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Abstract. Integral representations of statistical operators in terms of coherent
states are derived by means of a quantum version of the Poisson limit of
de Finetti's theorem.

1. Introduction

Integral representations of states of indistinguishable particles which are based on
the quantum extension of de Finetti's theorem [1] have a characteristic structure
which underlines the underlying invariance under permutations. These integral
representations are mixtures of homogeneous product states.

This particular structure, however, is lost if the limit of an array of
indistinguishable particles is considered. A state which arises as the limit of an
array of homogeneous product states is not immediately identifiable as such a
limit. Therefore an integral representation in terms of these states is not
straightforwardly recognized as a consequence of de Finetti's theorem.

In [2] it has been shown that the quantum harmonic oscillator - or, more
generally, a one-dimensional system described by the familiar creation and
annihilation operators a+, a - is obtained in particular states as a limit from an
array of Bose-Einstein symmetric two-level systems (quantum Bernoulli process).
By means of a quantum formulation of the Poisson limit theorem it is shown that
the well known coherent states of quantum optics are limits of homogeneous
product states defined on the array of two-level systems.

It is the aim of this note to show that the integral representations of statistical
operators in terms of coherent states, which are extensively used in quantum
optics, are in fact the result of a quantum version of the Poisson limit of de Finetti's
theorem.

These integral representations are defined as follows. A c.o.n.s. of the Hubert
space H under consideration is given by the eigenvectors Φ(/c), /ceZ+, of the
number operator a + a. For any z e C a coherent state vector Ψ(z) eHis defined by,

2 = μ)1/2exp(iα),
Ψ(z)= Σ {πλ(k)Y'2^p(iak)Φ(k), (1)

k = 0
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where for i e R + , keZ+,

denotes the Poisson distribution.
The statistical operator of a coherent state is the orthogonal projection defined

by Ψ{z),ze<L,

P(z) = (Ψ(zl }Ψ(z). (3)

A state is called a classical state if it can be identified with a statistical operator
W= W(μ) which is defined by the integral representation

W(μ)=\dμ(z)P(z). (4)

Here μ is a probability measure on (C, μeM+((C), and the integral is a trace class
operator valued Bochner integral. For the properties of classical states we refer to
[3,4].

To show that the integral representation (4) is a consequence of de Finetti's
theorem we recall, in Sect. 2, some basic facts concerning integral representations
of states of classical indistinghuishable particles. In Sect. 3 we reformulate the
quantum de Finetti theorem of Hudson and Moody [1] for a system of Bose-
Einstein symmetric two-level systems. Following the strategy of [2] we build up
the structure of a canonical pair by means of an array of two-level systems in
Sect. 4. This array is used to derive the integral representation (4). We conclude
with some remarks in Sect. 5.

2. Indistinguishable Classical Particles

In this section we are concerned with the familiar statistical setting where n
identical particles are distributed on two groups of cells. For the description we
introduce a probability space (Ω,F,P) and random variables X iΩ-^O, 1},
1 ^ i ̂  n, where [X{ = 1] denotes the event that particle i is in the first group of cells.

The particles are called indistinguishable if the random variables Xb l^ί^n,
are interchangeable, i.e. if

holds for any je{0,l}n and any permutation π of the integers {l,...,n}. A
countably infinite sequence of random variables Xb i e N, is called interchangeable
if any finite subset is interchangeable. For a review of the concept of interchange-
ability we refer to [5]. The concept of indistinguishable classical particles is
discussed in [6].

For a countably infinite set of indistinguishalbe particles there exists an
integral representation for the probability that from n, neΉ, arbitrarily chosen
particles there are exactly fc, 0 ̂  fc S n, in the first group of cells. This integral
representation is defined in terms of that probability distribution which character-
izes i.i.d. particles, i.e. the binomial distribution, neN, O f̂crgw, pe[0,1],

BnJk)=(fjpk(i-pΓk- (6)
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Theorem 1 (de Finetti) (cf. [5, 7]). Assume that the random variables X(: Ώ->{0,1},
/eN, are interchangeable. Then there exists a uniquely determined probability
measure v e M + ([0,1]) such that for any π e N and any k, O^k^n,

pi Σ Xi = k) = \dv(p)Bn Jk) (7)
V ί — i /

holds.

