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Abstract. We study the asymptotic behaviour in time of the solutions and the
theory of scattering in the energy space for the non-linear wave equation

e + f(e)=0

in R", n=3. We prove the existence of the wave operators, asymptotic
completeness for small initial data and, for n = 4, asymptotic completeness for
arbitrarily large data. The assumptions on f cover the case where f behaves
slightly better than a single power p = 1 + 4/(n — 2), both near zero and at infinity
(see (1.5), (1.6) and (1.8)).

1. Introduction

A large amount of work has been devoted to the theory of scattering for the non-
linear wave (NLW) equation (or non-linear massless Klein-Gordon equation)

Oe=¢—A4¢0=— f(g), (L.1)

where ¢ is a complex valued function defined in space time R"*!, the upper dot
denotes the time derivative, A is the Laplace operator in R" and f is a non-linear
complex valued function, a typical form of which is

flo)=2¢lo™! 12)
with 1 < p < co. We refer to a previous paper [12] for a more detailed introduction
and a comprehensive bibliography. It is known [9, 10] that the Cauchy problem for
the equation (1.1) with initial data (p(ty), ¢(to)) = (@g, ¥,) at time ¢, in the space
H'@® L? has a unique solution (¢, ¢)e%(R, H* @ L?) under assumptions on f which
reduce to 4 =0 and to

0sp—-1<

{4/(n —2) if n=3 (1.3)

if n<2
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in the special case (1.2). The theory of scattering for the equation (1.1) then gives rise
to two main questions. The first one is to prove the existence of dispersive solutions,
namely of solutions that behave as solutions of the free wave equation [Jp =0 at
+ o0 or — oo in time, or equivalently to prove the existence of the wave operators.
That result is generally proved by solving the Cauchy problem locally at infinity,
namely with large (possibly infinite) initial time, by a contraction method in a space
of functions exhibiting a suitable time decay, and then by extending those solutions
to all times by a standard globalisation method using the available conservation
laws, mainly the conservation of the energy. In order to implement the contraction
argument at infinity, one has to assume that the interaction f satisfies a suitable
condition of decay at infinity in space, which takes the form of a lower bound on p in
the special case (1.2). That condition depends on the choice of the space of initial data
for the Cauchy problem at infinity, namely of asymptotic states, and is all the more
stringent as that space is larger. Using the available estimates for the free wave
equation [J¢ =0, it is easy to implement the previous method with a sufficiently
small sp'ace of initial data under the condition p > p,(n), where p, (n) is the larger root
of the equation [19,20]

n(n—1)p?> —p(n*+3n—2)+2=0, (1.4)
a value which satisfies
L+4/n<p(n)<1l+4/n+8/n

The second question which arises in the theory of scattering is to prove
asymptotic completeness, namely the fact that all solutions of the equation (1.1) with
initial data in a suitable space are actually dispersive at + co and — oo. The only
treatment of that question available so far is based on the approximate invariance of
the equation (1.1) under conformal transformations [24, 15, 12] and requires the use
of a natural space X of initial data (see especially (2.10)—(2.13) in [12]), strictly
contained in the space H' @ L*.

A question left open at this stage is whether a complete theory of scattering for
the equation (1.1) can be constructed in a space of initial data as large as the energy
space X . That space, which in the present case is slightly larger than H* @ L2, will be
defined in Sect.2 below (see (2.1)). The solutions of interest, either for the
equation (1.1) or for the free equation [J¢ =0, are then the finite energy solutions,
which we define as solutions ¢ such that (¢, @)eL3.(I, X,), where I is the time
interval where ¢ is defined. A complete theory of scattering for the equation (1.1)
in the energy space has been constructed in [23], but it is restricted to small initial
data and to space dimensions 3 < n < 5. On the other hand, the more difficult part
of the problem, namely asymptotic completeness for arbitrarily large initial data
in the energy space, has been successfully treated for other non-linear equations,
namely the massive non-linear Klein Gordon (NLKG) equation [21,5,6,11], the
non-linear Schrodinger (NLS) equation [8, 11, 18], and the Hartree equation [14].
In all those cases asymptotic completeness is derived through a variant of the
original proof of [21] based on the approximate invariance of the various equations
under space time dilations.

The purpose of the present paper is to extend that treatment to the NLW
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equation (1.1) and to construct a complete theory of scattering for that equation in
the energy space. The proof of existence of dispersive solutions is based on the usual
contraction argument and follows [7,8] for the general framework and [23] for
some of the estimates. The proof of asymptotic completeness follows the latest
version of the method of [21], given in [8] and [11] for the case of the NLS equation
and of the NLK G equation respectively. The resulting theory, however, differs from
that of the NLKG equation in several respects. The first main difference is that the
energy does not contain the L* norm of ¢, and that the latter is in general not
bounded in time for finite energy solutions, even for the free equation [J¢ = 0. That
fact is reflected in the definition (2.1) of the energy space X . Correspondingly, in this
paper we never assume the initial data to have finite L2 norm. The second difference
is that the time decay of the finite energy solutions of the free equation [J¢ =0 is
rather weak. As a consequence, the lower bound required on p in order to implement
the contraction argument at infinity turns out to be equal to the critical value
p — 1 =4/(n — 2) namely to the upper bound in (1.3). That fact restricts the argument
to space dimension n = 3. Furthermore, since the extension of the dispersive
solutions to all times requires the strict upper bound in (1.3), the whole argument
and in particular the construction of the wave operators does not cover the case
of a single power interaction like (1.2). The relevant assumptions on f will be
stated where needed in Sects. 2—4. They cover for instance the case where

f(@)=og(lol) (1.5)

and g is a smooth non-negative function that behaves as

g(s)=4,87"1 for 0<s<a (16)
g(s)=4,s7>71 for s=1/a ‘

for some a, 0 <a < 1, with
0<p,—1<4/(n—2)=p,— 1. (1.7)

The proof of asymptotic completeness, on the other hand, requires the existence of
some norm that decays integrably at infinity in time for solutions of the free equation
O¢ =0. As a consequence, that proof applies only to the case of space dimension
n = 4. It requires in addition a reinforcement of the assumption on f which takes
the form

0<p,—1<4/n—2)<p,—1 (1.8)

in the special case (1.5), (1.6).

This paper is organised as follows. In Sect. 2 we collect and/or derive a number of
properties and estimates that are needed in the rest of the paper, in particular space
time decay properties of finite energy solutions of the free equation, basic estimates
of the non-linear term in (1.1) (Lemma 2.3) and a number of relations between
various decay properties of the solutions of the equations(1.1) and [Jo =0
(Propositions 2.1, 2.2 and 2.3). In Sect. 3 we solve the Cauchy problem for the
equation (1.1) with large (possibly infinite) initial time and finite energy initial data.
We first solve the local problem at infinity for the critical value of p (Proposition 3.1)
and we prove that the solutions thereby obtained are dispersive in a natural sense
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and in particular have asymptotic states in the energy space (Proposition 3.2). As a
by-product of those results, we derive global existence and uniqueness of solutions
and we prove asymptotic completeness for small finite energy initial data
(Proposition 3.3). We then solve the local Cauchy problem at finite times in the
subcritical case (Proposition 3.4), we derive the conservation of the energy
(Proposition 3.6), and we finally prove the existence of global solutions that are
dispersive at + oo (or — o) and thereby the existence of the wave operators
(Proposition 3.7). In Sect. 4 we first derive some uniform boundedness properties of
finite energy solutions of the equation (1.1) (Proposition 4.1). We then prove the
main result of this paper, namely the fact that for suitable (repulsive) interactions, all
finite energy solutions of (1.1) exhibit the same time decay as those of the free
equation [J¢ = 0 (Proposition 4.2), thereby proving asymptotic completeness. That
section follows rather closely Sect. 5 or [8] and Sect. 4 of [11].

We conclude this introduction by giving the main notation used in this paper.
For any r, 1 £r < o0, we denote by || |, the norm in L' = L'(R"). With each r it is
convenient to associate the variables «(r), f(r), y(r) and 6(r) defined by

a(r) = 2(r)/(n+ 1) = y(r)/(n— 1) = 6(r)/n=1/2 = 1/r.

Of special interest are the values 2*=2n/(n—2) and r,= 2(n+ 1)/(n — 1). We shall
use the notation yg=1v(rg)=(n— 1)/(n+ 1) and similarly og, B and d5. Pairs of
conjugate indices are written as r and 7, where 1/r + 1/f = 1. For any integer k, we
denote by H* = H*(R") the usual Sobolev spaces. We shall use the homogeneous
Besov spaces and the homogeneous Sobolev spaces of arbitrary order and the
associated Sobolev inequalities, for which we refer to [ 1, 3] and to the Appendix. We
use the notation B = Bﬁ ,(R") and H? = H?(R") for those spaces. For any interval
I = R, we denote by I the closure of I in R =R U { + 00, — o0}. For any interval I, for
any Banach space B, we denote by (I, B) the space of continuous functions from I to
B. For any ¢, 1 £ q £ oo we denote by L(I, B) (respectively) L{ (I, B)) the space of
measurable functions ¢ from I to B such that | ¢();BlleLi(I) (respectively
| o(); Bl eLi(I)). We shall use extensively the following spaces [2]. For any teR, let
y, be the unit interval with center t. For any m(1 £ m < oo0)and g(1 < g < o), for any
Banach space B and for any interval I < R, we define /(L% I, B) as the space of
measurable functions from I to B for which

m/q) 1/m
;™LA 1, B) || = SUP{ ) ( [l w(t);Bll"> } (1.9)
serg LzeZ NGy ,ND)

is finite, with obvious modifications if ¢ and/or m is infinite. The spaces £™(L% 1, B)
are Banach spaces with the norm defined by (1.9). If B =C, we write £™(L%,I) for
™LA, 1,C). If I =R, we shall omit I in the notation. ]

We shall need the operators w = (— 4)"/?, K(t) = w ™' sin wt and K(t) = cos wt.
The operators K(t) and K(t) are bounded and strongly continuous with respect to ¢
in H* for any k. Finally, we shall use the notation p, = Max { + p,0} for any peR.

2. Preliminary Estimates

In this section we collect a number of definitions and estimates. They concern the
finite energy solutions of the free equation [(J¢ = 0, the finite energy solutions of the
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NLW equation (1.1) and the interaction term f in (1.1). The basic space for the initial
data (g, ¥o) = (¢(to), 9(t,)) for the equations (1.1) and [J¢ = 0 is the energy space

X,=(L*nH)®L 2.1)

We refer to the Appendix for the meaning of that space as well as for the definition of
time derivatives and time integrals. We first consider the equation [J¢ =0.

The solution of the Cauchy problem for [J¢ = 0 with initial data (¢, ¥,) at time
zero is given formally by

@ ©(t) = K(©)po + K(t)ro- 22

We recall briefly some properties of the operators K(t), K(t) and exp(+ iwt). The
basic estimate for exp (+ iwt) is

lexp (+ iot)g; B, PO < C,|t]7| ; BEW | (2.3)

forall teR\{0},2 < r < o0 and e B, A proof of (2.3) can be found in [4] and [22].
From this estimate one can derive the following results.

Lemma 2.1. Let L be any of the operators wK(t), K(t), exp ( + iwt). Then, for any
(r,q) and (¥,q") with0 £ 2/g=7y(r) <1 and 0 < 2/q' = y(r') < 1, for any interval I < R,
for any sel, the operator

u —»jt"er(t — T)u(t)

is bounded from L(I, B®")) to L% (I, B, **) with norm uniformly bounded with respect
to I and s.

Proof. See[13]. See also [17] and [25] for the analogous result for the Schrodinger
equation.

Lemma 2.2. (1) Let r and q satisfy 0<2/q=7v(r)<1. Then, for any pel?,
exp (+ iwt)p belongs to LA(R, B #")) and satisfies the estimate

lexp (+iwt)p; LAR, B, ") < Cl o], (2.4)
(2) Let r and p satisfy
0=dé(r)=n/2
0Zp+dé(r)—1=0<1/2 (2.5)
p=1-pr)
and let q satisfy 1/q=0. Then, for any (@o,¥o)eX.,0V(t)= Kt o, +
K(t)yoeLAR, B?), pO(t) = K(t)yo — 02K (t)poe LR, B2~ ') and the following esti-
mates hold )
l?; LR, B?) |
165 LR, B ™) |
Proof. See Lemma 3.1 in [9].
The space-time integrability properties of the solutions of [J¢ = 0 are expressed

in terms of a family of spaces depending on two parameters, for which one can take
any two of the three parameters r, p and o connected by (2.5). The allowed region for

}éC( logollz + ¥oll2): (2.6)
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Fig. 1. Space time integrability properties of the solutions of the free wave equation. The case shown
isn=6

those parameters is shown in Fig. 1 in the (p, 6) plane. Of special importance is the
parameter ¢ which characterizes the regularity in space and in time (in particular the
Sobolev inequalities connect spaces with the same value of o).

