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Abstract. We analyze the chiral properties of (orbifold) conformal field
theories which are obtained from a given conformal field theory by modding
out by a finite symmetry group. For a class of orbifolds, we derive the fusion
rules by studying the modular transformation properties of the one-loop
characters. The results are illustrated with explicit calculations of toroidal and
c=\ models.

1. Introduction

The classification of conformal invariant field theories has up to now only been
exhaustive for c < 1 [1-4]. This is due to the particular properties of the Virasoro
algebra for these values of the central charge. It only has a finite set of unitary
representations and only for these minimal models the Virasoro algebra gives
enough information - in the form of null states - to determine the possible
interactions. It has long been evident that extensions of the conformal symmetry
are needed in order to give equally exhaustive results in the classification for c ^ 1.
Partial results in this direction have been obtained, mainly in the context of
superconformal and affine Lie algebras.

There has recently been much interest in rational conformal field theories
(RCFT's) [5-13]. These theories are characterized by the fact that their
correlations are given by a finite sum of holomorphic times anti-holomorphic
functions of the moduli of punctured surfaces. This property of the RCFT's can be
used to derive powerful constraints on the operator content and operator product
relations in these models. In this respect they form a natural generalization of the
minimal theories and it is clearly an important problem to try and find a complete
description of all possible RCFT's. From this viewpoint, it would be very
interesting to devise operations that act on the space of RCFT's and generate new
theories from a given one. As an example one can think of the construction of non-
diagonal modular invariant combinations of characters, coset models [14], etc.
Another operation of that kind is the concept of an orbifold.
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The original motivation of studying orbifolds [15] was to obtain simple models
of string compactification, which are more or less realistic. The simplext orbifold
models are constructed out of tori with certain isometries. One considers the string
propagation on the quotient of the torus by some subgroup of its symmetry group
to obtain a new theory, which is only slightly more complicated to analyze than the
toroidal model we started with. In general, the operation of taking the quotient of
a space by its symmetry leads to singular points if the symmetry operation has
fixed points. The singularity of the space would render point particle theories on
such spaces inconsistent. However string theory manages to avoid this problem by
the introduction of string states which are closed only up to the action of the group
element, i.e. by enlarging the Hubert space to include twisted string states. These
extensions are known as the twisted sectors.

The whole idea of orbifolds can be applied to general conformal theories with
discrete symmetries. Given any CFT <€ with a particular symmetry group G, one
could in principle try to construct a CFT <$/G where one imposes an equivalence
relation mod G on the full theory. Again the main new feature of the theory ^jG is
the introduction of twisted Hubert space sectors. We shall continue to call such
conformal theories orbifold models.

Due to a lack of a geometrical understanding of the twisted states for a general
conformal theory, the investigation of abstract orbifold theories has had only a
limited amount of progress. Some of the properties of general orbifolds, such as
the partition functions for twisted sectors can only be deduced by the requirement
of modular invariance. This is in sharp contrast to toroidal orbifolds where we can
a priori determine the partition function of the twisted sectors by geometric
arguments and that always turns out to be consistent with modular invariance.

In this paper we will investigate some general properties of orbifold theories. In
particular we will study the operator algebra and the role of the modular group.
The abstract setting that we shall follow permits for quite general orbifolds, and
not just the toroidal ones. It is pleasant to find that the basic structures of orbifolds
are for a large part dictated by the group structure and depend relatively little on
what the underlying conformal field theory is. This is particularly true for the case
of orbifolds constructed from so-called holomorphic conformal theories, i.e.
theories for which all operators are contained in the chiral algebra. We will show
that for this class of orbifolds the modular geometry can be described entirely in
terms of the finite group, up to certain phases. The reason that even in these
holomorphic theories more structure appears than can be obtained from the finite
group lies in the fact that we are interested in the chiral group action. So one has to
split the Hubert space into chiral blocks, and there is some additional information
about the underlying CFT in the form of how this left-right splitting is
accomplished.

The organization of this paper is as follows. We start in Sect. 2 with a brief
review of rational conformal field theory. In Sect. 3 we derive, using general
arguments, the operator content and the possible form of interactions in orbifold
theories. Here we will mainly discuss orbifolds of holomorphic conformal field
theories. These arguments will be substantiated in Sect. 4 where the formulation of
orbifolds on the torus is discussed. Using the modular properties of these theories
we will derive the fusion rules and conformal dimensions of the operators. We also
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discuss briefly higher genus surfaces and discrete torsion. The results are applied
and illustrated in some examples in Sect. 5. In Sect. 6 we consider the much more
difficult case of non-holomorphic models. We will make a start in characterizing
this general class of orbifolds, but our results are not yet complete. As an
illustration we will discuss in Sect. 7 in detail the interactions in the various c—\
orbifold models. Finally, in the appendix we have collected some useful identities
obtained in the theory of finite groups.

2. Rational Conformal Field Theories and Their Fusion Algebras

For any conformal theory one can decompose the Hubert space into the
representations of left and right Virasoro algebras Vir and Vir. What is special
about RCFT's is that their Hubert space decomposes to a finite sum of
representations (not necessarily irreducible)

(U)

where [φt] denotes a representation of Vir and [φΊ] denotes a representation of Vir.
From the fact that Lo — Lo has integer spectrum, we easily deduce that all the
states in a given subsector [φt} have the same eigenvalue h{ of Lo modulo addition
of an integer.

The fact that the subsectors are not necessarily irreducible representations of
the Virasoro algebra (and for c ^ 1 they are necessarily not so [3]) motivates us to
look for some kind of an extension of the Virasoro algebra for which the
subsectors [φ(] (and similarly for [φj\) do form irreducible representations. The
investigation of such extended algebras has only started recently, and so far
complete results have been established only for certain special cases such as the
minimal models and the Kac-Moody algebras. In these cases there is a finite
number of operators which generate the rest of the algebra by taking various
combinations. In the case of Kac-Moody the generators are the vertex operators
of the spin one currents Ja (z), and in the Virasoro case it is the vertex operator for
the spin two state corresponding to T(z), i. e. the energy momentum tensor. Due to
the fact that in these two cases we actually obtain (affme) Lie algebras for the
algebra of Fourier components of these vertex operators, it is possible to develop a
representation theory of such algebras and obtain a complete classification of the
irreducible representations of the algebra. For general chiral algebras, however,
much less is known. In particular, it is not known whether there will always exist a
finite set of generators, and if so whether it leads to a simple enough algebra to
yield a classification of its irreducible representations. Even so, it turns out to be
very convenient to introduce the notion of such a chiral algebra, and we will
proceed to do so, without ever making use of its explicit form.

Our definition of the chiral algebra of a general RCFT is based on the
decomposition (2.1) of the Hubert space. Among the chiral sectors [φt] there is
precisely one sector which includes the vacuum state. We will denote this sector by
ίΦol We can now consider all the vertex operators corresponding to states in [φ0],
which we shall denote by si and call the chiral algebra of the RCFT. All the
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operators in si have integral conformal dimensions, similar to the Kac-Moody
and the Virasoro case. It is useful to introduce this chiral algebra si because there
is an intimate relation between the interactions in a conformal field theory and the
representation theory of si. To explain this relation, let us first recall that all
information about the interactions in a CFT is contained in the three point
functions. So the central object in a CFT is the state it assigns to a sphere with three
punctures (together with coordinates at the punctures), or equivalently to a pant
or trinion. This state will be denoted by | V} and is called the three point vertex
(which we take to correspond to the sphere P 1 with three punctures at 0,1, oo and
coordinates z, z— 1, 1/z at the punctures)

\V}eJ^ ®#e®$e, (2.2)

where ffl is the Hubert space of all operators in the theory. The vertex operators
corresponding to states are defined by

<φ1,φ2,φ3\V> = (φ1\φ2(ί)\φ3>. (2.3)

The conformal Ward identities determine the position dependence of φ2 and
further imply that the vertex | V) is fully specified by its matrix elements with
Virasoro primary states.

Using the form (2.1) of the Hubert space Jf we can decompose | Vs) as
follows:

\v>= Σ Σ l ^ ? > ® l ^ > . (2-4)
i, j , k a

where the chiral three point vertices V$ satisfy

^ , (2.5)

where a runs from 1, . . . , Nijk. The integer Nijk therefore denotes the different
ways the chiral sectors ij, k could be coupled to their anti-holomorphic partners.
Note that by permutation properties of the vertex Nijk is totally symmetric.

One of the basic properties of Nijk is that

Nij0 = %j (2.6)

with ^ the charge conjugation operator. This property follows from the fact that
the vacuum state is in the [φ0] Hubert space, and that the vacuum state is
represented by the identity operator. In this way we discover that since all the
operators in si happen to be in the same chiral block as the vacuum, they must
also possess this symmetry. Namely, if A (z) denotes an operator in si, we must
have

A(?)[Φi\^[Φi] (2.7)

in other words the Hubert subsectors [φ{] form representations of the si algebra.
Note that the chiral operators in [φt] are all local with respect to si but not
necessarily to the operators in another representation [φj]. Of course, the
operators occurring in the complete non-chiral model are all mutually local.

It is a non-trivial result, proved in [10,11], that the chiral sectors [φ ] are
actually the complete set of irreducible representations of the si algebra. This
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result allows us to characterize the chiral couplings V$ in terms of the
representation theory of J / as the set of ^/-invariant elements of [φt] (x) [φj] (x) [φk].
Here, by j/-invariant we mean that the three point functions constructed out of
V$ satisfy the Ward identities associated with the chiral algebra stf. The integers
Nijk give the number of independent chiral couplings, which can be interpreted as
the Clebsch-Gordan coefficients of stf. Given these integers Nijk we can define the
fusion algebra as the abstract commutative, associative algebra with unity, whose
elements φt satisfy

ΦiXφj = ΣNijkΦk. (2.8)
k

Here and in the subsequent, indices are raised with the charge conjugation matrix
<€. Associativity is a straightforward consequence of duality. This algebra can be
viewed as the representation algebra of the chiral algebra J / .

3. Rational Orbifold Models

We will now consider RCFT's that allow for the action of a finite group G and
investigate the operator algebra of the new orbifold CFT obtained by dividing out
the symmetry G. In order to get a consistent model, G has to be a subgroup of the
group of endomorphisms of the operator algebra, and respect the left-right
decomposition (2.1) of the Hubert space. Furthermore G should commute with
the Virasoro algebra. We further make the restriction to a left-right symmetric
action of G. It is clear that the structure of the resulting orbifold theory strongly
depends on the way the group of G intertwines with the fusion algebra of the
original model. In general the group G will act on the different representations [φt]
of J / by some permutation group, which commutes with the fusion algebra
coefficient Nijk. In other words, if geG acts on the set of indices labelling the
Hubert subsectors by /->#(/) then Nijk = Ngii)gij)g(k). The cases in which the group
G acts nontrivially on the operator algebra will be referred to as the "outer" case.
The word outer is suitable for describing the action of G on conformal theories
which permutes the operators, because the chiral algebra, which is constructed out
of states in the identity block, acts only within each chiral block. This means that in
such cases the action of the group cannot be represented by the operators inside
the chiral algebra we started with. The case when all elements of G act trivially on
the fusion algebra is called inner*.

