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Abstract. The Mickelsson-Faddeev extension is a 3-space analogue of a Kac-
Moody group, where the central charge is replaced by a space of functions of the
gauge potential. This extension is a pullback of a universal extension, where the
gauge potentials are replaced by operators in a Schatten ideal, as in non-
commutative differential geometry. Our main result is that the universal
extension cannot be faithfully represented by unitary operators on a separable
Hubert space. We also examine potential consequences of the existence of
unitary representations for the Mickelsson-Faddeev extension.

Section 1. Introduction

The Mickelsson-Faddeev extension, denoted by M in this paper, is a certain
distinguished noncentral abelian extension of the Hamiltonian gauge (or equal time
current) group C°°(X,G):

(see [Mi2 or Fr] and the references cited there).
The kernel of the extension, F, consists of a certain class of functions of a gauge

potential, the class depending on the dimension of X, and it arises in the process of
regularizing the gauge (or current) operators. An intriguing question is whether M
can be represented by unitary operators on a Hubert space. When X is one
dimensional the answer is yes, for then M is essentially the Kac-Moody extension
and regularization amounts to normal ordering. In higher dimensions regulariz-
ation involves a multiplicative renormalization, and it is not clear whether this is
compatible with unitarity (it is possible to construct nonunitary representations—
see [Se or MR]).

One objective of this paper is to cast the Mickelsson-Faddeev extension in a form
which is amenable to analysis, at least for X of dimension three. In this case we can
take F to consist of real valued affme functions modulo a copy of the integers. We
can then think of the extension as a two stage process, the first analytical, the second
topological. The first stage is a topologically trivial extension
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where V consists of (very well behaved) linear functions (relative to a choice of
basepoint in the space of G-connections), i.e. M is defined by a global analytically
nontrivial vector space valued cocycle. The extension M can then be viewed as a
topologically nontrivial central extension of M:

0->T->M->M-+0.

The main advantage of this formulation is that V is actually a nuclear space so that
we can apply "preliminary Mackey analysis." In particular we can conclude that an
irreducible unitary representation of M corresponds to the following data: an
ergodic invariant measure class for the action of C°°(Jί, G) on distributional
g-valued one forms, and an associated class of cocycles. The appropriate

measure class, if it exists, is presumably represented by "expί — f \FA\
2 )DA".

\ * )
Thus for dimn(X) = 3(unlike dimn (X) = 1), a proof of the existence of unitary
representations would have profound analytic consequences.

The main objective of the paper is to study a "universal model" of the
Mickelsson-Faddeev extension constructed by Mickelsson and Rajeev ([MR]).
They constructed an extension of the restricted group (7(4) (the automorphism
group of an infinite rank Grassmannian) which pulls back to the Mickelsson-
Faddeev extension when C^iX.G) is embedded into (7(4), as in Connes's theory
of noncommutative differential geometry or Pressley and Segal's approach to loop
groups ([C,PS]). The group l/(4) itself does not have any interesting unitary
representations ([Pil]). However, the Mickelsson-Rajeev extension of l/(4) does
have an interesting representation—the question at hand is whether it can be
unitarized.

The answer is negative. More precisely we will show that every separable unitary
representation must vanish on the topologically nontrivial part of the kernel (a
circle). There is a formal argument indicating that any such representation must
actually vanish on the entire kernel.

Notation. If G acts on A by automorphisms, the semidirect product will be denoted
by G x A, although as a set we will view it as A x G.

Section 2. The Mickelsson-Faddeev Extension

Let G be a compact Lie group and choose a representation G -• U(n\ to be fixed
throughout this section. We will identify u(n)A ^ herm (n) via (a multiple of) trace, so
that gΛ ^herm(n)/^ 1 .