We now define the following family of spaces, which embody the dispersive
properties of the finite energy solutions of the free equation in the form of the space
time integrability properties of Lemma 2.2. For any interval I < R, we define

Y(I) = {(p,¥): 0 LI, BY) " L*(I, L**) and ye LI, B¢~ ) for all r, p,0,q
satisfying (2.5) and 1/q = o}. 2.7

We also define the corresponding local spaces %, ({) with L? replaced by L{_ and
L* by L. Note in particular that #(I) < L*(I, X,) and %, .(I) = L2.(I, X ) for
all I ¢ R. Lemma 2.2 expresses in particular that all solutions of [J¢ = 0 with initial
data in X, (equivalently all finite energy solutions) belong to #(R).

We next show that functions of space-time satisfying some of the properties of
Lemma 2.2 possess additional regularity properties corresponding to negative
values of ¢. That result will apply to solutions of [J¢ =0 as well as to solutions of
(1.1) in suitable circumstances. The next proposition, however, does not make
reference to any equation, although the assumptions are inspired by Lemma 2.2.

Proposition 2.1. Let I be an interval of R, possibly unbounded.

(1) Let k satisfy 2(n—1)/(n—2) <k <2% let 0 =(n—2)/2—(n—1)/k, let p>0,
p'>0p+p' =1, let 25, <00 with p+06(r)—1=p +0(')—1=0 and let
1/g=o0. Let pelL4(l, B?) and pel(l, B Y. If @, possibly redefined by continuity
on a set of measure zero in time, has a representative in L* for some ty€l, then ¢
has a representative in €(I, L¥) (still denoted by ¢). If k < 2*, then | @(t) ||¥ is uniformly
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Hélder continuous in t with exponent k(1 — 6(k)), and ¢ satisfies the estimate
lo@)ll = C(A+ [e])! ~®. (2.8)

If k=2* and I is unbounded, say I =[T, o), then || o(t)|« has a finite limit as
t— 0.

(2) Letksatisfy2 £k <2(n—1)/(n—2). Let e L*(I, L*"), e L™ (I, L?). If ¢, possibly
redefined by continuity on a set of measure zero in time, takes its value in L¥ for some
to€l, then pe%(I, L*). The quantity || (t)|}/ ~°®) is uniformly Lipschitz continuous
in t, and @ satisfies the estimate (2.8).

Remark 2.1. The assumptions @eL!(I,Y) and ¢eL%(l,X) imply that ¢ can be
redefined on a set of measure zero in time so as to belong to €(I, X). This is the
redefinition of ¢ quoted in the proposition.

Proof. (1) We use the regularization operator R; defined in the Appendix. Let R be
either R;or R; — R, for some j,Z. Then R, Rpe L(1, H™) for arbitrary m (we take m
sufficiently large) and R¢ is the weak time derivative of Re, so that Rpe% (I, H™). By
an elementary argument of regularization in time we obtain the identity

[Rp(®) [k — | Ro(s) |5 = k Re [ dz{ R¢(z), Rp(t)| Rp(7) [~ 2. 2.9)
Assuming for definiteness that s <t, we estimate

[ Ro(t) ] — | Rp(s) [1§] < k}dr IRG(x); B~ || |Ro(z)| Rp(z)[* =2 BL 7|

< C[de|Ré(c) BE | | Ro(e); Be <

< Clt—s| 7% Rg; LA((s, 1), BE 1) | || Rep; L9((s, ), BY) ||~ (2.10)

by duality, by Lemma 3.2 of [9] (an improved version of which is given in
Lemma 2.3 Part(1) below) together with Sobolev’s inequalities and by the Holder
inequality in time, under the assumptions made on the various indices. In particular
the use of Lemma 3.2 of [9] is made possible by the conditions p+ p’' > 1,p >0,
p’' > 0 and by the relation between k and o, which simply expresses the homogeneity
of the estimate. The use of the Holder inequality is possible under the condition
ko <1 which is equivalent to k <2*. The lower limit on k is obtained for ¢ =0.
Note also that 1 — ko = k(1 — 6(k)).

We first use the estimate (2.10) with R = R; — R, and s = t,. By the assumption
on ¢(t,) and the properties of R, the second norm in the first member of (2.10) tends
to zero when j, # — co. By the assumptions on ¢ and ¢, the properties of R; and the
Lebesgue dominated convergence theorem, the two norms in the last member of
(2.10), for g < oo, or the integral in the last but one member of (2.10), for ¢ = oo, tend
to zero when j,/ — oo. Therefore R ¢(t) is a Cauchy sequence in L, so that its limit is
the canonical representative of ¢. We next use (2.10) with R = R; —1. The last
member of (2.10) is estimated for any compact subinterval J < < I,J containing
s=tg, by

 SCIR R — 3 LA, BE Y| | Rp — o3 LA, B ™1 (2.11)
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uniformly for teJ and converges to zero when j — co by the same argument as before,
uniformly for teJ. Therefore R;p converges to ¢ in L* uniformly on the compact
subintervals of I. Since R;pe®(l, L*) this implies that pe%(I, L*). We finally use
(2.10) with R = R; and general s and t. Taking the limit j —» oo yields the announced
Holder continuity property of || ¢(¢) |, and the estimate (2.8) for k < 2*. If k = 2* and
I is unbounded, then the limiting estimate shows that | ¢(t)|| ,« satisfies the Cauchy
condition and therefore has a limit as t — oo.

(2) In the same way as in Part (1) we obtain (2.9). Assuming for definiteness s < t we
estimate

[IIRe(®) [k — I R (s) %]
S klIR@; L*((s,1), L) Il | Reps L=((s,1), L*) ||~ jdt IRe@ 1™ (212)

by the Holder inequality, with v given by homogeneity, namely
(v—012—-1/m)+1—=v/k=1/2,

or equivalently v(1 —d(k)) =1, provided 1 <v =<k, which is equivalent to the
assumption made on k. By an elementary computation (2.12) implies

I R@(®) [ — I R(s) 2] < w(t — s) | Rp; L=((s,£), L) ||| Reps L=((s,2), L*') |~ ‘('2 )

In the same way as in Part (1) we use (2.12) and (2.13) first with R = R; — R, and
s =t,, then with R=R; —1 and s =, and finally with R = R; and general s and ¢,
to prove the announced results. QED

In the special case where k = 2* and where I is unbounded, one can actually
prove under some mild assumptions that || ¢(t)| ,» tends to zero when ¢t tends to
infinity.

Proposition 2.2. Let k and s satisfy 0 <5(k) <1< 6(s) and let v=(5(s)—1)"' +
(1 =6(k))~*. Let I be an interval of R, possibly unbounded. Let ¢eLX(I, L)
LA(1, L*) with q(6(s) — 1) = 1. Assume in addition that

lo(®) i < Co(1 +2])! ~®. (2.14)
Then ¢ satisfies the estimate
;dt(l +tD o) 13 < Co/ 7 @, LI L) |1 (2.15)

In particular if I is unbounded and if || o(t) || ,« has a limit as ¢ tends to infinity, that limit
is zero.

Proof. For any a,bel,a <b, we estimate
b b
fat(+ 1)~ @) 13- < fde(1+ 1) @@ 1/ 2 () /9D (2.16)

by the Holder inequality. Then (2.15) follows immediately from (2.16) and (2.14).
The last statement of the proposition follows from (2.15). QED

In this paper, we shall use Proposition 2.1 with k = 2* as a preliminary step in the
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proof of energy conservation and with k =2* —¢, ¢ >0, so as to be able to apply
Proposition 2.2. The result for lower values of k, extending down to k = 2, is given for
completeness and would be useful in connection with the Cauchy problem at finite
times.

Remark 2.2. By Lemma 2.2, Propositions 2.1 and 2.2 apply in particular to
solutions of the free equation [J¢ = 0 with initial data in (L*n H})@® L?.

In addition to the estimates of Lemma 2.2 on the free equation [J¢ = 0, we shall
need Besov space estimates for the interaction term of the equation (1.1). Those
estimates are given in Lemma 2.3 below which extends Lemma 3.2 of [9]. The
statement of that Lemma requires the choice of a representative for the Besov space
elements involved. In order to simplify the exposition, that point is not mentioned
below. For a treatment thereof, we refer to the Appendix, in particular to
Lemma A.3 and to the subsequent discussion.

Lemma 2.3. Let fe%(C,C) with f(0)=0.
(1) Let g,€%4(C,R*), with g,(z) = g,(|z|) for all zeC, g, non-decreasing in R*, and
such that , _

|f'(2)] = Max {|0f /oz|,|0f /02| } < g,(2)

for all zeC. Let 0<i<1, let 1=¢,m,¢{; <00 (i=1,2), with njft,—2>0 and
1/¢ =1/t +1/¢,. Then

1f (@) BE, I < Clig; B, Il 191(9) ., (2.17)

for all @ such that the norms in the right-hand side are finite. The same conclusion holds
for i=1,1</<2and {{=m=2.

(2) Suppose that there exists g,€%(C, R*), with g,(z) = g,(|z|) for all zeC, g, non-
decreasing in R*, and such that

|f'(z0) — f'(22)| £ |24 — z,|Max {g,(2,),92(22) } (2.18)

forall z,,z,eC. Let 0< A< 1, let 1 <¢,m,¢; <00 (1 Si<6) withn/t, —A>0 and
1/£=1/t+1/(,=1/t3+1)s+ 1/{s. Then

1f(01) = f(92) B2l < Clloy — 035 BE 1 {119, <P1)||;z+ lg:(@2),,}
+C||w1—<ozll,3‘.212ll<pi, B 920, (2.19)
Ly=1,

where g, satisfies the assumptions of Part(1), for all ¢, @, such that all norms in the
right-hand side are finite.
(3) Suppose that for some v,0=<v<1,

|f'(z) = f'(2)| = Clzy — 2,]" (2.20)

for all z,,z,eC. Let O<A<v, let 1 <¢, m, £; <00, (1 ZiZ4) with n/{,—1>0,
1/£=1/t+ 1), =1)f3+ /{4, and £4,v= 1, mv 2 1. Then

1 f(@1) = f(@2); B2, SClloy — @33 t,mnzuw 12,
+Clloi =21, 2| o B, (2.21)

for all @, @, such that all norms in the right-hand side are finite.
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Remark 2.3. For the function g, in Part (1), one can take g,(z) = Sup | f'(z)]. This

1z’| < z|
function depends only on |z|, is non-negative and non-decreasing, and is easily seen
to be continuous.

Proof of Lemma 2.3.

(1) Part(1) is an immediate extension of Lemma 3.1 of [9].
(2) We start from the identity

o) — fl@y)= gdu{f’(ucol + (1= @) o — @2) = Y(0; — 02),

and estimate in the same way as in Lemma 3.1 of [9]

1£(@1) — f(92): B2 S Clloy — @25 B2 I W I,
+Clloy — @zl 1 BE (2.22)

with 1//=1/¢, + 1/, =1/{5+ 1/{,. We estimate the first norm of ¥ in (2.22) by

Il < 1 fdug:(ue, + (1 — wea)l,,
< [[Max(g,(941),91(02))ll,, = ||g1((P1)[|/2 + 19:1(e2) - (2.23)

We then estimate the second norm of ¥ in (2.22) by using the integral form of the B
norm

© mY) 1/m
(: 7 <C{(§) t“’dt{t_llslllp I =il } } ) (2.24)
st
where 1, denotes the translation by yeR". Now
1
W=l 5 dulp(@y — ty01) + (1 — )@z — 1,0,)| Max Max {g,(¢:), g2(t,0:) }

MaX I(pl y(pi|Max {QZ(Q)J'), gz(qu)j)}’

l] 1,2
that
S0 e 1 =21,52 T 10= 50l ]19:0)l,, (2.25)
Lj=1,
with 1/£, = 1/¢{s+ 1/{. Substituting (2.25) into (2.24) yields
1Bl SC 5 05 BEal192(0) s, (226)

l]—

The result follows from (2.22), (2.23) and (2.26).
(3) The proof of Part (3) is the same as that of Part (2) except for the treatment of the
second norm of ¥ in (2.22), which we now estimate differently. From (2.20) we obtain

Iy — 1| < CMax {|o; — 1,0,1% |90, — 1,0,1"},

=2l <C 3 o5l
and therefore (cf. (2.24))
1587, < CX I 0 B (227)

£4v,my

so that

Substituting (2.23) and (2.27) into (2.22) yields (2.21). QED
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Lemma 2.3 has been tailored to cover the case of the interactions f that we want
to consider. In fact we shall assume that f satisfies the following conditions.