The determination of the full representation content of a general orbifold
theory can be quite complicated, especially because in general the group G consists
of both inner and outer automorphisms. Roughly speaking, one expects that the
outer action of the group results in the identification of representations, while the
inner action gives rise to splitting of representations and the emergence of twisted
sectors. The aim of this work is to make this intuitive picture more precise. We will
mainly concentrate on the effect of the inner action. To simplify the discussion we

1 This does not necessarily mean that in the inner case the automorphism can always be
represented by elements in the chiral algebra. An example of this kind is provided by E8 x E8

(both at level one) and the automorphism which exchanges the two £8 's
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first consider the case where the representation theory of chiral algebra si of the
original model is trivial i.e. when no other irreducible representations occur,
except the basic representation si itself. Such a model will be called a holomorphic
CFT 2 .

3.a. Holomorphic Theories: Untwisted Sector

The Hubert space of a holomorphic conformal theory is equal to the tensor
product si ® s$ of the left- and right chiral algebra. Consequently, the partition
function factorizes

&{q,q)=X(ci)χ'{$). (3-1)

Famous examples of holomorphic theories are the level 1 affine E8 and
Spin(32)/Z2 WZW-models, or more generally models based on even self-dual
lattices, and certain quotients of them (e.g. the Moonshine module [19,20]).

We now consider a group G whose elements g act as endomorphisms on si and
leave the Virasoro algebra invariant. Under the action of G the chiral algebra si
decomposes into subsectors sia containing the states that transform in the
irreducible representations rα of G:

j* = 0 < . (3.2)
α

Our aim is to construct RCFT's described by the subalgebra si0 of si which is
invariant under the G action. We will also write si0 = si/G. These models are the
G-orbifold models associated with the original model with algebra si. We will try
to analyze these orbifold theories using the relation between si and si0. Indeed
many of the properties of the si0 models only become clear once we realize that
they can be obtained by this orbifold construction.

The sia form highest weight representations of si0. They are however in
general not irreducible. This is due to the fact that G acts within sia and commutes
with the action of si0. Accordingly we have a decomposition

K = [Φaϊ®rΛ, (3.3)

where we want to identify [φa] with an irreducible si0 representation. This can be
considered a coset construction, since we identify orbits of states under G.
Furthermore, we immediately see that [φa] occurs with multiplicity da = dim rα.
Let us stress here that G does not act in the orbifold model although we label the
operators with a representation index of G.

One should now ask whether the [φa] are the only possible representations of
si0. It is clear that in general this will not be the case, because we have reduced the
algebra and as a consequence there will be extra operators that are local with
respect to it. Concretely, since si0 is G invariant, we also have to consider fields
that are local with respect to si up to the action of an element geG. These extra
fields are known as twist fields and can be organized in "twisted" representations
of si0. Further, since we are considering the case for which in the original model

2 Although usually the term holomorphic is reserved for a C F T ^ with only holomorphic
operators, here we will use it for theories of the form ^ x <$
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only the trivial representation of si occurs, it is natural to assume that these
twisted representations are the only other representations of si0 (besides the [φa]).
A more rigorous derivation of this operator content uses the invariance under
modular transformations. We will return to that point of view in Sect. 4.

What can we say about the possible couplings of the orbifold algebra? Let us
first restrict ourselves to the couplings between the untwisted representations [φa]
occurring in (3.3). As we will now show, these can be completely understood using
the relation to the chiral algebra si of the original model. The starting point is that
the couplings in si are uniquely fixed, and, since the elements of G are
endomorphisms of si, they are G-invariant. These couplings are encoded in the
(unique) chiral vertex | V^}e si (x) si (g) si. Since we have the decomposition

^ = :α [Φa\ ® Γα W e C a n WΓlte

v \ = y y r{a) i F(fl)> G 4)
α, β, γ a

This defines the chiral vertex operators of the si0 model

The G invariance of V^ implies that the coefficients

C{aβyEr«®rβ®ry (3-6)

are invariant tensors of G, i.e. Clebsch-Gordan coefficients. Thus we see that for
each independent G invariant tensor c^γ we have a corresponding sl0 invariant
chiral coupling V$Ί. Consequently the integers Naβy occurring in the fusion
algebra of the representations [φa]\

Φ<x X Φβ = A ̂ α/?*' Φy (3-7)
y

equal the number of independent Clebsch-Gordan coefficients of G. Hence we
conclude that the fusion algebra (3.7) is identical to the representation algebra of
discrete group G,

r,®rβ = @Naβyry. (3.8)
y

For the holomorphic theories (3.7) represents the complete fusion algebra of
representations in the untwisted sector. The above reasoning can also be applied
to the identity sector of more general orbifolds to show that the representation
algebra of the finite group is always realized as a subalgebra of the untwisted
orbifold fusion algebra.

We can further extend the above arguments of the thrice-punctured sphere to
any number of punctures. In this case one finds that the holomorphic blocks that
appear in the decomposition of the correlator of a set fields φΛι are in one-to-one
correspondence with the invariant tensors Inv(®jΓαι). This gives an explanation
of the close analogy found in [12] between the tensor categories of rational
conformal fields theory and group theory. In particular since the fields φa have
integer weights the relation Ω2=l (see [12]) is obvious.
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3.b. Inclusion of the Twisted Sectors

We now turn to the couplings of the twisted sectors. Twist fields can be introduced
for any element g e G and have the property that the operators in si have non-
trivial monodromy around the twist fields given by the action of g. This implies in
particular that they have local operator products with the chiral algebra J / 0 . We
denote the set of twisted operators associated with g as jtf9. Note however that,
since twisted boundary conditions for a non-abelian group are only uniquely
defined up to conjugation, the spaces sd9 only depend on the conjugacy class of g.
We will therefore also use the notation s/A for the twisted sectors associated with
the elements the conjugacy class CA, i.e. s#A = s/9, geCA.

The twisted space s$9 forms a representation of J / 0 but is in general not
irreducible. To find the irreducible representations we proceed analogously as in
the untwisted sector. Namely, within stf9 there is still an action of a subgroup
of G, viz.

1h-1 = l}, (3.9)

the stabilizer group of g. For the elements of a particular conjugacy class CA the
corresponding stabilizer groups are all isomorphic and we will denote this
isomorphy class simply as NA. In an analogous way to (3.2), we decompose s$9

into the irreducible representations of jtf0, using the action of Ng

s/β = ©s/£, (3.10)
a

where α labels the irreducible representations of Λ .̂ Again the stf9 are
representations of J / 0 x G and can be written as

rf! = [Φl]®rβ

a. (3.11)

This defines the ^-modules [φ9

Λ] = [φA] labelled by the conjugacy class CA of g
and the irreducible representation a oΐ Ng.

Let us however make the following comments. First of all, since we are dealing
with chiral objects, it is possible that the chiral action of the stabilizer subgroups in
the twisted sectors is projective. So we should in principle allow for a nontrivial
t/(l) cocycle cg(hί,h2), which is common to all representations r9 in a given
twisted sector. Although most of the following analysis will not depend on the
presence of these cocycles, we will for convenience assume that the representations
r9 are non-projective. The modifications which arise in case the stabilizer
subgroups act projectively will be discussed in Sect. 4c.

A related point is the following. The labelling of the above operators is not
unique. We first note that the set of operators are in one to one correspondence
with the states in the Hubert space. So the question of decomposing s$9 into
representations of G is equivalent to defining the action of Ng on the corresponding
twisted Hubert space J^g. However, experience with orbifolds indicate that there
are in general ambiguities in choosing phase assignments to the group operations
in the twisted sectors. In particular the discrete torsion [18] is a reflection of such
potential ambiguities. Of course the phases of operators cannot be changed
arbitrarily, and they should be chosen so that the operators still satisfy the group
law. Therefore, given the action of a group N on a Hubert space one has a
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fundamental ambiguity in identifying the irreducible representations by the action
of a one-dimensional representation of Λ .̂ In other words given an irreducible
representation r(h) of Ng in the Hubert space, we have the freedom to redefine
r(h)-+ε(h)r(h), where ε (h) is a one-dimensional representation. Tensoring with ε
induces a permutation of the irreducible representations:

rβ->rβ, = e ® r α . (3.12)

It is easy to see that ra, is again irreducible, since ε (x) rα = ra, + ra, would imply

It is clear that we have this possibility for each sector stfg, i.e. we can tensor
with a representation εg of Ng. In principle, the ambiguity could be resolved by
demanding the ground state to be invariant. This is an appropriate procedure for
the untwisted states. In particular we want stf0 to contain the identity operator.
For the twisted states however, this is not a good prescription, since the ground
state can very well be degenerate, and consequently the prescription would be ill-
defined. So we will regard the transformation

rβ

a^εg®rξ (3.13)

as a gauge degree of freedom in our description.
What are the possible couplings between these twisted Ao representations [φ£],

i.e. what is the fusion algebra

Let us first concentrate on the index labelling the classes of G. There are some
general rules that govern orbifold interactions (for a discussion of some general
aspects of interactions see [16,17]). Fix the conjugacy classes CA, CB and Cc, and
consider an interaction between two states in s/A and stfB that gives rise to a state
in J / C . If we choose g1 e CA and g2 e CB to represent the twisted boundary
conditions, then it is clear that the fused state is twisted by an element in the class
of g1 g2. This gives a selection rule on the possible clases Cc. Given such an
allowed triplet of conjugacy classes, how many inequivalent couplings exist?
Although the three twists gl9g2, g\ £"2 a r e o n ly defined up to conjugation, it is not
difficult to see that the three point interaction vertex in fact only allows a
simultaneous conjugation. Therefore different interaction channels between three
classes can occur, corresponding to the inequivalent triplets of representatives of
the three conjugacy classes3. To be more precise, consider the set

S={(gug2,g3)εCAxCBxCc\gig2 = g3}. (3.15)

The group G acts on these triplets by simultaneous conjugation of all three
elements and under this action we can decompose S into orbits C{i). The fact that
the three point coupling is only invariant under simultaneous conjugation implies

3 As an example where there are more than one way to couple three given conjugacy classes,
consider the tetrahedron group, and the coupling between two elements in the same conjugacy
class with elements of order three, and one in the other conjugacy class with elements of order
three. In this case there are two inequivalent couplings possible
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that each orbit C ( ι ) corresponds to a different channel between three external
states in the sectors siA, si B, and sic . If we denote by NABC the number of orbits
C ( ι ) that S splits into, we can define the class algebra by

φAxφB = YjN
ABCφc. (3.16)

c

It is not difficult to verify that this algebra is associative and commutative.
This class algebra is of course not yet the complete orbifold fusion algebra

(3.14), since we still have to include the representations of the stabilizer subgroups
Ngi. Again, similar as in the untwisted sector, we have to determine the selection
rules that follow from the group action on the couplings. It is clear that the three
point coupling for a given triplet (g1 ,g2,gig2)

eCU) cannot be invariant under
the full action of the three Ngi's but only under that of the common stabilizer
N{i) = Nan Nai acting on si ® srfQΊ ®srfaxQΊ. One would now like to repeat the
arguments given for the non-twisted sector to construct a correspondence between
the possible si0 invariant couplings and the Clebsch-Gordan coefficients of N(ι).
However, to do this we will have to identify the action of (a subgroup of) G in
different Hubert spaces. As explained above, this action is only well-defined up to
a one-dimensional representation. In principle it is possible that when comparing
the different representations of N{ι) in each of the sectors (gx ,g2,gi g2) we may
have to redefine our representation labellings. So, without further information
about the details of the orbifold model, the only restriction we can make is that the
couplings in ^Qγ® ^gi® ^Qιgi correspond to the 7V(0-invariant tensors on

r f ® rf ® rp 92 ® ε{ί), (3.17)

where ε(ι) is an a priori arbitrary one-dimensional representation of N{ί\ Let us
denote the number of inequivalent .Y(ί)-invariant tensors by N$y, that is, we have

= N $ y l { i ) ® ••• (3.18)

where l ( ί ) equals the identity representation of N{i). The coefficients NA

β

B

y

c of the
fusion algebra, finally, are now given by

Λ^ C = *Σ N&, (3-19)
ί = 1

where the sum is over all orbits C ( ί ) of the set £ defined in (3.15). By construction,
the number on the right-hand side is the total number of inequivalent couplings in

Thus we find that the fusion algebra of the holomorphic G-orbifold theory
naturally combines both the representation and class algebra of the group G.
From the group theory point of view this is quite interesting, because one knows
that the number of conjugacy classes and the number of irreducible representa-
tions of a finite group are equal. However there is no canonical correspondence
between the two. It is interesting that the orbifolds fuse the two notions into one
setting. We return to this point in Sect. 4.c.

