that DJ^W1 -εnB
c

ne@,
however, which should be of negative order, by definition. Thus we get Dn(W) =
snB

c

nW, that are equivalent to the Sato equations. •

4. Ortho-Symplectic SKP Hierarchy

In this section we discuss the OSp-SKP hierarchy. Let W be a super-wave operator
in S for the SKP hierarchy. The OSp-SKP hierarchy is defined by the condition:

(4.1)

in the OSp-sector ί4n+x = ί4n+4 = 0 for n = 0,1,2,.... The Sato equations read

+ 2l (4.2)

n = 0,l,2,... (4.3)

with the symmetries

in the OSp-sector. In this section the time variables t are supposed to be restricted
in the OSp-sector.

00

We define a super-wave function for a solution W= £ Wj(x,θ,t)D~j to the

OSp-SKP hierarchy by

w ( x , 6 U U ) = * n e x p H ) , (4.4)

where

We also put

r(x, 0, ί, A, ξ) = P^D ' x (exp ( - H)\ (4.5)

Theorem 4.1. T/ie superfields of the form (4.4) and (4.5) are super-wave functions of
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the OSp-SKP hierarchy if and only if they enjoy

Res λ = „ (Δ(dλ/dξ)w(x, θ9 t, K ξ)v(x\ θ\ f, A, ξ)) = 1 (4.6)

/or any (x, 0, ί) and (x\ θ\ t').

Proof. Suppose that W is a solution to the OSp-SKP hierarchy. From the BRF
for the SKP hierarchy, we get

0 =

=

=

Res λ =

ResΛ =

Res λ =

ao{A{dλldξ)W{

x(Δ(dλ/dξ)W(

x(Δ(dλ/dξ)W(

yWD'-ι(e-H{x>βΛ'Xξ)))

Ύ(v(x\θ\t\λ,ξ)). (4.7)

The superfield v(x\ θ\ £', λ, ξ) solves the linear differential equation Dn'(v) = εnBn'(v)
so that one has

Dn'(Resλ=oo (Δ(dλ/dξ) w(x, 0, ί, λ9 ξ)v(x\ θ\ t', λ, ξ)) = 0.

Namely, the left-hand side of (4.6) is independent of t'. Putting x = x', θ = θf and
t = t! therein one gets the equality (4.6). Conversely suppose that (4.6) holds. Then
the second equation in (4.7), we get WφWD'1)* = 1 by means of Theorem 3.6.
This completes the proof. •

Now we discuss the 2-spinor representation of the OSp-SKP hierarchy. We
introduce the super-adjoint in $£ by, for P = (Pij)ij=0Λ,

oo K~) Γ

where Pg is the formal adjoint operator of Ptj in $$,. We define Lie superalgebra
^) by

where M = diag(dx, 1). The corresponding Lie supergroup O S p ( ^ ) is introduced by

P is ίnvertible and M #

Proposition 4.2. Let i^osp be the space of super-wave operators in $ of the OSp-SKP
hierarchy, and i^^ S p (respectively #"$Kp) be the space of wave operators in $m of
the BKP (respectively CKP) hierarchy. Then we have the projection

where the map p was introduced in Proposition 2.5

Proof First we note that

'0

and
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Let We#"&Sp. Then the condition (4.1) reads in the 2-spinor representation

M-1π(WfM = π(W)-\ (4.8)

namely, π(W)eOSp(β$). Let π{W) = (Wij)Uj=0Λ. Applying the body map ε^ to
the both sides of (4.8), we see that ε(W00) (respectively s(W11)) satisfies the BKP
(respectively CKP) condition. •

In the rest of this section we characterize solutions to the OSp-SKP hierarchy
in terms of superframes in USGMΦ.

Proposition 4.3. Let P be an operator in Sq. Then it follows that

φv (p*) = (_ γ offdiag ( % <X)sψv (P) offdiag (X, X),

where offdiag (A, B) stands for ( ) with A, Be Mat (Z x Z), and X = ΛJ,
\B 0/

J = ((-)μδμf-v)μveZ. The symbol ιl/v(P) means the "check" of the matrix φ(P)
(cf. Sect. 2), and "si" is the supertransposition of a matrix (cf. [7]).
Proof. We only have to show the claim in the case of P = uDj ue£fq. For

)
θσ(fx) + σ(g) ( - )«(σ(/) + θσ(g))f

where σ(f) = ( ( . )/(ί~k)(^» 0 I A ) = 0 forn < 0. By a simple calculation
\\ι kj J \njι — kj JikeZ \nj

we have

offdiag ( % fK) sV v (M) offdiag {K,K) = (-)aφw (u).

Since φ v (D) = ί V it follows that

φ v ((Di)*) = (_ y offdiag ( % 'X)51^ v (DJ) offdiag (X, X).