(A1) fe%'(C,C), f(0)= f'(0)=0 and f satisfies the following estimates
(a) |f'(2)| = Max {(|(0f /02)1,1(0f /0z)|} < C|z|? ™}
for some p > 1 and for all zeC.

, Clzy =224 1" 2 +2,P72) if pz2

—_ {7 <

(b) If(zl) f(ZZ)IZ{C|Zl_ZZIp—1 lf péz
Note that (b) implies (a). We have nevertheless stated (a) and (b) separately because
we shall need only (a) in some of the applications.

Remark 2.3'. The assumption (Al) is satisfied in particular by f(z)=z?"9z¢ for
fixed ge R and p — 2qeZ. This is obvious for Part (a) and for Part (b) in the case p = 2.
Part(b) in the case p < 2 requires a separate argument given in the next lemma.

Lemma 24. Let h(z) = |z|* ™z", where 0<v <1, meZ. Then

lzy — 2z, if m=0
h(zy) — h(z,)| <
(hlz) (ZZ)I_{ZI_VImIVlzl—ZZIV if m#0.

Proof. If m= 0, (2.28) follows from

(2.28)

Hzi " =1zl S Hzy | = 12,01 Sz — 2,

Let now m % 0. By scaling it suffices to consider the case where z, = z = pe®® and
z, =1. We first consider the case m = 1 where it suffices to prove that

lpYe® — 1| <21 7| pe’? — 1], (2.29)
or equivalently
cosh ve — cos 0 < 2! "*(cosh ¢ — cos )" 2.30)
with p =e°. Now the quantity (cosh vo — cos #)(cosh o — cos §) > regarded as a
function of cos 8 is easily seen to take its maximum for cos 6§ = — 1. In that case (2.29)
reduces to

pr+1=2"Yp+ 1),

which follows from the concavity of the function p — p*. This proves (2.29). The case
of general m # 0 follows from the case m = 1. In fact (2.29) with 8 replaced by mf
becomes

Ipveimo__1|§21—v|peim0*1|v' (231)
Then

[pe™ — 1> =(p — 1)*> + 4psin® (mb)/2)
<m?{(p — 1)* + 4psin?(6/2)} = m?|pe’® — 12, (2.32)

since [m| = 1 and |sinmf| < [msin 8] for all 0eR and meZ. Substituting (2.32) into
(2.31) yields (2.28) in the special case considered and therefore in general. QED

We shall study the Cauchy problem for the equation (1.1) in the form of the
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integral equation

@ = Alto, 0% 0), (2.33)
where t,eR, ¢ is a finite energy solution of the free equation [J¢ =0 and
Alto, 9 ¥50) = 0" + Flto; 9) (2.34)
with
F((to; @)(1) = — idTK(t =0 f (o). (2.35)

Under the assumption (Ala) and for suitable ¢, the integral (2.35) exists in a weak
sense and the integral equation (2.33) is essentially equivalent to the differential
equation (1.1) supplemented by the initial conditions (see the Appendix).

In order to formulate the theory of scattering and in particular the existence of
asymptotic states for the equation (1.1) it is essential to introduce the interaction
representation in the first order formalism. For that purpose the generic solution of
(2.33) will be represented as a two component vector

o)

where i will turn out to be ¢ as a consequence of the equation. The initial condition

for @ is
PV = o
“\p@ )

the free evolution operatore U(t) is defined by

_ (K@) K(t)
o= ( —o?K() K(t))’ 239

and is a strongly continuous unitary group in X, the interaction term becomes the

two component vector
0
(o =<f )

The relevant integral equation is
?(t) = @(t) — [dr U(t — 1) fo(0(7)), (2.37)
to

the first component of which coincides with the previous one (2.33), while the second
component is simply the time derivative of the first one. We introduce the interaction
representation by defining

B(t)= U(—1)@(1) = <‘58> (2.38)

An elementary computation shows that the differential equation for @ is

B (1) = U(—1)fo(o(1),
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and the corresponding integral equation is
~ ~ t
P(t) = D(to) — [drU(—1) fo(o(7)). (2.39)
to

The final result of this section expresses the following fact: if a finite energy
solution of the integral equation (2.33) satisfies the space-time integrability
properties of Lemma 2.2 for one pair of values of (p, o) in a suitable restricted set,
either locally or globally in time, then it satisfies those properties for all values of p
and ¢ in the allowed region (2.5), namely it belongs either to %, .(I) or to #(I) as
defined by (2.7). Furthermore @ has some continuity properties which in some cases
imply the existence of asymptotic states.

Proposition 2.3. (1) Let f satisfy (Ala) with

n—2)=p—1=22—-0/n-2)<4/n-2), (2.40)
or equivalently 0 <{ < 1. Let p,0,r and q satisfy (2.5), 1/q = o and
0<1—{—po=pn—1)/n+1)<1/2 (2.41)

Let I be an interval of R, toel, let ¢ be a finite energy solution of [J¢ =0 and let
peLi (I, B?) be solution of (2.33). Then @ = (¢, 9)eW,,c(I). Furthermore possibly
after a redefinition of @ (and ®) b )y continuity on a set of measure zero in time, @ hasa
representative, still denoted by @, which belongs to €I, X ) uniformly in compact
subintervals of 1.

(2) Let fsatisfy (Ala) withp — 1 = 4/(n — 2). Let p, o, r and q satisfy (2.5),1/q = o and

0<1—amn+2)/n—2)=pn—1)/(n+1). (2.42)

Let I be an interval of R, toel, let ¢'© be a finite energy solution of (1@ =0 and let
pel(I, B?) be solution 0f (2.33). Then @ = (¢, ¢)e#(I). Furthermore, possibly after a
redefinition of ® (and ®) by continuity on a set of measure zero in time, & has a
representative, still denoted by @, which belongs to €(I, X o). In particular, if I is
unbounded, say I =[T, ), then 5(t) has a strong limit in X, when t — 0.

Proof. The proof of both parts follows from a common set of estimates with
0<{<1 for Part (1) and {=0 for Part (2). We first consider the space-time
integrability properties of ¢ and ¢. It is sufficient to prove those properties in the
case p' = 1 — f(r). The same properties for general values of p’ and r' follow from
the latter by the Sobolev inequalities. For that purpose we let 2 <+ < 00, 2/q" = y(r')

and
0<y()<1
{2/m =9(£) + 2. 243)

From the integral equation (2.33) and from its analogue for ¢ it follows that
s L4 (L B #0) |
Il G: L4 (1, B #) |

where the first norm on the right-hand side has been estimated by using Lemma 2.2,
and the second one by using Lemma 2.1 followed by the Holder inequality in time.

} < C{ @) X, || + TFI| f(ok L'(LB}) |}, (2.44)
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Thus we are led to estimate the last norm in (2.44). By Lemma 2.3 Part (1) and by the
assumption (Ala) we estimate

I f(o); L'(I, BYY) || £ C || ; LI, BY) | (2.43)

under the conditions

p(n/2 —1—a)=n/l — B({) (2.46)

pm=gq.
By an elementary computation one can find m and ¢ satisfying (2.43) and (2.46) under
the assumption (2.42) of the proposition for 0 < { < 1. More precisely, if £ and m are
defined by the first and last lines of (2.46), then the middle line thereof and the last line
of (2.43) both reduce to the equality in (2.42). This proves that @ = (¢, ¢) belongs to
%,o.(I) under the assumptions of Part(1) and to #(I) under the assumptions of
Part (2). In particular, @ and therefore @ have a representative, still denoted by the
same symbol, which belongs to L2 (I, X,) or to L*(I,X,). We now turn to the
continuity properties of @, which follow from the integral equation (see (2.39))

{0§p=ﬁ(/)<1

~ ~ t
O(t) — D(s) = — [dr U(—1) fo(o(1)). (2.47)
Applying the regularizing operator H; (see the Appendix) to (2.47) we obtain
H; (cb(t)ﬂ D(s)) = —jdr U(—=1)H; fo(o(7)). (2.48)

Now f(p)eL(I, B?"”) by (2.45), and therefore H,-f((p)eL"’(I, H’;) for any keZ, by the
Sobolev inequalities and the definition of H;. In particular, the integral in (2.48) is a
strong integral in X ,. Taking the norm in X, of both members of (2.48) we obtain

I Hy(®(t) — D(s)); X, |12 = f do dv{H; f(9(0)), K(o — O H, f(9(1) ), (2.49)

after an elementary computation using the definition of U (2.36) and its unitarity in
X,.. We estimate the last integral in (2.49) by (2.3) followed by the Hardy-
Littlewood—Sobolev inequality and the Holder inequality in time as

- Clt— s H;f (@) L([s,t1; BY) |1?

with the same m, / as in (2.44). Taking the limit j —» oo, using the fact that H; tends to 1
strongly in Bf( and in X, and using the estimate (2.44) on f(¢) yields the announced
continuity properties of &. QED

We next discuss briefly the conditions on p and ¢ in Proposition 2.3.

Remark 2.4. For fixed p or equivalently for fixed {,0 < { < 1, the assumptions (2.41),
(2.42) constrain (p, o) to lic on a line segment in the (p, o) plane starting from the point
{p=0,0=((n—2)p—n))/2p)} and ending at the point {p=(n+1)/2(n—1)),

=((n—2)p—(n+1))/(2p)}. That segment intersects the region defined by (2.5) in
all cases of interest. In particular, for p=(n+ 2)/(n—2), it intersects the line
9(r) =75 =(n—1)/(n+ 1) within that region at the point {p=n?/(2(n*+ 2)),
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o=n—2)(n*+n+2)/[2(n+ 1)(n*+2)]}. That point is of special interest in
connection with the Cauchy problem at infinity.

For the purpose of scattering theory the more relevant part of Proposition 2.3 is
Part (2) corresponding to p — 1 =4/(n — 2). The information relative to p—1<
4/(n — 2) namely Part (1) is relevant for the Cauchy problem at finite time. We have
not considered the case p < n/(n — 2) since the argument would be slightly different
(in fact simpler).

3. The Cauchy Problem at Infinity

In this section we construct finite energy dispersive solutions of the equation (1.1) by
solving the Cauchy problem with large (possibly infinite) initial time and finite
energy initial data (or asymptotic states) in the form of the integral equation (2.33).
We proceed in two steps. The first step consists in solving the integral equation by a
contraction method in a neighborhood of infinity in time (+ oo for definiteness). For
that purpose we define a Banach space of functions exhibiting some of the time decay
available from Lemma 2.2 for finite energy solutions of the free equation [Jo =0
and such that the operator A(ty, ¢'?; @) defined by (2.34), (2.35) maps a suitable
subset of that space into itself and acts there as a contraction. That step can be
implemented under the assumption (A1) for the critical value p — 1 = 4/(n — 2) only.
Actually the first property has already been obtained to a large extent in
Proposition 2.3, which uses basically the estimates of Lemma 2.1. Those estimates
however turn out not to be sufficient to yield the contraction property in a
reasonable space for high space dimensions (namely n=9). We circumvent that
difficulty by a direct use of the pointwise estimate (2.3). Since the reproduction
property follows from similar, but simpler, estimates than the contraction property,
we treat here both properties together, thereby giving a selfcontained treatment not
relying on Proposition 2.3. As an immediate by-product of the resolution of the local
problem at infinity we obtain global existence and uniqueness of solutions and
asymptotic completeness for small initial data in the energy space.