This concludes our discussion of the interactions of the general orbifolds of
holomorphic conformal theories. It will be clear that the reasoning given in this
section has been more intuitive than rigorous. In the next section, however, we will
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provide a more solid base to the arguments presented here, by deriving the same
results using the modular transformation of the one-loop characters. There we will
further discuss the role of the one-dimensional representations ε(ι) and derive the
restrictions it has to satisfy.

4. Orbifold Models at Genus One

Much of the structure of a RCFT can be investigated by considering the modular
properties of the model on a one-loop Riemann surface. Not only the representa-
tion content can be determined [3], but quite unexpectedly also the fusion algebra
can be expressed in terms of the representation of the modular group [5]. In this
section we will use these powerful results to study the operator algebra of the
orbifold CFT's, and to find confirmation of the general arguments presented in
the previous section.

4.a. Partition Functions and Characters

Our starting point will be the path-integral representation of an orbifold partition
function ^ (τ, τ) on a torus with modular parameter τ. After one chooses a basis of
homology cycles (a, b) on the surface, 2£ can be represented as

4^\ Σ Z(g,h)ε(g\h). (4.1)
1 QΛEG

Here the term Z(g, h) represents the partition function evaluated with boundary
conditions twisted by g and h along the a and b cycle respectively. These terms can
only be consistently defined if the elements g and h commute. The partition
function of the original model, i.e. with periodic boundary conditions, is simply
given by ^ 0 = Z ( l , 1). In general an explicit evaluation of (4.1) is only possible if a
Lagrangian formulation of the model exists. This in particular is the case for
toroidal models which are essentially free theories. The phase ε(g\h) that we
included is called discrete torsion [18]. We will set ε=l in the subsequent
discussions, but we will return to its interpretation in Sect. 4e.

The expression (4.1) is motivated by the following Hamiltonian interpretation
[15], which also accounts for the correct normalization. First the idea of an
orbifold clearly implies that we keep only the G-invariant states in the original
Hubert space J4?o. However, in 2d field theory we can have non-trivial
monodromy, so we also have to include twisted sectors. So more generally, for
each element geG we can construct a twisted Hubert space J^g where the
fundamental fields obey boundary conditions twisted by g. This space of twisted
states only depends on the conjugacy class CA of g. In each sector we have to
project onto the states invariant under the stabilizer group Ng.

To see that the partition function indeed reflects this structure, we write it as

Σ Z(g,h), geCA, (4.2)
A I ] M I heN

~1chc~1where we used Z(cgc~1,chc~1) = Z(g,h) and \NA\ = \G\j\ CA\. The operators
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π Σ h (4 3)

MM I ΛeΛU
project onto the Λ^-invariant states of 3tfA. So (4.1) can indeed be rewritten as

l14 qZo-clί\ (4.4)

where # = <?2πιτ

? in accordance with the Hamiltonian picture.
Let us return to the operators PQ. We can give a bit more general definition

that we will need in a moment. We will denote the irreducible representations of A^
as r£ and their characters as ρf(h) = trr^(h). We further define d£ to be the
dimension of r£, so that d£ = ρ« (1). Now consider the operators P£ that project
on the irreducible representation r£,

4π Σ QAΛVQAAh-χ)h. (4.5)

They should be considered as elements of the group algebra, or less abstractly as
sums of matrices in some representation. They satisfy

Yβ (Pf g) = δaβ r£ (g), (4.6)

PfPf = 0, α + /?, (4.8)

Σ ^ = l - (4-9)
α

It is not difficult to deduce these relations using the general orthogonality relations
given in the appendix.

For the case of a holomorphic theory we can now make contact with the
description given in Sect. 3. We have complete factorization of the Hubert space in
holomorphic and anti-holomorphic parts,

jf = j f 0 ® j>f0. (4.10)

This generalizes to the twisted Hubert spaces; they are also of the form 34?g ® J^g.
Furthermore the action of the stabilizers Ng decomposes in a left and right action.
Accordingly we can define the holomorphic blocks

hΓΛ=Ύτ^ hqL°-c/2\ (4.11)
g

and similar expressions for the anti-holomorphic blocks. The partition function
Z(g, h) is the product of the holomorphic piece times the anti-holomorphic piece.
For a left-right symmetric theory this would be

' = Z(g,/z). (4.12)

As explained in Sect. 3 the holomorphic space 3tfg decomposes into sectors that
transform in an irreducible representation rf of the stabilizer Ng:

®rf . (4.13)
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Using the projection operators P£ the one-loop characters χξ, (q) of the module
[φξ] is calculated as follows:

\

(4.14)Σ
heG.geCA

[ A , S f l = l
It is clear that these characters χj (q) have a ^-expansion with positive integer
coefficients. The above relation between the characters and the holomorphic
blocks can be inverted to give

Of course the characters depend only on the class CA of g. The equations (4.14-
4.15) can be considered as a basis transformation in the vector space Vι of genus 1
characters.

Using this relation the full partition function can now be written as

(4-16)
a, A

(where again for simplicity of notation we have assumed left-right symmetric
models). We note that the ambiguity (3.13) in the labelling of the operators
corresponds in terms of the chiral blocks to a redefinition

with εg a one-dimensional representation of Ng. A transformation of type (4.17) is
always accompanied by a similar transformation with ε* acting on the anti-
holomorphic blocks. In this way the modular invariance of the partition function
is preserved.

4.b. Modular Transformations

Quite generally a RCFT defined on an arbitrary Riemann surface obtains a
unitary representation of the modular group on its generalized characters. This
can be seen as a direct consequence of the fundamental assumption of modular
invariance [21,22,9]. For the non-chiral blocks Z(g, h) in genus one, we have a
simple transformation rule under the modular group. Recall that modular
transformations act on the homology basis (a,b) as SX(2,Z) transformations.
This gives a straightforward action on the boundary conditions used to define
Z(g,h):

M = Γ PΛeSL(2,Z):Z(g,h)^Z(g«hβ,g-fhδ). (4.18)

For the chiral blocks however, which are the holomorphic square roots of the
twisted partition function Z(g, h), this transformation rule is somewhat modified,
since in general a phase has to be included4

4 We would like to thank L. Dixon for a discussion on the importance of these phases
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M:h\Z]^εM(g\h)g^hδ Π , (4.19)
g g«hβ

where εM is a phase factor independent of τ. Since the anti-chiral blocks transform
with the opposite phases, it is evident that in the partition function the two phases
will cancel5. In Sect. 5 we will show that for generic models these phases indeed
occur. They will play an important part in the subsequent analysis, and we will
treat them in detail.

As is well-known, the modular group is generated by the transformation S and
T, defined on the cycles as:

S:(a,b)-+(b,-ά), (4.20)

T:(a,b)^(a,a + b), (4.21)

with the relations S2 = (ST)3 = ̂ , where the charge conjugation reverses the
orientation of the cycles. We will first consider S, which interchanges the "space"
and "time" directions. Among other things, S will give us the fusion rules of the
model. Let us now define the phases σ(g\h) by

S:h\3-+σ(g\h)g-ί\J. (4.22)
g h

We will derive the following consistency conditions on σ(g\h):

σ(h\g) = σ(g\h), (4.23)

δ1δ2σ(huh2\g1,g2) = ί. (4.24)

In the last condition we introduced the coboundary operators δγ, δ2. They act as
the coboundary operator δ of group cohomology on the two arguments of σ:

g), (4.25)

2). (4.26)

Note that διδ2 = δ2δ1 ε2 the condition δίσ=ί implies that σ(h\g), when
considered as a function of h, is a one-dimensional representation of Ng.
Consequently διδ2σ=ί has the following interpretation: δ2σ(h\g1,g2) is a
2-coboundary on Nh and a representation of NgιnNg2. We will motivate this
condition on σ when we discuss the fusion algebra.

The requirement of symmetry (4.23) can be proved as follows. First we observe
that the chiral blocks are functions of τ. This implies that the transformation S is
implemented as the PSL(2, Z) transformation S: τ -• — 1/τ, which satisfies S2 = 1.
Furthermore, if we take τ pure imaginary, the one-loop characters χl(τ) are real.
Consequently we have in that case the identity

(4.27)
^ g /

(This is a direct result of ρ^ (A"1) = ρ« (A)* and relation (4.15).) If we now use this
relation and S2 = 1 we obtain the result σ(g\h) = σ(h\g).

5 In asymmetric orbifolds [23] this cancellation is not automatic and has to be imposed by the so-
called level-matching conditions
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A further important property of σ{g\h) is its relation with the charge
conjugation operation. Charge conjugation ^ clearly leaves the characters
invariant, but can reshuffle the indices if several characters have the same q-
expansion. This implies that in general we can have

^:hU-*cg{h)h-χ • . (4.28)

Here cg{h) is a one-dimensional representation of Ng. By CPT-invariance we have
S2 = #, so that

σ(g\h)σ(h\g-1) = cg(h) (4.29)

which implies
cg(h) = cg^{h). (4.30)

This guarantees the relation S4 = 1. If g and g~1 are not conjugate we can remove
the phase cg by a gauge transformation (4.17). Finally, note that all conditions we
imposed on the phase factors are invariant under the transformation (4.17), since
it implies

σ(g\h)^εg(h)εh(g)σ(g\h) (4.31)

which can be readily seen not to interfere with the above conditions.
We now proceed to give the action of S in the basis of one-loop characters χ£

instead of chiral blocks:

S:7j-~ Σ Qga(h~ι)σ(g\h)g-1^ (4.32)
I 0 ! heG,geCA fa

[Λ,flf]=l

= riτ Σ Σ Ql(h-l)Q){g-l)a{g\h)Xf. (4.33)
I ° Ί β,B heCB,geCA

This gives the following elegant expression for the matrix elements of S:

sϊβB = ]7ΰ Σ QgΛh~l) Qhβ(S~') o{g\h). (4.34)
I U I heCB,geCA

From general arguments we know that S should be symmetric and unitary. The
first property is ensured by condition (4.23), while unitarity follows from the fact
that 5* = 5 " x .

