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Abstract. We study the asymptotic behaviour in time of the solutions and the
theory of scattering in the energy space for the non-linear wave equation

in Un, n^3. We prove the existence of the wave operators, asymptotic
completeness for small initial data and, for n ̂  4, asymptotic completeness for
arbitrarily large data. The assumptions on / cover the case where / behaves
slightly better than a single power p = 1 + 4/(n — 2), both near zero and at infinity
(see (1.5), (1.6) and (1.8)).

1. Introduction

A large amount of work has been devoted to the theory of scattering for the non-
linear wave (NLW) equation (or non-linear massless Klein-Gordon equation)

Πφ = φ-Δφ=-f(φl (1.1)

where φ is a complex valued function defined in space time 1R"+1, the upper dot
denotes the time derivative, Δ is the Laplace operator in M" and f is a non-linear
complex valued function, a typical form of which is

f(φ) = λφ\φΓ1 (1.2)

with 1 ̂  p < oo. We refer to a previous paper [12] for a more detailed introduction
and a comprehensive bibliography. It is known [9,10] that the Cauchy problem for
the equation (1.1) with initial data (φ(to)9φ(to)) — (φo,\l/o) at time t0 in the space
H1 © L2 has a unique solution (φ, φ)e#(R, H1 © I?) under assumptions on / which
reduce to λ ̂  0 and to

0 S P - K { 4 / " - 2 ) '< "S3
I co if n ^ 2
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in the special case (1.2). The theory of scattering for the equation (1.1) then gives rise
to two main questions. The first one is to prove the existence of dispersive solutions,
namely of solutions that behave as solutions of the free wave equation Π φ = 0 at
+ oo or — oo in time, or equivalently to prove the existence of the wave operators.
That result is generally proved by solving the Cauchy problem locally at infinity,
namely with large (possibly infinite) initial time, by a contraction method in a space
of functions exhibiting a suitable time decay, and then by extending those solutions
to all times by a standard globalisation method using the available conservation
laws, mainly the conservation of the energy. In order to implement the contraction
argument at infinity, one has to assume that the interaction / satisfies a suitable
condition of decay at infinity in space, which takes the form of a lower bound on p in
the special case (1.2). That condition depends on the choice of the space of initial data
for the Cauchy problem at infinity, namely of asymptotic states, and is all the more
stringent as that space is larger. Using the available estimates for the free wave
equation [Jφ = 0, it is easy to implement the previous method with a sufficiently
small space of initial data under the condition p > p^ή), where Pι(n) is the larger root
of the equation [19,20]

n(n - \)p2 - p(n2 + 3n - 2) + 2 = 0, (1.4)

a value which satisfies

1 + 4/n < p^ή) < 1 + 4/n + 8/n3.

The second question which arises in the theory of scattering is to prove
asymptotic completeness, namely the fact that all solutions of the equation (1.1) with
initial data in a suitable space are actually dispersive at + oo and — oo. The only
treatment of that question available so far is based on the approximate invariance of
the equation (1.1) under conformal transformations [24,15,12] and requires the use
of a natural space Σ of initial data (see especially (2.10)—(2.13) in [12]), strictly
contained in the space H1 ®L2.

A question left open at this stage is whether a complete theory of scattering for
the equation (1.1) can be constructed in a space of initial data as large as the energy
space Xe. That space, which in the present case is slightly larger than H10 L2, will be
defined in Sect. 2 below (see (2.1)). The solutions of interest, either for the
equation (1.1) or for the free equation Πφ = 0, are then the finite energy solutions,
which we define as solutions φ such that (φ,φ)eL£G(I9Xe)9 where / is the time
interval where φ is defined. A complete theory of scattering for the equation (1.1)
in the energy space has been constructed in [23], but it is restricted to small initial
data and to space dimensions 3 ^ n ^ 5. On the other hand, the more difficult part
of the problem, namely asymptotic completeness for arbitrarily large initial data
in the energy space, has been successfully treated for other non-linear equations,
namely the massive non-linear Klein Gordon (NLKG) equation [21,5,6,11], the
non-linear Schrodinger (NLS) equation [8,11,18], and the Hartree equation [14].
In all those cases asymptotic completeness is derived through a variant of the
original proof of [21] based on the approximate invariance of the various equations
under space time dilations.

The purpose of the present paper is to extend that treatment to the NLW
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equation (1.1) and to construct a complete theory of scattering for that equation in
the energy space. The proof of existence of dispersive solutions is based on the usual
contraction argument and follows [7,8] for the general framework and [23] for
some of the estimates. The proof of asymptotic completeness follows the latest
version of the method of [21], given in [8] and [11] for the case of the NLS equation
and of the NLKG equation respectively. The resulting theory, however, differs from
that of the NLKG equation in several respects. The first main difference is that the
energy does not contain the L2 norm of φ, and that the latter is in general not
bounded in time for finite energy solutions, even for the free equation Π Φ = 0. That
fact is reflected in the definition (2.1) of the energy space Xe. Correspondingly, in this
paper we never assume the initial data to have finite L2 norm. The second difference
is that the time decay of the finite energy solutions of the free equation Q φ = 0 is
rather weak. As a consequence, the lower bound required on p in order to implement
the contraction argument at infinity turns out to be equal to the critical value
p—l= 4/(« — 2) namely to the upper bound in (1.3). That fact restricts the argument
to space dimension n ^ 3. Furthermore, since the extension of the dispersive
solutions to all times requires the strict upper bound in (1.3), the whole argument
and in particular the construction of the wave operators does not cover the case
of a single power interaction like (1.2). The relevant assumptions on / will be
stated where needed in Sects. 2-4. They cover for instance the case where

= φg(\φ\) (1.5)

and g is a smooth non-negative function that behaves as

(g(s) = λίs
Pl~1 for O^s^α

[g(s) = λ2s
P2-1 .for s^l/α ( j

for some α, 0 < α < 1, with

0 ^ p 2 - l < 4 / ( n - 2 ) = P l - l . (1.7)

The proof of asymptotic completeness, on the other hand, requires the existence of
some norm that decays integrably at infinity in time for solutions of the free equation
dφ = 0. As a consequence, that proof applies only to the case of space dimension
n ^ 4. It requires in addition a reinforcement of the assumption on / which takes
the form

0 ^ p2 - 1 < 4/(n - 2) < Pί - 1 (1.8)

in the special case (1.5), (1.6).
This paper is organised as follows. In Sect. 2 we collect and/or derive a number of

properties and estimates that are needed in the rest of the paper, in particular space
time decay properties of finite energy solutions of the free equation, basic estimates
of the non-linear term in (1.1) (Lemma 2.3) and a number of relations between
various decay properties of the solutions of the equations (1.1) and \Z\φ = 0
(Propositions 2.1, 2.2 and 2.3). In Sect. 3 we solve the Cauchy problem for the
equation (1.1) with large (possibly infinite) initial time and finite energy initial data.
We first solve the local problem at infinity for the critical value of p (Proposition 3.1)
and we prove that the solutions thereby obtained are dispersive in a natural sense
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and in particular have asymptotic states in the energy space (Proposition 3.2). As a
by-product of those results, we derive global existence and uniqueness of solutions
and we prove asymptotic completeness for small finite energy initial data
(Proposition 3.3). We then solve the local Cauchy problem at finite times in the
subcritical case (Proposition 3.4), we derive the conservation of the energy
(Proposition 3.6), and we finally prove the existence of global solutions that are
dispersive at + oo (or — oo) and thereby the existence of the wave operators
(Proposition 3.7). In Sect. 4 we first derive some uniform boundedness properties of
finite energy solutions of the equation (1.1) (Proposition 4.1). We then prove the
main result of this paper, namely the fact that for suitable (repulsive) interactions, all
finite energy solutions of (1.1) exhibit the same time decay as those of the free
equation Π φ = 0 (Proposition 4.2), thereby proving asymptotic completeness. That
section follows rather closely Sect. 5 or [8] and Sect. 4 of [11].

We conclude this introduction by giving the main notation used in this paper.
For any r, 1 ̂  r ^ oo, we denote by || ||r the norm in U = U(Un). With each r it is
convenient to associate the variables α(r), β(r), y(r) and δ(r) defined by

α(r) = 2β(r)/(n + 1) = y(r)/(n -1) = δ(r)/n = 1/2 - 1/r.

Of special interest are the values 2* = 2n/(n — 2) and rs = 2{n+ \)/(n — 1). We shall
use the notation ys = y(rs) = {n~ l)/(w+ 1) a n d similarly ots,βs a n d <V Pairs of
conjugate indices are written as r and f, where 1/r + 1/r = 1. For any integer /c, we
denote by Hk = Hk(Un) the usual Sobolev spaces. We shall use the homogeneous
Besov spaces and the homogeneous Sobolev spaces of arbitrary order and the
associated Sobolev inequalities, for which we refer to [1,3] and to the Appendix. We
use the notation Bp = BP

ί2(Un) and HP = HP(Un) for those spaces. For any interval
/ cz U9 we denote by Γthe closure of/in[R = [Ru{+oo, — oo}. For any interval /, for
any Banach space B, we denote by #(/, B) the space of continuous functions from / to
B. For any q, 1 ^ q g oo we denote by Lq(I, B) (respectively) L?oc(/, B)) the space of
measurable functions φ from I to B such that \\φ( );B\\eLq(I) (respectively
|| φ( ); B || eL?oc(J)). We shall use extensively the following spaces [2]. For any teU, let
yt be the unit interval with center t. For any m(l ^ m ^ oo) and q(l ^ q ^ oo), for any
Banach space B and for any interval / c U, we define ίm(Lq, I, B) as the space of
measurable functions from I to B for which

\m/<ni/m
f dt\\φ{t)-B\\Λ (1.9)

+ zf]l) / J

is finite, with obvious modifications if q and/or m is infinite. The spaces ίm(Lq, /, B)
are Banach spaces with the norm defined by (1.9). If B = C, we write ίm(LqJ) for
/m(ίΛ /, C). If / = U, we shall omit / in the notation.

We shall need the operators ω = (— Δ)1/2, K(ή = ω ~1 sin ωt and K(t) = cos ωt.
The operators K(t) and K(t) are bounded and strongly continuous with respect to t
in Hk for any k. Finally, we shall use the notation p± = Max {+ p,0} for any peU.

2. Preliminary Estimates

In this section we collect a number of definitions and estimates. They concern the
finite energy solutions of the free equation Πφ = 0, the finite energy solutions of the
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NLW equation (1.1) and the interaction term / i n (1.1). The basic space for the initial
data (φ0, φ0) = (φ(to\ φ(t0)) for the equations (1.1) and Πφ = 0 is the energy space

Xe = (L2*nHl)@L2. (2.1)

We refer to the Appendix for the meaning of that space as well as for the definition of
time derivatives and time integrals. We first consider the equation \Z\φ = 0.

The solution of the Cauchy problem for Oφ = 0 with initial data (φ0, φ0) at time
zero is given formally by

φ^(t) = k(t)φo + K(t)ψo. (2.2)

We recall briefly some properties of the operators K(t), K{t) and exp(± iωt). The
basic estimate for exp (+ iωt) is

\\exp(±iωt)φ;B~^\\^Cr\t\-y"\\φ;B^\\ (2.3)

for all te U\{0}, 2 g r g oo and φeBβ

f

{r\ A proof of (2.3) can be found in [4] and [22].
From this estimate one can derive the following results.

Lemma 2.1. Let L be any of the operators ωK(t), K(t), exp(± iωt). Then, for any
(r, q) and (rf, q') with 0 ̂  2/q = y(r) < 1 and 0 ̂  2/qf = y(r') < l.for any interval I a [R,
for any sel, the operator

u^\dτL(t-τ)u(τ)
s

is bounded from Lq(I, Bβ

f

{r)) to Lqf (/, B^β{r>)) with norm uniformly bounded with respect
to I and s.

Proof. See [13]. See also [17] and [25] for the analogous result for the Schrodinger
equation.

Lemma 2.2. (1) Let r and q satisfy 0 ̂  2/q = y(r) < 1. Then, for any φeL2,
exp(+ iωήφ belongs to Lq(U,B~β{r)) and satisfies the estimate

\\exp(±iωt)φ;U(U,Br-
β")\\^C\\φ\\2. (2.4)

(2) Let r and p satisfy

' 0 S δ(r) ̂  n/2

0 g p -f δ(r) - 1 = σ < 1/2 (2.5)

and let q satisfy ί/q = σ. Then, for any (φo,φo)eXe,φ
(O)(t) = K(t)φ0 +

K(t)φ0eLq(U,B^),φi0)(t) = K(t)φ0-ω2K(t)φ0ELq(U,BΓ1) and the following esti-
mates hold

Proof. See Lemma 3.1 in [9].
The space-time integrability properties of the solutions of Πφ = 0 are expressed

in terms of a family of spaces depending on two parameters, for which one can take
any two of the three parameters r, p and σ connected by (2.5). The allowed region for
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-1

Fig. 1. Space time integrability properties of the solutions of the free wave equation. The case shown

is n = 6

those parameters is shown in Fig. 1 in the (p, σ) plane. Of special importance is the
parameter σ which characterizes the regularity in space and in time (in particular the
Sobolev inequalities connect spaces with the same value of σ).