The second step of the argument consists in extending the local solutions
previously obtained to all times. This is done by solving the local Cauchy problem at
finite times in successive intervals covering the real line, starting from values of ¢ in
the interval of existence of the solution one starts from. The possibility of doing so
relies on a priori estimates obtained from the conservation of the energy and from
estimates of the successive times of local resolution derived therefrom. Unfortu-
nately, no such estimate exists in the critical case p—1=4/(n—2), thereby
precluding the possibility of globalisation in that case. In order to overcome that
difficulty, one needs to impose in addition that the assumption (A1) also holds for
some subcritical p. Accordingly, we solve the local Cauchy problem at finite times
under such an assumption. The treatment given in [10] however cannot be applied
directly, since we do not assume here the initial data to lie in L2, which would be
unnatural in the present context. The treatment given in this section is especially
tailored for the present purpose, and uses a slight extension of the estimates needed
to solve the local problem at infinity in the critical case. In particular, we take initial
data in X, only, but we make no effort to cover the case of low values of p.
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We first derive an estimate for the integrand in the equation (2.33),

Lemma 3.1. Let n = 3. Let fsatisfy (Alb) for some p > 1. Let p,o,r satisfy | + 0 =
p +6(r), and 0 < 20 < y(r) £ ys. Define p’ by

(p— D2 —p —5(r) =1+ 7(r). (3.1)
Then the following estimates hold:
IKOf(@): B < Cle) "l s B | 3 B |7 (3.2)

provided p' =0, for all ¢ such that the right-hand side is finite,
IKO (@) = [l BII < Clel gy =3 B2l X llosBY I (33)

Jor p =z 2, provided p' = o + ofr), for all ¢, ¢, such that the right-hand side is finite,
IK(@)(f (1) — f(92)): B? |
SCUT gy~ @Bl Y T] s By e @=12 (34)
i=1,2 £

Jor p <2 and & > 0 sufficiently small, provided (p — 1)p’ = o + a(r), for all ¢, @, such
that the right-hand side is finite.

Remark 3.1. The various restrictions on p’ will be made more explicit in the special
cases of interest in Proposition 3.1 and Proposition 3.4.

Proof. We first estimate by (2.3)
IK(0)f(@); B2 < Clel"™ | f(): B, (3.5)

IK @S (@)= f(92)); B < Clel ™™ f(@1) — f(92): B, (3.6)

where 4 = o + a(r). Clearly, 0 < 4 < 1. We next estimate the norms in the right-hand
sides of (3.5) and (3.6) by Lemma 2.3 with / =7 and m=2, g,(¢)=C|@|?~ ! and
g,(p) = C|o|P~ 2 for p = 2. In particular we estimate (3.5) by (2.17) and (3.6) by (2.19)
or (2.21) depending on whether p = 2 or p < 2. We then estimate the B}l norms and
the L* norms in terms of the norms in B? by using the Sobolev inequalities.
Similarly, we estimate all remaining norms in terms of norms in B?' for suitable p/,
thereby continuing (3.5) and (3.6) as

S CIE T ;B ||| s BE [P 3.7
and ) .
 ZCHT oy — 0 BEIY. @i BEn 7, (3.8)

where now m = Min {2,2(p — 1)}. The conditions for the applicability of the Sobolev
inequalities reduce to the homogeneity conditions
nit, —A=n/lys=nlr—p, (3.9

nf((p—1¢3)=nlts—A=n/((p—2)e)=nf((p— 1)) —A/p—1)= n/r—% o

and to the conditions p =4, p' =0 for (3.7) and p'= 4 or (p— 1)p'= 4 for (3.8)
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depending on whether p =2 of p <2. Under the conditions (3.9) and (3.10), the
homogeneity conditions of Lemma 2.3 reduce to

nr—p+@p—1)n/r—p)=n/i—A4

which becomes (3.1) by an elementary computation. The condition p = A reduces to
a(r) + 6(r) < 1, orequivalently r < rg. The conditions on p’ coincide with those stated
in the lemma. Finally, in the case when p < 2, we estimate the last norm in (3.8) as

@ BEll < E[ s BE #2112

by Lemma A.1. QED

We now turn to the local Cauchy problem at infinity. Let 0 <20, <20, <
y(r) < 1. For any interval I < R we define the space

Zo)= () L*(I,Bp). (3.11)

i=1,2
Here and below we consider several values p;, g;, g; related by
1/gi=0,=p;+6(r)—1. (3.12)

Proposition 3.1. Let n = 3. Let f'satisfy (A1b) withp — 1 =4/(n —2). Let r,0, and o,
satisfy

(n—2)/n=y(r) < s, (3.13)
O<o;=(1—y(M)n—-2)/4=0,=<y(r)2 ifn=6, (3.14)

0<o2(1=M)n+2)/n—2)<(1—y(r)n—2)/4<o,<y(r)2 ifn=7.
(3.15)

Let ¢ be a finite energy solution of the free equation [J¢ = 0. Then

(1) There exists T < oo such that, for any tyel, where I = [T, ), the equation (2.33)
has a unique solution in 2 (I).

(2) For any interval I and for any t,el the equation (2.33) has at most one solution in
Z o).

Proof. Part(1) Let I be an interval of R and let t,el. We first estimate the integral
F(ty; @) for peZ(I). Let r satisfy (3.13) and let

0<2a =y(r). (3.16)

It follows from Lemma 3.1 and the Hardy-Littlewood—Sobolev inequality ([16]
p. 117) that

I F(to; @); LI, BY) || < Co(0) | @3 LA, BY) || || o3 L (1, By |7~ (3.17)
with p’ defined by (3.1) and 1/q' = p’ + 6(r) — 1. The conditions needed to apply that
inequality are (1): the homogeneity condition

p—1o'=1—9y(@) (3.18)
or equivalently
o =(1—y(r)(n—2)/4 3.19)
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which coincides with (3.1) for the critical value of p, and implies ¢’ > 0 and therefore
p" >0, and (2): the condition 0 < ¢ < 1, which follows from (3.16), and the condition
0<o+(p—1)c’ <1, which follows from (3.16) and (3.18). Since ¢ @e%,(I) by
Lemma 2.2, part(2), it follows in particular from (3.16), (3.17) and (3.19) that for
r,a,,0, satisfying (3.13) and (3.14), Z,(I) is mapped into itself by the operator
@ — A(to, 0 @; @) defined by (2.34).

We next estimate the difference F(tq; ¢,)— F(to; @,) for ¢, 0,€%((I). From
Lemma 3.1 and the Hardy-Littlewood—Sobolev inequality again it follows that

[ F(to; @1) — Flto; @,); LA, Bf)” = Ci(9) oy — a5 LU, Bf)”
X [lles LBy (3.20)
=12 %

with p’ again defined by (3.1) or equivalently (3.19), e =0forn<6,¢>0forn=7,

p =0+ ar) (3.21)
for n <6 and
(p—Dp 20 +alr) (3.22)

for n=7. The conditions needed to apply the Hardy-Littlewood—Sobolev in-
equality are the same as before. The condition (3.21) reduces to

cSd+1—(m+Nau(r)=o0; (3.23)
and is satisfied in particular for ¢ = ¢’, while the condition (3.22) reduces to
cZ<(1—=0M)n+2)/(n—2)=0,

(cf. the second inequality in (3.15)). An elementary computation shows that o, < ¢’
for all n =7 and all r satisfying (3.13).
We can now prove the proposition. We choose R > 0 sufficiently small so that

2 Sup Co(@)2RP <1, (3.24)
2 Sup C,(0)2RP <1, (3.25)

where g5 = Min(o,,05,0,). We next choose T sufficiently large so that

Max || LI BY)| = Sup [ ;LI B?)| <R (3.26)

0=01,02 c150=02

(the first equality is obtained by interpolation) where I = [T, c0). It follows now from
(3.17) and (3.24) that the operator @ — A(t,, ¢‘?; @) maps the closed ball By(I, 2R) of
radius 2R in Z,(I) into itself. Furthermore, in that ball, that operator is a
contraction for the norm in the larger space

@ (I) = L (I, B®) n L25(I, BY). (3.27)

By standard arguments (cf. Theorem 1 in [17] or Proposition 2.2 in [ 10]) those two
facts imply the existence of a unique solution of the equation (2.33) in Z°o(I).

Part (2) follows from Part(1) by standard arguments. QED

Under a mild additional assumption on r and o, the solutions of the
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equation (2.33) in &((I) are dispersive in the sense of Proposition 2.3 part (2), and
in particular belong to #(I) defined by (2.7).

Proposition 3.2. Let n = 3. Let f satisfy (Ala) with p—1=4/(n—2). Let Z (") be
defined by (3.11) withr, 0, and o, satisfying (3.13), (3.14) and (3.15) and in addition the
(compatible) condition

(n—2)(2 + ny(r)) < 2(n* + 2)a,. (3.28)

Let I be an interval of R, toel, let ¢'© be a finite energy solution of [Jo =0 and let
QeZ o(I) be solution of the equation (2.33). Then ¢ satisfies all the conclusions of
Proposition 2.3 part (2).

Proof. In order to be able to apply Proposition 2.3 part (2), it suffices to show that
one of the B? norms of ¢ available from the definition (3.11), (3.14) (3.15) of Z',(")
controls one of the B? norms with (p, o) satisfying (2.42) required in the assumptions
of that proposition through the Sobolev inequalities, namely has the same ¢ and a
larger p than the latter. For that purpose, it suffices to show that there exists
o€lo,,0,] such that

0=1-an+2)/n—-2)<pn—1)/n+1)
or equivalently ¢ < (n — 2)/(n + 2) and
(n—2)2 + ny(r)) £ 2(n* + 2)o. (3.29)

Now it is easily seen that, because of (3.13) and (3.19), o, £ o' < (n — 2)/(n + 2), so
that it suffices that the conditions (3.29) be satisfied for ¢ = ¢,. That condition
reduces to (3.28). The compatibility of (3.14) and (3.15) with (3.28) follows from the
inequality

(n—2)2 + ny(r)) < (n* + 2))(r)
or equivalently y(r) = (n — 2)/(n + 1) which follows from (3.13). QED

The previous results imply global existence and uniqueness of solutions of the
Cauchy problem and asymptotic completeness for small initial data in the energy
space.

Proposition 3.3. Let n = 3. Let f satisfy (Alb) withp — 1 =4/(n —2). Let r, 6, and o,
satisfy (3.13),(3.14),(3.15) ¢ and (3.28). Then there exists R, > 0 such that, for any t e R
and for any ®y=(po,Wo)eX, with |®y; X || <R, the equation (2.33) with

0 Ot) = K(t)po + KW, has a unique solution ¢ in %,(R) (defined by (3.11)).
That solution satisfies the conclusions of Proposition 2.3 part (2). In particular the
wave operators Q , (defined as the maps ®, — ®(0) with t, = + c0) and their inverses
Q71 (defined as the maps @, — &(+ o0) with t, = 0) are bijections of X, locally in a
neighborhood of zero.

Proof . The result follows immediately from Proposition 2.2 part (2), Proposition 2.3
part (2) and Propositions 3.1 and 3.2. In particular by (2.7), there exists R, such
that | (50; X,| £R, implies the condition (3.25) needed for Proposition 3.1, with
I=R. QED
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We next turn to the local Cauchy problem at finite times for initial data in X, and
subcritical p, as explained at the beginning of this section.

Proposition 3.4. Let n= 3. Let f satisfy (Alb) with
2[n—2)<p—1=22-0)/n—2)<4/(n—2) (3.30)
or equivalently 0 <{ < 1. Let Z (") be defined by (3.11) with r,0,, 0, satisfying

20-0=(+ 1)
{y(r)gys, ))<1—¢ (331)
0<o, (1= —=0/p—D<0, <902 if p=2, (3.32)
{0 <o <(l=y)=)lp— 1) =0, =9(r))2 (333)
oy =p(l—0(r)—¢ if p<2. '

Then

(1) For any R>0, there exists T(R)>0 such that for any (po,Yo)eX. with
[(@os Wo); X. | R, for any ty€R, the equation (2.33) with ¢ O(t) = K(t — to)p, +
K(t — tolo has a unique solution ¢ in X (1), where I =[t,— T(R), to + T(R)].

