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Abstract. We study the Sine-Gordon field theory at α2 = 8π. We prove that the
theory is renormalizable but not superrenormalizable and we show how the
perturbative renormalization procedure works in this case where the interac-
tion is not polynomial. To go beyond the perturbative results we investigate the
^-functional equation for this theory and discuss in what sense at α2 = 8π the
theory is lacking the asymptotic freedom and how it is asymptotic free for
a2 < 8π in a appropriate region of the coupling constants.

Introduction

We study the renormalizability and the asymptotic freedom of the field theory
model defined by the potential

V{φ) = λ\ d2x:cosaφx:= \ Σ ί d2x:eiaσ(f>x:, (0.1)
Λ 2 <j= ± 1 A

where λ e R\0, α2 = 8π, A is a finite volume in the euclidean d = 2 space-time with
periodic boundary conditions. The properties of the Sine-Gordon model crucially
depend on the α value:
a) α2e[4π,8π).

The model is superrenormalizable; there is a finite number of divergences
which can be cured with field independent counterterms. Moreover as a2

approaches 8π the number of divergences tends to infinity. It has been proven in a
series of papers [1-4] that in this range of values, for λ sufficiently small, the model
exists.
b) α2 = 8π

i) The model is only renormalizable. The number of divergences does not
depend on the order of the perturbation theory and three types of counterterms are
necessary, two of them field dependent. The renormalizability of the model has
been proven only in a perturbative sense.



426 F. Nicolό and P. Perfetti

ii) The model is asymptotically free in a region of the (λ, δ) plane where λ is the
coupling constant and (1 +δ) is the wave function renormalization constant. The
region is specified by the conditions: δ ^ — cλ if λ > 0, δ rg cλ if λ < 0, where c is a
positive constant that depends on the model. In all other regions of the (λ, δ) plane
the model is not asymptotically free. It is not possible to have the asymptotic
freedom starting from a point (λ, δ) with δ = 0.

This paper is devoted to prove statements i) and ii) of b). To our knowledge this
is the first time that the renormalization procedure (at the perturbative level) is
fully developed for a non-polynomial and non-superrenormalizable theory.
Statements ii) shed some light on the properties of the theory beyond the
perturbative results and moreover on the Coulomb gas also for the corresponding
temperature.

1. Definitions and Notations

The free field φx is a gaussian random field whose measure has the covariance

xy (2π)2έ2

or better its periodic version

Cχy= Σ Cx.y_uL, where L is the side of A .
neZ2

The properties of the covariances we are interested in are the same in both cases.
The field φx is very irregular so we do a multiscale decomposition:

/ 2 2 N

1= l im le-
ip2 + m 2 ) + Σ

JV-oo V * = 1
oo

:= Σ
k = 0

Y> 1, (1.2)

Cxy= Σ C%. (1.3)
fc = 0

C^l is associated at φ{

x

] and one can think of φx as decomposed in the following
way:

<Px= Σ φf (1-4)
k = 0

N

We define the regularized covariance Cxf
N)= X C ^ and the associated field

fc = 0
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The covariances have the following properties:

\dr-C^\SBkT
klκle~κmγklχ-y] K depends on Y, r, but not on k, (1.5)

δr-= Π f / - T lrl= Σ ri9 \φf-φf\ύBjr*\κ-y\), (1.6)

rk\χ-y\)\ (1.7)

with probability bounded below by (1 — e~B*).
The scales of smoothness and independence of the field φ{k) are the same. These

properties are summarized by saying that the field φ{k) is regular on scale Y~k. The
regularized potential is

T// (^ N)\ 0 Γ J2 (<N) V̂  Γ Λ Ί iaσφ( -N^ (\ o\

V{φ ) = λ j u x . c o s o t c p x '— — 2^ ) u x \ e χ :. l ^ . o )
A 2 σ = ± i A

(W do not specify the value of α to follow, the case α2 < 8π until it is possible.)
We want to compute the effective potential V^k) defined through

j P ( d φ { k + x } ) P ( r f φ ( / c + 2 ) ) . . . P { d φ { Ή ) ) e y { N ) { φ ( ~ N ) ) : = e v * ) { φ ( ~k)) (1.9)

and to study its limit as N->co. It is well known (see [1-4]) that when α 2 > 4 π ,
lim V{fk)(φ(=k)) does not exist.

iV->oo

Before discussing how to renormalize the theory and control the previous limit
we recall how to calculate integrals like (1.9):

Of course Sτ

k{x\0) = 0, $\{x\ 1)-£ { k ){x\

dni dHp ( P \
^ί(^i,...^p;π 1,...,n p)=^^,...,^^lnί ( f c )e

${k) and Si are related by

^ϊ(x;p) (1.10)

and we have a "Leibnitz formula"

9iixι,...,xp\nu...,np).

(1.11)
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Fig. 1

Applying these formulas to V^\φ{-k)\ which we call simply V, we obtain

oo 1

$(N)(e ) —6Xp Σ 77 $N(V' > ^) = ^N ( φ \ (1.12)

exp Σ^

GO I / co \

= exp Σ —7<$N-I( Σ Π^N(V'^
m=ι ml \k = ι kl

= Σ Σ=i « 1 + Π 2 r + . . . = s n 1 ! n 2 ! . . . l ! n i 2 ! " 2 . . . '

The next step is more complicated and does not improve the intuition of this
formula. Intuition that can be made easier by introducing a construction
developed a few years ago by G. Gallavotti and one of us, (F.N.), which was called
"tree expansion." We will not give here the details of the tree expansion but we refer
to (Gallavotti [3], Gallavotti-Nicolό [5], and Pordt [6], and we just recall that one
obtains it starting from (1.8) with the following recipes:

a) One has to integrate one frequency scale after the other, see (1.9).
b) At each frequency one performs a cumulant expansion in λ, see (1.10).
c) One collects this multiple expansion together.

A tree is just a graphical way of selecting a specific term of this expansion, which
is made of truncated expectations of truncated expectations of...on different
scales. The point is that for each of these terms one can get very good estimates
which take care of the natural length scales of the various factors. A tree is drawn in
Fig.l.