We will now use the modular transformation T to derive the conformal
weights of the twist fields in terms of the C/(l)-cocycle σ. It is clear that, similar as
for the transformation S, we have to include an (a priori arbitrary) phase factor
τ(g\h) in the transformation rules of T,

(4.35)

Here we included the factor e~
2πιci24 for convenience. Since Tshould be diagonal

in the basisχ£, we immediately see that τ(g\h) = τg. Furthermore τg only depends
on the conjugacy class CA of g. Note that

τg = e2πih*9 (4.36)
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where hg is the ground state energy of 3tfg. We now apply the fundamental relation
(ST)3 = ̂ o n a chiral block. This gives us

τgτhτghσ(g\hg) σ(h\gh) a(g\h)~l = 1 . (4.37)

Choosing h = 1 we immediately find a relation between τg, i.e. the conformal
weights, and σ:

2 ' . (4.38)

Note that substituting this in (4.37) gives a condition that can be written very
succinctly as

) = U (4.39)

which is indeed a special case of the condition (4.24). Consequently the relation
(ST)3 = %> does not give any further relations on σ.

It is now not difficult to determine the weights of the other operators. Since g
obviously is an element of the center of Ng, we can use Schur's lemma to show that
in any irreducible representation r9 of Ng it is represented as a phase factor ε9

(satisfying (ε9)n = 1 with n the order of g) times the identity

r°(g) = ε°l. (4.40)

From this we find that T acts on the character of the chiral sector [φ9] as

\iyg\ heNg g

= e-2^2*τgγ^- ΣQ9Λsh~Ϋ)hU (4.42)
\^g\ heNg g

= e-2πic^τgε
9χϊ. (4.43)

Hence we obtain the important result that all operators in [φ9] have conformal
weight given by

e2πih^ = τgε
9. (4.44)

4.c. The Fusion Algebra

It is a fundamental result that the fusion algebra of a RCFT can be derived from
the transformation properties of the modular group [5]. More explicitly we have
the relation

Nijk = ΣSίnSJ"Sk" • (4-45)

We will now use this result to establish the fusion algebra in the orbifold models

ΦfχΦ!=ΣKTΦΐ ( 4 4 6 )
y,c

Since we have explicitly calculated S (4.45) can be easily applied. In order to
simplify the resulting expression we need the following result in group theory [24].
Suppose we are given a function/(g x ,g 2,g 3) that only depends on the classes of
its arguments. Then the following identity holds:
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Σ Γ T Ί Σ -T Qa(gι)QΛgi)QΛg3l)f(gi^2^3)= Σ f(gi>g2>g3)- (4 4 7 )
gxeG \KJ\ a Ua gxeG

9192=93

With this result and after some algebra N^c can be rewritten as

KByC = Tr\ Σ QgΛh) Qf{h) ρfί/Γ 1) δ2σ(h\gί9g2) (4.48)

Σ QβΛh)QξKh)Q'yi'
2(fOδ2σ(h\g1,g2). (4.49)

Here in the second line we can indeed recognize the sum over the different
interaction channels, as argued in Sect. 3 (see Eqs. (3.18-3.19)). Furthermore we
can now calculate the phase ε(l). It is given by

ε®(h) = δ2σ(h\gι,g2), (4.50)

where the label i corresponds to the interaction channel (g1,g2,g1g2) This
relation finally gives our motivation for the condition (4.24) on σ, since it implies
that δ2σ should be a representation of N{1\ i.e. διδ2σ = 1.

The determination of the operator algebra of the conformal field theories that
can be constructed as a G-orbifold of a holomorphic theory is (at least as far as
their fusion rules are concerned) now reduced to a cohomology problem. They are
labelled by the solutions to the conditions solutions oΐδί δ2σ = 1 modulo the pure
gauge solutions σ{g\h) = εg(h) εh(g). It would be interesting to try to derive these
conditions more directly, without appealing to the relation between the fusion
algebra and the modular transformation matrix, perhaps by using conditions of
modular invariance at higher loops.

The above result for the interaction rules and the phase σ can also be given the
following interpretation. We can redefine the action rg(h) oΐNg in the sector J4?g by

φ)-+rg(h)=σ(h\g)rg(h). (4.51)

The new representation r'g has a trivial 2-cocycle

r'gih) r'β(h2) = c(hί9h2\g) r'^hj (4.52)

with
c(h1,h2\g) = δισ(h1,h2\g). (4.53)

With the use of these representations r'g the fusion rules can now be interpreted
straightforwardly as the couplings invariant under the mutual stabilizer N{1\ i.e.
without the phase ambiguity e{ί). How can we understand the relation δίδ2σ = 1
from this point of view? Let us introduce operators Φg that create sectors twisted
by g in the non-local model. Now consider the operator Φgι Φg2 Φ{gig2)-1 We claim
that this operator is an element of the chiral algebra, and should accordingly
transform in a true representation. This implies the following condition on the
cocycles

S2c =δ2δ1σ =1. (4.54)
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So we have two ways of interpreting the phase σ in an operator formulation.
Either we insist on having true representations of the stabilizers, in which case σ
enters via the phase ε{ι) = δ2σ relating the representations of N{ί) in the different
chίral sectors, or we demand that there are no phases in the interaction rule and
instead allow for representations with trivial cocycles c = δίσ. The two different
interpretations are related essentially by the modular transformation S.

We will now briefly discuss the modifications for the case when the action of
the stabilizer subgroups Λ̂  in the twisted sectors have non-trivial cocycles
c(h1,h2\g). We should note, however, that no examples of orbifolds with this
structure are known to us. In particular the orbifolds based on tori seem to give
rise to trivial cocycles, as the stabilizer group is actually representable on the
twisted sectors. But since we do not have a general argument why they cannot
appear for an arbitrary conformal theory, we will continue with their study. The
non-triviality of the cocycles means that it is not possible to eliminate them by
redefining the action of the stabilizers. Using modular invariance, however, this
can be seen to imply that it is also impossible to give a straightforward operator
interpretation of the interaction rules, i.e. there also exists an obstruction to
eliminate the phase ambiguity ε{ι). Indeed, it can be shown that the phase ε{ι) is no
longer given by (4.50), but receives a contribution of the cocycle

ε{i)(h) = c(g1,g2\h)δ2σ(h\gl9g2). (4.55)

The fusion rules are still given by an expression of the form (4.49), but with δ2σ
replaced by cδ2σ. Finally, the condition (4.24) on σ is modified to

δ1δ2σδίcδ2c=l, (4.56)

which follows from the fact that ε(ι) has to be a one-dimensional representation of
N{i) with cocycle δ2c~ί.

Let us make some further remarks on the fusion algebra. In general the
irreducible representations of the fusion algebra, which are one-dimensional since
the algebra is commutative and associative, are given by λ\j) = $ijlSOj [5]. This
equation implies a canonical identification between the elements of the algebra
and its representations. This is a hint of a deeper kind of self-duality inherent to
conformal field theory. For the orbifold models this can be made more explicit.
Consider the one-dimensional representations of the fusion algebra λ(

a

β

A

B). They
form an extension of the character table of a finite group to a self-dual object. In
particular we have λ{

a°Ό
B) = ρa(CB) and λ{

a°A

B) = Qa'{CB) with rΛ, the representation
of G obtained by extending the representation of NA to all of G (the so-called
induced representation [24]). The dual object of a character table is the collection
{I Q l ^(Q/fi ίJ that satisfy the class algebra, and are given by the ?^°A.

The fusion algebra for the case σ—\ also appears in the mathematical
literature, in particular in the work of Lusztig [25], where it is developed in the
study of Lie groups over a finite field. The appropriate objects in that context are
G-equivariant complex vector bundles over the group G. Since G is a finite set, an
equivariant vector bundle over G is simply a collection of finite vector spaces Vg

with a representation of G on

V= 0 Vg (4.57)
geG
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such that gVh= Vghg-ι. The set of all these equivariant bundles with the obvious
notion of addition is called the Grothendieck group KG (G). The irreducible vector
bundles, i.e. bundles V that cannot be written as V1®V2, are labelled by a
conjugacy class CA and an irreducible representation of the stabilizer subgroup
NA. These bundles satisfy Vg φ 0 if and only if g e CA and carry the irreducible
representation r9

a of Ng. There is also a definition of multiplication (which is not
the tensor product) which makes KG(G) into a semisimple commutative algebra.
The definition is [25]

{v- ng= ® (ygι®v'β2). (4.58)

It is not difficult to see that we can identify the Grothendieck algebra KG(G) with
our fusion algebra for the case σ = 1. The matrix S is also featured in the work of
Lusztig where it is called a non-abelian Fourier transformation.

As explained in [10] for a general RCFT the quantities λtf = SOί/Soo indicate
the relative dimension [φt: φ0]. More precisely, we define the relative dimension of
a module [φt] with respect to the basic module [φ0] by the following limit:

jM (4.59)

If we apply the modular transformation S and suppose unitarity, this can be
evaluated to give [φ{: φ0] = λ\°\ In general this will not be an integer. In the case of
the orbifold models here at hand we find

[φz .φo] = d* \CA\. (4.60)

This follows also immediately from the relation with equivariant bundles over G.
The irreducible vector bundles clearly have dimension d£\CA\. These relative
dimensions further equal the dimensions of the induced representations of G. The
above relation is a somewhat puzzling result: although we modded out the group
G and do not have an action of it anymore, the relative dimension still equals the
dimension of the representation of the finite group. In particular we can calculate

[>stf:<stf0] = Σ dAΦa'-Φol ~\G\-> (4.61)
(X

using Yjdj = \G\ (see appendix).
α

4.d. Higher Genus Riemann Surfaces

The partition function of a RCFT on a Riemann surface of genus g described by
moduli (ma, mα) (α = 1, . . . , 3 g — 3) will again be a sum of terms that factorize
inholomorphic times anti-holomorphic functions of the moduli ma. One way to
understand this analytic structure is by constructing a Riemann surface from
sewing thrice-punctured spheres and projecting on modules [φt] (x) [φ-] in the
intermediate channels. Analyticity is then guaranteed by construction. The
resulting generalized characters are holomorphic sections of the so-called
Friedan-Shenker vector bundle over the moduli space of Riemann surfaces [21].

In the case of an orbifold of an holomorphic theory, we have another natural
basis of this bundle, viz. the twisted sectors. Given a canonical homology basis
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(cii, bt) (ί = 1, . . . , g) we can have twists g (at), g (bt) e G along all the cycles, where
the group elements are again defined up to simultaneous conjugation. They have
to satisfy

Π [*(**)> *&)] = 1- (4 6 2 )
i

This is the generalization of the one-loop constraint [g(ά), g(b)] = 1. The set g(αf),
g(bι) defines an homomorphism from the fundamental group of the Riemann
surface to the group G. As such it defines a G bundle over the surface [26]. Two
such homomorphisms give equivalent bundles if they are related by a global
conjugation of a group element. The chiral twisted sectors are defined by taking an
holomorphic square root. That it is possible to take this square root can be seen by
considering the theory on a covering of the Riemann surface. The partition
function can be expressed as a sum of the modulus squared of the chiral twisted
sectors, or a similar expression using the holomorphic blocks. This implies that
there will be a linear basis transformation that expresses the twisted sectors into
the generalized characters.

As explained in [5] one can calculate the number of generalized characters on a
Riemann surface of genus g using the matrix elements Soi. This number equals the
dimension of the Friedan-Shenker bundle Vg over the moduli space of g-loop
surfaces. The result reads

d i m ^ = Σ | S 0 i l
2 ( 1 " g ) - (4-63)

i

This number counts the number of ways a #?3-diagram can be "colored," taking
into account the fusion rules.