(2) For any interval I, any tyel and any finite energy solution ¢'® of the free equation
O @ =0, the equation (2.33) has at most one solution in ¥ y(I).

Proof. Let I be abounded interval and let ¢, €1, let o, r satisfy (3.16) and (3.31). Using
Lemma 3.1 and the Young inequality, we first estimate for peZ (1),

I F(to, @), LA, BY) || < Colo)\I ]l 3 LI, BY)|| |l s L¥ (I, BY') [P~ 1 (3.34)
with p’ defined by (3.1) and 1/¢' =¢' = p' + 6(r) — 1, provided
p—10d"+{=1—y(), (3.35)

which coincides with (3.1) under the condition (3.30). The additional conditions
required to apply the Young inequality are 0<o=<1, 0<{=<1 and 0o+
(p — 1)o’ £ 1 and follow from (3.16), (3.30) and (3.31). Similarly, we estimate for ¢,
€% (1),

[ F(to, 1) — F(to, @) L1, Bf) I < Ci@IIf @y — @as LAL, Bf) [

© % Tllles L=, By =)= (3.36)
i=1,2
with the same p’ as before, satisfying the condition (3.21) if p = 2 and (3.22) if p < 2,

withe=0if p=>2and ¢>0if p <2, and 1/¢'y, = ¢’ + & The condition (3.21) reduces
to (3.23) and is satisfied for ¢ = ¢’ as before, while (3.22) now reduces to

o <p(1 (1) - =a,. (3.37)

We can now prove the proposition. Let R >0. Then for any (¢, ¥,)eX, with
oo Wo) X, || R, it follows from Lemma 2.2 part(2) that

sup || @@; LAR, B?)|| < cR. (3.38)

g1S0502
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We choose T = T(R) sufficiently small so that

22T sup Co(o)(2cRP1<1, (3.39)
22TF sup C,(0)2cRP-1<1, (3.40)

where 65 = Min(0,,05,0,) as before. It follows from (3.34), (3.36), (3.38), (3.39) and
(3.40) that for any t,€R, and for any (¢q,¥,)eX, with [[(¢g,¥o); X || =R, the
operator A(t,, »'?; ¢) defined by (2.34) maps the closed ball B (I, 2cR) of radius 2cR
in Z,(I) into itself, where I = [t, — T(R), t, + T(R)]. Furthermore, in that ball, that
operator is a contraction for the norm of the larger space Z'; (I) defined by (3.27). The
proposition follows from those facts by standard arguments. QED

Remark 3.2. We discuss briefly the conditions (3.31), (3.32) and (3.33), which
generalize the simpler conditions (3.13), (3.14) and (3.15) of Proposition 3.1. The
condition (3.31), aside from y(r) <y, follows from (3.32) or (3.33) and ensures the
existence of o, and g, satisfying (3.32) and (up to a limiting case) the first condition in
(3.33). The condition (3.33) implies

po(r)<p—¢ (3.41)

which in turn, under the condition (3.31), implies the existence of o, satisfying (3.33).
The conditions (3.31) and (3.41) are compatible provided

2np(1 = <(n—D(p+DH(p -0

which follows from the fact that { <1 <p, so that 0 <p(l —{)<p—{, and that
p+1>2(n—1)/(n—2)>2n/(n—1). The condition (3.41) may or may not ;ollow
from (3.31), depending on the values of p and r.

Under a mild additional assumption on r and a,, the solutions of the equation
(2.33) in the previous spaces Z o (*) satisfy the space time integrability properties of
Proposition 2.3 part (1). The following proposition is the analogue in the subcritical
case of Proposition 3.2.

Proposition 3.5. Let n > 3. Let f satisfy (Ala) and (3.30). Let & () be defined by (3.11)

with r,0,, and o, satisfying (3.31), (3.32), (3.33) and in addition the (compatible)
conditions

RQ-m+1)l+nm@E)=((n+ )p+n—1)o, (3.42)

12— { < pa,. (3.43)

Let I be an interval of R, tyel, let ' be a finite energy solution of [J1¢ =0 and let
@eZo(I) be solution of the equation (2.33). Then ¢ satisfies all the conclusions of
Proposition 2.3 part(1).

Proof. In the same way as in the proof of Proposition 3.2, it suffices that there exists
o€lo,,0,] such that (cf. (2.41))

0s1—-{—po=<pn—1)/n+1), (3.44)
1—{—po<1)2. (3.45)



556 J. Ginibre and G. Velo

The second inequality in (3.44) can be rewritten as
R-—m+D{+ny@)=((n+ p+n-—1o. (3.46)
Now it follows from (3.31), (3.32), (3.33) that

p(p— 1o, =p(1 —{—y()
=@e-DA-0+1-C{—py(r)
Se-H0-{—r2=p—-D1-0) (3.47)
so that the first inequality in (3.44) is satisfied by o,. It suffices therefore that the
second inequality in (3.44), or equivalently (3.46), and (3.45) be satisfied by o,. Those

conditions reduce to (3.42), (3.43) respectively. The compatibility of (3.42) with (3.32),
(3.33) is equivalent to the inequality

22—+ D)=+ D(p— 1y
which is easily seen to follow from (3.31) by an elementary computation. The
compatibility of (3.43) with (3.32), (3.33) is equivalent to the inequality
0= <py(n+1,

and follows immediately from (3.31). QED

So far we have studied finite energy solutions of the equation (2.33) without
assuming the existence of a conserved energy. However energy conservation is an
essential tool for the extension of the local solutions of Proposition 3.1 to all times.
We now turn to the proof of that property. For that purpose we need the following
assumption on f.
(A2) There exists a function Ve%*(C, R) such that ¥(0) =0, V(z) = V(|z|)for all zeC
and f(z) = 0V/oz.

We define the energy

E(@, )= ¥ 13+ Vol + [dx V(p) (3.48)

for all (p,¥)eX, such that V(p)eL'. We can now prove the conservation of the
energy for solutions of (2.33) in the following form.

Propeosition 3.6. Let n > 3. Let f satisfy (A1b) with p satisfying (2.40) and (A2). Let I be
an interval of R, tyel, Let ¢'© be a finite energy solution of [ =0 with
0 O(to)elP™ and let @ be a solution of the equation (2.33) such that
D = (¢, p)e¥ ,(I). Then the following identities hold for all s and tel,

fdx V(o) — fdx V(p(s)) =2 Re i dr{o(), f(@(1)), (3:49)
I D(@); X 11> — | D(s); X, |I> = — 2 Rejdf<¢(f), flo@)), (3.50)

where both terms in the left-hand sides of (3.49) and (3.50) are continuous functions of s
and t and the integral in the right-hand sides is absolutely convergent. In particular
energy conservation holds in the sense that for all s and t in I

E(p(1), ¢(1) = E(@(s), (). (3.51)
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In addition, let p — 1 = 4/(n — 2), let I be unbounded, say I = [T, c0) and let ¢ be a
solution of the equation (2.33) with @ = (¢, ¢)e(I). Let however only t,eI. Then the
same conclusions as above still hold. Furthermore, the kinetic part | ®@(t); X, ||* and the
potential part jdx V(p(t)) of the energy separately tend to well defined limits when
t— 00.

Proof. The proof of (3.49) is similar to that of Proposition 2.1 part (1) withk =p + 1.
By the same argument as in the proof of the latter, we obtain

Jdx V(R;o(t)) — [dx V(R;0(s)) =2 Reidr(qu’)(‘c), f(R;0(0))), (3.52)

where R; is the regularizing operator defined in the Appendix. We next take the limit
j— oo in (3.52). By Proposition 2.1 part(1), pe%(I,[**") so that V(p)e¥(I,L").
Using the identity

1
V(R;@) = V(p)=2Re(R;p — @)gduf(uR,-co +(1 = o),
we estimate pointwise in time

IV(R;jo) = V(o) =ClIR;0 — @l 100541

which proves the convergence of the left-hand side of (3.52) to that of (3.49). By the
same estimates as in Proposition 2.1 part (1) (see especially (2.10)) and by Lemma 2.3
part (1), the integrand in the right-hand side of (3.52) is bounded uniformly in j and
integrably in time according to

idf<R,-¢(T),f(R,~<P(T))> < Cle—slll g3 L B~ Y | s LA BY) |7 (3.53)

with 1/g=0=(1—{)/(p+1) and for instance p=1/2 and d(r) =0 + 1/2, which
satisfies (2.5). Furthermore, for fixed 7, R;¢(t) tends to ¢(t) in B, /2 and f(R;¢(1))
tends to f(¢(1)) in B/ by the propertles of R; and Lemma 2.3 part(2), so that the
integrand in the left-hand side of (3.52) tends to that in the left-hand side of (3.49).
The result then follows from the Lebesgue dominated convergence theorem.

In order to prove (3.50), we start from (2.48) (see also the subsequent comments).
By an elementary argument of regularization in time, we obtain

I HyB(0) X 12 — | H, 8% X, |2 = 2 Re [ de CH,d(2), H,B(2)>
= —2Re[drCH, 00, H, (o)),

= ~2Reidt(ngb(r),ij((p(t)», (3.54)

where {.,.>,denotes the scalar product in X ,. We next take the limit j — oo in (3.54).
The first member of (3.54) converges to that of (3.50) by the properties of H;, the fact
that @e4(I, X .) by Proposition 2.3 part (1), and the unitarity of U()in X . The last
member of (3.54) tends to that of (3.50) by a similar (but simpler) argument as in the
proof of (3.49).
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Energy conservation follows by adding (3.49) and (3.50) together and using the
definition of the norm in X,.

The last statement follows from the fact that { =0 and that the integral in the
right-hand side of (3.49) and (3.50) is convergent at infinity in the case under
consideration. QED

Remark 3.3. In the situation of the second part of the proposition, if I is unbounded,
say I = [T, ), if t, is finite, and if ¢'(t)e L* for some k < 2* and some tel, it follows
from Propositions 2.1 and 2.2 that jdx V(¢p(t)) tends to zero when ¢ tends to infinity
so that the conservation of the energy takes the familiar form

E(p(1), ¢(1) = ®4; X, |, (3.55)

where @, = &(+ o).

Proposition 3.4 and Remark 3.3 apply in particular to the local dispersive
solutions constructed in Proposition 3.1 and to the solutions with small initial data
constructed in Proposition 3.3.

We can now prove the existence of global dispersive solutions of the equation
(2.33). For simplicity, we restrict our attention to the case of non-negative V, the only
case anyway that we shall be able to treat in the next section.

Proposition 3.7. Let n = 3. Let f satisfy (A1b) both for p — 1 = 4/(n — 2) and for some
p, with p, — 1 <4/(n—2), and (A2) with V = 0. Let Z () be defined by (3.11) with
r,04,0, satisfying (3.13), (3.14), (3.15) and (3.28). Then

(1) For any finite energy solution ¢© of the free equation [ = 0, for t, sufficiently
large, depending on ¢'® and possibly infinite, for any aeR, a < t,, the equation (2.33)
has a unique solution ¢ in ¥ o(I), with I =[a, o). That solution satisfies all the
conclusions of Proposition 2.3 part(2), for all such 1.
(2) The wave operators Q,:®, = ®(+ c0)— P(0) exist as injective bounded
operators in X ,, and their inverses Q231 are bounded.

Sketch of Proof. Part(1). By Proposition 3.1, there exists T > 0 depending on ¢®
such that all the conclusions of Part (1) hold for I = [T, «0) and t,el. In addition the
solution ¢ satisfies Proposition 3.4. We then extend those results to arbitrary
intervals [a, c0) by solving the equation (2.33) in successive intervals through the use
of Proposition 3.4 applied with p, — 1 =2(2 — {)/(n — 2) for { positive and small,
starting from T. The conservation of the energy (Proposition 3.6) and the condition
V =0 ensure that || @(t); X, | < E'/? uniformly in t, where E is the energy of the
solution, so that the successive time intervals can be taken of the same length. At
each step, the solution comes out to lie in the space Z () used in Proposition 3.4 and
satisfies the conclusions of Proposition 2.3 part(2), by Proposition 3.5.