Let X be an oriented compact three manifold. We will identify the space s/ of
smooth G-connections in the trivial bundle X x Cn with ΛxX®g. The action of
C^iX.G) on J / is given by g A = gAg~1 +gdg~K

The infinitesimal Mickelsson-Faddeev extension is

0 -> Affine ( j / ; R) -> m -> C 0 0 ^ , g) -• 0,

where the bracket is given by
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έ(ξ9η)eAfTme(s/9R) is given by

6(ξ9η)(A) = lP(A,dξ9dη)9 (2.1)
x

and P is the polarization of tr(x3), i.e. P(x9y,z) = \trace(xyz + xzy). For
A,B,CeAlX®g,P{A,B,C)eA?>X is given by P{A9B9C)(vl9v29υ3) =
Σ(-l)σP(A(vσl)9B(vσ2)9C(vσ3))9 so that P is skew in the variables A9B9C. The
cocycle c may vanish identically—this is the nonanomalous case in the context of
gauge boson/fermion interactions ([Se]).

The cocycle £(ξ9η) is actually a linear function of AeAιX®g. In terms of the
natural pairing of A1X®g and A2X®gA, we have

6(ξ9 η) = {dξ, dη} = dξAdη-dηAdξ (2.2)

(so {,} denotes anticommutator). For this reason we will henceforth identify Affine
, so that m is naturally a nuclear Lie algebra.

Now Mickelsson has demonstrated that (for c properly normalized) a corre-
sponding group extension can be realized using the Wess-Zumino functional
([Mil]). For our purposes it is sufficient to exponentiate the quotient m = m/R.
Note that for the extension m, C"°(X,G) acts on the kernel A2X®gΛ simply by
conjugation. The group M is constructed explicitly as follows.

As a manifold we take M = A2X®gA x C™(X9G). The multiplication is then
defined by

(£, g)(F9 ^^{EΛ-gFg-1^ ω(g9 h)9 gh\

where the group cocycle ω is given by

2ω(g,h) = {(dg)g-\g(dh)h-1g-1}. (2.3)

To check that the multiplication is distributive we need

gω(h, Jήg'1 - ω{gh9 k) + ω(g9 hk) - ω(g9 h) = 0.

This follows from the calculations

= Φ+g2ω{g9k)g-1

9

2ω(g9 hk) = 2ω(g9 h) + Φ.

To check that the Lie algebra of M is m, we must verify that

dξAdη-dηAdξ = (D1D2ω)(ξ, η) - (D1D2ω)(η, ξ)9

where D1D2ω is the mixed second derivative at the identity. This follows from

ds s=odt t=o

{{desξ)e~s\ esξ{detη)e-tηe-sξ} = dξ A dη - dη A dξ.

The main point here is that M is a topologically trivial extension. This is in
contrast to any extension M->M corresponding to m -> m, where the kernel must be
a circle.
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Now suppose π is an irreducible unitary representation of M. We claim that we
can find the following kind of realization for π. Note that (A2X®gA)A ^,Q)AιX®g
(g-valued distributional one-forms). We then have

1A\

where δ(g,-)eU(J^) satisfies the cocycle condition

δ{g9 A)δ{h, g~1Ag) = exp (i < A, ω{g9 h) > )δ{gh9 A)

for a.e. A[y\ for each g, heCco{X, G). Here v is a quasi-invariant ergodic measure for
the conjugation action of ^(X.G) on Q)AιX®g, and p is the Radon-Nikodym
derivative.

The argument is a standard one. Let η denote the restriction of π to the normal
subgroup N = A2X®gA. Viewing geCco(X, G) as an automorphism oϊN, we have
η< = η.

Because N is abelian, η' (the commutant) is a type I Von Neumann algebra. Thus
we can first decompose η into its unique homogeneous components H(η) =
£0//(f/J, where ηn has uniform multiplicity n. Because of uniqueness ηd

n = ηn.
Thus by irreducibility η = ηn for some n.

For each finite dimensional subspace V <Ξ N, the restriction of η to V gives rise
to a unique projection valued measure P(V) on F(so that η(E) = §eι<A'E>dP(A)). The
P(V) are coherent in the sense that if V^W, then under that natural map
WΛ ~> VA,P(W)-+P(V). Now for each vector υeH{π)9 the cylinder measure dPvv

has a continuous Fourier transform defined on N, by continuity of the represen-
tation η. Because N is nuclear, this implies that dPvυ extends uniquely to a regular
measure on NA = &>A1®g (Minlos's theorem—see [Ge]). Thus there is a unique
regular projection valued measure P on NA which projects to P(V) for each V.