We now define the following family of spaces, which embody the dispersive
properties of the finite energy solutions of the free equation in the form of the space
time integrability properties of Lemma 2.2. For any interval / a [R, we define

{(φ,ψ):φeLq(I,BP)nLcc(I,L2*) and

satisfying (2.5) and 1/q = σ).

for all r,p,σ,q

(2.7)

We also define the corresponding local spaces ^ l o c (/) with Lq replaced by Lq

oc and
L00 by L£ c. Note in particular that ®J(l)^L»(l,Xe) and ^ l o c ( / ) c L £ c ( / , X J for
all 7 c IR. Lemma 2.2 expresses in particular that all solutions of \Z\φ = 0 with initial
data in Xe (equivalently all finite energy solutions) belong to ^(U).

We next show that functions of space-time satisfying some of the properties of
Lemma 2.2 possess additional regularity properties corresponding to negative
values of σ. That result will apply to solutions of Π φ = 0 as well as to solutions of
(1.1) in suitable circumstances. The next proposition, however, does not make
reference to any equation, although the assumptions are inspired by Lemma 2.2.

Proposition 2.1. Let I be an interval of U, possibly unbounded.
(1) Let k satisfy 2{n - l)/{n - 2) ̂  k ^ 2*, let σ = {n- 2)/2 ~{n- l)//c, let p > 0 ,
p' > 0, p + p' ^ 1, let 2 ^ r, r' ^ oo with p + δ(r) - 1 = p' + δ(r') — 1 = σ and let
\/q = σ> Let φeLq(I,Bp

r) and φeLq(I,Bp

r',~
ι). If φ, possibly redefined by continuity

on a set of measure zero in time, has a representative in 1} for some toel, then φ
has a representative in ^(1, Lk) (still denoted by φ). Ifk < 2*, then || φ(t) ||£ is uniformly
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Holder continuous in t with exponent k(ί — δ(k)), and φ satisfies the estimate

^C(l + \t\y-^\ (2.8)

//fc = 2* and I is unbounded, say I = [T,co), then ||φ(ί)ll2* n a s a finite limit as
ί-XX).

(2) Letksatisfy2^k^2(n- l)/(w-2).LetφeL°°(/,L2*), φeL°°(/,L2).Ifφ,possibly
redefined by continuity on a set of measure zero in time, takes its value in 1} for some
toel, then φe^(I,Lk). The quantity || φ(t) \\l/(1~δ(k)) is uniformly Lipschitz continuous
in t, and φ satisfies the estimate (2.8).

Remark 2.1. The assumptions φeLq(l,Y) and φeLq(I,X) imply that φ can be
redefined on a set of measure zero in time so as to belong to #(/, X). This is the
redefinition of φ quoted in the proposition.

Proof. (1) We use the regularization operator Rj defined in the Appendix. Let R be
either Rj or Rj - R^ for some;, /. Then Rφ, RφeLq(I, Hm) for arbitrary m (we take m
sufficiently large) and Rφ is the weak time derivative of Rφ, so that Rφe^(I, Hm). By
an elementary argument of regularization in time we obtain the identity

|| Rφ(t) || X - || Rφ(s) || * = k R e } dx < Rφ(τ), Rφ(τ) \ Rφ(τ) \k~ 2 >. (2.9)
s

Assuming for definiteness that 5 ̂  t, we estimate

Λφ(ί) ||ί — || 12^(5) 11*1 ̂  fcJdr || JRφ(τ);^'" x || || Λφ(τ)|Hφ(τ)|*-2; ,Bri ~ '̂ ||
s

^ C J dτ || Rφ(τ); B$ ~' || || Rφ(τ); B?\\k' *
s

^ C I ί - 511 -fc- II i ^ φ ; ̂ ( ( 5 , ί), ̂ ^ : - x ) IIII i ^ φ ; ^ ( ( 5 ? ί), ̂ ? ) | |^" x (2.10)

by duality, by Lemma 3.2 of [9] (an improved version of which is given in
Lemma 2.3 Part(l) below) together with Sobolev's inequalities and by the Holder
inequality in time, under the assumptions made on the various indices. In particular
the use of Lemma 3.2 of [9] is made possible by the conditions p + p' ^ \,p > 0,
p' > 0 and by the relation between k and σ, which simply expresses the homogeneity
of the estimate. The use of the Holder inequality is possible under the condition
kσ ^ 1 which is equivalent to k S 2*. The lower limit on k is obtained for σ = 0.
Note also that 1 - kσ = fc(l - δ(k)).

We first use the estimate (2.10) with R = Rj — R^ and s = t0. By the assumption
on φ(t0) and the properties of Rj, the second norm in the first member of (2.10) tends
to zero when j , /-> oo. By the assumptions on φ and φ, the properties of Rj and the
Lebesgue dominated convergence theorem, the two norms in the last member of
(2.10), for q < oo, or the integral in the last but one member of (2.10), for q = oo, tend
to zero when), / -> oo. Therefore Rjφ(ή is a Cauchy sequence in Lk, so that its limit is
the canonical representative of φ. We next use (2.10) with R = Rj — ^. The last
member of (2.10) is estimated for any compact subinterval J a c=/5 J containing
s = t0, by

^WRjφ-φ LψJΐ -^WWRjφ-φ UiJ^^W'-1 (2.11)
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uniformly for teJ and converges to zero when; -> oo by the same argument as before,
uniformly for teJ. Therefore Rjψ converges to φ in Lk uniformly on the compact
subintervals of/. Since RjφE^(I,Lk) this implies that φe^(I,Lk). We finally use
(2.10) with R = Rj and general 5 and t. Taking the limit j-> oo yields the announced
Holder continuity property of || φ(t) \\k and the estimate (2.8) for k < 2*. If k = 2* and
/ is unbounded, then the limiting estimate shows that || φ(t) ||2* satisfies the Cauchy
condition and therefore has a limit as t-• oo.
(2) In the same way as in Part (1) we obtain (2.9). Assuming for defmiteness s g ί w e
estimate

\\\Rφ(t)\\k-\\Rφ(s)\\k\

^ fc|| Λ c p ; Z . 0 0 ( ( 5 , 0 , Z . 2 ) || || Λ Φ ; Z . 0 0 ( ( 5 9 ί ) ? Z. 2 *) ||v~x J ^ T || Λ φ ( τ ) ||̂ ~v (2.12)
s

by the Holder inequality, with v given by homogeneity, namely

or equivalently v(l — δ(k)) = 1, provided 1 ̂  v ^ k, which is equivalent to the
assumption made on k. By an elementary computation (2.12) implies

^ v(ί —

(2.13)

In the same way as in Part (1) we use (2.12) and (2.13) first with R = Rj — R^ and
s = ί0, then with R = Rj — ί and 5 = ί0 and finally with R = Rj and general s and t,
to prove the announced results. QED

In the special case where k = 2* and where / is unbounded, one can actually
prove under some mild assumptions that ||φ(ί)ll2* tends to zero when t tends to
infinity.

Proposition 2.2. Let k and s satisfy 0 ^ δ(k) < 1 < δ(s) and let v = {δ(s) - I ) " 1 +
(l-^(fe))" 1 . Let I be an interval of U, possibly unbounded. Let φeL£c(I,Lk)n
Lq(I,Ls) with q(δ(s) - 1) = 1. Assume in addition that

(2.14)

Then φ satisfies the estimate

w (2.15)

In particular if I is unbounded and if\\ φ(t) || 2* has a limit as t tends to infinity, that limit
is zero.

Proof. For any a, be I, a <b, we estimate

1 ~Λ <* Ϊ ΪII ΦίOlli"**"*"x> (2.16)

by the Holder inequality. Then (2.15) follows immediately from (2.16) and (2.14).
The last statement of the proposition follows from (2.15). QED

In this paper, we shall use Proposition 2.1 with k = 2* as a preliminary step in the
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proof of energy conservation and with k = 2* — ε, ε > 0, so as to be able to apply
Proposition 2.2. The result for lower values of /c, extending down to k = 2, is given for
completeness and would be useful in connection with the Cauchy problem at finite
times.

Remark 2.2. By Lemma 2.2, Propositions 2.1 and 2.2 apply in particular to
solutions of the free equation C\φ = 0 with initial data in (LknH\)ξ&L2.

In addition to the estimates of Lemma 2.2 on the free equation [Jφ = 0, we shall
need Besov space estimates for the interaction term of the equation (1.1). Those
estimates are given in Lemma 2.3 below which extends Lemma 3.2 of [9]. The
statement of that Lemma requires the choice of a representative for the Besov space
elements involved. In order to simplify the exposition, that point is not mentioned
below. For a treatment thereof, we refer to the Appendix, in particular to
Lemma A.3 and to the subsequent discussion.

Lemma 2.3. LetfeV^C, C) withf{0) = 0.

(1) Let g1e
(^(C, (R + ), with gi(z) = g1(\z\) for all zeC, g1 non-decreasing in M + , and

for all zeC. Let 0 < λ < 1, let l ^ / , m , t{ ^ oo (/ = 1,2), with n/ίί -λ>0 and
ψ=\μι + ψ1. Then

^ ^ (2.17)

for all φ such that the norms in the right-hand side are finite. The same conclusion holds
for λ = 1,1 < t ^ 2 and ίx = m = 2.
(2) Suppose that there exists g2e

(£(C, U + \ with g2(z) = g2(\z\) far all zeC,g2 non-
decreasing in [R+, and such that

\Γ(z1)-Γ(z2)\^\z1-z2\Max{g2(z1lg2(z2)} (2.18)

for allzuz2eC. Let 0<λ< 1, let l ^ , m , ^ o o (1 ̂ i^6) with n/Si-λ>0 and
ψ = ψί + ψ2 = l//3 + l/Λ. + l//6. Then

where gx satisfies the assumptions of Part (1), for all φuφ2 such that all norms in the
right-hand side are finite.
(3) Suppose that for some v,0 ̂  v ̂  1,

l / / ( ^ i ) - / / ( ^ 2 ) I ^ C | z 1 - z 2 r . (2.20)

for all z l 9z 2eC. Let 0 < λ < v, teί 1 ̂  /, m, *ft g oo, (1 ̂  / ̂  4) wiίΛ n/^ - /I > 0,
1// = l//1 + ψ 2 = l//3 + l/^4? fl^ /4v ̂  1, mv ^ 1. T/zβn

\\f(ψi)- J ^ j ^
i

+ C\\φx-ψ2\\eJr\\Ψi,B]lχmv\V (2-21)

for all φι,φ2 such that all norms in the right-hand side are finite.
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Remark 2.3. For the function gλ in Part(1), one can take g1(z) = Sup |/'(z')|. This
|z'|̂ |z|

function depends only on \z\, is non-negative and non-decreasing, and is easily seen
to be continuous.

Proof of Lemma 2.3.

(1) Part(l) is an immediate extension of Lemma 3.1 of [9].
(2) We start from the identity

1

f(ψi) - f((Pi) = f dμ{f'(μφί + (1 - μ)φ2)}(ψi ~ Ψi) = Ψ(ψi ~ Ψil

and estimate in the same way as in Lemma 3.1 of [9]

II f(φχ) ~ f{φ2)', Hm II ̂  C || ̂  - φ2;B}itn \\ \\ φ ||,2

3\\φ;BlJ (2.22)

with 1// - \jίγ + l//2 = l//3 + l//4. We estimate the first norm of φ in (2.22) by

^ | |Max(g 1(φ 1),gr 1(φ 2)) | | / 2^ llgf^φJH^ + ||0i(φ2)ll,2 ( 2 2 3 )

We then estimate the second norm of φ in (2.22) by using the integral form of the B
norm

m"") 1/m

~λ$\xp\\φ— τyφ\\t } > , (2.24)
\y\ύt 4 J

where τy denotes the translation by yeUn. Now

1

\φ — τyφ\ rg Jdμ\μ(φ1 — τyφx) -f (1 — μ){φ2 — τ y φ 2 ) |MaxMax {02(<Pi)502(τy<Pί)}
o i

^ Max Iςe>£ — τ^φJMax {g2{(pj),g2(τyφj)},
i , j= 1,2

\\ψ-τyψ\\,^2 2u Wψi-τ ψi\\, \\g2{(pj)L (2.25)

with l//4 = l/^5 + l//6. Substituting (2.25) into (2.24) yields

II Ψi Km" = c . . Σ 2 H ^K» IIII 92(<PJ) h6. ( 2 2 ^)

The result follows from (2.22), (2.23) and (2.26).