If we apply this formula to the case of an orbifold model of an holomorphic
theory, we also obtain the number of independent twisted sectors. Mathematically
this corresponds to the number of inequivalent G-bundles over the Riemann
surface. To our knowledge an explicit expression for this quantity was not yet
known. Substituting (4.34) in (4.63) we find

ΓΛ7 Ί2(g-1)

dimKβ=Σ / (4-64)
A.a Laa J

This is indeed always an integer, since it is a fundamental result in the theory of
finite groups that the dimension of an irreducible representation always divides
the dimension of the group [24]. One can further check that the dimension is
indeed one on the sphere with the aid of the relation Σad% = \G\. For abelian
groups the above equation correctly reproduces

dimVg = \G\2β. (4.65)

Note that the dimensions of the Friedan-Shenker bundles do not depend on the
particular σ used to define the fusion algebra.

Similarly one can easily derive expressions for the dimension of G-bundles on a
Riemann surface with n punctures (or boundaries) using the appropriate
generalization of (4.63) to include external lines.
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4.e. Discrete Torsion

Up to now we have been concerned with the chiral structure. We considered the
algebras jtf/G, the representations and their modular properties. Now we want to
investigate the combination of the holomorphic and anti-holomorphic characters
into a modular invariant partition function. Although in principle we can choose
different left and right chiral algebra, we will restrict ourselves here to the
symmetric case.

Different modular invariant partition functions are classified by constructing
all possible permutations π of the space of one-loop characters that commute with
the modular group. As shown in [10,11] this implies that π also constitutes an
automorphism of the fusion algebra. One way to obtain different modular
invariant partition functions for orbifold models can be done by the inclusion of a
discrete torsion ε(g\h) in the expression for the partition function [18]. We will
now show that both approaches are equivalent.

Let us recall the conditions that the phase ε(g\h) has to satisfy

δίε(hi,h2\g) = U (4.66)

ι\h), (4.67)

ε(g\g) = l. (4.68)

The relation ^ ε = 1 implies that ε (h \ g) is a one-dimensional representation of Nh.
The symmetry property ε(h \ g) = ε(g~λ \ h) makes it also a representation of Ng.
This implies that we can define an action of εg(h) = ε(g\h) on the one-loop
characters by permuting the representations of Ng, completely similar to the
action (3.13),

* β : t f-** β % β - (4-69)

However, here it acts only in the holomorphic characters, while leaving the anti-
holomorphic ones invariant, and accordingly the partition function will not be
invariant. In fact we have constructed a permutation of the characters. We now
have to show that πε commutes with the modular transformations: πεS = Sπε and
πεT = Tπε. Both are easy results of the conditions imposed on ε.

5. Examples

In this section we will illustrate the structure of orbifolds constructed from
holomorphic theories with some concrete examples.

5.a. Abelian Groups and Toroidal Models

Many of the results become more transparent when we consider an abelian group
G. In that case the twisted sectors are labelled by the elements of G, and contain all
irreducible representations. So the total number of primary operators is \G\2.
Furthermore the class algebra and the representation algebra are simply
isomorphic to G. Without the inclusion of the phases σ these two algebras would
completely decouple. This would result in a fusion algebra given by (the group
algebra) of G x G. However, the occurrence of the phases is a generic pheno-
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menon, as can be shown by considering the toroidal compactifications. These
examples will also help to clarify the relation between the phases in the modular
transformations and the resulting modification of the fusion algebra.

A well-known class of holomorphic theories is given by certain special toroidal
compactifications (see [27] and e.g. [20]). These models are described in terms of a
free scalar field φμ(μ = 1, . . . , d) compactified on a torus Rd/2πA, where A is an
Euclidean even, self-dual lattice, i.e. for allp,p'eA wehave/>2e2Z and/> pΈZ.
(This requires of course d=0 mod 8.) With the inclusion of an appropriate
constant antisymmetric background field in the action the partition function is
easily evaluated and seen to factorize as

1
Z(q,q) = ΛP2

(5.1)
peΛ

We can now construct the following class of abelian orbifolds from these models:
We choose a lattice A1 =5 A and mod out by the transformations

Here the relevant group G is isomorphic to A'jA considered as an additively

written abelian group. The chiral action of the shifts α is easily written down. It

only depends on the chiral momentumpeA and is given by

α: \p}^e2πip «\py. (5.3)

Furthermore, it is not difficult to construct the twisted Hubert spaces J>fα. They
consist of momentum states \p-\-oC), peA. However, the action oϊ βeG on J^α is
seen to be ambiguous. It depends on the choice of the representatives a,βeA'. This
will be reflected in a phase ambiguity in the definition of the chiral blocks. Part of
that ambiguity is resolved once we demand that the action of G is linearly, i. e. non-
projectively, represented. If we furthermore choose a set of representatives in A\
for example by taking α2 minimal (although this can be ambiguous), we obtain a
definite expression for the chiral blocks:

1
P U =~d L e Ύ P 4 )

α Ί peΛ

The above definition does not depend on the choice βeA',

(β + k) •=£•> VkeΛ. (5.5)
α α

This is however no longer true for α, since

β D =e-2«iβ'kβ\J. (5.6)
α + k α

That is to say, we have been forced to break the symmetry in the cycles a and b by
defining time to flow along the έ-cycle. That is of course in complete accordance
with the Hamiltonian point of view. We note that the ambiguity (5.6) is of the form
(4.17), i. e. it corresponds to multiplication by a one-dimensional representation of
G. This definition of the chiral blocks gives rise to a modified action of the modular
group. Indeed it is easy to verify that

a a β '
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So we find for the phase σ:

σ(aj) = e~2πίΰί-β. (5.8)

It is not difficult to check that it indeed satisfies all the conditions we imposed.
Further note that τ(α)2 = e2πi<χ2 gives the correct weight h = | α 2 .

Let us now calculate the characters of the orbifold model. The representations
of G can be labelled by elements μeΛ/Λ'*, with Λ'* the dual lattice of A'. This
results in the following expression for the characters

XΪ = T^T Σ e-^'tβΠ* (5-9)
1^1 βeΛ'/Λ α

which can be rewritten as

Σ i \ (5.10)
peΛ'*

an evident result, since we have in fact constructed-in a complicated way-the
toroidal model based on the lattice A'. It is now also evident what the fusion
algebra is. It is given by A'/A'* which is in general not equal to A'jA x A'/A. The
projective action of βeG on the twisted sectors Jfα that accounts correctly for
these fusion rules is according to (4.51) given by

β: \p)^e2πίp-β\p) peA + a. (5.11)

This is indeed the action of a chiral shift φ^>φ + 2πβ.
After this example it is not too difficult to treat the general abelian case. For

simplicity we restrict ourselves here to G = ZN. Motivated by the above example
we write ZN additively. With an appropriate gauge transformation the phase σ can
always be given in the following form:

σ(ot,β) = e2nίaβk/N\ (5.12)

with α ? i 5eZ N Ξ Z/7VZ. The conditions (4.23), (4.24) and (4.29) restrict k e Z. With
the inclusion of this expression for σ(α,/?) the fusion algebra equals ZpN x ZN/p

with p = N/(k, N). For the case that N is even, there is a further restriction on σ
which forces k to be even. This is because when we look at the element g of order
two in Z N , since g~1=g, when applying S2 to the one loop character
corresponding to twistings by (g,g) in the (a, b) directions, we should get no extra
phases. This implies that σ(g\g)2 = 1, which in turn implies that k is even. To
compare with the toroidal case, consider modding A by a shift vector v, with
NVEA. Then if (Nv)2 = k mod^V, then it is easy to convince oneself that the
operator algebra is ZpN x ZN/p with p = N/(k, N). It is clear that because A is an
even lattice, when TV is even k is also even, in accordance with the general
arguments just discussed (for τVodd, since k is only defined modulo addition by N
we can take k to be even or odd).

5.b. A Non-Abelian Example: D 3

As an example of a non-abelian group we will work out the details for the group
G = D 3 = S3. It is generated by the elements τ and θ with defining relations
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Θ3 = τ

2 = (θτ)2=\. The conjugacy classes are Cί = {ί}, C τ = {τ,τθ,τθ2} and

Cθ = {θ, θ2}. The stabilizer subgroups are given by ^ = 0 3 , ^ = Z 2 and NΘ = Z3.
There are three irreducible representations of D 3: two one-dimensional represent-
ations defined by r(τ) = ± 1 and r(θ) = ί, and a two-dimensional representation
obtained by the embedding D3 c 0(2),

This representation is easily verified to be irreducible. We will denote these
representations as 1, 1 _ and θ0 respectively. This notation will be explained in a
moment. The stabilizer NΘ = Z3 has three representations: #;(/= 1,2,3), and
Nτ = Z 2 has two: τ + , τ_ .

So altogether we have 8 operators in the D3 orbifold. If we set σ = 1, the matrix
£ is given as in Table 1.

Table 1. The matrix S, up to an overall factor 1/6, for the D 3 orbifold with σ = 1. Here εμv = 4 if
μ = v and — 2 otherwise (μ, v = 0, . . . , 3)

1
1_

τ +

τ_

1

1
1
2
3
3

1-

1
1
2

— 3

o.

2

2
εμv

0
0

τ +

3
- 3

0
3

- 3

τ_

3
- 3

0
- 3

3

From this we read off the fusion rules

l _ x l _ = l , θμxθμ = i + \. + θμ, θμxθv = Σ θχ> (5 1 4 )
.Φ/ί, v

τ + x τ_ = 1 _ + £ # μ . (5.15)

The remarkable symmetry in the θμ can be understood, if we recall that for
solvable groups, we can construct orbifolds by modding out by a sequence of
abelian groups. If we first consider an orbifold obtained by modding out by the
normal subgroup Z 3 < D 3 , which possesses 9 operators, and then modding out by
a Z 2 (D3/Z3 ̂  Z2). The group Z 2 acts by exchanging all the operators, except the
identity, giving rise to the 4 operators θμ (as will be discussed in the next section).

An explicit realization of a D 3 orbifold with σ = 1 can be constructed using the
E8k = 1 model. The appropriate subgroup is D3 c: SU(3), with SU(3) x E6 a E8.
As an amusing exercise one can calculate the dimensions of the higher genus vector
bundles, e.g. for a genus 2 surface one finds dim V2 = 116 - a result that can be
checked by hand.

The general form of the interactions is found by solving the cohomology
problem. We include the phases σ(g | h) and solve the condition δ1 δ2σ = 1 modulo
solutions of the form (4.17). In this case we find as the only independent variables
σ = σ(θ\θ) and β = σ(τ\τ). Inserting this into δ1δ2σ = 1 we obtain σ9 = β2 = 1.
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This gives the ^-matrix of Table 2,

Table 2. The general form of the matrix S for the D 3 orbifold

1
1
θn
01
θ2

o,
τ +

1

1
1
2
2
2
2
3
3

1-

1
1
2
2
2
2

- 3
- 3

2
2
4

- 2
- 2
- 2

0
0

2
2

_2
2α0

2oίi

2α2

0
0

2
2

_2
2α7

2a0

0
0

^ 3

2
2

- 2
2a,
2a2

2a0

0
0

3
- 3

0
0
0
0
3β

-3β

τ_

3
- 3

0
0
0
0

-3β
3β

with af = σωf + σωi (ω = e2πi/3). We still have S = Sτ and S2=l. The fusion rules
are modified only by:

0. x 0. = 1 + 1 _ + Nu

kθk, 0f x 0,. = #0 + ̂ Λ , (5.16)

where the integer coefficients N^ are defined through aioci = 2-j- Nu

kak and
αfα^ = — 1 + Nijkak. This can be considered to be the general fusion algebra of an
holomorphic D3 orbifold.