The tree expansion allows us to incorporate pretty well the counterterms
needed for the renormalization so that one is also able to use it to study the flow of
the running coupling constants. Using this expansion we obtain, starting from
(1.8):

= k))= Σ λnV<!Uφ^k)))9 (1.14)
n= 1

-")= Σ Σ Σ ί d2x1,...,d
2xnW^(θ;x;σ;h):ei^Σ"jφi^,

θ:v(θ) = n ffi, ...,σn h ΛxΛx,...,xΛ

ffi=±l h^N ntimes (1.15)
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where
v(θ) number of final lines (points) of the three θ,
oi charge of the line i,

h = {h}veθ>

hv frequency of the bifurcation corresponding to the vertex v,
hVQ frequency of the lowest bifurcation,
k: root frequency.

It was proven in [3] that at fixed N and α2 the following estimate holds:

\VΆ{φ( = k))\SλnC(n,k)supJΣ Π γ-^ + 2^-h^γ-^o(hvO-
θ )h^N veθ

with

- 1 ) - 5 + S e ί ( U "
where nv ^ 2 is the number of final lines that merge into v and v' is the bifurcation

n

which immediately follows v (see Fig. 1). Qv= Σ σt is the charge of the nv points
i= 1

associated to v and it will be often called the charge of the "cluster" υ.
It is easy to realize that simple estimates of the truncated expectations give for

C(n, k) a very bad n dependence, worst that n!, so the estimate of the series would be
divergent for every /ίΦO. More refined estimates [7,8] show that for α2 <6π the
power series in λ is convergent, but up to now the result has not been proven for
α2 ^ 6π. Anyway before summing over n we have to remove the cut-off N and,
because of the sum over h, it is necessary ρv + 2 > 0, \/v φ v0 and ρVo > 0 to have the
coefficients of the series finite as N^-co.

These are essentially the two main problems one is faced to prove the existence
of a field theory model. The solution of the second one proves the perturbative
renormalizability of the model; the first problem in many cases cannot be avoided,
after the renormalization, and simply tells us that the perturbative series is not
convergent but only asymptotic and that to prove the existence of the theory
beyond the perturbative level, one has some (hard) extra work to do. The next
sections are devoted to the study of the second problem. In the last section some
steps toward a solution of the first problem are performed.

2. The Perturbative Renormalization

We distinguish two cases a) α2 e [4π, 8π) and b) α2 = 8π.

a) α 2e[4π,8π)

This case has been studied in [1-4] (see also [9]) where the model has been
proved to exist also constructively. We recall only some results to make more
evident the analogies and the differences with case b).
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σ, =0

ϋ)

iii)

Fig. 2

6

ι = 1

If <22>0 there are not divergences [see (1.17)]. It can be verified that if
α 2 e[4π,6π) the only divergences appears when n = 2, i.e. the tree (i) of Fig. 2
diverges (when we sum over the frequencies).

If oc2e[6π,ψπ) divergences are present for n = 2,4. Terms with n odd are
forbidden by the condition 2 = 0. There are, therefore, many trees whose
contribution is, before the renormalization, divergent, namely all those with a
number of final lines smaller or equal to 4. The tree (ii) is one of them.

If α 2 e [ ^ π , 7 π ) the divergences are present when rc = 2,4,6. An example of
diverging tree with n = 6 is the tree (iii).

This proliferation of diverging trees corresponds to the existence of the

thresholds of the Sine-Gordon model. With fixed n it must be α2 < 8π ( 1 I for

the tree with n final lines to be convergent. ^ n'

b) α2 = 8π

The situation changes drastically: from (1.16) and (1.17) we have

ρv = 2(Q2-l). (2.1)

Therefore if Qv = 0 also the sums over the frequencies of the internal bifurcations
can give divergent contributions. Moreover the n dependence in ρVo and the nv

dependence in ρv has disappeared. This is the sign that the theory is only
renormalizable. In fact, for fixed Qv, there are infinitely many trees with arbitrary nv

and the same Qυ. The first consequence immediately appearing is that the
divergences of the trees with n = 2,3 drawn in Fig. 3 require to be cured the
introduction of field dependent counterterms.
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β = 0, ρ = 2 quadratic divergences

Σcr, =o
ι = l

Q = ± 1, £ = 0 logarithmic divergences

Fig. 3

Now we estimate the contribution of some of these divergent trees and illustrate
the mechanism to cure them. We do not specify the α value to treat together the
cases a) and b) as far as possible.

(contribution of the tree j)

V 1 2 2

Let us take σι = + 1 and σ2 = — 1, we get

1 (λ\2 N

 2 ( < h - i ) 2 W

Λ\ )̂ I 2J J " X j _ U X2& XΐX2 \ β X1X2 ί ) β x i X2 . . \^"3)

With standard estimates the previous integral is (upper) bounded by

C\A\λ2 Σ r ^ 2 ) , (2.4)
which for α 2 < 4 π is convergent and for α2 = 4π divergent. As we have said, for
α 2 < 4 π the theory has been constructed with different techniques [10] without
using the renormalization group, so we discuss only the α2 ^ 4π case. It is clear that
if we had in the previous integral an extra factor |x — y\2 the same calculation would
have been given a convergent result for α2 < 8π. To achieve this zero in \x — y\ we
proceed in this way: we sum to the previous tree a similar one with the opposite
charges obtaining

N (h)

Σ j d2x1d
2x2β

a Cχ=iχ2 (ea CχίX2 — l ) : cosoc(φx^
k^— φ x ^ ) : . (2 .5)

h=k+1 ΛxΛ

Then we observe that the substitution of cosa(φx^
k) — φx^

k)) with
(cosoί(φx^

k) — φ^fk))— 1) would produce a zero of order |x — y\2 which would
guarantee the convergence of (2.4). Therefore, when α2 < 8π, the recipe to make the
contribution of this tree finite is to subtract from it a similar contribution with
costx(φx^

k) — φx^
k)) replaced by one. It has been proven in [3] that to cure the
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divergences, (a finite number increasing with α2), which appear in more com-
plicated trees it is enough to proceed in the same manner replacing in their

i n
expressions cosα I Σ σjψ{^k)) with I c o s α ( Σ σjΨ{^k)) ~ M when Σ σj=z^-

When (X2 = 8π this subtraction is not sufficient as a logarithmic divergence
remains. This suggests that we define also in this case, as was done in the Φ% theory,
two operations denoted with the symbols R and L which have to be applied to the
vertices of a generic tree of the expansion and which modify the factor associated to
the vertex itself. The way the JR and the L operate is in principle very simple: A
truncated expectation with respect to the frequency hv is associated to each vertex v
of a tree operating over functions of the fields φxf

hv) = φ{

xf + φ{

x^
hv\ the result being

a function of the fields of lower frequency φx

<hv). The R operation is defined on the
function of these fields, the L operates as — L= — (1 — R) on the field function and

N hv>

moreover changes Σ m t 0 Σ ( s e e [5]) The vertex contributions is modified

in such a way that applying these operations to all the vertices of a generic tree it
becomes finite also when the cutoff is removed. The way the R and L operations
have to be defined depends, of course, on the model we are considering.