Part (2). Theexistence and injectivity of the wave operators €2, follow from Part (1).
Boundedness of the 2, and 27! follows from energy conservation in the form

E= || ®(0); X ||I” + [dx V(p(0)) = | D1, X, [* + lim fdx V(p(), (3.56)
t— T o
where the last limit exists by Proposition 3.6. In addition

0= [dx V((0)) = Cllo(0)[3: = C| @) X, |,
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so that || @, ; X, || is estimated in terms of || @(0); X, ||, while

lim [dxV(p())<C lim (@) X,[* =C| D ; X, [|*
t=>t t—>t oo

by the continuity of @ from I to X, so that conversely || @(0); X, | is estimated in
terms of | P,;X.||. QED

4. Time Decay of Solutions and Asymptotic Completeness

In this section we study the asymptotic behaviour in time of finite energy solutions of
the equation (1.1), defined as solutions ¢ of (1.1) such that @ = (¢, )e L*(R, X ,). It
follows from Propositions 3.4, 3.5 and 3.6 and standard globalisation arguments
that for f satisfying the assumptions of Proposition 3.7 and for any @,=
(90, ¥o)eX., the equation (1.1) with initial data @(t,) = @, at some finite initial
time t,eR has a global solution which is unique in %,,.(R) and which is a finite
energy solution. We shall see in Proposition 4.1 below that in fact any finite energy
solution belongs to %,,.(R) and therefore can be recovered by solving the Cauchy
problem with finite initial time in the way described above. We first prove that all
finite energy solutions of the equation (1.1) satisfy some uniform boundedness
properties in the sense that they belong to £ (L¢(B?)) for suitable values of r, p, g and
suitable assumptions on the interaction f. The method of proofis a direct estimation
and does not require the elaborate machinery of [8, 11,21]. We next prove the main
result of this paper, namely the fact that for a class of repulsive interactions, all finite
energy solutions of the equation (1.1) are dispersive in the sense that they satisfy the
space-time integrability properties previously found for the solutions of the free
equation [J¢ =0 (see Lemma 2.2). In the framework of Scattering theory, those
properties imply asymptotic completeness in the energy space. The proof relies on
the Morawetz—Strauss estimate [21] which is directly related to the approximate
dilation invariance of the equation (see Lemma 4.3) and on the finiteness of the
propagation speed for the equation (1.1) (see Lemma 4.2). Combining those two
estimates one proves that suitable Besov norms of finite energy solutions of the
equation (1.1) are arbitrarily small in arbitrarily large time intervals (see Lemma 4.5).
That property is exploited through the integral equation (2.33) and for that purpose
one needs some additional estimates on the integrand in that equation (see Lemma
4.7). With those estimates available the proof follows step by step the corresponding
proof for the NLS equation, given in [8] and for the NLKG equation, given in [11].
The final results are collected in Proposition 4.2.

In this section we shall make repeated use of an additional estimate on the
interaction term, which can be stated as Lemma 4.1 below. As a first approximation,
the reader can take # = 0 in that Lemma. The case  # 0 is needed only in the proof of
Lemma 4.5 below.

Lemma 4.1. Let n>3. Let f satisfy (Ala). Let 0< A< 1, p<ip<l,1</<2<r,
v<o0, 0=n=Min {8(/)/n,(p—1)/v} and 0<o=p+(r)—1<1. Then, for all
@eHYNB?, with oeL’ if n >0, the following inequality holds:

1@y B < Cllos HyIP "™ s B2 " [ |10 (4.1)
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provided
P—Dm2—1-0/(1+p-))Z(£)+ 61 — /(1 —p)+nv(6(t) =1 —0/(1 +p_))
4.2)
and provided v = 0 satisfies
P—Dm2—1)=1+4+686(¢)—A+vo +no(6@)—1). 4.3)
Proof. We estimate the left-hand side of (4.1) by Lemma 2.3 part (1) as
I f(@) B2 < Cllg; BE | I@lP~ Il (4.4)
with
n/s =(£) + o(k), 4.5)
and we estimate the last norm in (4.4) by the Holder inequality as
HelP~ = el "™, @l (4.6)
with
1/s—1/u=n. 4.7)

Since 0 < < 6(¢)/n, the conditions (4.5) and (4.7) determine u with 1 <u < oo for
any k=2 and v=2. We next estimate the norms of ¢ in B} and [~ 1= by
interpolation between the norms of ¢ in H. and in B? and by using the Sobolev
inequalities if necessary. The interpolation is possible provided

1—4=6(k)=o(r)(1 — D1 —p) (4.8)
and

1<o((p—t—nmuw <1+ Min{o,(c/(l —p)}=1+a/1+p_) 4.9)

or equivalently, after elimination of u through (4.5) and (4.7)

(p—1=m)(m2—1—0/1+p_))=dk)+0(/)—nn

s(p—1-—m)mn2-1) (4.10)
The conditions (4.8) and (4.10) constrain (k) to lie in the intersection of two
intervals, both of which are non-empty under the assumptions made (in particular

p — 1 —nv = 0). The interpolation is possible, namely the conditions (4.8) and (4.10)
are compatible for k, under the conditions (4.2) and

(p— D2 —1)2 1 +5() — A + no(3(v) — 1). 4.11)

When possible, the interpolation yields (4.1), where v is defined by the homogeneity
condition

njf —i=(p—v—no)n/2—1)+v(n/r—p)+nn (4.12)

or equivalently (4.3), and satisfies 0 < v < p — nv. Finally, the lower interpolation
condition (4.11) reduces to the condition v=0. QED

We are now in a position to prove the basic uniform boundedness result for the
solutions of the equation (1.1).

Proposition 4.1. Let n=3. Let f satisfy (Ala) with p satisfying (3.30). Let ¢ be a
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solution of the equation (1.1) such that @ = (¢, ®)eLZ.(R, X,). Then

(1) @ =(p, )W (R).
Let in addition n = 4, let

3/(n—2)<p—1<4/(n—2) 4.13)
or equivalently (see (2.40)) 0 < { < 1/2, and let ¢ be a finite energy solution. Then
(2) For any r,p,0,q satisfying (2.5) and 1/q=0<y(r)/2, q)e/w(L"(B;’)) and
pel=(LA(BL ).

Proof. We concentrate on the properties of ¢. Those of ¢ are derived in a similar
way.

Part(1). The proof is similar to that of Lemma 3.3 of [9]. The additional lower
bound on p as compared with that lemma comes from the fact that the L?normof ¢
is not available in the present case. By interpolation with H} and by the Sobolev
inequalities, it suffices to prove the result for y(r) = 1 —eand 0 < 20 < y(r), withe >0
and small. For such a value of r, we prove it in each bounded interval I for values of &
increasing from 0 to y(r)/2 by successive steps of length ¢. At each step we estimate the
norm of ¢ in L¥(I, B*") with 1/¢" = ¢” = ¢’ + ¢ = 1/¢' + ¢ by the use of the integral
equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with # =0 as

IK(t—)f(e):BE | < Clt— || f(g); B |
<Cle—t| ™l Hy [P~ @; BE'|” (4.14)
with Z <r and 1= 0" + a(/) so that (4.3) becomes
(p—Dm2—1)=1+y()+ve' — 0" (4.15)
We then estimate
I F(to, ) L (L BE) | < CH [ @; L*(R,HY) [P [ ; LY (LBY) | (4.16)
by the Young inequality, provided 0 <{=<1,0=<¢", va' £ 1, and
(=1—9()—vd +d”, (4.17)

which coincides with (4.15). One can take for instance y(¢) = 1 — { + ¢ with e £{/2,
and v = 1. The upper interpolation condition (4.2) needed to apply Lemma 4.1 has
been shown to hold for that choice and the relevant values of ¢’,¢6” in the proof of
Lemma 3.3 of [9]. Substituting the estimate (4.16) into the integral equation (2.33),
one obtains for the previous choice v =1,

s L"(1, BE) || < 1| o @5 L (I, BE") || + CIIF || 3 L=(R; H3) |7~ !
s L1, BY) | (4.18)

from which the result follows in a finite number of steps.

Part(2). The proofis similar to that of Proposition 3.1 of [11]. By interpolation and
the Sobolev inequalities, it suffices to prove the result for y(r)=1 + cand o =1/2 —¢
with ¢ > 0 and small. For such a choice of r and g, we estimate ¢ again by the use of
the integral equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with
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n=0 as
IK(t =) f (o) B2l < Cle — |7 o3 H 1"l 3 BE I (4.19)
with Z <r and 1 =0 + a(/) so that (4.3) becomes
p—Dm2—-1)=1+y(¢)+ (- Do, (4.20)

or equivalently
(=1—9y()—(v—1)o. (4.21)

We use the estimate (4.19) with different values of Z and v according to whether
[t—1|<1or|t—1|=1, with

0<v<l—¢lo<l (4.22)

inboth cases. For |t — t| £ 1, we take 0 < y(¢) =y_ < 1 — ¢, which is compatible with
(4.22) provided 2e £{ =< 1 + 0 = 3/2 — ¢, and therefore under (3.30) for ¢ sufficiently
small. For [t —1| =1, we take y(¢)=y, = y(r)=1+¢, which is compatible with
(4.22) provided 0 £ { £ g — e = 1/2 — 2¢, and therefore under (4.13) for ¢ sufficiently
small. We denote by v, the values of v corresponding to the two cases. We now
define

ko(t) = @ ©(t); B2, (4.23)
k() = Il @(t); B? . (4.24)

We restrict our attention to positive times. Taking the norm in B? of both members
of the integral equation (2.33) and estimating the integrand by (4.19) we see that
for t = 0, k() satisfies the integral inequality

k=<ky,+ ﬂ*Zk”i (4.25)
+
with

p()=CMin|t| 7+ | @; L* (R, Hy) |7 "= for >0,
+ T
* - 4.26
u(®)y=0 for t<0. (4.26)
In particular, ue L}(R*). We now take a > 0, multiply both members of (4.25) by the
characteristic function y, of the interval [0,a], and take the norm in /*(L?).
Applying the Young inequality in the spaces £*(L*) (see for instance Lemma 5.6 of
[8]) and the inclusion /®(L?) = #*(L"?) for v < 1, we obtain

lxaksd *(LEN = ko3 £(LE) || + CMax || @; L*(R, HY) P || ks £ (L) |

The contribution of the free term is controlled by Lemma 2.2. Since v, < 1, the left-
hand side is bounded uniformly with respect to a. This completes the proof. QED

We now prove the finiteness of the propagation speed for the equation (1.1)in the
form of local energy conservation. The result given in Lemma 4.2 below, and its
formal algebraic derivation are the same as that for the NLKG equation given in
Lemma 4.2 of [ 11]. The actual proof however, is somewhat different because we use
a different (more economical) regularization procedure. For any open ball
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£ =B(x,L) of center x and radius L in R", for any teR, we define 2, ()=
B(x, L+ |t]) with the convention that B(x, L) is empty if L < 0. For any measurable
set 2 < R”, for any (o, ¥)eX,, we define

E(p,y;2) = Ltix(ltlfl2 +1Vol* + V(p)) (4.27)

Lemma 4.2. Let n > 3. Let f satisfy (A1b) with p satisfying (3.30) and (A2) with V = 0.
Let ¢ be a finite energy solution of the equation (1.1). Then for any open ball £2 = R",
for any teR, the following inequalities hold:

E(o(t), p(1); 2_(1)) = E(9(0), (0); 2)
and
E(o(t), ¢(2);C2 4 (1) = E(9(0), (0); C€2),

where ( denotes the complement in R".