(3) The proof of Part (3) is the same as that of Part (2) except for the treatment of the
second norm of φ in (2.22), which we now estimate differently. From (2.20) we obtain

so that

l l ^ - τ ^

and therefore (cf. (2.24))

WΦ BU^CΣWφrB^JW (2.27)
ϊ

Substituting (2.23) and (2.27) into (2.22) yields (2.21). QED
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Lemma 2.3 has been tailored to cover the case of the interactions / that we want
to consider. In fact we shall assume that / satisfies the following conditions.

(Al) /e<^ (C, C), /(O) = /'(O) = 0 and / satisfies the following estimates

(a) | / > ) | = Max{(|(d//3z)U(δ//dz)|}gC|zr1

for some p ^ 1 and for all z e C

Note that (b) implies (a). We have nevertheless stated (a) and (b) separately because
we shall need only (a) in some of the applications.

Remark 2.3'. The assumption (Al) is satisfied in particular by f(z) = zp~qzq for
fixed qeU and p — 2qeZ. This is obvious for Part (a) and for Part (b) in the case p ^ 2.
Part (b) in the case p < 2 requires a separate argument given in the next lemma.

Lemma 2.4. Let h{z) = \z\v~mzm, where 0 <. v <> 1, meZ. Then

1 - z 2 | v if m = 0

[21~v\m\x\zι—z2\
v if mφO.

Proof. If m = 0, (2.28) follows from

Let now m Φ 0. By scaling it suffices to consider the case where z1= z = peiθ and
z2 = 1. We first consider the case m=\ where it suffices to prove that

\pveiθ - 11 ^ 2 1 ~x\peiθ - 1 |v, (2.29)

or equivalently
cosh vσ - cos θ ^ 2 1 " v(cosh σ - cos θ)v (2.30)

with p = eσ. Now the quantity (coshvσ — cosθ)(coshσ — cosθ)~v regarded as a
function of cos θ is easily seen to take its maximum for cos θ = — 1. In that case (2.29)
reduces to

which follows from the concavity of the function p ->pv. This proves (2.29). The case
of general m Φ 0 follows from the case m = 1. In fact (2.29) with # replaced by m#
becomes

\pveιmθ — 1 | ̂  2 1 ~ v \ p e ι m θ — l | v . (2.31)

Then

\peimθ - 112 = (p - I) 2 + 4p sin2 (mθ/2)

^ m2{(p - I) 2 + 4psin2(0/2)} = m 2 |pe ί θ - 112, (2.32)

since \m\ ̂  1 and |sinm0| ^ |msin#| for all ΘGR and me/. Substituting (2.32) into
(2.31) yields (2.28) in the special case considered and therefore in general. QED

We shall study the Cauchy problem for the equation (1.1) in the form of the
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integral equation

φ = A(to,φ^;φ\ (2.33)

where t0eU,φ{0) is a finite energy solution of the free equation [Jφ = 0 and

A(to,φ^φ) = φiO) + F(to;φ) (2.34)

with

F((ί0; φ)(ί) - - } dτK(t - τ)/(φ(τ)). (2.35)
ίo

Under the assumption (Ala) and for suitable φ, the integral (2.35) exists in a weak
sense and the integral equation (2.33) is essentially equivalent to the differential
equation (1.1) supplemented by the initial conditions (see the Appendix).

In order to formulate the theory of scattering and in particular the existence of
asymptotic states for the equation (1.1) it is essential to introduce the interaction
representation in the first order formalism. For that purpose the generic solution of
(2.33) will be represented as a two component vector

where φ will turn out to be φ as a consequence of the equation. The initial condition
for Φ is

U ( 0 )

the free evolution operatore U(t) is defined by

and is a strongly continuous unitary group in Xe, the interaction term becomes the
two component vector

The relevant integral equation is

Φ(ί) = Φ<0)(ί) - }dτU(t - τ)fo(φ(τ)), (2.37)

the first component of which coincides with the previous one (2.33), while the second
component is simply the time derivative of the first one. We introduce the interaction
representation by defining

% \ (2.38)

An elementary computation shows that the differential equation for Φ is

Φ(t)=U(-t)fo(φ(ή),
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and the corresponding integral equation is

Φ(t)=Φ(to)-\dτU(-τ)fo(φ(τ)). (2.39)
ίo

The final result of this section expresses the following fact: if a finite energy
solution of the integral equation (2.33) satisfies the space-time integrability
properties of Lemma 2.2 for one pair of values of (p, σ) in a suitable restricted set,
either locally or globally in time, then it satisfies those properties for all values of p
and σ in the allowed region (2.5), namely it belongs either to ̂ l o c(/) or to ̂ J(ΐ) as
defined by (2.7). Furthermore Φ has some continuity properties which in some cases
imply the existence of asymptotic states.

Proposition 2.3. (1) Let f satisfy (Ala) with

2/(n - 2) g p - 1 = 2(2 - ζ)/(n - 2) ̂  4/(n - 2), (2.40)

or equivalently 0 ̂  ζ ̂  1. Let p, σ, r and q satisfy (2.5), l/q = σ and

0^l-ζ-pσ = p(n- l)/(n + 1) < 1/2. (2.41)

Let I be an interval ofU, toel, let φ ( 0 ) be a finite energy solution of Π ψ = 0 and let
φeL?0C(I,BP) be solution of (2.33). Then Φ = (φ,φ)e(Wl0C(I). Furthermore possibly
after a redefinition of Φ (and Φ) by continuity on a set of measure zero in time, Φ has a
representative, still denoted by Φ, which belongs to ^ζ(I,Xe) uniformly in compact
subintervals of I.
(2) Let f satisfy (Ala) with p—l= 4/(n — 2). Let p, σ, r and q satisfy (2.5), l/q = σ and

0 S 1 - σ(n + 2)/(n -2) = p(n - l)/(n + 1). (2.42)

Let I be an interval of U, toel, let φ ( 0 ) be a finite energy solution of Π φ = 0 and let
φeLq(I, BP) be solution of (2.33). Then Φ = (φ, φ)e^/(I). Furthermore, possibly after a
redefinition of Φ (and Φ) by continuity on a set of measure zero in time, Φ has a
representative, still denoted by Φ, which belongs to ^(1, Xe). In particular, if I is
unbounded, say I = [T, oo), then Φ(t) has a strong limit in Xe when t-> oo.

Proof. The proof of both parts follows from a common set of estimates with
0 ^ ζ ̂  1 for Part (1) and ζ = 0 for Part (2). We first consider the space-time
integrability properties of φ and φ. It is sufficient to prove those properties in the
case p' = 1 — β(r'). The same properties for general values of p' and r' follow from
the latter by the Sobolev inequalities. For that purpose we let 2 ̂  r' < oo, 2/q1 = y(r')
and

ΓΛ ^- ../ f\ ^- 1

2ζ ( 2 ' 4 3 )

From the integral equation (2.33) and from its analogue for φ it follows that

\\φ;L"\l,Blr^y

where the first norm on the right-hand side has been estimated by using Lemma 2.2,
and the second one by using Lemma 2.1 followed by the Holder inequality in time.
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Thus we are led to estimate the last norm in (2.44). By Lemma 2.3 Part (1) and by the
assumption (Ala) we estimate

|| f ( φ ) ; L m ( I , B ψ ] ) \ \ ^ C \ \ φ;U(I,Bf)\\p (2.45)

under the conditions

p(n/2 -\-σ) = n/ί- β(/) (2.46)

By an elementary computation one can find m and / satisfying (2.43) and (2.46) under
the assumption (2.42) of the proposition for 0 ̂  ζ ̂  1. More precisely, if/ and m are
defined by the first and last lines of (2.46), then the middle line thereof and the last line
of (2.43) both reduce to the equality in (2.42). This proves that Φ = (φ, φ) belongs to
l̂ocCO under the assumptions of Part(l) and to ^(/) under the assumptions of

Part (2). In particular, Φ and therefore Φ have a representative, still denoted by the
same symbol, which belongs to L^c(I,Xe) or to L°°(/,Xe). We now turn to the
continuity properties of Φ, which follow from the integral equation (see (2.39))

Φ(t)-Φ{s)=-\dτV(-τ)fo(φ(τ)). (2.47)

Applying the regularizing operator Hj (see the Appendix) to (2.47) we obtain

Hj(Φ(t) - Φ(s)) = - \dτ U(-τ)Hjfo(φ(τ)). (2.48)
s

Now/(φ)eίf(/, Bβ/]) by (2.45), and therefore Hjf(φ)eϋί{l, H\) for any fceZ, by the
Sobolev inequalities and the definition of Hj. In particular, the integral in (2.48) is a
strong integral in Xe. Taking the norm in Xe of both members of (2.48) we obtain

\\Hj(Φ(t)-Φ(s));XJ2=\dσdτ(Hjf(φ(σ)\K(σ-τ)Hjf(φ(τ))\ (2.49)
s

after an elementary computation using the definition of U (2.36) and its unitarity in
Xe. We estimate the last integral in (2.49) by (2.3) followed by the Hardy-
Littlewood-Sobolev inequality and the Holder inequality in time as

with the same m, / as in (2.44). Taking the limit j -> oo, using the fact that Hj tends to H
strongly in Bfη and in Xe and using the estimate (2.44) on f(φ) yields the announced
continuity properties of Φ. QED

We next discuss briefly the conditions on p and σ in Proposition 2.3.

Remark 2.4. For fixed p or equivalently for fixed (, 0 ̂  ζ ̂  1, the assumptions (2.41),
(2.42) constrain (p, σ) to lie on a line segment in the (p, σ) plane starting from the point
{p = 0, σ = ((n - 2)p - w))/(2p)} and ending at the point {ρ = {n+ l)/(2(n - 1)),
or = [{n — 2)p — (n + l))/(2p)}. That segment intersects the region defined by (2.5) in
all cases of interest. In particular, for p = (n + 2)/(n — 2), it intersects the line
γ(r) = γs = {n- ί)/(n + 1) within that region at the point {p = n2/(2(n2 + 2)),
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σ = (n-2)(n2 + n + 2)/[2(rc + l)(n2 + 2)]}. That point is of special interest in
connection with the Cauchy problem at infinity.

For the purpose of scattering theory the more relevant part of Proposition 2.3 is
Part (2) corresponding to p — 1 = 4/(n — 2). The information relative to p — 1 <
4/(n — 2) namely Part (1) is relevant for the Cauchy problem at finite time. We have
not considered the case p < n/(n — 2) since the argument would be slightly different
(in fact simpler).

3. The Cauchy Problem at Infinity

In this section we construct finite energy dispersive solutions of the equation (1.1) by
solving the Cauchy problem with large (possibly infinite) initial time and finite
energy initial data (or asymptotic states) in the form of the integral equation (2.33).
We proceed in two steps. The first step consists in solving the integral equation by a
contraction method in a neighborhood of infinity in time (+ oo for definiteness). For
that purpose we define a Banach space of functions exhibiting some of the time decay
available from Lemma 2.2 for finite energy solutions of the free equation \Z\φ = 0
and such that the operator A(to,φ

iO);φ) defined by (2.34), (2.35) maps a suitable
subset of that space into itself and acts there as a contraction. That step can be
implemented under the assumption (Al) for the critical value p — 1 = 4/(n — 2) only.
Actually the first property has already been obtained to a large extent in
Proposition 2.3, which uses basically the estimates of Lemma 2.1. Those estimates
however turn out not to be sufficient to yield the contraction property in a
reasonable space for high space dimensions (namely n ^ 9). We circumvent that
difficulty by a direct use of the point wise estimate (2.3). Since the reproduction
property follows from similar, but simpler, estimates than the contraction property,
we treat here both properties together, thereby giving a selfcontained treatment not
relying on Proposition 2.3. As an immediate by-product of the resolution of the local
problem at infinity we obtain global existence and uniqueness of solutions and
asymptotic completeness for small initial data in the energy space.