In this way a new tree expansion has been produced where each tree has
appended to each bifurcation the symbol R or the symbol — L in all the possible
ways denoting which operation has to be performed on each bifurcation. This new
expansion will be called: "renormalized tree expansion" [11]. The proof that the
theory is (perturbatively) renormalizable is accomplished in the following two
steps:

i) First one proves that each term of the "renormalized tree expansion" is
finite in the limit N^co.

ii) Second one has to show that this "renormalized tree expansion" can be
reobtained by simply starting from a new interaction which differs from the
original one because its coupling constants are different (the "bare coupling
constants" instead of the physical ones) and by the (possible) presence of some
other terms (counterterms) in a finite number.

Of course it is the possibility of proving ii) that makes the proof of i) relevant. This
will be discussed in Sect. 3.

The R and L operations can be defined first for the simplest trees and then in
general. Looking at the tree (j) of Fig. 3 we define:

X, I Y

? oc2 = 8π we still denote by α 2 ,

As
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substituting in the sum (2.4) we get the following estimate:

N
12C\A\λ2 Σ Y[2π >Y~*\ (2.7)

Λ = fc+1

which now converges as JV-»oo.
Due to the R and L operations a term which contains the gradient of the field

squared has been generated. This implies that from now on we have to calculate
truncated expectations in which a new type of Wick monomial can be present and
that if we want to connect the renormahzed tree expansion to the presence of
counterterms in the original interaction it will be necessary to include this term in
the regularized interaction we start with. We would write, therefore:

^N\λN(λ),N) = λ j d2x:cosaφx^
N):

A

+ d(λ, N) j d2x: (dφ(

x=
N))2: + u(λ, N) J d2x, (2.8)

A A

where at the second order in λ,

u{λ,N) j d2x
A

Y Σ ί
h = 0 Ax A

ξf Σ ί
h=OΛ*Λ

and

A

Σ ί
h = 0 Ax A

= ($) Σ ί

/ γ _1_ V

= ( i n t r o d u c i n g t h e v a r i a b l e s x = -^——-, z = x γ — x

ί)n\2 N

= (4) Σ ί d2ze«2c^h-ί)(e«2c%-\)\z\2 f d2x:(dφ^Nψ:. (2.9)

The L brings an extra index because the localization of :cos(x(φ{

x^
k)~φ{

x^
k)):

generates two terms and the index near them remembers which one is produced.
Now we consider the Q = ± 1 and n = 3 case. We start examining the tree (jj) of

Fig. 3. Its contribution is:

c J2 J2 Λ2 y <pT
X J a Xγd X2u Λ 3 2^ ^ h

A*A*A h = k+ί

\ ^ e ι
 JJ ^ ^ 2

 J "̂ β 3 •
\_ ^ £ ^ J
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To consider a definite case we choose σ 1 = l , σ 2 = — I , σ 3 = + 1 , and we sum to this
contribution that one with all the opposite charges obtaining

UY J d2

Xld
2x2d

2x3

3! \1J
N

x Σ
h = k+l

+ (e-«2cx^-\){ea2c^-\){e*lc*^-\)}2\cosu^k)- (2.10)

which, estimated in the usual manner, gives

N hί^-Λ
C\Λ\λ3 Σ y[2π >π\Λ\λ3N->oo, for J V ^ o o , (2.11)

and this is the expected logarithmic divergence.
This divergence can be cured as follows: define

R: cos oc(φx^
k) — φ(

x^
k) + φ^f k ) ) : = : cosoc(φx~

k) — φx^
k

which has a zero of order one when all the points shrink. '

L: cos oc(φx=
 k) - φx=

 k) + φ<£ k ) ) : = : cos ot(φx=
 k)):. (2.13)

The introduction of the R operation over the fields of the previous integral gives
the following convergent estimate

N Λ ( — - 4 ^ a2

C\Λ\λ3 Σ y [ 2 π >Y~h, ^ - = 4 . (2.14)
h=k+ί £π

This is the second new aspect of the model at α2 = 8π. Another field dependent
counterterm has been generated beyond the gradient squared which, being of the
same form as the starting interaction, modifies the original coupling constant. If we
want, at this level, to describe the theory in terms of the bare coupling constants we
have to add g(A, N) to u(λ, N), and d(λ, N). g(λ, N) is the bare coupling constant
associated to the j d2x: cos ocφx-

N): part of the interaction. At the third order in λ it
A

receives a contribution, from the previous tree, of the following kind:

g(λ*N) = λ-\ y f d2vd2ze~a2^Czδh ί)~C(z~-h

y)o)~cίoh l)^
J ί o h = 0 AxA

-l)}. (2.15)

The crucial fact is that these are the only counterterms we will need, multiplied by
the appropriate bare coupling constants, formal series of the physical ones. The
next pages are devoted to prove this statement.

We will study the theory in the "renormalized tree expansion" framework and
modify the potential written in terms of the physical coupling constant as follows

= λj d2x:cosotφx=
N):+δ J d2x:(dφx=

N))2:+v f d2x. (2.16)
A A A
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This just means that the final lines of the various trees in our expansion have to be
thought of as bringing a label denoting to which one of these three terms they are
associated. The bare coupling constants will be in this case u(λ, δ, Ό, N), d(λ, δ, N),
and g(λ, <5, N), three formal series in the physical coupling constants.