Then we have

φ v
 ((MJDJ)*) = ( - ) f l + j offdiag ( % fX)Λ^ v

 (MJD )̂ offdiag (X, X). •

Now we introduce the Lie supergroup OSp{ό?) [9],

OSp(y) = {A = (Aaβ)a,β=0Λ\A*βeMat(Z x Z , ^ ) and ε(Λ) is

invertible and diag(J, - 'X) 5 ^diag(J, - X) = A'1.}.

Notice that for an operator U in <ίQ, the condition

D- 1 l/*D = ί/"1, (4.9)

is equivalent to that φv(U)e0Sp(Sf). We introduce the following inner products

eZ eZ
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for column vectors Γ=(fj)Jez> ? = (0/W P u t Xl/V(u) = ((u<ϊj)ijezkβ=o,i and
uf = (u$)ieZ. If ψv(U)eOSv{y), i.e., D'ιU*D = U~\ we have the following
relation:

/7Γ 0 0 17O O\ /TΓ1 0 Tΐlo\ —ί V/S

/7?00 77OI \ /77IO 7711 \ _ Λ

<t?0.1

ί_1,u9o>β + <iτi_i_1,ί7)0>c = 0,

< t i ^ _ 1 , u f > B + <wLVi5wj1>c = ( - ) ^ u , U G Z . (4.10)

Let W be a supper-wave operator in i of the OSp-SKP hierarchy and Ξ be the
superframe Ξ = ιA(^)SoL=^ί=o Put the "check" of Ξ,£ = ((ξf )i<o)Λ,β=oΛ' W e

note that the entries of ~ξf belong to ^Ά+β. From D~1W*D\x=θ=t=0 =
M^~ 1 U = β = ί = 0 9 we obtain

/Too Too\ /?io T 1 0 \ — Π

/Too Toi\ /T10 Tii\ _ π

<τ?i,?r>^<^ii^i°>c=o,
<TI

91,TΓ>β + <^ 1

> ?i 1 >c = 0, i,j<0. (4.11)

Simple computations show that the above condition is invariant under the right
action of SGL(NC; si) on the superframe Ξ. We refer to (4.11) as the orthogonality
condition. Conversely, let Ξ be a superframe of USGMΦ satisfying the orthogonality
condition. Solve the following Grassmann equation

fvvexp( ΘΛ + xΛ2+ £ tjΓnΞ = 0. (4.12)
V ; = 2,3(mod4) /

The solution to (4.12) ίw = (...,w2,w1,l,0,...),w /e5^ determines a super-wave

operator W= £ WjD~~j of the SKP hierarchy. Put Wo = W\t=0.
J = O

Proposition 4.4. Lei Ξ be a superframe satisfying the orthogonality condition and
W be the super-wave operator determined by Ξ via (4.12). Then the superframe
φv(WQ1)-Ξ0 also satisfies the orthogonality condition.

Proof From ψv(W0)ψv(Wό1) = 1, we obtain the linear equation

)Ξo = 0, (4.13)

where t:w0 is the 0-th row vector of φ(Wo). Due to the arguments in Sect. 2,
we see that Φ(WQ1)Ξ0 = exp(0yl + xΛ2)Ξexp( — ΘΛNc — xΛ^c), where Ξ is a
superframe of USGMΦ. Then we have

'w0 exp(0Λ + χyl2)E = 0. (4.14)

Since (4.12)|ί=0 and (4.14) yield the same solution, Ξ = Eg for some geSGL^0; si)
(see Proposition 2.3.). Hence Ξ satisfies the orthogonality condition. Moreover
observing that exρ(ΘΛ + xΛ2)e0Sp(&?\ we get the conclusion. •

Proposition 4.5. Let U be a monic operator in So of order 0. Put φy(JJ) =
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(W)iez)α,/? = o,i> and suppose thatHf(i < 0) satisfy the orthogonality condition. Then
ψy(U) belongs to OSp(6f\ that is U enjoys (4.9).

Proof. Put A = (aij)ijeZ = ψiD"1 U*DU). The entries are given by

aii.il = (-) ' {<«°-W°>JI- <u%u)°}c},

Because of the assumption on the orthogonality condition and D 1U*DUe
$™onic, we can easily see that αy = 0 for ι < 0 , j > 0 , and that % = 1 for ieZ.
To show that V~1U*DU = 1, we have to verify α o _ j = 0 for j = l , because

00

D~1U*DU= £ αθ5_7.Z)~J'. We use the induction. Put (7 = 1 +uD~ S l o w e r order
j=o

terms. Then we see that a10 = (u°}uu%0}B + <T?L1

1,T?^°>c = u-u = 0. Since the
recursive relation aOJ-1=( — )j~ί{D(aOj) — alj} follows from D(A) = ΛA — AfΛ
(see (2.9)), we get ao^x = D(a00) - a10 = 0. By the induction on j , we can show
that aOt _7 = 0 for j >0. •

Combining Propositions 4.4 and 4.5, we obtain the following corollary.