Proof. Without loss of generality, we can assume that = B(0,L) and that ¢ is
positive. We choose a function me%*(R,R*) with m(s)=0 for s<0, m(s) =1
fors=1and 0 <m'(s) < 2, and we define m,(s) = m(s/¢). By a computation similar to
those contained in the proofs of Proposition 3.6 and of Lemma 4.2 of [11] and an
elementary argument of regularization in time, we obtain

[dxm(L—t—|x){|H;p|> +|HVo* + V(H;p)}(z,x)
< [dxm(L—|x){|H;¢|* +|HVo|* + V(H;9)}(0,x)

+ (j:dr fdxm(L—1t—|x|)2Re H;¢(f(H;0) — H,f(9))(z, %),  (4.28)

where H; is the regularizing operator defined in the Appendix. We next let j tend to
infinity and ¢ tend to zero in that order. The left-hand side and the first term in the
right-hand side of (4.28) tend to E(¢(t), ¢(2); 2_(t)) and E(¢(0), ¢(0); ) respectively,
by the same argument as in the proof of Proposition 3.6. Note however that the
assumption that ¢(t)e L *! for some teR is not needed here, because the function
my(L — 7 — |-|) has compact support. We next prove that the second term in the right-
hand side of (4.28) tends to zero when j— oo for fixed ¢ by proving that the
contributions of f(H;p) and H;f(¢) both tend to their common formal limit. The
argument is almost the same as in the proof of (3.49), (3.50) with an additional
complication due to the function #i(z, x) = m,(L— 7 —|x|). Instead of (3.53), we
obtain the estimate

[ <0, m 1 0000
< Cll¢; LA([0,£], B2~ )| || f (H ) L([0, 2], B; ~*) |
< Ct* |l ¢; LA([0, £1, B~ 1) || { 35, L2([0, £, L*) || + [|7i; L*([0, ¢1, B} ~*) || }
Il @; LY[0, 11, B) |7, (4.29)

wheren// =1 — p < 1/2, the last inequality follows from a straightforward extension
of Lemma 2.3 part(1), the first norm of 71 is 1 and the second one is finite since
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me%* and m has compact support as a function of x. The same estimate holds for
the contribution of H;f(¢p) to (4.28). With that modification included, the proof
proceeds as that of energy conservation in Proposition 3.6 through the use of the
Lebesgue dominated convergence theorem in the time integral. QED

We now recall the basic decay estimate [21]. The result given in Lemma 4.3
below and its formal algebraic derivation are again the same as that for the NLKG
equation given in Lemma 4.3 of [11], with a somewhat different proof. We define

W,(2)=2f(2) — V(2). (4.30)
We also introduce the functions g(x) = (1 + |x|?)~*/? and g, = V-(xg). One checks
easily that (n — 1)g < g, < ng and that Ag, £0 for n=>3.

Lemma 4.3. Let n = 3. Let f satisfy (A1b) with p satisfying (3.30) and (A2). Let ¢ be a
finite energy solution of the equation (1.1). Then for any s and t in R, s £ t, ¢ satisfies
the inequality

[de[dxg, ()W, (o(5, x))

< Re {{@(s),(xgV + V-xg)0(s)) — {p(t), (xg-V + V-xg)p() ) }.  (431)

Proof. By the same algebraic computation as in the proof of Lemma 4.3 of [11] and
an elementary argument of regularization in time, we obtain

[de]dxg, W(H,p(x)
= Re {CH;¢(s), (xg-V + V- xg)H;0(s) ) — CH¢(2), (xg-V + V-xg) H (1) ) }
—+ jdr Re (H;op(1), [A,xg]-VH (1))

+ jdf Re {f(H;o(t)) — H;f (9(7)),(xg-V + V-xg)H;0(1) ). (4.32)

where H; is the regularizing operator defined in the Appendix. The first integral in
the right-hand side of (4.32) is negative (see the proof of Lemma 5.2 of [8]). We next
letj tend to infinity. By the same argument as in the proof of Proposition 3.6, the left-
hand side of (4.32) converges to that of (4.31). Note in particular that

lg W@l =Cllgil llel5t (4.33)
with
(p—D12—=1/nm)=2/n-1/t,

or equivalently 7 = n/{ so that / >n and | g, ||, < oo for { < 1. In addition, the first
two terms in the right-hand side of (4.32) converge to the right-hand side of (4.31). We
next prove that the last integral in (4.32) tends to zero when j— oo by proving that
the contributions of f(H ;) and of H;f(¢) both tend to their common formal limit.
We use again the same argument as in the proof of (3.49), (3.50), now with an
additional complication due to the function xg. In particular, instead of (3.53), we
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estimate

[de¢ f(H,p(). (xg'V + V-xg)H 0(2)

< cidv:{ I f(H;0); B2 ||| o(x); B | X9 ||

+ L f(H (@) BE= 2| | o(2); B2 || | xg; BE~* |
+ | f(H;0()); B | | o(c); B¢ ||| xg; B2 ||} (4.34)

by a straightforward extension of Lemma 2.3 part (1), and withe >0, n/k=1—p —¢,
n/t = p — e. Assuming for the moment that the last two norms of xg are finite, and
taking p = 1/2, we estimate the last two norms of f as

| f(H;0(@) B} || < Cllo) B? |1,
If(H;@@); B 7| < Cllg; B2 [P~ | 93 BL ||
by Lemma 2.3 part (1), with (p + 6(r) — 1 =)o = (1 — {)/(p + 1). We then estimate the
time integrals in (4.34) by the Hdlder inequality and (noting that |[xg|, =1)
continue (4.34) as

S Clg L5 . BYIP e —sf
+ Cllp L([s, (1, BY) | | 2 L (s, £, BE )| = s
{llxg; B ™7 Il + Il xg; B } (4.35)

with 1/g=0 and 1/q¢'=0 —e&. The same estimate as (4.34) (4.35) holds for the
contribution of H; f(¢) to the last term in (4.32). With those estimates available, the
proof proceeds as that of energy conservation in Proposition 3.6 through the use of
the dominated convergence theorem in the time integral.

It remains to be proved that the norms of xg that occur in (4.35) are finite. We
consider only the last one. By an elementary computation, we obtain, for any
x, x'eR",

[xg(x) — x'g(x')] < Min {2,|x — x| (g(x) + g(x')) }. (4.36)
Using the integral form of the Besov space norms (see (2.24)), we estimate
. @ 231/2
Ing;B‘ZIIéC{It‘ldt{f"SUP IIXQ—TyxgH/} } : (4.37)
0 Iyl st

Using (4.36), we estimate the L’ norm in two ways. For |y| < 1, we obtain from the
second term in the minimum in (4.36),

Ixg —z,xgll, =21yl g, (4.38)

For|y| = 1, we use the first term in the minimum for | x + y/2| < 2|y| and the second
term for |x + y/2| = 2|y| and obtain

Ixg —1,xgll, < Clyl™. (4.39)
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Substituting the estimates (4.38) for | y| < 1 and (4.39) for | y| 2 1 into (4.37) and using
the fact that n/¢ = p — ¢ shows that xge B2.. QED

In the same way as in [8] and [11], the estimate of Lemma 4.3 will be used
through its following consequence.

Lemma 4.4. Let n>3. Let f and ¢ be as in Lemma 4.3 and assume in addition that
W, =0. Then for any ¢>0, a, >0 and £, >0, there exists by > 0, depending only
on &aqy,¢, and on the energy E of ¢, and there exists ¢ such that ag <c<by—{,

and
c+?

jodf | dxWi(e(nx) <e (4.40)
c |x| =27
One can take
bo=(ag+ £+ 1)exp {4E¢oe 1 (n—1)"1}. (4.41)

Proof. The proof is the same as that of Lemma 4.4 of [11].

The next step in the argument consists in proving that an arbitrary finite energy
solution of the equation (1.1) is arbitrarily small in arbitrarily large intervals of time
provided those intervals are located sufficiently far. That result requires a repulsivity
property of the interaction term f, which we state as follows

(A3) There exists C >0 and p,, ps with 1 < p, < ps < oo such that for all peR"*,
Wi(p)Z CMin (p? "1, pPs*H). (4.42)
We can now prove the following result, in close analogy with Lemma 4.5 of [11].

Lemma 4.5. Let n > 4, let f satisfy (A1b) with p satisfying (4.13), (A2) with V = 0 and
(A3). Let r, p, o and q satisfy (2.5) and 0 < o = 1/q. Let ¢ be a finite energy solution of
the equation (1.1). Then for any ¢ >0 and any ¢ > 0, there exists a > 0 such that

lo;2=(L% [a,a+£1, B?)| <e. (4.43)

Proof. The proofis the same as that of Lemma 4.5 of [11] with only one difference.
Since now the energy does not contain the L? norm, the contribution of the region
t—0,<t<t—0,,|x|> 21 has to be estimated by using the norm of ¢ in L?", namely
by taking vy =2* The local energy estimate of Lemma 4.2 has then to be
supplemented by a decay estimate for the norm of ¢ in L?" replacing (4.38) of [11].
That estimate is given in Lemma 4.6 below. With that estimate available, the proof
proceeds as that of Lemma 4.5 of [11]. QED

Lemma 4.6. Let n = 3. Let f satisfy (A1b) with p satisfying (3.30) and (A2) with V = 0.
Let ¢ be a finite energy solution of the equation (1.1). Then

lim || o(t); L**(CB(0,21)) || = 0. (4.44)

Proof. Let 1 <a<?2, let ye€*(R") satisfy y(x) =0 for |x| < a, y(x)=1 for |x| =2
and 0 <y <1, and let y,(x) = x(x/t). Then for all t =0,

l(0); LZ*(CB(O,20) | < 0@ ll2» 1V @@ 12 + 11V 01l
StV () L2(B(O, 26)\B(0, at)) |
+ 1% 1V (2); CB(O, at)) |. (4.45)
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The first norm of ¢ in the last member of (4.45) is estimated by writing ¢ as the
integral of ¢ and estimating the local L2 norm of the latter by Lemma 4.2, while the
local L? norm of V¢ is estimated directly by the same lemma. We can then continue
(4.45) as

= = IVl {t ™ 19(0); LA(B(0, 26)\B(0, at)) |
+ E(0, B(0, 3)\B(0, (a — 1)1))*/*} + E(0,€B(0,(a — 1)1))!/2  (4.46)

The remaining norm of ¢(0) is estimated by the Holder inequality, so that (4.46) can
be continued as

= Vil 200,™ | @(0); L*(B(0, 26)\B(0, at)) |
+(1+ 11V llo)EQ,CBO, (a — D1)''2, (4.47)

where o, is the volume of the unit ball in R". The result follows from (4.47), from the
fact that ¢(0)eL?" and from Lemma 4.2. QED

In order to proceed further, we need to prove that some norm of an arbitrary
finite energy solution of the equation (1.1) satisfies a superlinear integral inequality
in addition to the sublinear inequality used previously (see (4.25)). For that purpose,
we need the following estimate.

Lemma 4.7. Let n = 4. Let f satisfy (Ala) for two values p, and p, with
p,—1<4/n—2)<p,— L (4.48)

Let v and o satisfy y(r) > 1, y(r) sufficiently close to 1, and o < 1/2, ¢ sufficiently close to
1/2. Then there exists y, and vy, satisfying 0 <y, <1 <y, and there exists v satisfying
v>1,vo <1 and (v—1)o <1—1y,, such that for all peB?"H} and all t> 0, the
following estimate holds

| K (@) B2 < Min (1t )Ml o; H3 1) 3 B 1" (4.49)

Proof. Without loss of generality, we assume that (p; — 1)(n/2 — 1) = 2(1 + ¢) and
(p, — 1)(n/2—1)=2—¢ and we take y(r) =1+ ¢ with ¢ > 0,¢ suitably small. We
obtain the two estimates of (4.49) by applying successively (2.3) (see also (3.5), (3.6))
and Lemma 4.1 withy =0and A =0 + a(/), once with p = p,,y, =9(¢/;) =1 + ¢,and
once with p = p,,y, = y(¢,) = 1 — 2¢ and with (v — 1)g = ¢, which fulfills the relation
(4.3) or equivalently

(p—Dm2—1)=1+y¢)+@— 1o (4.50)

in both cases. Furthermore (v — 1)o =¢ <1 —9y, =2¢and vo = 0 + ¢ < 1. The upper
interpolation condition (4.2) is seen to be satisfied in both cases for ¢ sufficiently
small and o sufficiently close to 1/2 by an explicit computation for which we refer to
the proof of Lemma 3.3 in [9]. QED

It follows immediately from Lemma 4.7 that under suitable assumptions on
fandon p,r, g, any finite energy solution of the equation (1.1) satisfies the following
properties. The norm k(t) defined by (4.24) belongs to Z*(L?) by Proposition 4.1, is
small in large intervals by Lemma 4.5 and satisfies a superlinear inequality

k< ko + pxk’, (4.51)
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where v>1 and

u(t)=Min [t|~7* for 20
i=1,2
u(t)=0 for t=0,

by Lemma 4.7. From that information, the dispersive properties of such solutions
follow by the same abstract arguments as in the case of the NLS equation [8]. We
now state the final result.