A similar calculation to the one performed with δ and υ equal zero [see
Eq. (1.15)] gives for the effective potential on scale k:

V«\φ^k))= Σ Σ isV^φ^k))9 where λ = (λ,δ), s = (no,«i). (2.17)
m — 1 no', n i

no + Mi = m

The effective potential of a fixed order can be written, using the tree expansion,
in the following way, which although a little cumbersome is appropriate for the
subsequent estimates:

m

Σ λΨ3(φ(=k))= Σ Σ ¥ Σ Σ Σ Σ*Σ
no;HI θ:v(θ) = m no = O h:h^N σ (a,β,γ) & <&

nQ + n\ —m

d 2 x d 2 y d 2 y n o
A x Λ ,

m-times

J d2xu...,d
2xnίd

2yu...,d
2yno

7 = 1

x Π T r i g ^ l , Π e ^ ^ ' : , (2.18)

where

ί = (7i 7Wl) 7j = (0,l); ^ is a subset of {v}veθ, {

Σ* is the sum over all the possible & such that for any v,v'e^:

Trig, φ\=£lυ) = cos otφ\^lυ), Trig, φ\ = k)

σv) = sin ocφ\^lυ),

^ = {^v}veθ , where <3υ = (nd

v

;e, zv) is a couple of non-negative integers describing,

v±vo

for any bifurcation (cluster) v φ v0,
nd

v

;e: the number of dφ{<hv) factors present in the term associated to the
bifurcation v of the tree after one has integrated over all the frequencies ^ hv. n

δ

v

; e is,
therefore, the number of gradφ lines going out from the cluster v (which can
become internal half lines for one of the next cluster of lower frequency contain-
ing υ).

zv: the number of zeroes present in the field part associated to the bifurcation v
(before the integration over the lower frequencies be performed); of course, again,
these fields can be integrated but the zeroes will remain in each term of the sum.

Each sin ocφ[^}

ύ) has a zero, if Qύ = 0, when v is shrinked to a point (remark that v

is different, in general, from v). Π c o s &ψ{fύ

hvσύ) although it does not produce a zero
when shrinked to a point gives 1 which in the next truncated expectation acts as a
second order zero provided that: i) | ^ | = 1, ii) nd

v

;e = 0.
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We rewrite Eq. (2.17) in a more compact notation with the obvious meaning of
the symbols,

oo oo m

*ffWst))= Σ Σ l»v^¥uky)= Σ Σ Σ I* Σ Σ
m = l no ni m= 1 θ:v(θ) = m «o = O h:h^N σ

Σ
X,;x,y;σ;0>,%). (2.17)

An estimate similar to Eq. (1.17) is given by the following

Theorem 1 (the unrenormalized case). The following estimate holds:

z / 1 / ^ /.\ ΓT γ — ηv(hυ -hV')y—nvn(ho — k) f) Λ O\

veθ

where ho = hVo, ρ is a constant > 0 , d*(θu ...,θSo) is the largest distance between s0

points one in each subtree θ}.

Differently from (1.17) we have:

ηv = 2(Q2

v-\) + nδ

v

;e + zv, (2.19)

and iϊv = v0 cos ocφ{ < hvo) has not to be considered producing a zero as there are not
other truncated expectations of lower frequency. We have defined

nd',e__ Y D _ 0/ _sυpφ\ (2 2(Ύ)

Finally the presence of Σ in (2-17) implies that if nδ

v

 e is even (odd) then zv is even

(odd).
Assuming \dyjψψk)\^Bk, we have the following estimate [see Eq. (1.16)]:

\Vs%(φ(=k})\SG(Bk,k,s)\λ"oδ"ι\ sup ί Σ Π γ-^h"-h^Y~^h^^\ .
Θ & V Λh .h^N veθ ί

(2.21)

The proof of this estimate is similar to that for the α2 < 8π case [see (1.17)]. The
result is nearly obvious for a tree with only one bifurcation and then one proceeds
inductively in the "level" of the tree which is defined as follows:

Definition 1. A tree is of level f if starting from its root, there is at least a final point
such that to reach it one meets f bifurcations and for all the other final points the
number of bifurcations met is smaller or equal to f

We do not discuss this proof here as the same proof, although more
complicated, will be necessary in the next theorem where we will produce the
estimates associated to the renormalized tree expansion.

Looking at the estimate (2.18) we see that there are trees which give a divergent
contribution when one sums over their frequencies. In fact from (2.19) we see that:
a) When 2^ = 0 and ne

v

;e + zv^2 we have a logarithmic or a quadratic
divergence (a linear divergence is excluded as nd

v

;e + zv is even).
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b) When Qυ = ± 1, if nd

v

;e = 0 a logarithmic divergence appears.
In all the other cases the contribution associated to v is convergent.
The main difference with the α 2 < 8 π case is that there only the lowest

bifurcation could produce a divergent sum. Therefore, fixed α2, only a finite
number of trees give a divergent contribution while here, as in any renormalizable
but not superrenormalizable theory, an infinite number of trees of any order in the
coupling constants produce divergent contributions. The simplest of them have
been already discussed and the R and the L operations have been defined for the
field factors they produce.

We want now to define the R and the L operations for all the field dependent
parts which need it. We start looking at the tree of level 1 starting from the
interaction (2.16). Denoting by k the root of the tree the field dependent parts of
these trees are:

Π
1

if

(2.22)

Π
7 = 1

i f

when Q = 0 aVQ = s if q is odd and = c otherwise.
A simple application of (2.19) shows that

ηVo = 2(Q2-l) + q + zVo, (2.23)

and the R operation will not be the identity only when ηVo ^ 0. In this case they are
following: We denote

φ<*» = K=Λ) = Σ °j<Pl

yf
k) (here υ = v0),

7 = 1

Σ σ3yj=h - Σ yj=y
j=l Πj=ι

= 0.

(2.24)

R: dyφψ» sinα^f >: =f >: =: «) (j))]: + α:

L: (2.25)

L: ( 2 2 6 )
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R: dβφ?%φF": ==: dβφ^\dy{φψ^ - φ^)):,

ί \
The only factor we have to consider is : cosα ( Σ σjψ{xfk) : with n>2 odd and

Σ σ,= ± l :
7 = 1 ^ f (

L cosal Σ σ ^ f k ) j : = : c o s a ^ k ) : . (2.28)

The L operation (= 1 — R) acts in the way we have listed under the integral sign
after we use the invariance of the covariances for translation and rotation of f
around each axis.

