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Abstract. A simple martingale argument is presented which proves that directed
polymers in random environments satisfy a central limit theorem for d= 3 and if
the disorder is small enough. This simplifies and extends an approach by J.
Imbrie and T. Spencer.

1. Introduction

In a recent paper, Imbrie and Spencer [1] considered the following model of a
random walk in a random environment. Let £(¢), 1€ Ny =INU{0} be an ordinary
symmetric random walk on Z“ starting in 0 and let 4(z, x), te N, xe Z% be i.i.d.
random variables which are + or — 1 with probability 1/2 and also independent of
¢. We denote by { > the expectation with respect to & and by E(.) the expectation
with respect to the A-variables. Let 0 <e¢ <1 be fixed and for Te N,

T
k(T) =TT (1+eh(j, E()) -
Jj=1
Imbrie and Spencer proved the following result by a rather elaborate expansion
technique:

Theorem 1. If ¢>0 is small enough and d=3, then
lim E(T)Px(T)Y/T<{(T)>=1 almost surely
T-

(here | | is the Euclidean norm).

We give here a very simple proof based on martingale limit theorems. The result
in [1]is somewhat stronger and includes also a convergence rate. Such rates can also
be obtained by the method presented here. An inspection of the proof reveals that
the convergence rateis O (T ~?) almost surely for § < (d —2)/4. Theorem 1 is a special
case of a more general result which includes the central limit theorem which seems to
be new. Let &,(T),..., ,(T) be the components of the random walk.
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Theorem 2. If ¢>0 is small enough and d=3, then for all n,,...,n e Ny,

lim <]£[ <éj(T)>”jK(T)> /<K(T)>= ﬁ y(n;)d=""?  almost surely

T-o \j=1 ﬁ j=1

where y(n)=0 if n is odd, y(0)=1, and y2k)=1-3-...-Qk—-1).

This implies a central Iimit theorem. For a given realisation of the /1 variables, we
define the probability measure g, on R? by

i (A) =1 (E(D))/THr(T))[<xe(T)) -
Theorem 2 implies the

Corollary. For almost all h, 1 converges to the centered normal law with covariance
matrix 1/d times the identity matrix.

2. Proof

Let F, be the o-field generated by the variables A(s, x), s<t, xe Z".
Lemma 1. {k(¢)) is a nonnegative (F)-martingale satisfying E({x(t)))=1.
Proof. E({x(t)>)=1 is obvious and

E(k(t))[Fo)=Q2d)™" ) E(l_[ (1+8h(/’w(i)))|F,-1)

w:0— Jj=1
|wl =1
t—1

=2d)""t Yy T1 (+eh(,w()) =<k =1)) .
w:0— j=1
|| =Ot—1 !
The summation is over nearest neighbor paths, w=(w(0), w(1),..., w(s)). w:0—
stands for w(0)=0, and |w| is the length s.
Lemma 2. {(x (1)) converges a.s. to a random variable { satisfying
E{Q)=1 and P((=0)=0 .

Proof. {(x(t)) converges a.s. by the martingale limit theorem (see e.g. [2, Theo-
rem [1-2-9]), say to (.

We consider two independent copies of the random walk &0, ¢@ with
corresponding quantities

t
kD) =TT (1+eh(j, E9())) .
ji=1
The /4 variables remain independent of ¢ and ¢®. Then

E({k (1)) =E(xM (0 kP (1)) =ECx D ()P (1))
= <E< [T (1 +eh (. EVGN) (1 +eh(, f‘z’(/)))>>

j=1

= +82)nc(é“’,r§‘2’)> ,
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where

t
nt(é(l)’é(z))= Z 1 g (s) = {(2)(5)—’100(5(1) 5(2))
s=1

The law of n_, is the same as the number of visits of a single random walk to 0 (of
course, not a single nearest neighbor random walk but nevertheless, one with
symmetric jump distribution). A random walk in dimension d=3 has after every
visit to 0 a positive probability of never returning to 0. Therefore, n, has an
exponential moment. So it follows that for small enough &> 0,

sup, E((k(1))?) < o0 .
We can conclude that {k(¢)) converges to { in L, and L, (see [2, Proposition IV-
2-7]). Therefore, E({)=1 and from this, we see that P({=0)=+1. It is easy to see
that the event {{=0} belongs to the tail field
() o(h(s,x):s=1,xeZ?)

t

(although ( is certainly not tail measurable!). To see this, we write for 7> ¢,

&My=2d)~' Yy, Y Tl U+eh(s,o)2d) "

x ®0-x s=1
o] =1

T-1
Yoo TT (4eh(t+s,0(5)) |

w:x— s=1
lo|=T—1

where the sum over x extends to those reachable from 0 in # steps. This converges to
0 for T— oo if and only if the second part converges to 0 for any x reachable from 0 in
t steps. Therefore, {{ =0} is a tail event and by Kolmogoroffs 0 —1-law and from
P({=0)+1 it follows that P({=0)=0, proving the lemma.