Example ί. If n particles are distributed on d cells according to Bose-Einstein
statistics and one cell is arbitrarily chosen (this is group one) the probability for the
event [X=j], X = (XU ...,Xn), }e{0,l}n, is given by

d w , (8)

where k = Σjt and for x e R, n e N,

l) . (9)

The probability that group one contains just k, Org/c^rc, particles is therefore
determined by a Polya distribution

) (10)

n - k J K }

As the random variables defined by Eq. (8) are interchangeable and can be
considered as the segment of a countably infinite sequence of interchangeable
random variables de Finetti's theorem applies and we have for all n e N and any k,

In applications of the setting introduced at the beginning of this section one
usually is interested in macroscopic quantities, i.e. in the situation when the
number of particles is arbitrarily large. For obvious reasons we call the limit of the
integral representation (7) the Poisson limit of de Finetti's theorem.

Theorem 2 [8]. Let be given for any n e N random variables XnJ:Ωn-^{0,1}, ί e N ,
defined on a probability space (Ωn, Fn, Pn) which are supposed to be interchangeable
for any fixed n. Denote by μn, μπGM+(R+), the image of the mixing measure
vneM+([0,1]) associated with the interchangeable sequence Xni (n fixed) under
the mapping 7^:[0,l]->]R+ defined by Tn(p) = np. Moreover, assume that the
sequence μn, n e N, converges weakly to a probability measure μ e M + ( R + ) then for
any keΈ+ the integral representation

\imPn [ Σ Xnj = k = ίdμ(λ)πλ(k) (12)

holds.

We remark that the theorem is due to Benczur [8]. A different proof is possible
by means of Lemma 1 below (with the obvious modifications where (C is replaced
by R + ) setting

fW Bn(k)lίOtΛμ), (13)
πλ{k). (14)
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Example 2. Generalizing Example 1 we assume that in any row of the inter-
changeable array Xni the sequence XnΛ (n fixed) is characterized by a beta
distribution as mixing measure such that, weN,

( v Ύ -Λ - fdW + n-Λ'1 (d(n) + n-k-2
P n { i h

X n > i = k) = { n ] { n-k

(15)
b

holds where we assume that φ ) e N satisfies n/d(n)->nel!t+ for n-+co.
It is well known that under these conditions the Polya distribution converges

to a geometric distribution with mean ή

-k-2\ 1 ( n_V
lim v " Γ " , ) = ̂ - \τ^- (16)

On the other hand the distribution function of the image of the beta distribution,

(17)

converges to the distribution function of an exponential distribution with mean ή,

lim Fn(λ)=l-exp(-λ/n). (18)
n~+ oo

Accordingly, we obtain the following integral representation of the geometric
distribution (cf. [9]), keZ+,

^)k-1exp(-λ/n)πλ(k). (19)
ί+n\l+n

3. The Quantum de Finetti Theorem for Two-Level Systems

The quantum analogue of a random variable with values in {0,1} is a two-level
system (TLS) with Hubert space (C2. In (C2 we fix an orthonormal basis eί9 e2

describing the lower and the upper level, respectively. The algebra of observables
of the system is the algebra B((C2) of all complex 2 x 2 matrices.

A set of n, n e N, TLS is described by (g) β((C2). A state on ® JB((D2) is identified
n

with a statistical operator Wn defined on the 2" dimensional Hubert space (x) C 2 .
On this Hubert space we introduce the usual permutation operators Uπ which are
defined by their action on the basis

eh®ei2®...®ein, ί, e{l,2},

Uπ ® etj= (8) eίπU), (20)
J=I i=i

and extended by linearity.
The n TLS are called indistinguishable if the statistical operator P ,̂ is invariant

under all permutations of the TLS, i.e. if

= Wn (21)
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holds for all permutations π of the integers {1,..., n). The n TLS are called bosons if
the statistical operator is Bose-Einstein symmetric, i.e. if Wn satisfies the stronger
symmetry condition that