Because P is homogeneous we can find the following kind of realization:

where Jf is a separable complex Hubert space, and the measure class of v is uniquely
determined.

The uniqueness of the measure class and rf ^ η implies that v is quasi-invariant
for C°°(X, G). Irreducibility of p implies ergodicity. Finally the form of the
commutant η' implies the realization of π in (2.4).

If we start with an irreducible unitary representation for M, then we can draw a
similar conclusion, although we cannot make the action as explicit. Here we will
simply observe that the dual of the kernel T xA2X®gA is identifiable with
ZxS)Aι®g_, where C^{X,G) acts by g {k,A) = {k,gAg~Γ+kgdg~1\ If we con-
sider the hyperplane k = 1, then we should expect the appropriate measure class to

be represented by "expI — f \FA\
2 )DA".

\ x J
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Section 3. The Mickelsson-Rajeev Extension and Symmetric Pairs

Suppose X is a compact spin manifold of odd dimension d. A Dirac operator ^
(possibly coupled with a G-potential) will act as an unbounded self-adjoint operator
on the Hubert space H of spinors with values in Cn. Suppose #eC°°(X, G) and

g = l I relative to the splitting H = H+@H_, where H + corresponds to the

positive part of the spectrum for ^. A fundamental fact is that b and c belong to any of
the Schatten ideals Ip for p > d, but not to Id, unless g is constant ([C]). This idea is
central in Connes's theory of noncommutative differential geometry and G. Segal's
global approach to loop groups. Mickelsson and Rajeev exploited the same idea in
developing a universal model for the Mickelsson-Faddeev extension.

In this section we will reconstruct MR's universal model along the lines of the
previous section. In particular, we will mainly consider the analogue of M. This time
we will be able to give a complete analysis of the unitary representations.

Let g(co) = k(co)®p(oo) be a Cartan decomposition for a classical infinite
symmetric pair. The example of principal interest can be described as follows. Let
H = H+®H_, where H± are complex Hubert spaces with orthonormal bases
{ε : + j = l } 2,...}, respectively. Then 0(00) = u(2co) consists of all skew-hermitian
operators on H which are finite rank relative to {ε̂  },

If fe(oo) = u(oo), we let k = u(H), the Banach Lie algebra of all bounded skew-
hermitian operators on H; similarly if fc(oo) = 0(00), k = o(HR), etc. For each 1 ̂  p
^ 00, we let

where pp denotes the completion of p(co) in the Schatten class Ip. The pair (gip),k)
is then a Banach symmetric pair. Note ppis equipped with a non-Riemannian norm
if p Φ 2, however.

The corresponding global objects will be denoted by (G(oo), K(co)) and (G(P)J K).
If τ is the Cartan involution for the pair (G, K\ then Gip) is the identity component
of {g f6G:^- τ =l+p-class}(here(G,X) = (GL(ί0,O(H)) if (G(oo),K(oo)) =
(GL(oo), O(oo)), etc.) This construction can be carried through for any symmetri-
cally normed ideal, and conjecturally these examples then exhaust all simple infinite
rank symmetric spaces, up to coverings. In our example

ab

cd
G(P)=U(P) = i[ j)eU(H):beIp9 index(α) =

K = U{H + )

(The other compact type pairs are described explicitly in the appendix to [Pil].)
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For ξ,ηegip)9let

9 (3.1)

where <J_ is the g-component of ξ, and kq = knlq.
In the event that p <̂  2, c has values in kx. For the hermitίan symmetric pairs we

can take a trace to obtain a nontrivial ordinary R-valued cocycle (to be precise we
must take tr(c(ξ,η)\H+). This is a multiple of the cocycle that arises for the standard
commutation or anticommutation relations (Sp(αo,R), U(co)) or (0(2αo), l/(oo)),
respectively—see (6.5 of [PS]). This cocycle pulls back to a multiple of the Kac-
Moody cocycle for loop groups.