The second step of the argument consists in extending the local solutions
previously obtained to all times. This is done by solving the local Cauchy problem at
finite times in successive intervals covering the real line, starting from values of t in
the interval of existence of the solution one starts from. The possibility of doing so
relies on a priori estimates obtained from the conservation of the energy and from
estimates of the successive times of local resolution derived therefrom. Unfortu-
nately, no such estimate exists in the critical case p — 1 = 4/(n — 2), thereby
precluding the possibility of globalisation in that case. In order to overcome that
difficulty, one needs to impose in addition that the assumption (Al) also holds for
some subcritical p. Accordingly, we solve the local Cauchy problem at finite times
under such an assumption. The treatment given in [10] however cannot be applied
directly, since we do not assume here the initial data to lie in L2, which would be
unnatural in the present context. The treatment given in this section is especially
tailored for the present purpose, and uses a slight extension of the estimates needed
to solve the local problem at infinity in the critical case. In particular, we take initial
data in Xe only, but we make no effort to cover the case of low values of p.
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We first derive an estimate for the integrand in the equation (2.33),

Lemma 3.1. Let n^3. Let f satisfy (Alb) for some p > 1. Let p,σ,r satisfy 1 -f σ =
p + δ(r), and 0 < 2σ g y(r) ̂  ys. Define p' by

(p-l)(n/2-p'-c5(r))=l+y(r). (3.1)

Then the following estimates hold:

\\K{t)f(φy;B^\ύC\t\-^\\φ;Bΐ\\\\φlBΐ'r-1 (3.2)

provided p' ̂  0, for all φ such that the right-hand side is finite,

\\K(t)(f(φ1)-f(φ2));B^\\^C\t\-^\\φ1^φ2;Bn\ Σ WφiM'V'1 (3-3)
i = 1,2

for p ̂  2, provided p'^σ + α(r), /or α// φ 1 ? φ 2 swc/z that the right-hand side is finite,

\\K(t)(f(φi)-f(φ2));BP\\

^C\t\-^\\φi~φ2;Bϊ\\ £ ni l^;^' ± £ H ( P ~ 1 ) / 2 (3.4)
i = l , 2 ±

for p < 2 and ε > 0 sufficiently small, provided (p — \)p' ̂  σ + α(r), /or α// φ 1 ? φ 2 5t/c/z
ί/iαί ί/ẑ  right-hand side is finite.

Remark 3.1. The various restrictions on p' will be made more explicit in the special
cases of interest in Proposition 3.1 and Proposition 3.4.

Proof. We first estimate by (2.3)

|| K(t)f(φ); Bζ\\^C\tΓ*'> || f(φ); B*\\, (3.5)

; ^ II ̂  C | ί Γ ^ I I / ( Φ l ) - / ( φ 2 ) ; B r ^ II, (3.6)

where λ = σ + ot(r). Clearly, 0 < λ < 1. We next estimate the norms in the right-hand
sides of (3.5) and (3.6) by Lemma 2.3 with / = f and m = 2, g^φ)^ C\φ\p~ι and
g2(φ) = C\φ\p~2ϊorp^2. In particular we estimate (3.5) by (2.17) and (3.6) by (2.19)
or (2.21) depending on whether p ̂  2 or p < 2. We then estimate the B) norms and
the ί/3 norms in terms of the norms in Bp

r by using the Sobolev inequalities.
Similarly, we estimate all remaining norms in terms of norms in BP for suitable p\
thereby continuing (3.5) and (3.6) as

••• ^C\tΓ^\\φ Bp\\\\φ\Bp> \\p~ι (3.7)
and

^\\φχ-ψ2,Bΐ\\Z\\φi\BΪ,m\\p-\ (3-8)

where now m = Min {2,2(p — 1)}. The conditions for the applicability of the Sobolev
inequalities reduce to the homogeneity conditions

n/S1-λ = n/S3 = n/r-p, (3.9)

«/((P - IK2) = n/ί5 - λ = n/((p - 2y6) = n/((p - \)(A) - λ/(p - 1) = n/r - p'
(3.10)

and to the conditions p 2: λ, p' Ξi 0 for (3.7) and p' 2: λ or (p — l)p' S; λ for (3.8)
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depending on whether p ^ 2 of p<2. Under the conditions (3.9) and (3.10), the
homogeneity conditions of Lemma 2.3 reduce to

n/r-p + (p- l)(n/r - p') = n/f - λ,

which becomes (3.1) by an elementary computation. The condition p ̂  λ reduces to
α(r) + δ(r) ̂  1, or equivalently r :g rs. The conditions on p' coincide with those stated
in the lemma. Finally, in the case when p < 2, we estimate the last norm in (3.8) as

by Lemma A.I. QED

We now turn to the local Cauchy problem at infinity. Let 0 < 2σx < 2σ2 ̂
y(r) < 1. For any interval ί c ϋ w e define the space

aτo(/)= Π L"V,B?) (3 ii)
i = l , 2

Here and below we consider several values ph σh qi related by

Vqi = σi = pi + δ(r)-l. (3.12)

Proposition 3.1. Let n^3. Let/satisfy (Alb) with p — 1 = 4/(n — 2). Let r, σί and σ2

satisfy

(n-2)/n^y(r)^ys, (3.13)

0<σ1^{l-y(r))(n-2)/4^σ2Sy{r)/2 ifn^6, (3.14)

0 < σ± g (1 - δ(r))(n + 2)/(n - 2) < (1 - γ(r))(n - 2)/4 < σ2 £ y(r)/2 iin^Ί.

(3.15)

Let φ(0) be a finite energy solution of the free equation Πφ = 0. Then

(1) There exists T < oo such that, for any ίoeΓ, where I = [Γ, oo), ίfte equation (2.33)
has a unique solution in oF0(I).
(2) For any interval I and for any toeTthe equation (233) has at most one solution in

sro(i).

Proof. Part (I) Let / be an interval of U and let toeT. We first estimate the integral
F(to;φ) for φe&0(I). Let r satisfy (3.13) and let

0<2σ^y(r). (3.16)

It follows from Lemma 3.1 and the Hardy-Littlewood-Sobolev inequality ([16]
p. 117) that

| |F(ί0; Φ);iβ(/,B?) || ̂  C0(σ) || ̂  i«(/,S?) || || Φ;i« '(/,S?')p- 1 (3.17)

with p' defined by (3.1) and 1/q' = p' + δ(r) — 1. The conditions needed to apply that
inequality are (1); the homogeneity condition

(p-\)σ' = \-y(r) (3.18)
or equivalently

σ' = (l-y(r))(n-2)/4 (3.19)
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which coincides with (3.1) for the critical value of/?, and implies σ' > 0 and therefore
p' > 0, and (2): the condition 0 < σ < 1, which follows from (3.16), and the condition
0 < σ + ( p - l ) σ ' < l , which follows from (3.16) and (3.18). Since φ{O)e%o{I) by
Lemma 2.2, part (2), it follows in particular from (3.16), (3.17) and (3.19) that for
r,σ1,σ2 satisfying (3.13) and (3.14), 3£0(I) is mapped into itself by the operator
φ-+A(to,φ

{O);φ) defined by (2.34).
We next estimate the difference F(to\φ]) — F(to\φ2) for φ1,φ2e3C0{I). From

Lemma 3.1 and the Hardy-Littlewood-Sobolev inequality again it follows that

| |F(t0;φ x)-F(t0;φ2);U(I,B?)II ^ C^σ)\\Ψl- φ2;

• X YlWiptL'ilJ!1*')^-"'2 (3.20)
i= 1,2 ±

with p' again defined by (3.1) or equivalently (3.19), ε = 0 for n ̂  6, ε > 0 for n ̂  7,

p'^σ + a(r) (3.21)
for n ̂  6 and

( p - l ) p ' ^ σ + α(r) (3.22)

for n ̂  7. The conditions needed to apply the Hardy-Littlewood-Sobolev in-
equality are the same as before. The condition (3.21) reduces to

σ ^ σ' + 1 - (n + l)α(r) = σ3 (3.23)

and is satisfied in particular for σ = σ', while the condition (3.22) reduces to

(cf. the second inequality in (3.15)). An elementary computation shows that σ4 < σ'
for all n ̂  7 and all r satisfying (3.13).

We can now prove the proposition. We choose R > 0 sufficiently small so that

2 Sup CoiσMRγ-^l, (3.24)

2 Sup C 1(σ)(2K) p- 1^l, (3.25)

where σ5 = Min(cr2,σ3,σ4). We next choose T sufficiently large so that

Max || φ(0);U(l\Bp

r)\\ = Sup || φ(0);Lq(I;Bp

r) \\ S R (3.26)

(the first equality is obtained by interpolation) where / = [T, oo). It follows now from
(3.17) and (3.24) that the operator φ -+A(t0, φ

{0); φ) maps the closed ball B0(1,2R) of
radius 2R in S£0(I) into itself. Furthermore, in that ball, that operator is a
contraction for the norm in the larger space

ίίΓ1(/) = L ί l(/,βf1)nLβ 5(/,BH. (3 2 7 )

By standard arguments (cf. Theorem 1 in [17] or Proposition 2.2 in [10]) those two
facts imply the existence of a unique solution of the equation (2.33) in

Part (2) follows from Part(l) by standard arguments. QED

Under a mild additional assumption on r and σ2 the solutions of the
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equation (2.33) in 2ΐo(I) are dispersive in the sense of Proposition 2.3 part (2), and
in particular belong to ̂ (1) defined by (2.7).

Proposition 3.2. Let n^3. Let f satisfy (Ala) with p - 1 = 4/(n - 2). Let #"0( ) fee
defined by (3.11) with r, σx am/ σ2 satisfying (3.13), (3.14) and (3.15) and in addition the
(compatible) condition

(n - 2)(2 + nγ(r)) ̂  2(n2 + 2)σ2. (3.28)

Let I be an interval ofU, toeT, let φ(0) be a finite energy solution of [Jφ = 0 and let
φe%Ό(I) be solution of the equation (2.33). Then φ satisfies all the conclusions of
Proposition 2.3 part (2).

Proof. In order to be able to apply Proposition 2.3 part (2), it suffices to show that
one of the Wr norms of φ available from the definition (3.11), (3.14) (3.15) of #Ό(')
controls one of the Bζ norms with (p, σ) satisfying (2.42) required in the assumptions
of that proposition through the Sobolev inequalities, namely has the same σ and a
larger p than the latter. For that purpose, it suffices to show that there exists
σ e [ σ 1 ? σ 2 ] such that

0 S 1 - σ(n + 2)/(n - 2) ̂  p(n - l)/(n + 1)

or equivalently σ ^ (n — 2)/(n + 2) and

(n - 2)(2 + ny(r)) ̂  2(n2 + 2)σ. (3.29)

Now it is easily seen that, because of (3.13) and (3.19), σx ^ σ' < (n — 2)/(n + 2), so
that it suffices that the conditions (3.29) be satisfied for σ = σ2. That condition
reduces to (3.28). The compatibility of (3.14) and (3.15) with (3.28) follows from the
inequality

or equivalently y(r) ̂  (n — 2)/(n + 1) which follows from (3.13). QED

The previous results imply global existence and uniqueness of solutions of the
Cauchy problem and asymptotic completeness for small initial data in the energy
space.

Proposition 3.3. Let n^3. Let [satisfy (Alb) with p—\= 4/(n — 2). Let r, σι and σ2

satisfy {3.13)9 (3.14), (3.15) and (3.28). Then there exists Ro>0 such that,for any toeR
and for any ΦQ = (φ0,\jj0)eXe with \\ Φo; Xe\\^R0, the equation (2.33) with
φ(°Xt) = K(t)φo + K(t)ψo has a unique solution φ in 3C0(U) (defined by (3.11)).
That solution satisfies the conclusions of Proposition 2.3 part (2). In particular the
wave operators Ω± (defined as the maps Φo -> Φ(0) with t0— ± oo) and their inverses
Ω^1 (defined as the maps Φ0->Φ(± oo) with t0 = 0) are bijections ofXe locally in a
neighborhood of zero.

Proof. The result follows immediately from Proposition 2.2 part (2), Proposition 2.3
part (2) and Propositions 3.1 and 3.2. In particular by (2.7), there exists Ro such
that || Φo; Xe\\ ̂  Ro implies the condition (3.25) needed for Proposition 3.1, with

I = U. QED
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We next turn to the local Cauchy problem at finite times for initial data in Xe and
subcritical p, as explained at the beginning of this section.

Proposition 3.4. Let n ̂  3. Let f satisfy (Alb) with

2/(n - 2) < p - 1 = 2(2 - ζ)/(n - 2) < 4/(n - 2) (3.30)

or equivalently 0 < ζ < 1. Let 5Γ0( ) be defined by {3.11) with r9σl9σ2 satisfying

^ys, 7<T)<l-ζ [ }

l ) ^ σ 2 ^ 7 ( r ) / 2 if p^2, (3.32)

- γ(r) - ζ)/(p -l)£σ2^ γ(r)/2

l-δ(r))-ζ if p<2. ( J ό)

Then
(1) For any R>0, there exists T(R)>0 such that for any (φo,ψo)eXe with
| |(φ 0, φ0); Xe\\ ^R,for any toeU, the equation (233) with φ(0)(t) = K{t - to)φo +
K{t - to)φo has a unique solution φ in 9£Q(I\ where I = [t0 — T(R), t0 4- Γ(JR)].
(2) For any interval I, any toel and any finite energy solution φ ( 0 ) of the free equation

= 0, the equation (2.33) has at most one solution in SΓ0(/).