This completes the definition of the R (L) operation for the trees of level 1. After
the R operation has been applied all the right-hand side of Eqs. (2.24)-(2.27) have
rφe + zv>2. For a generic tree one has to investigate which other field expressions
can appear which still need the R operation that is have nδ

v

;e + zv^2. It is easy to
realize there are few of them:

R: dβφ
{

x=
k) cosαφ{| k ) s i n α φ ^ : = : dβφ

{

x^
k\cosoLφ\^k) - 1 ) sinotφffi

:^ \ :{dφ^)%:. (2.29)

With this definition of the R and L operations we are able to write for the
effective potential the renormalized tree expansion and show that it is finite, at each
order uniformly in the cutoff. We proceed again as in the case of the unre-
normalized expansion, first we give the general expression which we prove by
induction, then we prove the estimate analogous to (2.18). Now, due to the
presence of the R and the L's the estimate give convergent results when summed
over the various frequencies.

To write the explicit expression for the effective potential first we list all the
possible Wick functions of the fields which can appear in the effective potential. A
Wick function is a Wick monomial or a Wick monomial to which the R operation
has been applied and we denote it by : ̂ a ^v(ψ(v~h)) '••> where Qv is the charge of the
cluster v,a labels the different functions and q is the value of nd;e. We denote
ω = 2Ql + q + z, where z is the order of zero of the function.
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Wick functions:

Q.-O, a ω

1 :cosαφ(|Λ ): 0

2 c o s α φ ^ - l : 2

4 :sinαφ{|Λ): 1

5 :[sinα<f>-α(3^*>)0>)]: 3

6 : Π (^^f'): qv
7 = 1

7

: Π (δ^^f
J = l

: Π (^φifΛ

7 = 1

10 : ft
7 = 1

11 ^ ^

^ : 2

2 :e i α <"'ίl)'1 )(cosαφ;|' ! >-l): 4

3 :ei5ί^<<ί*)

=

4 : Jl (dy^y^W'
7 = 1
J

7 = 1

5 : Π (3 y ,^fy α σ ^' 1 ) s
7 = 1

: Π
J = 1

2Q2

υ

(2.30)
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Remarks, i) In the generic Wick function all the coordinates are associated to the
same v, both the x's of the grad fields and the / s of the trigonometric functions,

ii) The factors we have listed are associated to a vertex (bifurcation) of the
generic tree. In other words the final field expression of a generic term of the
effective potential will be constructed by the product of these factors each one
associated to a specific vertex. Looking at Eq. (2.17) we see that they are the
generalisation of the factors

sΨ(yv, σv) ~ SlUaΨ(yv, σv) J -e {v)

and iυ
• Π (dyjφi^):.

This is due to the fact that in the renormalized tree expansion the R or the L
operations act at each bifurcation modifying the Wick monomials and introducing
appropriate zeroes to guarantee the convergence of all the sums. These zeroes once
introduced must be kept in all the next scales. This is the reason [see also (5)] why
the field dependence has to be written in terms of the Wick functions
:&υ*»(φ¥h)):'s.

Notice that if a single ^a ί^v{ψ{v~h)) describes the field dependence of a vertex v of
a tree then ω = ηυ + 2. Therefore if the normalized expansion with these definitions
of the R and the L must produce finite results at any order the field expressions
must be products of Wick functions such that ηv>0 always. This is obvious, just by
definition, for the tree of level 1 and will be proved by induction for the generic tree.
The next theorem is the generalization of Theorem 1 to the renormalized tree
expansion. To prove it we will need a canonical way of decomposing the generic
^a ί^v(ψ{v~h)) m a P a r t which depends on φ[<h) and a part which depends only

Lemma 1. For any ^a !?v(ψ\rh)) t n e following decomposition holds:

K:?Mm) = Σ ̂ b

Ώ:q

QΛψ:h)WΆψf), (2.3i)
b

where c(b) is a well defined function depending on b which is unique if we require the
right-hand side to be symmetric under the interchange of φ[<h) with φ^\ All the
addends in the right-hand side have at least the same order of zeroes as the left-hand
side.

The proof of this lemma is just a matter of trivial computation and we do not
include it here.

Theorem 2. The effective potential on scale k with a fixed cutoff N, V^k\φ{-k)) can
be written as a formal series in the physical coupling constants in the following way:

=k))= Σ Σ
no + n\ =τn

= Σ Σ Σ i' Σ Σίdxdy
m=ί θ:v(θ) = m no = O hh^N

Σ* Σ χfo,,o>0): ( Π F%fr(φ{*kyϊ) (2.32)

Σ Σ Π s I Σίdxdy
m = l θ:v(θ) = m n n = O h:h^N σ
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where Θ* is a subset of {v}veθ, {v}2&. Σ* is the sum over all the possible & such that

for any v,v' e&*:vnv' = Φ and χ(ηvo>0) reminds us that we are doing the
renormalized tree expansion. Moreover all the final lines merge in some ve&. The
coefficients W{k\θ,h;x,y;^,a) satisfy the following bounds: We define the norm

Σ $dxdy\Wik)(θ,h;x,y;σ;0>,a)\

{Qv} fixed

where d*(θu ..., ΘSQ) is the maximum distance between s0 points one for each cluster,
ρ > 0 will be chosen later on (see after Eq.(2.3S)) and

|(zeroes)|:= Π !**&/•.
vs&0>

We remark that this factor just takes into account the zeroes which are present in the
field dependent part ofEq. (2.32). The following bound is satisfied uniformly in N:

\\W{kXθ,h,...,0>,g)\\{Qv]Sc(Kn) Π r - ^ - ^ r - W ^ o , (2.34)
veθ

V + Vo

where χv>0, ηVo has been defined in Eq. (2.23) and c(n,k) = c(n)YZv°k with c(n) a
constant whose n-dependence will be left unspecified. This k dependence originates
from our definition of the (zeroes) factors.

From (2.34) the following estimate also follows:

, . . . ) | | : = sup \\W{k\θ^ ...,^,α)| | { Q v )^c(fc,n) Π Y~χ^~h^
{QVYΛ^ Q} veθ (2 35)

with χv>0 for any veθ.

Some comments are appropriate at this point.
i) This theorem says that the formal series in the coupling constants of the

effective potential has finite coefficients uniformly in N. The same results
immediately follows for the Schwinger functions.

ii) Differently from the polynomial case we do not discuss here the n
dependence of the order n coefficients. We will consider again this aspect when we
discuss this model from the constructive point of view.

iii) The crucial point of the theorem is to prove that the number of different
types of Wick functions which are needed in the field parts of the different tree
contributions is independent from the tree level. This implies that the R(L)
operation is different from the identity only in the finite number of cases we have
listed.