UπWn=Wn (22)

holds for all permutations π.
The orthogonal projection onto the Bose-Einstein symmetric subspace

<C2J + of ® <C2 is defined by

Πy^inlΓ'ΣUπ. (23)
π

If Wn is Bose-Einstein symmetric we have

Wn=WJiy = lH?Wn (24)

such that the definition of Wn can be restricted to the Bose-Einstein symmetric
subspace as is done usually.

w \ l / 2 n-k k

A c.o.n.s. oϊ[®<£2) + , dim [[® C 2 ) + ) = n +1, is given by the vectors, 0 ̂  k ̂  n,

(25)

These vectors are called n-number state vectors. The homogeneous product vectors

n

ψn(z)= ®ψ(z), (26)

where zeD, D = {ue<£; |w | 2 ^l}, and

ψ{z) = (ί-\z\2)i/2eι+ze2 (27)
in \

are a total set in \® (£2)+ and are called n-coherent state vectors. The following

formulae are obvious from the definitions, z = |z|exp(ΐα),
(φn(k), ψn(z)} = {BKf |zp(fc)}1/2 exp(iαk), (28)

<ψn(z% ψn(z)} = \z'z + {(1 - \z'\2) (1 - |z|2)} wγ. (29)

Up to a phase any normalized vector of (C2 can be identified with a 1-coherent
state vector. For any pure state on B((C2) there exists therefore a zeD such that

W1 = <(t/)(z), )t/;(z) (30)

holds. In Eq. (30) z e D is uniquely determined up to the exceptional case where
\z\ = ί, i.e. for

Wί = (e2,-)e2. (31)
n

It follows that any homogeneous product state of pure states on ® B((£2) is
obviously Bose-Einstein symmetric and is determined by a projection

where zeD is uniquely determined unless |z| = l.
It is well known that the state space of 5(C 2) is affinely isomorphic to the unit

ball of 1R3 such that any pure state on #((C2) can be identified with an element of S2.
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The nonuniqueness of our parametrization of pure states on £((C2) by means of
elements of the set D is due to the fact that the unit sphere S2 and the closed disc D
are not homeomorphic. However, as Eq. (28) shows, our parametrization is
convenient from a probabilistic viewpoint.

We are prepared now to consider a countably infinite system of TLS which is
N

characterized by the algebra ® B(<C2) of observables. We confine ourselves to
Bose-Einstein symmetric states, i.e. symmetric states which have the property that
(22) holds for any finite-dimensional marginal statistical operator. N

In [1] it is shown that the set of Bose-Einstein symmetric states on (x) B((C2) is a
Choquet simplex which is generated (in the weak*-topology) as the closed convex
hull of its extreme points which are precisely the homogeneous product states of
pure states. Accordingly, for any finite-dimensional reduced statistical operator an
integral representation exists.

N

Theorem 3 [1]. For any Bose-Einstein symmetric state on (x) B((C2) there exists a
probability measure veM\(D) such that for any n e N the reduced statistical

operators Wn defined on\β> (C2y+ admit a representation as trace class operator

valued Bochner integrals in terms of n-coherent states

Wn(v)=μv(z)Pn(z). (33)

Moreover, up to the homogeneous product state defined by means of the statistical
operator (31) the mixing measure v in (33) is uniquely determined.

The proof is obvious from the results of [1]. Nonuniqueness is an artificial
consequence of our parametrization. For the fact that the integrals can be
considered as trace class operator valued Bochner integrals cf. [4].

N

Example 3. Assume a Bose-Einstein symmetric state on (x) 23((C2) is characterized
by a mixing measure veM\(D) which is invariant under rotations, then Wn(v) is
diagonal in the number states,

Pn(z)= Σ {ίdv(z)BnΛz]2(k)}iφM'>Φn(k). (34)

k = 0

In fact, under the assumption of rotation invariance we have for all z e D,

2π Ar. n

\^Pn(z)= Σ ^,izP(/c)<ΦM >ΦJίk). (35)
o In k=o

4. The Poisson Limit

In analogy to the situation analyzed in Theorem 2 we consider an array of TLS.