Proof Let / be a bounded interval and let toel, let σ, r satisfy (3.16) and (3.31). Using
Lemma 3.1 and the Young inequality, we first estimate for φe2£0(I\

\\F{t09φ);U{I,Bί)\\ ^CΌ{σ)\lHφ;LV9Bf)\\ \\ φ L^/,^')! !"" 1 (334)

with p' defined by (3.1) and ί/q' = σ' = p' + δ(r) — 1, provided

0)-l)σ' + C = l - 7 ( r ) , (3.35)

which coincides with (3.1) under the condition (3.30). The additional conditions
required to apply the Young inequality are O ^ σ ^ l , 0 < C ^ l and 0 ^ σ +
(p — l)σf ^ 1 and follow from (3.16), (3.30) and (3.31). Similarly, we estimate for φl9

• Σ n\\<Pi'>LqHl,Bϊ'±ε)\\ip-1)/2 (3.36)

with the same p' as before, satisfying the condition (3.21) if p ^ 2 and (3.22) if p < 2,
with ε = 0 if p ;> 2 and ε > 0 if p < 2, and l/q'± = σ' ± ε. The condition (3.21) reduces
to (3.23) and is satisfied for σ = σ' as before, while (3.22) now reduces to

σ^p(l-δ(r))-ζ = σ4. (3.37)

We can now prove the proposition. Let R>0. Then for any (φo,ιl/o)eXe with

\\(φo,Ψo)>Xe\\ ̂ R > i t : follows from Lemma 2.2 part(2) that

sup \\φ<0);Lq(n9B;)\\£cR. (3.38)
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We choose T = T(R) sufficiently small so that

2(2T)ζ sup C0(σ)(2cR)p-1^l (3.39)

2(2Γ)ζ sup C 1(σ)(2cΛ) ί >- 1^l, (3.40)

where σ5 = Min(σ2,σ3,σ4) as before. It follows from (3.34), (3.36), (3.38), (3.39) and
(3.40) that for any toeU9 and for any (φo,ψo)eXe with | |(φ o ?Άo);^JI ^R> t h e
operator Λ(t0, φ

(0); φ) defined by (2.34) maps the closed ball B0(I,2c R) of radius 2cR
in Seo(I) into itself, where / = [ί 0 - T(R), t0 + T(#)]. Furthermore, in that ball, that
operator is a contraction for the norm of the larger space 9C^ (I) defined by (3.27). The
proposition follows from those facts by standard arguments. QED

Remark 3.2. We discuss briefly the conditions (3.31), (3.32) and (3.33), which
generalize the simpler conditions (3.13), (3.14) and (3.15) of Proposition 3.1. The
condition (3.31), aside from y(r) ̂  γS9 follows from (3.32) or (3.33) and ensures the
existence of σ1 and σ2 satisfying (3.32) and (up to a limiting case) the first condition in
(3.33). The condition (3.33) implies

pδ(r)<p-ζ (3.41)

which in turn, under the condition (3.31), implies the existence oΐσ1 satisfying (3.33).
The conditions (3.31) and (3.41) are compatible provided

which follows from the fact that ζ < 1 < p9 so that 0 < p(l — ζ) < p — ζ, and that
p + 1 > 2(n — l)/(n — 2) > 2n/(n — 1). The condition (3.41) may or may not ίollow
from (3.31), depending on the values of p and r.

Under a mild additional assumption on r and σ2, the solutions of the equation
(2.33) in the previous spaces #Ό(') satisfy the space time integrability properties of
Proposition 2.3 part (1). The following proposition is the analogue in the subcritical
case of Proposition 3.2.

Proposition 3.5. Let n ̂  3. Let f satisfy (Ala) and (3.30). Let #Ό( ) be defined by (3.11)
with r,σl9 and σ2 satisfying (3.31), (3.32), (3.33) and in addition the (compatible)
conditions

(2 - (n + 1)( + ny(r)) £ ((n + \)p + n - l)σ2 (3.42)

l/2-ζ<pσ2. (3.43)

Let I be an interval ofR, toel, let φ{0) be a finite energy solution of Π φ = 0 and let
(pefo(/) be solution of the equation (2.33). Then φ satisfies all the conclusions of
Proposition 2.3 part(\).

Proof. In the same way as in the proof of Proposition 3.2, it suffices that there exists
σG[σ 1 ? σ 2 ] such that (cf. (2.41))

0 S 1 - C - pσ S P(n - ί)/(n + 1), (3.44)

l-ζ-pσ<l/2. (3.45)
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The second inequality in (3.44) can be rewritten as

(2- (n + l)ζ + nγ(r))^{(n + l)p + n- l)σ. (3.46)

Now it follows from (3.31), (3.32), (3.33) that

S (P - 1)(1 - ζ - y(r)/2) £ (p - 1)(1 - 0 (3.47)

so that the first inequality in (3.44) is satisfied by σι. It suffices therefore that the
second inequality in (3.44), or equivalently (3.46), and (3.45) be satisfied by σ2. Those
conditions reduce to (3.42), (3.43) respectively. The compatibility of (3.42) with (3.32),
(3.33) is equivalent to the inequality

2(2-(n+l)ζ)^(n+l)(p-l)y(r)

which is easily seen to follow from (3.31) by an elementary computation. The
compatibility of (3.43) with (3.32), (3.33) is equivalent to the inequality

2(1-ζ)<py(r)+I,

and follows immediately from (3.31). QED

So far we have studied finite energy solutions of the equation (2.33) without
assuming the existence of a conserved energy. However energy conservation is an
essential tool for the extension of the local solutions of Proposition 3.1 to all times.
We now turn to the proof of that property. For that purpose we need the following
assumption on /.

(A2) There exists a function F e ^ C , U) such that V(0) = 0, V(z) = V(\z\) for all zeC
and f(z) = d V/dz.

We define the energy

E(φ,Φ)=\\Ψ\\22 + \\Vφ\\22 + Sdx V(φ) (3.48)

for all (φ,φ)eXe such that V(φ)eL1. We can now prove the conservation of the
energy for solutions of (2.33) in the following form.

Proposition 3.6. Let n^3. Let f satisfy (Alb) with p satisfying (2.40) and (A2). Let I be
an interval of R9 ίoeJ, Let φ(0) be a finite energy solution of Qφ = 0 with
φi0)(t0)eLp+1 and let φ be a solution of the equation (2.33) such that
Φ = (φ, φ)e^/loc(I). Then the following identities hold for all s and ίe/,

\dx V(φ(t)) - \dx V(φ(s)) = 2Re\dτ<ψ(τ),f(φ(τ))), (3.49)

\\Φ(t);Xe\\2- \\Φ(s);Xe\\2= -2Refdτ<0(τ),/(φ(τ))>, (3.50)

where both terms in the left-hand sides of (3.49) and (3.50) are continuous functions of s
and t and the integral in the right-hand sides is absolutely convergent. In particular
energy conservation holds in the sense that for all s and t in I

E(φ(t\φ(t)) = E(φ(s\φ(s)). (3.51)
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In addition, letp—l = 4/(n — 2), let I be unbounded, say I = [T,co) and let φbea
solution of the equation (2.33) with Φ = (φ, φ)e(2/(I). Let however only toeT. Then the
same conclusions as above still hold. Furthermore, the kinetic part \\ Φ{t); Xe | |2 and the
potential part Jdx V(φ(t)) of the energy separately tend to well defined limits when
£-•00.

Proof. The proof of (3.49) is similar to that of Proposition 2.1 part (1) with k = p + 1.
By the same argument as in the proof of the latter, we obtain

\dx V(Rjφ(t)) - \dx V(Rjφ(s)) = 2 Re]dτ<Rjφ(τ), f(Rjφ(τ))>9 (3.52)
s

where Rj is the regularizing operator defined in the Appendix. We next take the limit
j->oo in (3.52). By Proposition 2.1 part(l), φe<g(I9L

p+1) so that V(φ)e<g{I9l}).
Using the identity

jφ) - V(φ) = 2 Re(Rjφ - φ))dμf{μRjΨ + (1 - μ)φ\
o

we estimate pointwise in time

which proves the convergence of the left-hand side of (3.52) to that of (3.49). By the
same estimates as in Proposition 2.1 part (1) (see especially (2.10)) and by Lemma 2.3
part(l), the integrand in the right-hand side of (3.52) is bounded uniformly in j and
integrably in time according to

iζ-'UWφiV&BίW (3.53)

with l/q = σ = {l- ζ)/{p + 1) and for instance p = 1/2 and δ{r) = σ + 1/2, which
satisfies (2.5). Furthermore, for fixed τ,Rjφ(τ) tends to φ(τ) in B~γjl a n d / ( ^ φ ( τ ) )
tends to f(φ(τ)) in B)11 by the properties of Rj and Lemma 2.3 part (2), so that the
integrand in the left-hand side of (3.52) tends to that in the left-hand side of (3.49).
The result then follows from the Lebesgue dominated convergence theorem.

In order to prove (3.50), we start from (2.48) (see also the subsequent comments).
By an elementary argument of regularization in time, we obtain

= -2Re\dτ(HjΦ(τ),Hjfo(φ(τ))}e

)X (3.54)

where <.,. }e denotes the scalar product in Xe. We next take the limit j -> oo in (3.54).
The first member of (3.54) converges to that of (3.50) by the properties of Hj9 the fact
that Φe%(I,Xe) by Proposition 2.3 part(l), and the unitarity of £/(•) in Xe. The last
member of (3.54) tends to that of (3.50) by a similar (but simpler) argument as in the
proof of (3.49).
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Energy conservation follows by adding (3.49) and (3.50) together and using the
definition of the norm in Xe.

The last statement follows from the fact that ζ = 0 and that the integral in the
right-hand side of (3.49) and (3.50) is convergent at infinity in the case under
consideration. QED

Remark 3.3. In the situation of the second part of the proposition, if/ is unbounded,
say / = [T, oo), if ί0 is finite, and if φ(0)(ί)eL* for some k < 2* and some tel, it follows
from Propositions 2.1 and 2.2 that \dx V(φ(ή) tends to zero when t tends to infinity
so that the conservation of the energy takes the familiar form

E(φ(t),ψ(t))=\\Φ+;Xe\\2, (3.55)

where Φ+ = Φ(+ oo).
Proposition 3.4 and Remark 3.3 apply in particular to the local dispersive

solutions constructed in Proposition 3.1 and to the solutions with small initial data
constructed in Proposition 3.3.

We can now prove the existence of global dispersive solutions of the equation
(2.33). For simplicity, we restrict our attention to the case of non-negative V, the only
case anyway that we shall be able to treat in the next section.

Proposition 3.7. Let n ^ 3. Let/satisfy (Alb) both for p-\ = 4/(n - 2) and for some
p2 with p2-l<4/(w-2), and (A2) with V^O. Let #Ό( ) be defined by (3.11) with
r,σuσ2 satisfying (3.13% (3.14), (3.15) and (3.28). Then

(1) For any finite energy solution φ{0) of the free equation Π\φ = 0,/or t0 sufficiently
large, depending on φ{0) and possibly infinite, for any aeU,a^to,the equation (2.33)
has a unique solution φ in 2£0{I)9 with I = [α, oo). That solution satisfies all the
conclusions of Proposition 2.3 part (2), for all such I.
(2) The wave operators Ω±:Φ± = Φ(±co)-+Φ(0) exist as injective bounded
operators in Xe, and their inverses /2 + 1 are bounded.

Sketch of Proof. Part(\). By Proposition 3.1, there exists T > 0 depending on φ(0)

such that all the conclusions of Part (1) hold for / = [T, oo) and toel. In addition the
solution φ satisfies Proposition 3.4. We then extend those results to arbitrary
intervals [a, oo) by solving the equation (2.33) in successive intervals through the use
of Proposition 3.4 applied with p2 — 1 = 2(2 — ζ)/(n — 2) for ζ positive and small,
starting from T The conservation of the energy (Proposition 3.6) and the condition
F ^ O ensure that \\Φ(t);Xe\\ <^E1/2 uniformly in t, where E is the energy of the
solution, so that the successive time intervals can be taken of the same length. At
each step, the solution comes out to lie in the space #*0(') u s e d i n Proposition 3.4 and
satisfies the conclusions of Proposition 2.3 part (2), by Proposition 3.5.