6. Some Remarks on General Rational Orbifolds

In this section we will consider rational conformal field theories with more than
one chiral block. We suppose that the theory has a symmetry G, and we wish to
mod out by some action of G. It turns out that the resulting operator algebra is far
more difficult to analyze than the orbifolds built out of holomorphic theories, and
we will make only some general remarks about them. Examples of such orbifolds
which display the general features discussed in this section will be presented in the
next section (in the context of c = 1 models).

The fundamental difficulty in analyzing the orbifolds constructed from
general RCFT's is that their modular properties do not seem to be completely
dictated by the group structure and the operator algebra we started with. For
example, we will have to consider partition functions of the form

Tr [ φ l ] £? L o , (6.1)

where [φt] is a chiral sector of the theory we started with. Under the modular
transformation 5, this gives a set of new characters. How do we organize these new
characters? In the holomorphic case we had the group structure to guide us in the
organization, but now with the operator algebra of the initial theory mixed in, one
has to find an organizing principle for the characters and this does not seem clear.

What we will do is limit ourselves just to the counting of the operators in
generic cases for the case of solvable groups. We will first do this for the case where
G = Zk. Of course we can continue the modding out by a sequence of ZN's. Thus
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we will be able to do the counting for any solvable group. Non-abelian groups of
this kind will be encountered in the next section in the context of c — 1 models.

Let g be the generator of Zk, where gk = 1. To begin with we will assume that k
is a prime, g acts on the operator algebra by either permuting k operators
cyclically, or by acting trivially on some operators (this is so because we have
chosen k to be prime). Suppose the operator algebra we start with has N chiral
sectors. Let n be the number of operators left fixed under the action of g, and m be
the number of groups of A: operators which are cyclically permuted by the action of
g, then we have

N=n + rnk. (6.2)

We claim that the total number of operators N that we will obtain by modding by
G is

N=nk2 + tn. (6.3)

To see this consider the untwisted sector first. This corresponds to considering
linear combination of characters of the form

L o (6.4)

For the sectors which are fixed under the action of the modular group this results
in k different characters for each sector 6 . However, for the mk sectors which are
permuted by this action the above trace vanishes and we get nothing new. In fact,
since the sectors which are mapped to each other must have the same character (as
is required if the g action which permutes them is a symmetry of the conformal
theory), for each group oΐk sectors which are permuted among each other we are
left with only one character. In other words, under the action of g the k sectors are
identified and should be counted as one. So from the untwisted sector we obtain
nk + ni operators. Now consider the sectors twisted by g. These sectors are
obtained by considering the modular transformation S on the characters in (6.4).
As we discussed there are n independent non-vanishing characters in (6.4). So we
obtain n independent sectors each twisted by g. Each of these sectors has to be
decomposed into representations of Zfc which are obtained by taking linear
combination of the modular transformations Tι acting on them for /running from
1 to k. So in the first twisted sector we obtain nk new chiral sectors. This story
repeats in each sector and we finally obtain (k-l)nk chiral sectors from the
twisted sectors. Including the contribution of the untwisted sector we see that we
have N = nk2 + m operators, as was to be shown.

lί k is not a prime, the operators form orbits of size lt under the action of g,
where /f divides k, and we have

6 Here we are assuming a generic case, where there is no reason for (6.4) to vanish for the sectors
which are fixed by the action of g. There are examples of conformal theories where extra
symmetries force this to be zero for some sectors



Operator Algebra of Orbifold Models 511

By a simple modification of the argument presented above, it is easy to see that the
total number of operators we obtain is

(6.6)

This concludes our discussion for counting the number of operators in generic
cases for solvable groups.

Even though we have not determined the operator algebra for the non-
holomorphic case, there are some selection rules which are obvious. One is that
group multiplication law dictates certain selection rules. Also the representation
tensor products will indicate a selection rule (modulo the inclusion of tensor pro-
ducts with a one dimensional representation) as discussed for holomorphic
theories. The ideas in this section will be illustrated in the light of c = 1 conformal
theories in the next section.

7. Orbifolds at c = 1

In this section we will apply the results we derived in the previous sections in a
study of orbifold CFT's with central charge c=ί. These models have been
thoroughly studied in the literature and many of their properties, for example the
partition functions, have been explicitly calculated. However, these analyses did
not explain the chiral structure, and hence it will be interesting to reconsider these
models, and analyze them from a chiral point of view, i.e. give a description of
their characters and fusion algebras. As such they will serve as an illustration, and,
in particular for non-abelian groups, give indications for the general structure
present in orbifold CFT's.

7 M. C — 1 Revisited

In order to introduce some notations we will first briefly review some familiar facts
of c = 1 conformal field theory. More details can be found in [28-30].

Let us first consider the different symmetry algebras that occur at c = 1. They
will always contain the c = 1 Virasoro algebra, which does not act freely but is
known to possess null states at weights h — \n2 with neZ. Accordingly the
Virasoro characters are given by the following expressions:

(7.1)
h, otherwise.

It is a remarkable fact that no conformal field theory with c ^ I (where we do
not necessarily impose the condition of rationality) is known whose chiral algebra
consists only of the Virasoro algebra, i.e. there always appear chiral scaling
operators. This is in particular the case for c = I, so let us discuss the different
chiral algebras that occur.

First we have of course the U(l) current algebra, which is feely generated by a
spin I field y'(z) and can be considered as the generic c=ί algebra. It is the chiral
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symmetry algebra of the Gaussian model, describing a free bosonic field φ
possibly identified modulo 2πR, with R the compactification radius. Its basic
character equals ί/η(q) since no null-states are present. The operator content of
the U{\) current algebra can now be determined by decomposing this expression
into Virasoro characters using (7.1):

\an2-o{n+i)2]= y ( y i r )

2«εZ>0 0

So the current algebra contains an infinite set of primary fields of spin n2(neZ>0).
These chiral fields j^iz) can be expressed in (normal ordered) Schur polynomials
in the current j(z) and its (multiple) derivatives [31]. For example j γ =j and the
spin 4 field is given by

(7.3)

The representations of the current algebra are the chiral vertex operators
φp = e

ipφ, withy = idφ. The label/? corresponds to the global U(ί) charge. Since
this is an additive quantity the fusion algebra reads simply

φpxφp, = φp+p,, (7.4)

and is isomorphic to R.
The current algebra can be further enlarged if we include a vertex operator of

integer spin TV [32]. (In fact, closure of the algebra tells one to include all vertex
operators with momenta in ]/lNZ.) The algebra we obtain in this way will be
denoted as s/N. It is generated by the fields y, V+, F_, where V± = e

±iyτNφ. This
extended symmetry occurs in the so-called rational Gaussian models, where
R2 e Q. More precisely, if\R 2 = p/p' with (p,pf) = 1 (no common divisor) then the
maximal chiral algebra equals s/N with N = pp'. Since the representations also
have to be local with respect to V+, this chiral algebra possesses only a finite
number of representations [φk], with primary fields φk = eίkφ/y2N with keZ2N.
Accordingly the fusion algebra reduces to Z2N. Models described by sdN can
perhaps be considered as the most trivial examples of rational CFT's. For later
reference we give the characters and their modular properties under S:

i Σ« > (7 5)
ΊVί) meZ

7= Σ e-'"*-l™χk.. (7.6)
2N

A particular example of such an extended U(l) algebra is srfx, which equals the
SU(2) level 1 affine algebra. It possesses only two representations: the identity
[1] = [φ0] and the spinor [φ] = [ φ j with fusion algebra φxφ = 1. The characters
can be decomposed into Virasoro characters as

χo= Σ {2n + \)χ%*\ (7.7)
neZ^0

Xι= Σ (2n + 2)χ^\}2, (7.8)
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and we clearly see the SU(2) multiplet structure appear with all integer and half-
integer representations occurring in respectively [1] and [φ].

In fact, this model gives a nice way to see the necessity of the existence of the
primary fields y^ in the U(ί) algebra. The vertex operator einyΊψ is evidently a
primary field with SU(2) quantum numbers j, m both equal to n and conformal
weight h = n2. It is the highest weight of a {In + l)-dimensional multiplet, which
contains in particular a primary field of charge m = 0 and the same weight h = n2.
This field, being in the zero charge subsector, is necessarily a polynomial in the
current and its derivatives and should be identified with the fieldy^ . Furthermore
we can now easily calculate the OPE's

Since theyπ2 form part of an SU(2) multiplet, the OPE coefficients can be simply
expressed in terms of the SU(2) Clebsh-Gordan coefficients C ^ 2 ^ 3 as

Cn1n2n2> ~ C 0 0 0 V ' ϊ Ό)

Note that we have a constraint nΐ-\-n2 — n3 = 0 (mod 2) as a result of invariance
under the parity transformation jn2^(—ί)njn2.

The only other chiral algebras known to exist at c = 1 are orbifold algebras of
the above. We essentially have two types of orbifolds. The generic Gaussian
models only allow a Z 2 orbifold, but in the case of the S£/(2) WZW model we can
mod out by any discrete subgroup G of SO(3)ciSU(2). The chiral algebras
consist in both cases of the invariant subset of chiral fields. In order to discuss
these algebras and their representations we will turn to the one-loop partition
functions as calculated in [29].

We recall that all known c=\ models have partition functions that can be
expressed as linear combinations of the Gaussian partition functions ^R,

«̂ = i Σ qiplqiβ\ (7-11)
///7 (p,p)eΓR

with 7? the compactification radius and

ά ( ) (7 12)

Of particular interest are the radii R = rjN with r the radius of the k = 1
model (in our normalization r = |/2). We will denote the corresponding partition
functions as &N. Using these expressions the partition functions of the orbifold
models are written as follows. For the Z 2 orbifold of a Gaussian model of radius R
we find

+ &2-Ϊ&!. (7.13)

As for the orbifolds of the SU(2) WZW model, we recall that the discrete
subgroups of SO (3) are in one-to-one correspondence with the simply-laced Lie
algebras. Accordingly we have two series: the groups ZN and ΌN, and three
exceptional non-abelian groups T, O, /, (the symmetry groups of the tetrahedron,
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octahedron and icosahedron). The corresponding partition functions have been
calculated by Ginsparg [29]:

Z . (ψ _ σψ 7 — 1
N ' °^ — °^ N •> JO ι ">

T &f (&> _\ \ Of \ Of i — 1. (Ί \Λ\

L . <^iy — rJs α ~~\~ 2 <=^-/ ? 2 c*^ 1 s JO — ? V /

0 •.%••

1 :%••

We will explain the numbers y0 in a moment. Let us first briefly discuss the chiral
algebras of these models. Since they are subalgebras of the SU(2) current algebra,
the algebras ^γ\G should contain only fields of weight h=j2(jeZ). The
multiplicity of the spin j2 field is equal to the number of times the identity
representation of G occurs in the branching of the isospin j representation of
SO (3) into the irreducible representations of G. This can indeed be verified by
explicit computation, using the fact that the multiplicity of chiral fields of spin/2 in
the partition function 3£N is given by 1 + 2\j/N]. Lety0 be the smallest value of/
such that this multiplicity does not vanish, I.Q.J'Q is the smallest conformal weight
in the spectrum of the primary operator in the chiral algebra. Then the values of/0

for the SU(2) orbifolds are indicated in (7.14).
It is not difficult to show that the above list of partition functions exhaust all

c=\ models whose partition function can be written as a linear sum of ,2V s,

^ = ΣΆ> ( 7 1 5 )
i

(see also [33].) Note that necessarily Σ ^ q ^ l , since the identy occurs with
multiplicity 1. In order to prove this we have to distinguish two situations. First,
we consider the case that the chiral algebra contains a spin 1 current j(z). The
condition that all multiplicities are non-negative leads now to two possibilities: we
either have a Gaussian model with 3£ = 3?R or we have a partition function of the
form

. (7.16)

We can rule out the second possibility by the following argument. Since a ί/(l)
current subalgebra is present we can decompose (7.16) into the U(\) characters
q^p2/η(q) with/? the global U{\) charge. Here we used the fact that necessarily the
stress-energy tensor is given by the Sugawara form T(z) = ^j(z)2. Now the
partition function (7.16) has the property that the charges p, p are not summed
over a lattice, since ΓRi and ΓRl are not compatible. This already points out a
problem since/? is additively conserved. But furthermore it implies that ̂  contains
characters with/? + 0 and with multiplicity 1. The corresponding operators should
accordingly be self-conjugate which conflicts with the fact that conjugate fields
carry the opposite charge —p. This proves the impossibility of (7.16).