This array consists of the sequence of rows \® B((£2), vn), neN, where vneM\(D)
N

is the mixing measure of a Bose-Einstein symmetric state on ® #(<C2). In view of
Theorem 3 the array is characterized by the array of reduced statistical operators,

wM=idφ)pjz). (36)
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In [2] it is shown that for any k, kf eZ+ and any ze<£,

lim (φM Pn(z/]/n)φn(k')y = <Φ(/c), P(z)Φ(/c')>, (37)
«->• oo

and for any u, υ e (C and any z e (C,

lim <vΦ/|/4Pn(z/\/n)ψn(υ/]/n)} = {Ψ(u),P(z)Ψ(v)} (38)

holds where the quantities on the right-hand side are defined in Sect. 1.
From the physical viewpoint this means that the matrix elements of the

statistical operator Pn(z/]/n), evaluated by means of n-coherent vectors or
rc-number vectors, converge to the matrix elements of the statistical operator P(z)
evaluated by means of coherent vectors or number vectors. In the following we
show that this convergence of matrix elements extends to mixtures of n-coherent
states, mixtures of coherent states, respectively. To this end we need a preliminary
lemma.

Lemma 1. Assume that the sequence μMeM+((C) converges weakly to μeM+((C).
Moreover, suppose that the sequence fneCb((£) is uniformly bounded, | / J ^ c 0 , and
converges uniformly on compact sets to f e Cb(<Γ), then

lim \dμn(z)fn{z)=\dμ{z)f{z). (39)
«-• oo

Proof We have

IJ dμn(z)fn(z) - j dμ(z)f(z)\ ^ | J dμn(z)f(z) - J dμ(z)f(z)\

+ ldμn(z)\fn(z)-f(z)\=In + IIn. (40)

The first term vanishes in the limit n -> oo because of the fact that / e Cb((Π) and the
weak convergence μn^>μ. It remains to show that for any ε > 0 there exists an
integer Nε such that for all n>Nεwe have //„<ε.

As the sequence μneM\((£) converges weakly it is uniformly tight. Accord-
ingly, for any δ > 0 there exists a compact set K(δ) C C such that for all n e N we
have μn((£\K(δ))<δ. Moreover, by virtue of uniform convergence, for any η>0
and any compact set Xc(C there exists an integer N(η,K) such that for all

> 8up|Λ(z)-/(z)|<,. (41)
zeK

fε f ε W
Let ε be given and set Nε = N -, K\ — , where c is chosen such that

I/I ^ c . With this choice of Nε we obtain

IIn=ldμn{z)\fn{z)-f(z)\ 1 / B \(z) + Sdu.(z)\ttz)-f(z)\ 1 / ε \(z)

s sup
zeX

2(c0H

--ε, (42)

which ends the proof.



460 A. Bach and A. Srivastav

/N \
Theorem 4. Let be given an array \® J5((C2)5 vn), ne¥ί,of TLS, where vn EM\(D) is

N

the mixing measure associated with a Bose-Eίnstein symmetric state on ® B(<£2).
Denote by μn e M+((C) the image of vn eM\{Ό) under the mapping τ r t: D->C which is
defined by τn(z) = z]/n. Moreover, assume that the sequence μw n e N , converges
weakly to a probability measure μ e M\.(<£) then the sequence Wn(vn) converges to the
classical state W(μ) in the sense that i) for all k, k' eZ+,

lim (φM Wn(vn)φn(k')} = <Φ(/c), W(μ)Φ(kf)} (43)

and ii) for all u, ve(C,

lim <ψn(u/]/ή), Wn(vn)Ψn(v/]/n)) = {Ψ(u), W(μ)Ψ(v)) (44)

hold.