Part (2). The existence and injectivity of the wave operators Ω± follow from Part (1).
Boundedness of the Ω+ and /2 + 1 follows from energy conservation in the form

e\\2 + ldxV(φ(O))=\\Φ±,Xe\\2+ lim \dx V(φ(ή), (3.56)
ί-> ± 00

where the last limit exists by Proposition 3.6. In addition

0 ^ jdx V(φ(0)) ί C || φ(0) \\2

2I^C \\ Φ(0);Xe\\2\
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so that || Φ±\Xe\\ is estimated in terms of || Φ(0);Xe | |, while

lim ldxV(φ(t))^C lim || Φ(t);XJ2* = C\\ Φ±;Xe\\2*

by the continuity of Φ from Γto Xe, so that conversely || Φ(0);Xe\\ is estimated in
terms of \\Φ±;Xe\\. QED

4. Time Decay of Solutions and Asymptotic Completeness

In this section we study the asymptotic behaviour in time of finite energy solutions of
the equation (1.1), defined as solutions φ of (1.1) such that Φ = (φ,φ)ELco(U,Xe). It
follows from Propositions 3.4, 3.5 and 3.6 and standard globalisation arguments
that for / satisfying the assumptions of Proposition 3.7 and for any Φo =
(φo,ιj/o)εXe, the equation (1.1) with initial data Φ(to)= Φo at some finite initial
time toeU has a global solution which is unique in ^ιoc{U) and which is a finite
energy solution. We shall see in Proposition 4.1 below that in fact any finite energy
solution belongs to ^/{oc(U) and therefore can be recovered by solving the Cauchy
problem with finite initial time in the way described above. We first prove that all
finite energy solutions of the equation (1.1) satisfy some uniform boundedness
properties in the sense that they belong to ^°°(L9(5f)) for suitable values of r, p, q and
suitable assumptions on the interaction/. The method of proof is a direct estimation
and does not require the elaborate machinery of [8,11,21]. We next prove the main
result of this paper, namely the fact that for a class of repulsive interactions, all finite
energy solutions of the equation (1.1) are dispersive in the sense that they satisfy the
space-time integrability properties previously found for the solutions of the free
equation • φ = 0 (see Lemma 2.2). In the framework of Scattering theory, those
properties imply asymptotic completeness in the energy space. The proof relies on
the Morawetz-Strauss estimate [21] which is directly related to the approximate
dilation invariance of the equation (see Lemma 4.3) and on the finiteness of the
propagation speed for the equation (1.1) (see Lemma 4.2). Combining those two
estimates one proves that suitable Besov norms of finite energy solutions of the
equation (1.1) are arbitrarily small in arbitrarily large time intervals (see Lemma 4.5).
That property is exploited through the integral equation (2.33) and for that purpose
one needs some additional estimates on the integrand in that equation (see Lemma
4.7). With those estimates available the proof follows step by step the corresponding
proof for the NLS equation, given in [8] and for the NLKG equation, given in [11].
The final results are collected in Proposition 4.2.

In this section we shall make repeated use of an additional estimate on the
interaction term, which can be stated as Lemma 4.1 below. As a first approximation,
the reader can take η = 0 in that Lemma. The case η Φ 0 is needed only in the proof of
Lemma 4.5 below.

Lemma 4.1. Let n^3. Let f satisfy (Ala). Let 0 < λ ^ 1, p ^ λ, p < 1, 1 < 7^ 2 ^ r,
v < oo, 0 ^ η ^ Min {δ{S)/n, {p - l)/υ} and 0 ^ σ = p + δ(r) - 1 < 1. Then, for all

^, with φeLυ if η > 0, the following inequality holds:

Γ (4.1)



560 J. Ginibre and G. Velo

provided

(4.2)

and provided v ^ 0 satisfies

(p - l)(n/2 - 1) = 1 + δ{ί) - λ + vσ + ηv(δ(υ) - 1). (4.3)

Proof. We estimate the left-hand side of (4.1) by Lemma 2.3 part(l) as

JjWSCWφ BΪlWWφΓ'l (4.4)
with

n/s = δ(ί) + δ(k)9 (4.5)

and we estimate the last norm in (4.4) by the Holder inequality as

(4.6)
with

l/s-l/u = η. (4.7)

Since 0 ^ η ^ δ(ί)/n, the conditions (4.5) and (4.7) determine u with 1 ̂  u ^ oo for
any fc^2 and v^2. We next estimate the norms of φ in B£ and L ^ " 1 " ^ " by
interpolation between the norms of φ in H2 a n d m ^? a n ^ by using the Sobolev
inequalities if necessary. The interpolation is possible provided

(4.8)

and

1 ύ δ{(p - 1 - ηυ)u) ̂  1 + Min{σ,(σ/(1 - p)} = 1 + σ/(l + p_) (4.9)

or equivalently, after elimination of u through (4.5) and (4.7)

(p - 1 - ηv)(n/2 - 1 - σ/(l + p_)) g 5(/c) + δ(ί) - ηn

2-l). (4.10)

The conditions (4.8) and (4.10) constrain δ(k) to lie in the intersection of two
intervals, both of which are non-empty under the assumptions made (in particular
p - 1 - ηv ^ 0). The interpolation is possible, namely the conditions (4.8) and (4.10)
are compatible for fc, under the conditions (4.2) and

(p - l)(n/2 - 1) ̂  1 + δ(t) -λ + ηυ(δ{υ) - 1). (4.11)

When possible, the interpolation yields (4.1), where v is defined by the homogeneity
condition

n/l- λ = {p - v - ηv){n/2 - 1) + v(n/r -p) + ηn (4.12)

or equivalently (4.3), and satisfies 0 g v ^ p - ηv. Finally, the lower interpolation
condition (4.11) reduces to the condition v ^ 0. QED

We are now in a position to prove the basic uniform boundedness result for the
solutions of the equation (1.1).

Proposition 4.1. Let n^3. Let f satisfy (Ala) with p satisfying (3.30). Let φ be a
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solution of the equation (1.1) such that Φ = (φ, φ)eLgc(M,Xe). Then

3/(n - 2) < p - 1 < 4/(π - 2) (4.13)

(1) Φ = (

Let in addition ft §; 4, let

or equivalently (see (2.40)) 0 < ζ < 1/2, and let φ be a finite energy solution. Then
(2) For any r,p,σ9q satisfying (2.5) and ί/q = σ < γ(r)/2, φeί™(Lq(BΪ)) and

Proof. We concentrate on the properties of φ. Those of φ are derived in a similar
way.

Part(\). The proof is similar to that of Lemma 3.3 of [9]. The additional lower
bound on p as compared with that lemma comes from the fact that the L2 norm of φ
is not available in the present case. By interpolation with H\ and by the Sobolev
inequalities, it suffices to prove the result for γ(r) = 1 — ε and 0 < 2σ ^ y(r\ with ε > 0
and small. For such a value of r, we prove it in each bounded interval / for values of σ
increasing from 0 to y(r)/2 by successive steps of length ε. At each step we estimate the
norm of φ in Lq (/, Bf) with \jq" = σ" = σ' + ε = l/q' + ε by the use of the integral
equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with η = 0 as

\\K(t-τ)f(φ);Bf\\^C\t-τΓm\\f(φyJϊ\\

gC|ί-τΓ^||φ;Hiirv||φ;β?f|r (4.14)

with { S r and λ = σ" + α(/) so that (4.3) becomes

(p - l)(n/2 - 1) - 1 + y{ί) + vσ' - σ". (4.15)

We then estimate

||F(to,<p);L*V,Bf)II^Cm^ (4.16)

by the Young inequality, provided 0 < ζ ^ 1, 0 ^ σ'\ vσ' ^ 1, and

vσ' + σ", (4.17)

which coincides with (4.15). One can take for instance y(£) = 1 — ζ + ε with ε ^ C/2,
and v = 1. The upper interpolation condition (4.2) needed to apply Lemma 4.1 has
been shown to hold for that choice and the relevant values of σ', σ" in the proof of
Lemma 3.3 of [9]. Substituting the estimate (4.16) into the integral equation (2.33),
one obtains for the previous choice v = 1,

\\φ U"(hBf)\\ ^ \\φ^\U\lBf)\\
Jφ ί/MίOll (4.18)

from which the result follows in a finite number of steps.

Part (2). The proof is similar to that of Proposition 3.1 of [11]. By interpolation and
the Sobolev inequalities, it suffices to prove the result for y(r) = 1 + ε and σ = 1/2 — ε
with ε > 0 and small. For such a choice of r and σ, we estimate φ again by the use of
the integral equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with
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η = 0 as

ΐ\\^C\t-τr{ί)\\φ;H\\\p^\\φ;B?Γ (4.19)

with / ^ r and λ = σ + α(/) so that (4.3) becomes

(p - l)(π/2 - 1) = 1 + y(/) + (v - l)σ, (4.20)
or equivalently

C = 1 — y(O — (v — i)σ . (4.21)

We use the estimate (4.19) with different values of / and v according to whether
t-τ\ ^ 1 or | ί - τ | ^ 1, with

0 ^ v ^ 1 - ε/σ < 1 (4.22)

in both cases. For 11 — τ \ g 1, we take 0 ^ y(/) Ξ y _ ^ l - ε , which is compatible with
(4.22) provided 2ε :g ζ ^ 1 + σ = 3/2 — ε, and therefore under (3.30) for ε sufficiently
small. For \t — τ\ ^ 1, we take y(/) = y+ = y(r) = 1 + ε, which is compatible with
(4.22) provided 0 ^ ζ ^ σ — ε = 1/2 — 2ε, and therefore under (4.13) for ε sufficiently
small. We denote by v+ the values of v corresponding to the two cases. We now
define

(4.23)

k(t)=\\φ(t);Bζ\\. (4.24)

We restrict our attention to positive times. Taking the norm in Bp

r of both members
of the integral equation (2.33) and estimating the integrand by (4.19) we see that
for t ^ 0, k(t) satisfies the integral inequality

k^ko + μ*Σkv± (4.25)

with

r v ± for ί > 0,

for ί^0.

In particular, μGLx([R + ). We now take a > 0, multiply both members of (4.25) by the
characteristic function χa of the interval [0,α], and take the norm in ^^(U).
Applying the Young inequality in the spaces /*(L*) (see for instance Lemma 5.6 of
[8]) and the inclusion °̂°(L«) c ^{Uq) for v ^ 1, we obtain

H^/c ^ - C ^ ) ! ! ^ H/co ^ - C ^ ) ! ! -+- C M a x || Φ ;Z.°°(R,//i) ||^v± || Z Λ / C ; ^ ° ° ( ^ ) ||v±.
±

The contribution of the free term is controlled by Lemma 2.2. Since v+ < 1, the left-
hand side is bounded uniformly with respect to a. This completes the proof. QED

We now prove the finiteness of the propagation speed for the equation (1.1) in the
form of local energy conservation. The result given in Lemma 4.2 below, and its
formal algebraic derivation are the same as that for the NLKG equation given in
Lemma 4.2 of [11]. The actual proof however, is somewhat different because we use
a different (more economical) regularization procedure. For any open ball
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Ω = B(x,L) of center x and radius L in Un, for any ίeIR, we define Ω±(t) =
B(x,L± \t\) with the convention that B(x,L) is empty if Lrg 0. For any measurable
set Ω a Un, for any (φ, ψ)eXe, we define

+ |Vφ| 2 + V(φ)). (4.27)

Lemma 4.2. Let n^3. Let f satisfy (Alb) with p satisfying (330) and (A2) with V^O.
Let φ be a finite energy solution of the equation (1.1). Then for any open ball Ω c Un

9

for any teU, the following inequalities hold:

E(φ(t\ φ(t);Ω_(t)) £ E(φ(0\ φ(0);Ω)

and
E(φ(t), φ(t); £Ω + (t)) ύ E(φ(0), φ(0); CΩ),

where £ denotes the complement in Un.