So in order to find other than Gaussian models we have to exclude spin 1 fields.
Since the multiplicity of the spin 1 field equals 3 for ^ γ and 1 for all other ZR, this
implies that S£γ should always be included in our sum and that its coefficient
should be — \. The coefficients in (7.15) are further restricted by applying the
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positivity condition for the chiral fields of dimension j 2 with j > 1. It is an easy
exercise to verify with the aid of Table 3 that the possible combinations are already
restricted to the above cases just by requiring integer, non-negative multiplicities
for j ^ 5 .

Table 3. The multiplicities of the weight
(j2,0) fields in the partition functions £?N

^ 1 3 5 7 9 11
^ 2 1 1 3 3 5 5
^ 3 1 1 1 3 3 3
%A 1 1 1 1 3 3
£?5 1 1 1 1 1 3
%R 1 1 1 1 1 1

We further note that any orbifold partition function in (7.14) can be written as

where «1 ? n2, n3 are three positive integers satisfying

1 1 1 2
1 1 = 1 + Ί r 7 > l . (7.18)

n1 n2 n3 N

This last condition is exactly the equation that classifies all discrete SO (3)
subgroups, with TV the order of the group, or the simply-laced Lie algebras, with
the ni the number of nodes on each branch of the Dynkin diagram. The above
inequality can be understood in the context of c = 1 conformal field theory by
calculating the multiplicity of the spiny field in (7.17) in the limit y->oo, and
requiring it to be positive.

We have seen that the above expressions for the partition functions completely
obscure the analytical structure. We cannot simply read off the characters, i.e. the
partition functions are not written in the canonical form 2£ = Σχ^-χ -. In order to
derive the characters we will exploit the fact that the partition functions £fN can be
written as

% Ή ( Ά A ) = Σ T7 I<9[/3(#)I2> ( 7 1 9 )

where we introduced a generalized theta function

B[Xm2) h Σ/m + ahe2πimβ- (7.20)

Note that the ι9's have an interpretation as twisted sectors of the SU(2) model - an
interpretation we will discuss in detail in Sect. 7.c. These S-functions enjoy the
following modular transformation properties:

S: &[%^-j= {e-2πi«β θ[^2

2J + e-
2πia{β + 1) θ ^ ί l f ] } , (7.21)

(7.22)
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We can now in principle try to decompose the partition function into
holomorphic blocks that are linear sums of the S's. These will be conjectured to be
the generalized characters of the extended chiral algebra relevant for the particular
model. The behavior under modular transformations will give us the fusion rules.
We will give the explicit calculations in next sections.

7.b. Rational Z 2 Orbifolds

We start our analysis by considering the Z 2 orbifold model, i.e. a scalar field φ
defined mod2πi? and identified by i: φ^~φ. The partition function is given by
(7.13). We will choose R2 to be rational, so that our original algebra equals s/N.
The operator content of the algebra ^N/Z2 is easy to describe. It consists simply of
all the elements of jtfN invariant under the involution i. If we use the fact that
v.jn2->(—l)njn2, then it is evident that stf/Z2 contains in particular all fields j n 2

with n even. This subalgebra is generated by j 4 , as can be seen from (7.9). It is not
difficult to verify that the total chiral algebra is generated by the fields

Γ,y4, cos]/2JV>, (7.23)

of respectively spin 2, 4, and N.
In order to determine the representations of this algebra we try to decompose

the partition function into holomorphic and anti-holomorphic blocks. After
substituting (7.19) this results in JV-f 7 operators. Their respective characters and
conformal weights are given below (here χk denote the $£N characters (7.5))

1 * W J A 0

]JN

υk

ττ

= Ί

= k2/4N,

We can give the following interpretation of this operator content. Our original
model consisted of the representations [φk] (keZ2N). The Z 2 transformation i acts
on these representations as

r-[Φk]^[φ2N-k}- (7.24)

So it acts as an inner automorphism for the representations [φ0] and [φN]. These
are the analogues of the fixed points that occur in the different orbifold models
featured in string compactification models. According to Sect. 6 we consequently
expect the following operators. The identity will split in an invariant part [1] and a
non-invariant part [/'], whose primary field is the current j= idφ. The same will
happen for [φN] and we will denote these two representations as [φι

N]. Fur-
thermore, we will have 2 twisted sectors, each giving rise to 2 operators,
corresponding to the trivial and the non-trivial representation of Z 2 . This
accounts for the fields [crj and [τj. The remaining representations [φk], on which i
acts as an outer automorphism, are pairwise combined into an invariant operator,
which corresponds to the vertex operator c o s ^ = ^ .
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Now that we have identified the spectrum, we want to discuss the possible
interactions. With the formulas given in the previous section one can easily derive
the action of S on the above characters. In this reconstruction of the modular
transformation one should bear in mind the constraints of symmetry, unitarity
and a closed operator product. It turns out that in order to satisfy all these
demands we must distinguish between the cases N odd and N even. In the latter
case the two representations [φ^] and [φ%\ are self-conjugate, while in the former
case they are each other's conjugate. For the case N even the matrix S is given in
Table 4.

Table 4. The matrix S (up to an overall factor 7^=-) for the Z 2 orbifold of the Z2N Gaussian model
in the case TV even. (Here atj = 2δ^ — 1)

1

j

Φ1N

Φk

°i

τi

1

1

1

2

]/N

1

1

1

2

1

1

1

2(- l ) f c

2

2

2(-l) f c '

4 c o s π | ^

0

0

~γN

0
δij]/ΐΰ

-δuγ2N

VN

-I/N

σtJ]/N

0

-δijγ2N

δij Ϋ2N

The corresponding fusion algebra can be directly deduced. We give only the
relevant relations. Other relations follow from associativity. First the elements 1 j ,
φι

N generate a Z 2 x Z 2 subalgebra

jxj = 1 ,

^ x ^ = l , (7.25)

ΦN*ΦN=J

The vertex operators φk have a fusion algebra consistent with their interpretation
as cosrτ==~^,

ΦkX Φk' = Φk + k' + Φk-k' (k'ή= k, N — k) ,

Φι x Φk — 1 + / + Φ?k •>
Ψk Ψk TJ Ψit, ^ ( 7 2 6 )

The twist fields generate all vertex operators through the relations

k even

σ, x σ2 = Σ Φk • (7-28)
fcodd

The operator product structure of the τf can be easily deduced using

jxσ^τt. (7.29)
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In the case N odd we find the matrix elements of S as given in Table 5.

Table 5. The matrix S as in Table 4 in the case N odd

1 j φJ

N φk. Oj τj

1

ΦN

Φk

1

1

1

2

ΫN

ΫN

1

1

1

2

-]/N

-ΫN

1

1

- 1

2(-l) f c

iσ.jΫN

iσ.ΫN

2
2

2(-l) r

4cos2π %

0

0

]/

~\
it

0

e

— e

As mentioned before, this results in a somewhat different fusion algebra. The
operator algebra of 1, j and φι

N now equals Z 4

(7.30)

and for the twist fields one obtains

σixσi=φi

N+ Σ Φk, (7.31)
/codd

σίxσ2 = l+ Σ Φk- (7-32)
k even

The fusion algebra of the vertex operators φk is left unchanged.
There are some special Z 2 orbifold models, where we can check these fusion

rules. First for N = 1 the algebra contains one spin 1 current, and the model should
reduce to a Gaussian model, more precisely the Z 8 rational Gaussian model [28].
One can verify that this equivalence is indeed found, using the above fusion rules.
In particular we find that in this case the twist fields σt are represented as vertex
operators, and accordingly should be mapped to each other by charge
conjugation.

For N=2, where an extra spin 2 field is present besides the stress-energy
tensor, the Z 2 orbifold equals two decoupled Ising models. So we expect 3 x 3
operators, which corresponds to our counting N + 7. Also the fusion rules agree
with those of the Ising model. We can conclude that the algebra J / 2 / ^ 2 ^S

isomorphic to the tensor product of two c = \ Virasoro algebra. Note that in this
cases the spin fields - given by the two Ising spins - are indeed self-conjugate.

The next case, N=3, corresponds to the Z 4 parafermion theory. These
parafermionic models can be regarded as the simplest minimal models of a class of
chiral algebras, which are obtained by adjoining to the Virasoro algebra higher
spin primary fields that correspond to Casimir operators of a simply laced Lie
group [34]. In particular, for the Zn parafermionic model the Lie group equals
SU(n). So in the case « = 4we expect a spin 3 and 4 field to generate the algebra
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j / 3 / Z 2 . These fields are easily identified asy4 and cos j/όζp. The Kac formula for
the SU (4) coset models gives the weights 1^,1^,1,^,4,1, in exact agreement with
the spectrum given above.

We postpone a discussion of the case N= 4, that corresponds to the 4 state
Potts model, to the next section. We should further mention that TV = 6 gives us the
discrete superconformal model at c= 1. In fact the algebra J / 6 / Z 2 gives us the
bosonic projection of the N = 1 superconformal algebra. This algebra is conse-
quently generated by a spin 4 and 6 field.

It is also interesting to consider the case N= 00. In that case we obtain a
symmetry algebra present in all the Z 2 orbifold models, independent of the radius
of compactification, and equals the maximal algebra for the case when R2 is
irrational. It consists of the fieldsy^ with n even, and is generated by the fieldy4. Its
representations are

1, j=idφ, cospφ(p>0), σt, τ, . (7.33)

However, the fusion algebra is not well-defined, since we cannot determine the
conjugation properties of the twist fields. A possible solution to this problem
would be to keep only one pair (σ, τ) as irreducible representations, which then
should be included with multiplicity 2. Furthermore, this is a case of a model that
is not even quasi-rational [11], since the fusion of two twist fields will produce all
vertex operators

σ x σ = l + £ cospφ. (7.34)
p>0

This concludes our analysis of the Z 2 case. We will turn now to the more
complicated groups.

7.c. The SU{2) Orbίfolds

We will now discuss the orbifold models of the SU(2)k = ί WZW model. Since the
orbifolds based on the cyclic and dihedral subgroups ZN, ΌN are equivalent to
particular rational Gaussian respectively Z 2 orbifold models, this will effectively
only produce new RCFT's in the case of the three polyhedral subgroups T, O, I.
We will however also discuss the D^ models, since from this point of view they give
examples of non-abelian orbifolds.