We create now a whole family of new martingales. If 1=(4,,...,4,)e R, let

d
3 ; cosh (4;)

It is well-known (and obvious) that
d
exp<2 ljé,-(z>—tlog@u))
i=1
is a martingale with respect to the filtration of the random walk (no A-variables are
involved). This remains true when &(¢) is replaced by a more general d-dimensional

t
random walk )  X(j), where X(j) are i.i.d. with ()= {exp (A X)) < oo for Aina

ji=1
neighborhood of 0 in R%.
If n=(n,,...,n;) e N, the polynomial W,(z, x) is defined by

ol d
aap. e P <,~; %x,-—rlogem)

3

A=0
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where |n|=n, +n,+...+n,. We write
W, (1, x)=Y A,y ,....0q, )X XEE
The coefficients 4 depend on the derivatives of log g in 0.

Lemma 3. For a general random walk with ¢(1) < oo for A in a neighborhood of 0 and
(X)) =0, we have

a) if iy +...+iy+2j>|n|, then A,(i,..., i, j)=0.

b) The coefficients with i, +...+i,+2j=|n| depend on the second derivatives of
logg at 0.

o) If iy +...+iy=|n|, then A,(i;,....i5,0)=0; , 0; 10 Oipny-

Proof. a) and c) are obvious and b) follows from the fact that dg/d4; at A=0
equals 0.

W, (t, £(¢)) is a martingale for the filtration of the random walk, i.e.
(WL E@IEE), sSt—1=W, (1—1,E(—1)) .

Here { |&(s),s<t—1) denotes conditional expectation given the path up to
time ¢ —1. Coming back to our special symmetric random walk, it follows that

Y (0) =W (6, S0k (1))

is a (F,)-martingale.
Lemma 4. If |n|=1 then

lim ¢t~ ™2y (1)=0 almost surely .

t— o0

Proof. We show that the martingale
t
Y MY, ()= Y, (s—1)
s=1

remains L,-bounded. From this, it follows that it converges almost surely and from
the Kronecker-lemma Lemma 4 follows:

ECW(t, Or(t)—W(t =1,k —1))") = ECW (1, O)ex(t—1h(t, £(1)))?)
=E@EW(t, ¢Vt —=Dh(t, E2 @)W (t, E2)x® = Dh(E. 2 (1))

where ¢®) k@ are as in the proof of Lemma 2 and we drop the index n for
convenience. The above expression equals

S EN W, ED) (1421 DD
§82<W(t, 5)8>1/4<(1 +82)8"00(‘5(1)"5(2)))1/8P(f(l)(t)25(2)0))3/4 .
P(EW(1)=ED(1))3* is of order (¢~ %2)3* <t~ %8 and
((1+e2))

is finite for small enough &> 0.
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Therefore, in order to show that
t

Susz<Z S"'"”Z(Yn(S)—Y..(S—l))):supz i sTME(Y,(5) = Y (s— 1)) <0,

=1

it suffices to prove

(W(,E)*y=0(*") .

This is obvious from Lemma 3a).

Proof of Theorem 2

The theorem is a consequence of Lemma 2—4. By induction, it follows from
Lemma 3a), 3¢), and 4 that

sup, < ﬁ (51'(” )nj;c(t)> <oo almost surely . 2.1

RN
We introduce the polynomial U,(z, x) by deleting from W, all summands
Ay, g, )X Xt
with i, +... +i;+2j <|n|. We conclude from (2.1) and Lemma 4 that for |n|=1,

lim ¢~ M2 U, (¢, E(t))k(t)>=0 almost surely ,

t— o
1.e.
—h—...—i 0\ N\
fim < 5 A< =iy z,,><<:1( )> _..<éd( )) K(t)>=0
o N 2 2 Vi G
almost surely (2.2)
where the sum extends over those i ,..., i; with |n]| —i; —... —i,2 0 and even. Using

Lemma 2, the theorem follows by induction. This can be seen by looking at

ol

d 1 d
0=— — X — — 2
GA . A <eXp<,§1 4%~ 34 ,.; l’>> ’

where X|,..., X, are i.i.d. normally distributed random variables with mean 0 and
variance 1/d. Because of Lemma 3b) this gives

<Z An<il,...,id, ML*;";L“>X{I...X§">=O .

Comparing this with (2.2), the theorem follows.
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