Proof. The proof of this theorem is long but does not require any computation. We
proceed inductively. The result is true for the level 1, we assume it true for all the
levels ^ / and we prove it for the trees of level / + 1 .
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Let θ be a tree of level / + 1 , υ0 its lowest bifurcation of frequency h0, s0 the
number of subtrees merging in v0 and k its root frequency,

Fig. 4

The following expression holds:

so

ί = l " (Z.JO J

^v"(φ{-ho)):,...,: Π

where P0Λo)(fl, /z(ί); x ( ί ),/>; σ(ί); ^ ( ί ) , α(ί)) satisfy the estimates (2.33) by the inductive
assumption.

As in the norm (2.34) there is the factor |(zeroes)| which takes care of the zeroes in
the field dependent part. It is crucial that all the manipulations performed on the
field dependent parts must preserve the zeroes appearing in each

Π ^astq
Q,v"(ψ{~ho)) m e a c n t e r m °f t n e s u m o n e 8 e t s performing the various

expectations. The decomposition of Lemma 1 has this property. Therefore
applying (2.31) we obtain:

Π ^ r ^ ( φ ( < Λ o ) ) : , . . . , : Π

Let zs be the order of zero of ^asfq^
Vs(ψ(~ho)\ t n e n m t n e decomposition (2.31)

^Φsy,v

q

s

s(φiho)) h a s a z e r o of order vJ^zs. We have for <?£() of (2.37) the following
estimate:

\*tt)\^C(n,s0)e-κrhod^-~ β o) f] Πs Γ ΐ ^ i r ^ r , (2.38)
ί = 1 vseθt

where Σs ήδ

v's
e is the number of the dφ fields coming out from θt which are

vseθt

contracted in vo,d(θu..., θSo) is the distance between the s0 clusters θί,..., ΘSQ. κ>0
and ds is the zero order of the subcluster vs appearing in S°lo(). In the
definition of norm (2.33) ρ has been chosen <ξκ. The proof of this
estimate is very simple as we are not interested to an optimal estimate for
C(n, s0) and we do not report it here.
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We rewrite (2.36) in the following way:

/ / s o \ \ so

= ( ( ( Π Σ* Σ x(ηVi>θ)J t(i) Σ ) f Π w ^ W ; * '
χ R $ > k ( ' - 1 1 ^bs

S;'qs

V (ψ ° ) : ? 5 : I I ^bs\qs

Vs^SP ° ) ' ) (2.36')

We need to rewrite the field dependent part according to the following

Lemma 2. The following decomposition holds:

R S > k ( :

v l l { ί ) ^ i i v ' ( ψ i < h o ) y ^ ' ' ^ v Πao)^ ϊί

Σ : ( Π ^ ; f " S ( Γ ) '£&;α (X>yi°) (2.39)

'{@.h

Q

0\x,y,σ) satisfying the following estimate:

\^ao)(x>y,°)\^~2Q2ho Π Y2Q'ho I (zeroes) of A\. (2.40)
f = 1

Proo/ The proof of this lemma is trivial. It is enough to recall how one can
rearrange everything inside a couple of Wick dots. Some examples will be given in
the Appendix. Using this lemma we can write:

= (( Π Σ* Σ X(ηvo>0)) Σ < ^ Q fixed)) #<*>\x,y, σ)
\\t=l &(t) g«) J fe(i):...;fe(so) /

x Π ^ ^ ^ x^y^ σ̂  ^ α ^ ) ^ ) - ( 2 4 1 )
f = 1

To estimate the norm of this expression we can neglect the (finite) multiple sum and
estimate the norm of the generic term of it. Therefore we are left with the norm of

t= 1

x W{ho\θ, h{t) x{t\ y{t) σ(ί) ^ ( ί ) , a{t))SΛ

Γ

0( ) (2.42)

uniformly in the indices on which the multiple sums are performed.
We have

I! W/*(k)(f\ 7 .̂ UP n\\\
\\VV yO, Λί, . . . , < / , <^)\\{QV}

= Π ( Σ jdί( ί)d/%?»
ί = 1

so

f = 1

x Π [eρ r h t ί /* (ΐ° θλ0)| FF(Λo)(0, h{t); x{t\ y{t); σ{t\ 0>{t\ a{t))χ{ηυ>ϋ)\
ί = l

x|4;e

wfe_y,?)l (zeroes) off Π -K'-t^Ψ^^λ • (2 4 3 )
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Using the estimate (2.38) we have:

\\W*w(θ,h;...;P,g)\\{Qυ)

ΠΓ Σ
ί = l <?«>

l
l _ { β ) ,

x|(zoeroes) of «,(•),(f))l
v

x I4ίαθ)fe_^ σ)\ (zeroes) of (2.44)

where |(zeroes) of {$lΌ{ )), (ί))l is the product of zeroes of $lo{ ) associated to the
subtree θt.

From this expression it is possible to reexpress the right-hand side in terms of
the norms associated to the subtrees θu...,θSo, and then proving the theorem,
using the inductive assumptions on the norms, provided that:

a) one can reconstruct all the zeroes present in the definition of the previous
norms.

b) One shows that also the dependence on h0 produces a convergent sum
over h0.

To prove a) we observe that, due to the decomposition (2.31) of Lemma 1 and to
Eq. (2.38) of Lemma 2 the zeroes present in the definition of the norms for the
subtrees θt are partially in the $Jo( ) factor [we have called them |(zeroes) of
(^ίo( ))'W)l] a n d partially in the Ri>k{) part of Eq. (2.36). This second factor is
then decomposed in Lemma 2 in such a way that these zeroes are partially
contained in d{^a°\x,y,σ) and partially in ( Π ^iVs{ψ{-k))\ One has still to

observe that from these last two factors the zeroes appear as \Yh°yVs\
ds' when they

are in &{}.ha\x,y, σ) and as \YkyVs\
ds" when they come from the second factor and of

course

ds, + ds» : = ds = zs-ws. (2.44)

The zeroes produced by the second factor give an extra factor, beyond the part
needed from the norms of the subtrees, proportional to [γ~^-k)γs .