Proof. Using the notation introduced in the theorem we have for all n e N ,

Wn{xn)=\dμn{z)Pn(zl\/n). (45)

For part i) we set

/π

(ί>(z) = (φn(k), Ψn{z/γn)y (xpn{zlγn), φn(k')}

= {Bn, ]zPln(k)Bn. |zP/n(/c')} " 2 exp(;α(/c - k')), (46)

and for part ii) we set

/π

(i0(z) = <Ψn(u/\/n), ψn{z/]fn)y <ψn(z/]/n), ψn(v/]/n)}

Obviously,

lim f«Xz) = {πλ(k)πλ(k')yi2 exp(ioc(k - k)), (48)
7ί —• 0 0

where we set λ = \z\2 and

lim f<"\z) = exp ( - ^ ^ - \z\2 + ΰz + zv). (49)

Moreover, in both cases the assumptions of Lemma 1 are fulfilled such that the
convergence of the matrix elements is a consequence of Lemma 1. This ends the
proof of Theorem 4.

Example 4. Assume that the mixing measure vn in any row of the array
N \

g> J3((C2), vn) is rotation invariant and that the radial part is given by the beta

distributions of Example 2,

Wm(vn) = f ̂  d\z\ \z\ ( φ ) - 1 ) (1 - |z | 2f">" 2Pm(z). (50)
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From Example 3 we obtain

™ ίd(n) + m— A " 1 fd(n) + m — k — 2
m n k = o \ m ) \ m — k

Under these conditions the sequence μn associated with vn converges to a
rotation invariant probability measure on (C which is defined by the property that
the radial part is an exponential distribution with mean n. In the sense of the
convergence which is explained in Theorem 4 we therefore obtain Wn(vn)^>W(μ),
where W(μ) is given by

d2z „ °° 1 / ή V
W(μ)=l — (n)" 1exp(-|z | 2/n)P(z)= X - — i ( - — = ) <Φ(/c), >Φ(fc). (52)

5. Remarks

A preliminary version of Theorem 4 has been announced in [10]. Due to the fact
that we want to formulate this theorem in the general setting proposed in [2] we
changed the formulation and the strategy of the proof.

In the context of the classical de Finetti theorem it is well known that sequences
of interchangeable random variables are not necessarily infinitely-extendible such
that, in this case, no integral representation exists (there exists, however, a
representation as compound hypergeometric distribution). This entails, on the
level of the Poisson limit of de Finetti's theorem, that not all elements of M+(Z+)
admit an integral representation in terms of Poisson distributions.

In the canonical formulation of quantum theory the spectral theorem
guarantees, given the state, that in any abelian subalgebra a formulation of
expectations by means of a uniquely determined classical probability measure
exists. As far as the abelian subalgebra generated by the number operator is
concerned this implies that expectations are canonically determined by an element
of M+(Z+). This classical formulation of expectations, however, does not entail
that an integral representation for the probability distribution o n Z + exists.

The fact that the phenomenon of nonrepresentability is already present in the
abelian subalgebra generated by the number operator shows that the
P-representation (cf. e.g. [11]) of nonclassical states is based on concepts
(distributions, signed measures) which, in the canonical formulation of quantum
theory, have no physical meaning.

These so-called "negative probabilities" are not the result of some inherent and
typical quantum behaviour, transcending classical concepts, but rather indicate
lack of sufficient extendibility properties of the Bose-Einstein symmetric states on
the array of quanta under consideration. As the extendibility properties are
connected with the correlation structure of the array we conclude that the non-
classical properties of nonclassical states are the consequence of specific corre-
lations (e.g. strictly negative correlations).

For the investigation of the properties of nonclassical states an analysis of the
precise interrelation between the extendibility properties and the correlation
structure is therefore more interesting than the construction of objects which are
devoid of any physical meaning in classical and in quantum probability.



462 A. Bach and A. Srivastav

We conclude with a remark concerning the mixing measure of the harmonic
oscillator in thermal equilibrium (Example 4). The derivation of the mixing
measure given here shows that the gaussian distribution is not a consequence of
the CLT but rather a consequence of Bose-Einstein statistics. The exponential
distribution (Maxwell-Boltzmann distribution) is derived from the interchange-
able array of Example 2 which is subject to Bose-Einstein statistics.
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