Proposition 4.2. Let n > 4. Let fsatisfy (A1b) for two values p, and p, satisfying (4.48),
(A2) with V =20 and (A3). Then

(1) Any finite energy solution of the equation (1.1) belongs to-%(R).
(2) The wave operators £2 . defined in Proposition 3.7 part (2) are surjective in X,.

Indication of Proof. It follows from Proposition 4.1, Lemmas 4.5, the integral
inequality (4.51) and from Lemmas 5.10 and 5.11 of [8] that any finite energy
solution ¢ of the equation (1.1) belongs to LI(R, B?) for the values of p,t,q that
appear in Lemma 4.7. By interpolation with the boundedness of ¢ in H} and the
Sobolev inequalities, this implies that peLi(BP) for all p,r,o and g satisfying (2.5)
and 1/q = o, except for the boundary values corresponding to y(r) = 20. Finally, the
whole region (2.5) is recovered by applying Proposition 2.3. QED

In the framework of Scattering theory, Proposition 4.2 part(2) means that the
wave operators obtained in Proposition 3.7 are asymptotically complete in X,.

Appendix

In this appendix, we collect the definition and some basic properties of the
homogeneous Besov and Sobolev space of arbitrary order (see [1] for general
information on those spaces). We discuss in particular the problem of the choice of
representatives (see [3] for that question). We also discuss the meaning attached to
the equation (1.1) and its equivalence with the integral equation (2.33).

We denote by & the Fourier transform and we write 0= %v for any
ved = F'(R"). We define the subspaces & = Z(R") and 2, of & = ¥(R") by

Z ={ues:D*i(0) = 0 for any multiindex o} (A1)
and
Do = {ueF 4% (R"\{0})}. (A.2)

Clearly & is a closed subspace of &, so that & is reflexive, while 2, is easily seen to
be dense in Z. The dual of the inclusion map & < & is a surjection © from &’ to &,
the kernel of which consists of the polynomials Z,s0 that ' = /2.

Let Yo,c6Z(R") with 0< o<1, Yo(é)=1 for 1¢I=1 and Yo(£)=0 for
|| = 2. For any jeZ define (pj(g) Yo(279¢) and ¢ = l//] tpj ; so that

Supp ¢; < {&:2771 < (¢ <20

and, forany & # 0,/ (&= ¢,(&) with at most two non-vanishing terms in the sum.
/i
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By homogeneity ;15 = |¥o [ and | g;1; = [ 9o, for any jeZ.

With any ue#” we can associate the sequence of functions {¢;*u = u,}, jeZ.
That sequence is actually defined for ue 2’ since u; = 0 for ue2. For any peR and
any r and s with 1 <r,s < co we define the homogeneous Besov spaces

. ) 1/s .
Bﬁ’s={u€&“'i{z2“’sll %*ullf} = [lu; Br | <OO}, (A.3)
7

and the auxiliary spaces
1/s
{Z2j”sl¢f*“ls}
7

with obvious modifications if s = co. The factor 2” in the sums mimicks a derivative
of order p. Equipped with the norm given by (A.3) and (A.4) the spaces BP.and F?, are
Banach spaces. They satisfy F%, c B4 if | <r <s< oo and BL.cFrifl <s<r< oo,

We next defn}e< the homogeneous Sobolev spaces. For any peR, we define the
operator ®” by o’u(&) = |£|P4(€) for any ue Z. Then w” is an homeomorphism of Z
onto itself, and therefore induces an homeomorphism of 2’ onto itself, still denoted
by w”. For any p, for any r with 1 £r < oo, we define the homogeneous Sobolev
spaces H? by

lu; B2 || < oo} (A4)

r

Ffs{ueff’:

H! =0 r(L).

Any uen(L") is the image of only one representative uge L. Equipped with the norm
lu; H? || = || (@?u)g |, H? is a Banach space. The homogeneous Besov and Sobolev
spaces can be compared by using the (non-trivial) fact that F?,=H?for1 < r < o080
that the previous embeddings imply B?, « H? = B%,if2 <r < o0 and B?, « H = B?,
if 1 <r <2. The Sobolev embeddings for the Besov spaces take the form

Bl = B, (A.5)
withnr—p=n/r—p, 1 £r<r<oo and 1<s < 0.
Another embedding of interest is contained in the following lemma.
Lemma A.l. Let 1 <¢,m,m' < oo, m' <m,AeR and ¢ > 0. Then B} , > ﬂB}i‘, and
the following estimate holds
Il B, < Cllus B, | < CT 1w BEe)1 . (A.6)

Proof. The result follows from the definition of Besov spaces through a dyadic
decomposition by a simple use of the Holder inequality. QED

For a number of arguments we need to approximate elements of 2’ by smooth
functions. For any j,keZ* we define the regularizing operators

ij”:(‘/’j— Yo xu

foranyue¥”and H; = H ;. Clearly H ;ue% * with at most polynomial increase. The
operators H j; are bounded uniformly with respect to j, k and converge strongly when
jand (or) k— oo in a number of spaces. By the definition (A.1) the operators H ;, are
uniformly bounded with respect to j and k in all B2, and converge strongly to 1 when
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J-k— oo for s < co. The operators H, converge strongly to 1 in 9, since H 18
independent of j, k for ue 2, and j, k sufficiently large. In addition H ; converges to
H ., when j— co strongly in & and therefore in #”, and H converges to 1 when
j.k— oo strongly in 2 and therefore in 2. Furthermore the operators H, are
uniformly bounded with respect to j and k in L’ since

I H jeull, < ;=¥ el ull, = 2000l llull,-

Since 9, isdensein L' for 1 <r < o0, H jxconverges strongly to 1in L when j, k — c0.

The locally regularized functions H ju, with ue#”, in general do not decay at
infinity. In some applications it will be useful to introduce an additional cut off at
infinity in space. For that purpose we choose a function g, with o4y, d, =0,
Supp do = {&:1¢] < 1/2}, Ildoll, =1 and, for any jeZ, we define §;(&) = 2"§o(27¢).
The operators of multiplication by g; are uniformly bounded in norm with respect to
jinallthe L', 1 <r < o0, and converge to 1 strongly in L" for 1 <r < oo when j — oo.
We define the operators R; by Rju = g;H ;jufor any ue #”, so that R juego. Note also
that

Supp Rjuc {£&:270U D < g <2771 427 0% DL (A7)
Clearly the operators R; are uniformly bounded in norm with respect to j in L',

1 <r £ o0, and converge to 1 strongly in L', 1 <r < co when j— co. We next study
the behaviour of R; in the Besov spaces.

Lemma A.2. (1) The operators R; are uniformly bounded with respect to j in B?,, with
peR, 1=r< o0, 1 Ss=< o0, .

(2) The operators R; converge to 1 when j— oo strongly in Bf, with peR, 1 <r < o0,
1<s<oo.

Proof. We prove only Part (2) which is slightly more complicated than Part(1). By
Ru—u=(9;—1)Hu+ (Hu—u),

and by the convergence properties of H;, it is sufficient to prove that (¢9; — 1)Hu —0
in B?,. For that purpose we need an estimate in Z* of the sequence v = {v,, } defined by

On=2"lQm*((g;— DHWI, < Y. 27" @p*((g;— Digwxu)l,. (A8)

-j<ksgj

By the support properties of ¢, and §; the norms in the right-hand side of (A.8) are
different from zero only for |k —m|<2. Using the Young inequality and the
previous restriction on k we obtain

;211 é( > 2‘”>IIW;/5H <540 w20,
1152
where w = {w,} is the sequence
wi =21 (g;— D(@exw)ll [ @oll -

Since ue B’ the sequence w is bounded uniformly in j by a sequence in #* and each
term tends to zero when j— oo, so that w—0 in /° when j— c0. QED

The elements of homogeneous Besov spaces are equivalence classes of distri-
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butions modulo polynomials. However we are interested in solving the
equation (1.1) in a genuine distributional sense. Therefore we repeatedly face the
problem of choosing distributional representatives of elements of B, spaces, and
making sure that those choices are consistent with the various operations to be
performed. This is all the more necessary as some of the statements and estimates,
such as those of Lemma 2.3, explicitly require the use of representatives.

The problem of the choice of representatives has been studied in [3], from which
we extract Lemma A.3 below. In order to state it, we define the space & of tempered
distributions tending to zero at infinity as

Fo={ue¥:du—0in ¥ when 10},
where d, is the dilation operator defined by (d,u)(x) = u(x/4).
Lemma A.3. Let 1 £r,s< 00, n/{ =nfr—p>0..Then

(1) Any uers has a unique representative ug in &;. The map u— uyg is continuous
from B, to Sy and ug is the limit of Hu in &' when j— co.

In addition

(2) If p >0, then uge L’ ¥ + L'~ (for some & > 0). The map u—» uy is continuous from
Bl to L'+ L' ™" and uy is the limit of Hju and of Rju in L'** + L'~* when j— co.
() Ifp=0,s<2and ¢ =2, thenugeL’. The map u— uy is continuous from Beto I/
and uy is the limit of Hu and of Rju in L’ when j— oo.

Proof. Werefer to [3] for Parts (1) and (2). Part (3) follows from the embedding (A.5)
and the properties of H; and R;. QED

In all the applications made in this paper the assumptions of Lemma A.3 Part (1)
are satisfied. Whenever a choice of a representative is needed we select the
representative described in that lemma, which we sometimes call the canonical
representative. In order to simplify the notation we use the same symbol for the
Besov space element and for its canonical representative. That occurs in particular
in the following three cases:

(1) In the definition (2.1) of the energy space X, it is understood that the first
component is the canonical representative (which is in L2*) of an element of H = B1,
according to Lemma A.3 part(3).

(2) The interaction term [ in (1.1), generally satisfying the assumption (Ala), is
always to be applied in the ordinary sense to the canonical representative of its
argument. Subsequent estimates such as the estimates (2.17), (2.19) and (2.21) of f(¢)
in Lemma 2.3 are then performed on the class of f(¢) in a suitable Besov space.
Clearly the functions g; and g, in the same estimates are also applied to the
canonical representative of ¢. Finally, by Lemma A.3 Part(2) and since f(0)=0,
f(¢) is the canonical representative of its class.

(3) The operators K, K, K, ... obviously commute with the regularisation operator
H;. It follows therefore from Lemma A.3 that they preserve the choice of the
canonical representative whenever it exists. This remark applies in particular to the
transition from @ to @ defined by (2.38).

We now discuss the meaning of the integral equation (2.33) and its relation with the
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differential equation (1.1). We shall always work in situations where f(p)e Ll (I, B})
for some interval I of Z with/,m = 1, 1 > 0,n// — A > 0. The integral which occurs in
(2.35) is defined as a weak integral in &' by

<C,j dtK(t— f)f(f/)(f))> = j dr (Kt -1 fle(0)) (A.9)

for all t,,tel and for all {eZ. With the choice of the canonical representative of ¢
and therefore of f(¢), the integral is also defined weakly in &#". It follows from the
available estimates and from Lemma A.3 and the subsequent discussion that the
weak &’ integral is the canonical representative of the weak &' integral.

We next define the weak time derivative in £’ (a similar definition holds in %”’).
Let I bean openinterval of Rand let pe L (I, X), peLi (I, Y),q = 1,where X and Y
are two Banach spaces continuously embedded in &’ (or &’). We say that ¢ is the
time derivative of ¢ if the following equality holds in 2'(I)

d<{C,p>/dt =<, ¢) (A.10)

for all {eZ (or {e%).
The differential equation (1.1) and the integral equation (2.33) are equivalent in
the following sense.

Proposition A.1. Let I be an open interval of R and let peL*(I, BP) be such that
f()eL™(1, B}, with r,4,q,m = 1.

(1) Let ¢ satisfy the equation(1.1) in the previous weak sense. Then
peb* (I, X), peb(I°, X) where I° is the closure of I in R, X = B} + B¢~ 2 and, for all
s, tel, ¢ satisfies the equation

o(1) = A(s, 5 0)(t) (A.11)
with .
0 Ot) = K(t — 5)(s) + K(t — 5)¢(s).

(2) Conversely let ¢ @eL%(I, B?) (this is not essential) be solution of the equation
¢ @ =0 and let ¢ satisfy the equation (A.11) for some sel°. Then ¢ satisfies the
equation (1.1) in the previous weak sense.

The proof of Proposition A.1 proceeds by a direct computation and duality
arguments.
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