Proof. Without loss of generality, we can assume that Ω = B(0, L) and that t is
positive. We choose a function mG^°°([R, U + ) with m(s) = 0 for s^O, m(s)=l
for 5 ̂  1 and 0 ^ m'(s) ^ 2, and we define mε(s) = m(s/ε). By a computation similar to
those contained in the proofs of Proposition 3.6 and of Lemma 4.2 of [11] and an
elementary argument of regularization in time, we obtain

μxmε(L-t-\x\){\Hjφ\2 + \HjVφ\2 + V(Hj<p)}(t,x)

£ μxmε(L-\x\){\Hjφ\2 + \HjVφ\2 + V(Hj(p)}(0,x)

+ JdτJώcmβ(L- τ - | x | ) 2 R e H ^ ( / ( H ^ ) - Hjf(φ))(τ,x)9 (4.28)

where H7 is the regularizing operator defined in the Appendix. We next let j tend to
infinity and ε tend to zero in that order. The left-hand side and the first term in the
right-hand side of (4.28) tend to E(φ(t\ φ(t);Ω_(ή) and E(φ(0), φ(0);Ω) respectively,
by the same argument as in the proof of Proposition 3.6. Note however that the
assumption that φ(t)eLp+1 for some ίeίR is not needed here, because the function
mε(L — τ — I I) has compact support. We next prove that the second term in the right-
hand side of (4.28) tends to zero when j -• oo for fixed ε, by proving that the
contributions of f(Hjψ) and Hjf(φ) both tend to their common formal limit. The
argument is almost the same as in the proof of (3.49), (3.50) with an additional
complication due to the function m(τ,x) = mε(L — τ — \x\). Instead of (3.53), we
obtain the estimate

]dτ(Hjφ(τ),mf(Hjφ(τ))>
o

S CII φ; L'([0, ί],BΓ')IIII rhf(Hjφ);L«([0, ί], BJ'")\\

S Cf | |φ;L«([0,ί],BΓ : ) | | {| |m;L»([0,ί],L»)|| + | |m;L"([0,ί],B}-») | |}

•||φ;L«([0,ί],βf)|r, (4.29)

where nj{ = 1 — p ^ 1/2, the last inequality follows from a straightforward extension
of Lemma 2.3 part(l), the first norm of m is 1 and the second one is finite since
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and m has compact support as a function of x. The same estimate holds for
the contribution of Hjf(φ) to (4.28). With that modification included, the proof
proceeds as that of energy conservation in Proposition 3.6 through the use of the
Lebesgue dominated convergence theorem in the time integral. QED

We now recall the basic decay estimate [21]. The result given in Lemma 4.3
below and its formal algebraic derivation are again the same as that for the NLKG
equation given in Lemma 4.3 of [11], with a somewhat different proof. We define

W1(z)^zf(z)-V(z). (4.30)

We also introduce the functions g(x) = (1 + |x | 2 )~ 1 / 2 and gγ = V (xg). One checks
easily that (n — ΐ)g ̂ gγ^ng and that Agγ ^ 0 for n ̂  3.

Lemma 4.3. Let n^3. Let /satisfy (Alb) with p satisfying (3.30) and (A2). Let φbe a
finite energy solution of the equation (1.1). Then for any s and tinU,s^t,φ satisfies
the inequality

£ Re {<φ(s),(x<7 V + V-xg)φ(s)) -<φ(t),(xg-V + V-xg)φ(t)}}. (4.31)

Proof. By the same algebraic computation as in the proof of Lemma 4.3 of [11] and
an elementary argument of regularization in time, we obtain

\dτ$dxgίW{Hjφ(τ))
S

= Re {<H/p(s),(x0-V + V xg)H,φ(s)> - <

+ \dτ Re <f(Hjφ(τ)) - H}f(φ(τ)\{xg V + V-χg)Hjφ(τ)y. (4.32)
S

where Hj is the regularizing operator defined in the Appendix. The first integral in
the right-hand side of (4.32) is negative (see the proof of Lemma 5.2 of [8]). We next
let j tend to infinity. By the same argument as in the proof of Proposition 3.6, the left-
hand side of (4.32) converges to that of (4.31). Note in particular that

(4.33)

with

or equivalently ί = n/ζ so that £>n and || gί \\, < oo for ζ < 1. In addition, the first
two terms in the right-hand side of (4.32) converge to the right-hand side of (4.31). We
next prove that the last integral in (4.32) tends to zero when j-> oo by proving that
the contributions of f(Hjφ) and oίHjf(φ) both tend to their common formal limit.
We use again the same argument as in the proof of (3.49), (3.50), now with an
additional complication due to the function xg. In particular, instead of (3.53), we



Scattering Theory of Non-Linear Wave Equations 565

estimate

\dτ(f(Hjφ(τ)),(xg'V +

rp-Ί\ \\φ(τ);B?\\ l lx^ΓΊI

rp\\ Wφ^BΓ'W \\W,Bξ\\} (4.34)

by a straightforward extension of Lemma 2.3 part (1), and with ε > 0, n/k = 1 — p — ε,
njί = p — ε. Assuming for the moment that the last two norms of xg are finite, and
taking p ̂  1/2, we estimate the last two norms of / as

by Lemma 2.3 part (1), with (p + δ(r) - 1 = )σ = (1 - ζ)/(p + 1). We then estimate the
time integrals in (4.34) by the Holder inequality and (noting that \\xg 11^ = 1)
continue (4.34) as

(4.35)

with l/q = σ and 1/q'= σ — ε. The same estimate as (4.34) (4.35) holds for the
contribution oΐHjf(φ) to the last term in (4.32). With those estimates available, the
proof proceeds as that of energy conservation in Proposition 3.6 through the use of
the dominated convergence theorem in the time integral.

It remains to be proved that the norms of xg that occur in (4.35) are finite. We
consider only the last one. By an elementary computation, we obtain, for any
v- v ' en O w

Λ, X E ίhλ ,

\xg(x) - x'g{x')\ g Min {2, \x - x'\(g(x) + g(χ'))}. (4.36)

Using the integral form of the Besov space norms (see (2.24)), we estimate

j J . (4.37)

Using (4.36), we estimate the ί/ norm in two ways. For \y\ ̂  1, we obtain from the
second term in the minimum in (4.36),

\\xg-τyxg\\,£2\y\\\g\\,. (4.38)

For I y \ ̂  1, we use the first term in the minimum for | x + yβ \ ̂  21 y \ and the second
term for |x + yβ\ ̂ 2\y\ and obtain

\\xg-τyxg\\^C\y\n/ί. (4.39)



566 J. Ginibre and G. Velo

Substituting the estimates (4.38) for \y\ ̂  1 and (4.39) for \y\ ̂  1 into (4.37) and using
the fact that n/έ = ρ-s shows that xgeBp

r QED

In the same way as in [8] and [11], the estimate of Lemma 4.3 will be used
through its following consequence.

Lemma 4.4. Let n^.3. Let f and φ be as in Lemma 4.3 and assume in addition that
Wx ^ 0. Then for any ε > 0, a0 > 0 and / 0 > 0, there exists b0 > 0, depending only
on ε, α0, / 0 and on the energy E of φ, and there exists c such that ao^c ^b0 — ί0

and

$°dτ j dxW^(x,x))^s. (4.40)
c \x\^2τ

One can take

bo = (ao + So + l ) e x p { 4 £ / o ε - 1 ( π - I ) " 1 } . (4.41)

Proof. The proof is the same as that of Lemma 4.4 of [11].
The next step in the argument consists in proving that an arbitrary finite energy

solution of the equation (1.1) is arbitrarily small in arbitrarily large intervals of time
provided those intervals are located sufficiently far. That result requires a repulsivity
property of the interaction term /, which we state as follows

(A3) There exists C > 0 and p4fp5 with 1 ̂  p4 ^ p5 < oo such that for all peU+,

W1 (p) ̂  C Min (pP4 + \pP5 + 1). (4.42)

We can now prove the following result, in close analogy with Lemma 4.5 of [11].

Lemma 4.5. Let n ̂ 4 , letf satisfy (Alb) with p satisfying (4.13), (A2) with V^0 and
(A3). Let r, p, σ and q satisfy (2.5) and 0 < σ = 1/q. Let φ be a finite energy solution of
the equation (LI). Then for any ε > 0 and any / > 0, there exists a>0 such that

\\φ;ί<°(Iβ9la9a + aBί)\\^*. (4-43)

Proof. The proof is the same as that of Lemma 4.5 of [11] with only one difference.
Since now the energy does not contain the L2 norm, the contribution of the region
t — Θ2^τ ^t — θu\x\>2τ has to be estimated by using the norm of φ in L2*, namely
by taking v3 = 2*. The local energy estimate of Lemma 4.2 has then to be
supplemented by a decay estimate for the norm of φ in L2* replacing (4.38) of [11].
That estimate is given in Lemma 4.6 below. With that estimate available, the proof
proceeds as that of Lemma 4.5 of [11]. QED

Lemma 4.6. Let n^3. Let f satisfy (Alb) with p satisfying (3.30) and (A2) with V^0.
Let φ be a finite energy solution of the equation (1.1). Then

0. (4.44)

Proof. Let 1 < a < 2, let χe^°°(R") satisfy χ(x) = 0 for |x | ̂  a, χ(x) = 1 for |x| ̂  2
and 0 ̂  χ S 1, and let χt(x) = χ(x/t). Then for all t ̂  0,

|| φ(t); L2\QB(0,2ί)) || ύ II χtφ{t) II2. ̂  II (Vχ,)φ(t) || 2 + || χ,Vφ(t) || 2

^ t~' II Vχ II „ II φ(t);L2(B(0,2t)\B(0,at)) ||

+ IIZILII Vς»(t); CB(0, at)) ||. (4.45)
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The first norm of φ in the last member of (4.45) is estimated by writing φ as the
integral of φ and estimating the local L2 norm of the latter by Lemma 4.2, while the
local L2 norm of Vφ is estimated directly by the same lemma. We can then continue
(4.45) as

• S II Vχ || „ {Γ' || φ(0); L2(β(0,2t)\B(09 at)) \\

+ £(0,5(0,3t)\B(0,(a - l)ί))1 / 2} + E(0, ζB(0, (a - l)ί)) 1 / 2 (4.46)

The remaining norm of φ(0) is estimated by the Holder inequality, so that (4.46) can
be continued as

2ω;>" || φ(0); L2*(£(0,2ί)\B(0, at)) \\

, (4.47)

where ωn is the volume of the unit ball in Un. The result follows from (4.47), from the
fact that φ(0)eL2* and from Lemma 4.2. QED

In order to proceed further, we need to prove that some norm of an arbitrary
finite energy solution of the equation (1.1) satisfies a superlinear integral inequality
in addition to the sublinear inequality used previously (see (4.25)). For that purpose,
we need the following estimate.

Lemma 4.7. Let n ̂  4. Let f satisfy (Ala) for two values px and p2 with

p2-K4/(n-2)<p1-l. (4.48)

Let r and σ satisfy y(r) > 1, γ(r) sufficiently close to 1, and σ < 1/2, σ sufficiently close to
1/2. Then there exists yί and y2 satisfying 0 ^ y2 < 1 < Vi and there exists v satisfying
v > 1, vσ ^ 1 and (v - l)σ < 1 - y29 such that'for all φeBp

rr\H\ and all t > 0, the
following estimate holds

r

p|| S Mm (I t H )M( || φ;H£ ||) || φ;jj?|Γ. (4.49)
£ = 1 , 2

Proof. Without loss of generality, we assume that (pλ — l)(n/2 — 1) = 2(1 + ε) and
(Pi ~ l )( n / 2 - 1) = 2 - ε and we take y(r) = 1 + ε with ε > 0, ε suitably small. We
obtain the two estimates of (4.49) by applying successively (2.3) (see also (3.5), (3.6))
and Lemma 4.1 with η = 0and/l = σ + a(£),oncewithp = plfyx = y ( ^ 1 ) = 1 +ε, and
once with p = p2, y2 = y(tf2) = 1 — 2ε and with (v — l)σ = ε, which fulfills the relation
(4.3) or equivalently

(p - l)(n/2 - 1) = 1 + y{ί) + (v - l)σ (4.50)

in both cases. Furthermore (v — l)σ = ε < 1 — γ2 = 2ε and vσ = σ + ε ̂  1. The upper
interpolation condition (4.2) is seen to be satisfied in both cases for ε sufficiently
small and σ sufficiently close to 1/2 by an explicit computation for which we refer to
the proof of Lemma 3.3 in [9]. QED

It follows immediately from Lemma 4.7 that under suitable assumptions on
/ and on p, r, q9 any finite energy solution of the equation (1.1) satisfies the following
properties. The norm k(t) defined by (4.24) belongs to ^(U) by Proposition 4.1, is
small in large intervals by Lemma 4.5 and satisfies a superlinear inequality

kSko + μ*k\ (4.51)
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where v > 1 and

μ ( ί ) = M i n | ί Γ 7 ί for ί ^ O
i = l , 2

μ(t) = 0 for ί^O,

by Lemma 4.7. From that information, the dispersive properties of such solutions
follow by the same abstract arguments as in the case of the NLS equation [8]. We
now state the final result.

Proposition 4.2. Let n^4. Let f satisfy (Alb) for Wo values px and p2 satisfying (4.48),
(A2) with V^Oand (A3). Then

(1) Any finite energy solution of the equation (1.1) belongs t
(2) The wave operators Ω+ defined in Proposition 3.7 part (2) are surjectίve in Xe.