Taking the zeroes correctly into account we obtain the following estimate:

[(r.h.s.)of(2.43)]

= I dy\ ,. j dy\ ° o(y\ )β 11 -*
t — 1

x f! Π rr'k°ho

t= 1 vseθt

so
v Π Y~(Ίvt-zVt)l

x 11 i * *
f=i L ί = 1

x Π 5 r " ( Λ o " k ) d % (2.45)
vseθt



Sine-Gordon Field Theory Model at α2 = 8π 445

Γ so Ί
the factor Π Y{η^z^)h° \\W{ho\θvh

{t); 0>{t\a{t))\\ is estimated by the inductive

assumption and gives

""* so

^ Π \ γ η υ t i h v t ho) π YXv(hv

ί = 1 [ υ Φ ϋ t

= 11 i

and χ υ ^0.
The estimate of the remaining part gives

^(i 5 . . . j d y i *^(v(i k 11 J

ί = 1
so . s 0

Π Γf γn°\eho ΓT Y*-(ηv<-Zvf)ho TΊ -γ-(ho-k)d'i
11 i s 11 i 11s i

vseθt

x c(n)YkZv°Y~2Q2ho + t-ι

x f] r - 1 f r ^ o r - ^ , o ? (2.47)

where z ϋ 0 : = Σ ^ , ^ ; e : = Σ ^; e , r " 2 ^ 0 " ^ is the volume factor and
θ

t

Collecting all together we get

[(r.h.s.)of(2.43)]^(

veθ

veθ

V + VQ

and y/y is positive due to the presence of the R operation in the last bifurcation.

3. The Running Coupling Constants for the Sine-Gordon Model at α2 = 8π

From the results of the previous section it follows easily that the theory is
renormalizable in the perturbative sense, namely we can write the interaction:

τ/(iV)_ /i ΛT\ Γ//2γ C Oc r y r / )(^ iV) _j_//n /\n f d2χ'(f)ω(-N))2' υ(l n ΛΠ [ ά2x
yl Λ yi

(3.1)

where g(A, iV) = g(A, ̂  = 0, iV), d(λ9 N) = d(λ, δ = 09N) and u(λ9 υ9 N) = u(λ9 δ = 09υ9 N)

are the bare coupling constants such that if we compute the effective potential
V^-k) as a power series in λ, each order is made by a finite number of terms whose
coefficients are uniformly bounded in N.



446 F. Nicolό and P. Perfetti

This result is proven in this way: Let V^k+1\φ{=k+i)):= V^k+l) be the
effective potential at the level k + 1 computed with the renormalized tree expansion
which we describe, graphically, in the following way:

L k+1 o h k+ϊ '— -I

3

α = l
(3.2)

where j ^ \ denotes the sum over all the trees with all the possible frequencies

except the last one hVo = h fixed and with R or — L at the internal vertices. V^-k+1)

has been decomposed in a local part which we denote by Σ λ$+ i ; ^
( α ) ( φ ( ~ f c + υ )

and the non-local one. We have α = 1

1 ^

^ σ=±1 Λ
ί

/ ( 2 ) = μ 2 x : ( M = k | ) 2 : ,

7 ( 3 ) - J d2x and ^ Ξ O .

(3.3)

We compute V^-k) performing the standard tree expansion (the non-renormalized
one):

+ Σ h «
o k

-L

κ+2 k

+ Σ "7
p = 2, P

y /i (α) /(α)(
α = 1

fi

Σ • - — i h .
= /c + 2 k + 1 ^ ^

R i

Σ ^

The last two terms can be represented asii—[k+iS and
with the previous ones, we obtain:

{=k)= L k*

k
I h
0 k ^e ] k.1 k

(3.4)

and collecting

- Σ ^$ i
α = l

(3.5)
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Therefore the proof that a finite renormalized tree expansion implies the
perturbative renormalization is achieved. Λ$J = lim λ[l]N) are the running cou-
pling constants. N^co

From Eq. (3.4) and the fact that V^-k + 1) has the same expression as V^-k) with
fc + 1 substituted by k everywhere, it follows that we can express V^-k) with a new
tree expansion where at each bifurcation there is a R label and the final lines bring
instead of the physical coupling constants the running coupling constants with the
frequency of the first bifurcation where they merge. This expansion will be called:
"the running coupling constants tree expansion." To be useful one has to know,
at least formally, the running coupling constants. They are defined as solutions
of the following jS-functional equations whose derivation we recall [5], [12].
From Eqs. (3.4), (3.5) we get:

The right-hand side can be written, using the "r.c.c. tree expansion"

3 oo m

Σ Σ Σ Σ Σ Σ Σ Σ
α = 1 m = 2 θ : v ( θ ) = m n = 0 σ ι , . . . , σ n a (&\a) h : h ^ N

h V Q = k + l

x J d2xu...J
2xm W{k+1\θ; x; σ; h; α; ^ α)

ΛxΛx,.. .,xΛ
m-times

m

xL(α)(:P(φ,δφ):) Π ^ I N ) , (3.7)

where X is the sum over all the possible final field dependences for a tree with

v(θ) = m and X sums over the different final lines. :P(φ,dφ): are complicated

polynomials in dφ and eιαφ, depending on 3P α whose expression is explicitly given
in Theorem 2. L(a)(:P(φ{ = k\dφ{ = k)):) is =/ ( α ) (φ ( = fc)) or - 0 depending on the local
part of the polynomial P(φ, dφ).

We write (3.7) in the following compact way:

(3.7):= Σ I{x)(ψ(=kψa)({λ{y\h;N)}h:hiN)

and the ^-functional equations are:

α = l ,2,3. (3.8)
h^k+l

If we try to solve Eq. (3.8) perturbatively fixing as initial data

(' ι(0; N)> ^(0; iV)? ^(0; N)) = V^ ^? V)

(the physical coupling constants) we find, obviously, that λ$;N) is the bare coupling
constant with index α. Moreover (3.7) and (3.8) produce a tree expansion also for
the running coupling constants.
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To go beyond the perturbative approach one looks for a non-perturbative
solution of Eqs. (3.8). This is a complicated task as the right-hand side of (3.8) is
defined through a tree expansion as a formal series which in general will not be
convergent. Nevertheless there are chances that the right-hand side has a rigorous
meaning if we stay in the small field region (see [13]). In this case we can keep the
first few terms of the series and neglect the others provided the physical coupling
constants are chosen enough small. Therefore we look at the solutions of the
β-functional equations, truncated at the second order, in the N-+co limit. In
particular we are interested in the solution λ$ such that:

lim λ\U = 0, (3.9)

which corresponds to a asymptotically free theory. The /^-functional equation at
the second order has the following graphical representation:

A(k+1;N)

1(2) _ ; ( 2 ) _
A(k+1;N) A(k;N)~

A(k+l;N) A(k;N)—

Fig. 5

The rules explained in Sect. 1 must be used to calculate these expressions that
become (changing k into fc — 1)

A(k; N)~A(k-l;N) — aWA(k; N)A(k; N) •>

A(k; N)~A{k-l;N)= ~ CW \A(k; N)) ~

(3.10)

(2) \2
(k N)) •>

with

a(k)=

(3.11)

c(k)= - i-A

2c®-1),

d(k)=- Σ μ2z((δztdZjcifkγ-(dzdZjcifk-ιψ)
i j i

e(k) = 0 because of the in variance properties of the covariances.
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Fig. 6

Observe that, differently from λ\l)N) and λ^)N), the λ$N) r.c.c. are dimensional
quantities. Defining λ^)N):= Y2kλ{^l,Nh where λa is the adimensional constant the
/^-equation becomes:

. v,)2 (3-12)

We neglect the third equation which is associated to the vacuum counterterm and
we study these equations with a(k), b(k\ c(k), d(k) substituted by their fc-»oo limits
we call a, b, c, d. We perform the limit N-*co and finally the limit y-> 1 to transform
the finite difference equations into differential ones. Defining t: = k logy, Eq. (3.10)
becomes:

λ = aλδ,S = bλ2, where λ\l] = λ(t\ λ\S = δ(t); λ=~J=~. (3.13)
at dt

This system is easily solved (see also [14] where similar results have been obtained)
and the solutions in the (λ, δ) plane are hyperbolae.

The horizontal line is a line of fixed points stable when δ < 0 and unstable when
δ>0. The plane is divided in four regions by the separatrices of the equation:

(3.14)δ=±cλ w i t h c= [-)

κaj

In regions II, III, IV the solutions do not fulfill Eq. (3.9) and therefore the theory is
not asymptotically free. Every point that begins in these regions goes to infinity
moving along the hyperboles. Starting in region I, viceversa, the point does not go
to infinity but to a stable fixed point (0, δ :§ 0). It is easy to see that in region I
(λ(t), δ(ή) tends to a fixed point with exponential rate (in t) if we start inside the
region while if the initial point is on a separatrix it tends to the origin as 1/ί.

Although one would be tempted to conclude that the theory is asymptotically
free at α2 = 8π this is not correct for the following reason: the value of α in the
interaction part f d2x: cosαφ^: can be modified by a simple redefinition of the field

A

φ. Therefore a2 = 8π implies also that the wave function renormalization constants
is fixed to 1.

If the theory is defined through the running coupling constants we would like
therefore, on the finite scale fc, we decide to choose as the physical one, the effective
potential which has a local part J d2x:cosocφx: and not a local part

This is possible if and only if the running coupling constant λ$: = <5(£0) can be
chosen equal zero. This means we need to solve Eqs. (3.13) choosing as initial
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conditions a point (λ, 0). This is certainly possible but the solution does not satisfy
the condition lim λ$ = 0, that is the point (λ, 0) goes to infinity (see Fig. 5) and not

fc->oo

to a stable fixed point. This can be rephrased by saying that the theory is not
asymptotically free at α2 = 8π.

The asymptotic free region I of Fig. 5 has to be interpreted in the following way:
Let us choose a fixed value δ0 < 0 and assume we start from the point (λ9 δ0). Then if
\λ\ < c~1 \δo\ the theory described is asymptotically free and corresponds to a value
α2 = 8π(l +1<50|)~ *. This suggests an approach different from that developed in (2)
to study constructively the theory for α2 < 8π and moreover tells us which is the
maximum value of λ for which this is possible.

Appendix

In this appendix we explain, through an example, the content of Theorem 2 and of
the lemmas we need to prove it. We consider the contribution I(θ0) of the trees of
the following kind with σι+σ2 = 0 and σ3 + σ 4 = 0:

Fig. 7

J d2

Xld
2x2d

2x3d
2x4e*2c^r V 2 # - 2 - i y 2 Q ! χ Γ "(e 2 ^ _ 1)

x :

This is just the term in the expansion (2.32) associated with the tree θθ9 where

is written as in Eq. (2.36) with so = 2 and

Wm(θι,q1;x1,x2;σ;P,a) = (τ

(2.a)

Ww(θ2,q2;x3,xA;σ;0>,g)=[^^

To arrive at the same expression as in the first term of the right-hand side of
Eq. (2.32), one has to compute explicitly the factor

(3 a)
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To do that one has to use first Lemma 1 and then Lemma 2. Using Lemma 1 we get,
defining

^h)
Ψx ΨxΛ •— Δ

xf
h) - φxf >): = SΔφ\fh\

! ^

•:CΔφ\ψ-\:δl

•:CΔφ<g*-\:δl

:CAφ[hl::CAφf4+ ~ (dφP(x3-x4)
2:

\Qψχ \X1 ~X2)

+ :SΔφ[<

2

h)-dφ^h)(xι-x2)::dφph)(x3-x4):

x < [ : S J φf2 ::SΔ φf4 - δφP(x3 - x4):]

+ : SΔ ψ^ - dφ^ h\x3 - x4):: dφ? h\x, - x2):

< ^ : : SΔ φ\h)

2 - MΛ )(*i - ^2) Q

(5.a)

What is left now is an easy application of Lemma 2; we give the result only for a
couple of factors. We define C:= {ΔφW^Δφ^}, then:

:C(Δφ[ψ + Δφψ4»):

(6.a)

= X- sinh yy C : C ( z l φ ^ - Δ φ ψ 4

k ) ) : -

:(CΔ φ[ψ -\)(CΔ φzψ -1):,

+ a2C:{CΔφψ2

k) -\){CΔψψ4

k) -\):

+ :(SΔφ[ψ-dφψk\x1 -x2)){SΔψψ4

k)-dφψk\x3-x4)):. (7.a)

Finally on each of these terms the R operation has to be applied following the
previous rules.
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