Here we want to consider c itself as a cocycle. If we consider c as a cocycle for the
adjoint action of #(oo) on itself, then c is trivial: if θ(ξ) = ξ_, then

dθ(ξ, η) = K, θ(ιy)] - [17, θ(ξ)l - 0(K, η-]) = c(ξ, η). (3.2)

This is what we would expect based on finite dimensional experience, since H2 of a
semisimple algebra is always zero, by the Whitehead lemma.

When we enlarge the domain, however, c can become nontrivial. Because c has
values in kqj2, there is considerable flexibility in how we view c. To be precise we can
view c as a cocycle

relative to the adjoint action, for any qβ^λ^q (these bounds arise from the
constraints [pq, kqί2\ £ pλ and [pq, p λ] c ^/2).We will let ©(β),Λ denote the extension
defined by c:

0-»fc g / 2 +Pλ^ ©te),λ^ £<«)-• °

This extension (for appropriate g and 2) is the analogue of m in the preceding section.
The canonical nature of c, from the viewpoint of symmetric space theory, may be
reflected by the following

(3.3) Conjecture. H2(g{q); kq/2 -f pλ) = 0 for λ = q and = Re for λ < q.
Before taking up the analysis of c, we want to point out its relation to the theory

in [MR].
Suppose q = 4 and λ is at the bottom of its range: λ = f. In the special case when

(#(oo),jfc(oo)) is a hermitian symmetric pair, we can define a central R extension of
(g z= © ( 4 ) 4 / 3 , in precise analogy with the Kac-Moody theory, by the cocycle

c:©x(5-+R,

y^}\H+) ( 3 ' 4 )

(where (x,ξ),(y,η)e(5 = (k2 + P4/3)©#(4)) This makes sense because 4 and f are
conjugate exponents (this makes sense more generally for q and its conjugate,
provided 2 ̂  q ^ 4 These bounds on q follow from the bounds on λ. The case q = 4 is
extreme here just as q = 2 is extreme in the Kac-Moody case).

Now the extension defined by c,

0-*R-> ( 5 ^ ( 5 ^ 0 ,
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viewed as an extension of g(4), is the one appearing in [MR]. Thus the problem we
must address here is whether the group ^ (constructed below) corresponding to (5
admits nontrivial separable projective unitary representations, where the induced
infinitesimal extension is (5. (Put another way, the problem is this: G ( 2 ) has
interesting projective representations, but they never extend to G (4); by adding in the
extension to G (4), can we somehow cancel the divergences?)

To answer this question we first observe that the extension

restricts to the semidirect product extension

kx{kq/2+pλ)->L

A basic fact is that unitary representations for K x pλ extend continuously toKxp2

and not beyond (for hermitian symmetric pairs). Thus in the context of represent-
ation theory we are constrained to take λ = 2 (similarly q ^ 4). The reason is roughly
the following: if veH(π) is fixed by K, then we obtain an equivariant map

the continuity properties of this map are sharply constrained because the essentially
unique invariant Riemannian structure on p(oo) (the completion of which is p2) must
coincide with the pullback of the Fubini-Study metric.

We now state the relevant results, which are proven in [Pi2], Sect. 6.

(3.5) Proposition. Suppose π is a separable unitary representation/or K x (kq/2 + pλ).
Then a) either π vanishes on kq/2 + pλ9 or q ^ 4 and λ ^ 2; b) if (#(oo),/c(oo)) is a
hermitian symmetric pair, then π extends continuously to a representation of

K*(k1+p2).
We then have the following

(3.6) Corollary. Suppose ^iq),λ is a Banach Lie group with Lie algebra Qΰiq)tλ. If &(q),x
has a separable unitary representation π which is nontrivial on exp(feί/2 + pλ), then
q^4 and π extends continuously to ^^,2-

Proof Since K x (kq/2 + pλ) is simply connected (it's actually contractible), there
is a map of this group onto the connected Lie subgroup oί^(qhλ with Lie subalgebra
k x (kq/2 + Px) This map is a local diffeomorphism. Thus (3.6) follows from (3.5) //

Thus among the groups ^iq)iλ (assuming they exist), from a representation
viewpoint the only interesting case is q = 4, λ = 2.

Before stating our conclusions about the MR extension, we want to observe that
there does actually exist an extension

which has Lie algebra © ( 4 ), 2 As a manifold we have

^ = ? 2 X G ( 4 ) .