Indication of Proof. It follows from Proposition 4.1, Lemmas 4.5, the integral
inequality (4.51) and from Lemmas 5.10 and 5.11 of [8] that any finite energy
solution φ of the equation (1.1) belongs to Lq(R,B?) for the values of /?, r, q that
appear in Lemma 4.7. By interpolation with the boundedness of φ in H\ and the
Sobolev inequalities, this implies that (peLq(B?) for all p,r,σ and q satisfying (2.5)
and 1/q = σ, except for the boundary values corresponding to y(r) = 2σ. Finally, the
whole region (2.5) is recovered by applying Proposition 2.3. QED

In the framework of Scattering theory, Proposition 4.2 part (2) means that the
wave operators obtained in Proposition 3.7 are asymptotically complete in Xe.

Appendix

In this appendix, we collect the definition and some basic properties of the
homogeneous Besov and Sobolev space of arbitrary order (see [1] for general
information on those spaces). We discuss in particular the problem of the choice of
representatives (see [3] for that question). We also discuss the meaning attached to
the equation (1.1) and its equivalence with the integral equation (2.33).

We denote by #" the Fourier transform and we write v = $Fv for any
ve&" = ^'(W1). We define the subspaces 3£ = %(Un) and @0 of 2> = ^(Un) by

2£ = {ue^:Daύ(0) = 0 for any multiindex α} (A.I)

and

^ o = {we^:we^([R"\{0})}. (A.2)

Clearly Jf is a closed subspace of ^ , so that 2£ is reflexive, while <30 is easily seen to
be dense in if. The dual of the inclusion map ^ a ^ is a surjection π from &" to 2£\
the kernel of which consists of the polynomials $P, so that 2£' = &"/&>.

L e t φoe^(Un) w i t h O ^ i A o ^ l , Φo(ξ)=l for \ξ\^ί a n d φo(ξ) = 0 for

IξI ^ 2. For any jeZ define φj(ξ) - φo(2~jξ) and φ = φj- φj-λ so that

and, for any ξ Φ 0, φj(ξ) = Σ ΦλO w ^ t n a t m o s t t w o non-vanishing terms in the sum.



Scattering Theory of Non-Linear Wave Equations 569

By homogeneity || φj \\x = \\ φ0 \\ x and || φj \\ 1 = \\ φ0 \\ x for any jeZ.

With any ue&" we can associate the sequence of functions {φj*u = Uj},jeZ.
That sequence is actually defined for ue&" since Uj = 0 for ue£P. For any peU and
any r and s with 1 ̂  r, s rg oo we define the homogeneous Besov spaces

(A.3)

and the auxiliary spaces

(A.4)

I

with obvious modifications if s = oo. The factor 2P in the sums mimicks a derivative
of order p. Equipped with the norm given by (A.3) and (A.4) the spaces BP

S and Fp

s are
Banach spaces. They satisfy FP

S a Bp

s if 1 ^ r ^ s ^ oo and Bp

s a FP

S if 1 ^ s ^ r ^ GO.
We next define die homogeneous Sobolev spaces. For any peU, we define the

operator ωp by ωpu(ξ) = | ξ \pύ(ξ) for any ue£f. Then ω p is an homeomorphism of 2£
onto itself, and therefore induces an homeomorphism of i Γ onto itself, still denoted
by ωp. For any p, for any r with 1 ^ r < oo, we define the homogeneous Sobolev
spaces Hp by

HP = ω~pπ(Π).

Any ueπ(Π) is the image of only one representative uReU. Equipped with the norm
|| u; HP || = || (ωpu)R ||r, i ϊ P is a Banach space. The homogeneous Besov and Sobolev
spaces can be compared by using the (non-trivial) fact that FP

2 = HP for 1 < r < oo so
that the previous embeddings imply BP

2 c HP cz BP

r if 2 ^ r < oo and 5 P

r c //P cz 5 P

2

if 1 < r ^ 2. The Sobolev embeddings for the Besov spaces take the form

DP Op' /A <J\

with n/r — p = n/r' — pr, 1 ^ r ^ rr ^ oo and 1 ̂ s ^ oo.
Another embedding of interest is contained in the following lemma.

Lemma A.I. Let 1 ̂  /, m, rή ^ oo, mr rg m, AeIR αnrf ε > 0. Then Bλ

ίrr{ ZD f] B^ε, and
±

the following estimate holds

II w ; ^ m I I ^ c | | M ; 5 ^ W , I I ^ C Π I I W ; ^ m ε I I 1/2 ( A 6 )

Proof. The result follows from the definition of Besov spaces through a dyadic
decomposition by a simple use of the Holder inequality. QED

For a number of arguments we need to approximate elements of &" by smooth
functions. For any j,keZ+ we define the regularizing operators

for any u e ^ ' and Hj = if^ . Clearly H^ue^"0 with at most polynomial increase. The
operators Hjk are bounded uniformly with respect toy, fc and converge strongly when
j and (or) fc -> oo in a number of spaces. By the definition (A.I) the operators Hjk are
uniformly bounded with respect toj and fc in all BP

S and converge strongly to 11 when
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, fc-> oo for s < oo. The operators Hjk converge strongly to D in S)o since Hjku is
independent of;, k for ue§Q and;, k sufficiently large. In addition Hjk converges to
Haok when;-> oo strongly in £f and therefore in ίf\ and Hjk converges to 1 when

j , k -• oo strongly in ^ and therefore in 2ϋ'. Furthermore the operators Hjk are
uniformly bounded with respect to j and k in U since

Since ® 0 is dense in U for 1 < r < oo, Hjk converges strongly to 11 in U when j , k -^ oo.
The locally regularized functions Hjku, with ue&"9 in general do not decay at

infinity. In some applications it will be useful to introduce an additional cut off at
infinity in space. For that purpose we choose a function g0 with go^o^ύo = 0,
Supp^o <= {ξ:\ξ\ < 1/2}, y 0 H i = 1 and, for any jεZ, we define <?/£) = 2%(2 '£) .
The operators of multiplication by Qj are uniformly bounded in norm with respect to
j in all the Lr, 1 ̂  r ^ oo, and converge to H strongly in U for 1 ̂  r < oo when j -» oo.
We define the operators ^ by R u = gfl^u for any ue^\ so that Rjue@0. Note also
that

^ { (A.7)

Clearly the operators Rj are uniformly bounded in norm with respect to j in L\
1 ^ r ^ oo, and converge to 1 strongly in Lr, 1 < r < oo when; -• oo. We next study
the behaviour of Rj in the Besov spaces.

Lemma A.2. (1) The operators Rj are uniformly bounded with respect toj in Bp

rs, with
p e U , 1 ̂ r ^ o o , 1 ̂ s ^ o o .
(2) The operators Rj converge to H whenj^cc strongly in Bp

rs with peIR, l ^ r < o o ,
1 ^ s < oo.

Proof. We prove only Part (2) which is slightly more complicated than Part(l). By

Rju -u = (gj - ϊ)HjU + (Hju - u\

and by the convergence properties of Hj9 it is sufficient to prove that (#,- — ί)HjU -• 0
in BP

S. For that purpose we need an estimate in tfs of the sequence v = {̂ m} defined by

ι;w = 2 ^ | | φ M * ( ( f l f J . - l ) ί ί ^ ) | U Σ 2 ^ | | φm*{(gj- l)(^*i*)) | |Γ . (A.8)

By the support properties of φk and c)j the norms in the right-hand side of (A.8) are
different from zero only for \k — m | ^ 2 . Using the Young inequality and the
previous restriction on k we obtain

where w = {wk} is the sequence

Since ueBP

s the sequence w is bounded uniformly in ; by a sequence in / s and each
term tends to zero when;-* oo, so that w->0 in ίs when;-> oo. QED

The elements of homogeneous Besov spaces are equivalence classes of distri-
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butions modulo polynomials. However we are interested in solving the
equation (1.1) in a genuine distributional sense. Therefore we repeatedly face the
problem of choosing distributional representatives of elements of B?s spaces, and
making sure that those choices are consistent with the various operations to be
performed. This is all the more necessary as some of the statements and estimates,
such as those of Lemma 2.3, explicitly require the use of representatives.

The problem of the choice of representatives has been studied in [3], from which
we extract Lemma A.3 below. In order to state it, we define the space &"0 of tempered
distributions tending to zero at infinity as

&"0 = {ue<f'\ dλu^0 in 9' when λ-+0}>

where dλ is the dilation operator defined by (dλu){x) = u(x/λ).

Lemma A.3. Let 1 ̂  r,s ^ oo, n/ί = n/r — p>0. Then

(1) Any ueBP

s has a unique representative uR in &"0. The map u^uR is continuous
from BP

S to C9% and uR is the limit of Hμ in £f' when j -» oo.
In addition
(2) // p > 0, then uReLί+ε + Lί~ε (for some ε > 0). The map u^>uR is continuous from
BP

S to Lf+ε + ί Λ ε and uR is the limit ofHμ and of Rμ in ί/+ε + ί/~8 whenj-+ao.
(3) If p ^ 0, s ̂  2 and { ^ 2, then uReLf. The map u-+uRis continuous from BP

S to if
and uR is the limit of Hμ and of Rμ in if whenj-+oo.

Proof. We refer to [3] for Parts (1) and (2). Part (3) follows from the embedding (A.5)
and the properties of Hj and Rj. QED

In all the applications made in this paper the assumptions of Lemma A.3 Part (1)
are satisfied. Whenever a choice of a representative is needed we select the
representative described in that lemma, which we sometimes call the canonical
representative. In order to simplify the notation we use the same symbol for the
Besov space element and for its canonical representative. That occurs in particular
in the following three cases:

(1) In the definition (2.1) of the energy space Xe it is understood that the first
component is the canonical representative (which is in L2*) of an element of H\ = B\,
according to Lemma A.3 part (3).
(2) The interaction term / in (1.1), generally satisfying the assumption (Ala), is
always to be applied in the ordinary sense to the canonical representative of its
argument. Subsequent estimates such as the estimates (2.17), (2.19) and (2.21) of f(φ)
in Lemma 2.3 are then performed on the class of f(φ) in a suitable Besov space.
Clearly the functions g1 and g2 in the same estimates are also applied to the
canonical representative of φ. Finally, by Lemma A.3 Part (2) and since /(0) = 0,
f(φ) is the canonical representative of its class.

(3) The operators K,K,K,... obviously commute with the regularisation operator
Hj. It follows therefore from Lemma A.3 that they preserve the choice of the
canonical representative whenever it exists. This remark applies in particular to the
transition from Φ to Φ defined by (2.38).

We now discuss the meaning of the integral equation (2.33) and its relation with the
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differential equation (1.1). We shall always work in situations where f(φ)eL™oc(I, B$)
for some interval / of 01 with /, m ̂  1, λ > 0, njί — λ > 0. The integral which occurs in
(2.35) is defined as a weak integral in 2£' by

ζ, J dτK(t - τ)f(φ(τ))\ = ]dτ(K(t- τ)ζj(φ(τ))} (A.9)
ίo / ίo

for all tθ9 tsl and for all ζe^. With the choice of the canonical representative of φ
and therefore of f(φ\ the integral is also defined weakly in &". It follows from the
available estimates and from Lemma A. 3 and the subsequent discussion that the
weak Sf1 integral is the canonical representative of the weak $£' integral.

We next define the weak time derivative in 2£' (a similar definition holds in Sf'\
Let /be an open interval of [Rand let φeLq

oc(I,X\φ e Lfoc(/, Y),q^ 1, where X and Y
are two Banach spaces continuously embedded in 2£' (or 9?l). We say that φ is the
time derivative of φ if the following equality holds in Θ\I)

for all ζe& (or ζe&).
The differential equation (1.1) and the integral equation (2.33) are equivalent in

the following sense.

Proposition A.I. Let I be an open interval of U and let φeLq(I,Bf) be such that

f(φ)eLm(I9B})9mthr9S9q,m^l.

(1) Let φ satisfy the equation (1.1) in the previous weak sense. Then
φeV^ΓtX), φe<g{Γ9 X) where Γ is the closure of I inM,X = B) + Bp

r~
2 and, for all

s,teΓ,φ satisfies the equation

φ(t) = A(s,φ^;φ)(t) (A.11)
with

(2) Conversely let φ{0)eLq(I,B?) (this is not essential) be solution of the equation
[Jφ(0) — 0 and let φ satisfy the equation (A.ll) for some seΓ. Then φ satisfies the
equation (1.1) in the previous weak sense.

The proof of Proposition A.I proceeds by a direct computation and duality
arguments.
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