Corollary 4.6. Let Ξ be a superframe satisfying the orthogonality condition, and
W(Ξ) be the super-wave operator associated with Ξ. Then, for the initial value
Wo = W(Ξ)\t=0,ιj/

v(W0) belongs to OSp(^).
n

Let π be the set of multi-indices α = (af)jL0 (neN). We denote |a | = £ af for

aeπ. The void index is denoted by φ. We write ίodd = i3°i71--*i4n+3 a n d ίfve^
tβ2otβ

β

1--t{n

n + 2.

Now we state the main theorem in this section.

Theorem 4.7. Let W be a super-wave operator for the SKP hierarchy associated
with the superframe ΞeUSGMφ. If Ξ satisfies the orthogonality condition (4.11),
then W\Un=Un+ι = 0(nGN) is a super-wave operator for the OSp-SKP hierarchy.

Proof. In this proof we set U = W\t4n==Un+1 = 0. Expand (7* and I / " 1 to the formal

power series in (tAfn+2>t4-n+?>)™=o''

It is enough to show that

D-1(U*)aβD = (-p(U-%. (4.20)

We prove (4.20) by the double induction on |α| and \β\. From Proposition 4.4 and
Corollary 4.6, (4.20) holds for α = β = φ. Suppose that (4.20) holds for α = φ and
β with \β\Sm(meN). Put ^ = (j8i)^=0Gπ, where \β\ = m + 1 and βn φO. From the
equations

U*=-U*B*n+2-D*n+2U* (4.21)

^U^Btt + i + D^U-1, (4.22)
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which can be deduced from (4.2), we obtain

- (£4,1+2 W we see that

D

Therefore we obtain

-%rβ (by (4.22)).

Next, suppose that (4.20) holds for α with |α| ̂  2m (meN) and arbitrary β. Let
α = (α^ Lo, where αf = 0 or 1, α = 1 and |α | = 2m + 1. From the equations

D4n+3(U*)= U*B*n+3-D*n + 3U*9 (4.24)

we obtain

Σ T
α' + α' = α — en

β' + β" = β

Here we have defined sgn(i) and sgn^α",^) through

ί ί̂ f1*'""- = sgn (Oί̂ f-,

where Pγ is an arbitrary monomial of parity |y|mod2, yen. By the induction
hypothesis, we see that

On the other hand, we have

^ Σ n
γ' + γ"=α"
δ' + δ"=β"

From D~ 1 (( l/~ 1 )*)^ί) = (U)φφ and the induction hypothesis, we obtain

and
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Hence we get

Σ S l s g n ( Q D 4 l + 4 l l + 6 ( i r 1 ) ί _ . l - . j ,

Comparing the right-hand side and the coefficient of ίodd̂ fven °f U'1 *n (4.25),
we see that

One can show similarly that D ~1 (U*)&βD = (U~* )&β for the case that | α| is even. •

5. Soliton Solutions to the SKP Hierarchy

We proceed to the construction of soliton solutions. Let αv, β v,c v be even generic
elements in si and ηv9ωv be odd ones (-2N ^ v ^ — 1). Consider the following
condition on a super-wave function:

w(x,θ,t,λ,ξ) = l J wj{x,θ,t)D~j j(expH(x,θ,t,λ,ξ))

and

w(x, θ, ί, αv, ηv) = cvw(x, θ, ί, βv9 ωv) for even v, (5.1)

((B-1)*w)(x,β,ί,αv,ι/v) = cv((D-1)*w)(x,θ,ί,/ίv,ωv) for odd v.

The operator ( D " 1 ) * is the formal adjoint operator of D " 1

φ - 1 r + λ - ί ξ

A superanalogue of Cauchy's residue formula reads [8]

where D λ ^ = (δ/δξ) + ξ(d/dλ), and α is an even constant, */ an odd constant. We
remark that

\ λ — α — ζt]

The condition (5.1) implies the following linear equation:

where
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φJtV = (D-jQxpH)(ocv,ηv) - cv(D-jexpH)(βv,ωv).

Solving (5.2), one gets an JV-soliton to the SKP hierarchy. We can rewrite (5.2)
into the super-Grassmann equation:

= 0, (5.3)

where w = (w-j)jeZ(w-j = 0 for j ^ 1),

θΛ + xΛ2+ £ tnΓ
n\

v ) μ > v e Z , Γ = ((- ) y δ μ + U v ) μ v e Z

μeZ^c w i th

-cJvμ/2 (μ even) 2JV^

( j U ; o d d )

 ί o r

 v : e v e n

- 2 J V < v g - l ,
for

v:odd

for - oo < v < - 2iV.
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