The SU(2) model has two blocks [1] and [φ], with Z 2 operator algebra
φx φ = 1. Since the sector [φ] contains half-integer spin SU(2) representations,
the action of G within [φ] will be projective. This causes no problems. In the
general case where G acts as an inner automorphism in more than one
representation [φt], the chiral action of G can be projective in all representations
except for the identity sector, where the vacuum state should be left invariant.
Furthermore, the cocycles that occur should respect the fusion algebra, i.e. if we
have a cocycle ct(g,h) in the action on the representation [φt]9 then

j ) if Nijk*0. (7.35)

So indeed for the algebra φ2 = 1 a cocycle c(g,h)= ±ί is allowed.
In this respect it is convenient to consider the lift G cz SU(2), defined by

1 - > Z 2 - > G A G - > 1 , (7.36)
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where π is the projection SU(2) -> SO (3). Elements of G will be denoted as g, with
π(g) = geG and π " 1 ^ ) = {g'cg}. Here c denotes the generator of the center Z 2

of SU(2).
It is a matter of taste whether one considers the SU(2) orbifolds as G or G

orbifolds. If we adopt the latter point of view, we have the extra condition that the
generator of the center ceG acts as +1 and — 1 in the representations [1] and [φ]
respectively.

Let us now discuss the operator content of these SU(2)/G orbifolds. We will
first treat the untwisted sector. Both the representations [1] and [φ] are evidently
fixed points under the action of any subgroup G. Accordingly they will split up in
smaller blocks that are labelled by the representations. The description is most
conveniently done in terms of the representations ra of G. The identity sector [1]
will give rise to blocks indexed by the irreducible representations rα

+ of G that
satisfy r+(c) = l, i.e. the (linear) representations of G. Similarly the blocks
produced by spinor [φ] correspond to representations that obey r~ (c) = — 1, and
are accordingly genuine projective representations of G. Note that consequently
there is a one-to-one correspondence between the untwisted operators in the
SU(2)/G model and the nodes in the corresponding extended Dynkin diagram.
Furthermore the fusion algebra of these untwisted operators just equals the
representation ring of G.

The characters of these operators are also easily written down. The operators
coming from the identity sector [1], giving rise to the characters

*«+=ϊ7r- ΣQa(h)hU- (7-37)
I U heG I

This is completely analogous to the chiral case. The characters of the operators
that descend from the [φ] sector read in an evident notation

I ° Ί heG φ

We can actually calculate these blocks by bosonization [29]. The action of any
element he G can be represented as a shift βejj ZN. This gives us the following
expressions for the chiral blocks:

AD =*[?]> AD = W 1 . (7.39)
1 φ

We now have to include the twist fields. As we stated in the previous section a
general prescription for the counting of twist fields and the determination of the
correct fusion rules in an orbifold model based on an arbitrary RCFT is still
lacking. However in this case we have explicit partition functions available, and we
can actually calculate the characters. The results of this calculation, the details of
which we will give in the next section for some examples, can be neatly summarized
as follows. The number of twist fields is given by

t̂wist = Σ Λ . ( " i - 1 ) ' (7 4°)
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where the nt are the integers of (7.18). Note that n(n — l) is exactly the number of
twisted states in a Zn orbifold. Thus we obtain the following number of
representations in the SU(2)/G orbifolds:

ZN:2N\ ΌN:N2 + Ί, Γ:21, 0:28, 7:37. (7.41)

In the case of solvable groups we can also determine the correct number of twist
operators using the explicit action of the different abelian group that is featured in
the decomposition series. The only non-solvable group in this case is the
icosahedral group 7 ^ A5. The total number of operators we obtain in this way
using the composition series

ZN<ΌN, Z2<Ό2<T<0, (7.42)

is consistent with above counting, as we will see in the next section.
We can give the following heuristic argument for the counting of the twist

fields and the construction of their characters. The SU(2)k = 1 model can be viewed
as a projection of a single block, non-local theory, where the operator φ is
adjoined to the chiral algebra. The projection is onto elements even under the
action of the center c. This creates the separate representations [1] and [φ]. We now
construct the orbifold model, by first modding out the single block model by the
group G and projecting on even states afterwards. According to this argument the
twist sectors are labelled by the classes of G. However, not all representations of
the stabilizer occur, since we again have to project on those sectors that are even
under the Z 2 grading. This gives as the total number of operators, half the number
in the holomorphic G orbifold. Note that in this picture the sector twisted by c
corresponds to [φ]. With N$ the projection of the stabilizer of g into SO (3), the
expressions for the corresponding characters now read

£ ρ|(λ) h • . (7.43)
heNg σ

We can again calculate these chiral blocks by bosonization, since we can always
represent two commuting elements g and h as shifts αe^V Z2Λτ, βe^ ZN.
Accordingly we can represent the block as

h\J=9>[*β]. (7.44)
g

This representation also account for some features of the fusion algebra of the
twisted operators. We will see an overall selection rule due to the class algebra of
G. Furthermore, the representations will decompose similarly as in the holo-
morphic case, if we take into account the phases σ that can be read off from the
modular properties of the above characters.

7.d. Examples

In this section we present the results of some more detailed calculations for specific
examples, that confirm the prescription we gave in the previous section.
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As a first example let us consider the group G = D 2 . The model SΈ/(2)/D2 is
known to correspond to the 4-state Potts model at criticality. The group D 2 acts on
the SU(2) currents ja(z) by

rb Ja-*εabJa> (7.45)

where the symbol εab is defined to be 1 if a = b, and - 1 otherwise. The 4-state Potts
model corresponds to the rational Z 2 orbifold model with N = 4. So we have
already the prescription of Sect. 7.b to calculate the characters and fusion rules.
We will rewrite the results in such a way that they can be seen to confirm the
general prescriptions we gave for SU(2) orbifolds. The partition functions can be
decomposed in the following characters

1 : ^ = i θ β ] + |5[ 1 ° 2 ] , h = 0,

From the modular properties of the blocks S [a

β] we can calculate the behavior of
the characters under the modular transformation S. Up to an overall factor τ=-
we find the matrix S as in Table 6.

Table 6. The matrix S o for SU(2)/Ό2 orbifold

jb φ

1

la

Φ

1

1

9

2

2

1

1

2

2ε^u

2

- 4

0

0

By applying (7.21) we can read off from Table 6 what the fusion algebra of the 4
state Potts model is. We find

JaXJa = 1 ,

0 x 0 =1+X./ C , (7.46)
c

σαxσ f l = 1 + 0 + y β ,

σα x σb = σc + τ c,

σaxτa =φ+ Σ j c .

In order to see that the above structure indeed confirms our general argument, we
consider the representation and class algebra of the lift of D 2 into SU(2): Ό2 = Q,
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the quaternionic group. If we denote the 5 irreducible representations of Q as 1 j ' a ,
φ, then the representation algebra of Q is indeed equal to the corresponding
subalgebra of the above fusion rules. Furthermore Q has 5 conjugacy classes 1, </>,
σa. The projections of the stabilizers of the elements σa into D 2 are isomorphic to
Z 2 . This accounts for the pairs of twist fields σa, τa. The class algebra is given by

2 Λ 2 Λ I ,L C~] Λ rΊ\
T ' 1 2 3 ? fl π Y ' • V * /

This algebra can indeed be recognized as an overall selection rule in the fusion
algebra.

As a less trivial example consider the tetrahedron group T^A4. By explicit
computation we found the following characters:

lo

Φo

1 ^ 2

Ω±

= 0,

= 4,

_ J_ 11 49
— 3 6 ? 3 6 ' 3 6 '

with z = 1, 2, 3 and ω = e2πιβ. From the corresponding S-matrix we found the
following fusion rules (all indices mod 3). First, the untwisted sectors give rise to
the representation ring of f^ SL(2,3)

l i X l j = t ί + ; ,

>,. X φj = (7.48)

Note that the last equation gives an explicit example of a Nijk > 1 with non-
degenerate ground states, as can be explicitly checked using the above character
formulas. The fusion rules of the twisted operators are

σxσ =τxτ =

σxτ =

.+ x ωf = θt

+ x 0/ - ωZi-j

co;

+ x 6>/ = #;+ x ω/ = i

ω + σ + τ.



524 R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde

This can also be better understood if we consider the classes of SL(2, 3). The 7
conjugacy classes are 1, φ, σ, ω ± , θ± with elements of orders respectively 1, 2,4, 3,
6. The projections of the stabilizer subgroups are Z 2 for σ, and Z 3 for the elements
ω±, θ±. The class algebra can again be recognized as overall selection rule in the
fusion rules.

We can also consider this tetrahedron model as an abelian Z 3 orbifold of the
D 2 model that we discussed before. The Z 3 evidently permutes the operatorsyfl, σa

and τa, which give rise to a single y, σ and τ in the Tmodel. The fields 1 and φ are
fixed points, and accordingly triple to form the representations l ί 5 φt. Since we
have two fixed points under an order three action, we expect 2 x 6 twist fields,
which corresponds to the ω * and θ* . This gives indeed the total of 21 operators. If
we mod out by another Z 2 we obtain the 28 operators of the octahedral model.
This analysis for the solvable groups can without much problem be extended to
arbitrary level k.

Appendix

In this appendix we list some useful identities obtained in the theory of finite
groups. To any finite group G with elements gt we can associate a set Irr(G) of
irreducible representations rα of dimension da. The character of a representation is
defined as

(A.I)

Useful identities are ρig'1) = ρ(g)* and ρ(l) = dimr. The characters are
invariant under similarity transformations r(g)->Sr(g) S'1. This implies that
they are only functions of the conjugacy classes CA and we can write ρ(CA). The
collection of conjugacy classes will be denoted by C1(G). There are as many
irreducible representations as there are (conjugacy) classes, although in general
there is no natural mapping ra-+CA. The fact that the | Irr (G) | = | Cl (G) | can be
proved by considering the group algebra.

The group algebra A(G) (over C) is the |G|-dimensional vector space with
basis elements gt e G, i. e. it consists of elements α = Σf oci gt, Σf e C. Multiplication is
defined as a β = Σijθcίβjgigj. The irreducible representations of A(G) (as an
algebra) are given by the elements of Irr (G). By the left or right action of G, A (G)
itself can be regarded as a representation, the so-called regular representation.

The center Z(G) of A(G) is a subalgebra spanned by the elements

zΛ= Σ g ( A 2)
geCΛ

Now we can show using Schur's lemma that ra (z) is a multiple of the identity, since
it commutes with all elements ra(g). Taking a trace we find the factor of
proportionality

r β (z j=^gf l . (A.3)

Upon further considerations one can show that this mapping is onto, so that
C1(G) can be considered as the dual space to Irr(G).
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The regular representation decomposes in dΛ copies of the irreducible

representation ra

r?*=®Λr*. (A.4)

Taking traces of this identity we obtain the relation

(A.5)

The characters of the irreducible representations satisfy some very useful

orthogonality relations

(A.6)
gsG UaK1)

:). (A.7)

Here the ^-function is defined by δ(gjί) = 1 if g and h are conjugate, and 0

otherwise. Both relations express the unitarity of the matrix

S^=^2ρα(g, (A.8)

The irreducible representations define an algebra

rOL®rβ = YjNaβ

yry. (A.9)

This is an associative, commutative algebra and accordingly has only one-

dimensional representations. They are given by the characters ρa(CA) as labelled

by the classes. In particular there is one representation ρa(l) = daeZ>0.

Accordingly we have

N*βy=4η ΣQΛR
! G I gsG
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