In these coordinates the multiplication must be of the form
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where ω is a group cocycle. To motivate the formula we recall that on the Lie algebra
level the infinitesimal cocycle c is restricted to g(co) x g(oo) was exact: c = dθ9 where
θ(ξ) = %(ξ — τ(ξ)) and τ is the Cartan involution. For g, heG(oo), our formula for ω is

where Q is the orthogonal projection onto g(co) (the condition that geG(4) means
that gg~τeGA). Note the linearization of β is θ. What we must check is that ω = δβ
has the requisite continuous extension to G ( 4 ) x G (4). This follows from the
computation

g-l)g-1}. (3.7)

This should be compared with (2.3).

We now take up the MR extension. This is a topologically nontrivial extension

0 ^ T - > # ( 4 ) ? 4 / 3 ^ ( 4 M / 3 ^ 0 , (3.8)

corresponding to the cocycle c in (3.4). Since c vanishes on k x (k2 + P4/3X

as in the proof of (3.6). Thus (3.5) shows that any separable unitary representation of
(̂4),4/3 will actually extend to a continuous projective representation of ^ ( 4 ) 2 . But
(̂4),4/3 does not extend to a group extension of ^( 4 ) , 2 Thus

(3.9) Proposition. Every separable unitary representation of ^^)Aβ vanishes on T in
(3.8), and extends to an ordinary representation for ^ ( 4 ) , 2

At this point we cannot rule out the possibility that ^ ( 4 ) j2 has separable
projective unitary representations. Such a representation would give rise to a central
extension

where L is a discrete G ( 4 ) invariant subgroup of g2- We can eliminate the possibility
that the extension is smooth and nontrivial.

(3.11) Proposition. H 2 (© ( 4 ) 2 ; R) = 0.

Proof Suppose ω represents a cohomology class. The closed condition is that
ω(X, [Y,Z^\) + cyclic permutations = 0. In particular

ω([(0, f]\ (x, 0)], (0, y)) + ω((x, 0), [(0, η\ (y, 0)]) = 0.

The only invariant bilinear form on the simple algebra \_g(n\ gin)'] is the Killing

form, which is symmetric. Since [j [g(n), g(n)] is dense in g2, it follows that ω| = 0.
k I

We now consider terms of the form ω((0, η\ (x, 0)). For ηeg{Ar) fixed, this defines a
real continuous linear functional of xeg2. We can identify g2 = g2 (we will denote
the pairing by ( , )). Thus we obtain a map#:g ( 4 ) -># 2 such that

ω((O,η),(x9O)) = (θ(η)9x).

The closed condition applied to (O,ξ),(O,η) and (x,0) implies that
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In particular Θ:g2->g2 defines a derivation, which implies the existence of an
operator Feg such that θ(ξ) = [F,ξ] (see II.5 of [dH]).

Because θ\g{Ar)->g2, we see that F = F_ep2 (for DF + ,fc]e/2 implies that
F+ =cJ, where J defines the complex structure in the event that (#(oo),/c(oo)) is
hermitian symmetric, F+ =0 otherwise; the condition [F + , p 4 ] ^ / 2 then implies
F + =0). Therefore

ω((0, >/), (x, 0)) = ([F, >/], x) = (F, [>/, x]).

Let (/> denote the linear functional defined on (δ ( 4 ) 2 = g2 x g ( 4 ) by F:

Now consider the equivalent representative of our cohomology class

ω ' ( v ) = ω( v )-</>([ v ] )

The form ω' vanishes identically on # 2 and on crossterms. Therefore ω' represents a
class in H2(g(4);R). But this space is zero. This proves (3.11) //

Remark. A corollary of the proof is that if 2(© ( 4 ) > 4 / 3;R) is generated by the
cocycle (3.4).

There remains the problem of determining the separable unitary representations
for the group 0 ( 4 ) > 2 The calculation in Proposition 3.21 of [Mi2] (which involves an
implicit assumption of smoothness) suggests that any such representation vanishes
on the kernel of the projection ^^^-^G^y

Acknowledgement. I thank S. G. Rajeev for several useful conversations.
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