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Abstract. We give a general method for proving uniqueness and global Markov
property for Euclidean quantum fields. The method is based on uniform
continuity of local specifications (proved by using potential theoretical tools)
and exploitation of a suitable FKG-order structure. We apply this method to
give a proof of uniqueness and global Markov property for the Gibbs states and
to study extremality of Gibbs states also in the case of non-uniqueness. In
particular we prove extremality for φ\ (also in the case of non-uniqueness), and
global Markov property for weak coupling φ\ (which solves a long-standing
problem). Uniqueness and extremality holds also at any point of differen-
tiability of the pressure with respect to the external magnetic field.

1. Introduction

Among stochastic processes indexed by time t those with the Markov property, and
in particular diffusion processes, play a fundamental role, see e. g. [DeMe, RogWi].
The search for a suitable extension of the Markov property and of Markov
stochastic (diffusion) processes to the case where the one-dimensional time index set
is replaced by a multidimensional indexing set has been of constant interest to
probabilists. One direction in which such extensions has been looked for starts with
work in 1945 by P. Levy, and has been investigating fields with continuous
realizations like homogeneous extensions of Brownian motion (Brownian sheet,
Yeh-Wiener process), fields with independent increments, multiindices martingales,
see e.g., for recent work and references [Rol-3, NuZ, Ru].

For application in physics, in particular quantum field theory, random fields
which are homogeneous (stationary) with respect to symmetries of the indexing set
(typically lRd with symmetry group the euclidean group) are particularly important.
It turns out that to combine Markov property and homogeneity requirements
generalized random fields (i.e. random fields with realizations which are generalized
functions), rather than ordinary random fields, have to be considered, cf. [Mo,
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Nel2,4, Wo], (in which Gaussian Markov generalized fields are discussed). The
usefulness of a Markov property for generalized random fields was briefly pointed
out by K. Symanzik, but it was after fundamental work by Nelson [Nel 1-4] that the
importance of Markov fields in the context of (constructive) quantum field theory
became clear. In particular it was pointed out that essentially the Markov property
together with homogeneity properties (Euclidean invariance) permit to construct
relativistic fields from Euclidean fields. Guerra [Gu] gave the first striking
convincing applications of such ideas to control the infinite volume limit of the
pressure in P(φ)2 models. Since then the basic work by Guerra, Rosen, Simon and
others use the Markov property of free fields and interacting fields with a space time
cut-off, see e.g. [Sim] and references therein.

Whereas the Markov property of free quantum fields was well understood and
studied (see e.g. [Nel2-4, AHK2-4] and, especially for connections with potential
theory and Brownian motion, [Dy, Rόl, 2, Kol]) as well as the one for space-time
cut-off quantum fields [Nel 1-4], the Markov property for the non-Gaussian
generalized random fields of Euclidean quantum field theory in the infinite volume
limit remained unproven for many years until it was eventually proven in models
with weak trigonometric interactions (Sine-Gordon model) in [AHK7] and with
general exponential interactions [Giel, Zel]. Yet the case of polynomial inter-
actions (P(<p)2-model) remained open. The fact that the Markov property (in the
global sense, made clear by work of [New 1, AHK6-9,14, Fό 1, Rδ 1,2] or at least
with respect to half spaces) yields the cyclicity of time zero fields (in fact is equivalent
with this) and hence a Schrόdinger representation for quantum fields and a
canonical formalism (in the original sense of [HePa, Ar]), was made clear by the
work [AHK2-5,14,15, AHKR, AK, Her, Kl 1,2]. In particular quantum fields with
the global Markov property turn out to have generators described (at least on a
dense domain) by infinite dimensional Dirichlet forms, and being connected then in
this sense with infinite dimensional diffusion fields, for which there is presently a
well developed mathematical theory, see [AHK2-5,14,15, Kul, AR1,2] and
references therein.

Despite the importance of these connections the difficulty of proving the
Markov property made it necessary to find substitutes of it which, although,
weaker, were sufficient to permit a passage from homogeneous (Euclidean)
quantum fields to relativistic quantum fields. Such a substitute was found by
Osterwalder and Schrader [OsSchl,2], see also [Gl], and further discussed e.g. in
[Heg, Kll,2, Chal, Ac, Ok, Kul], also in its relations with the Markov property.

The Osterwalder-Schrader property (also called T-property or reflection
positivity property) have been verified in all constructed models. However, as
mentioned, the Markov property is much stronger and it alone fully justifies e. g. the
canonical Schrόdinger representation. For this reason the problem of proving it
remained a very important problem of quantum field theory and the theory of
random fields. One of the purposes of the present paper is precisely to provide the
first proof of the Markov property for the φ|-model. By this we have also that the φ\
models satisifies Nelson's axioms for quantum fields [Nel-4, Sim]. Let us now
discuss other topics of concern in our paper.

Whereas the global Markov property discussed above is difficult to prove, the
local Markov property holds for all constructed fields and in fact it is at the basis of
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the construction of Gibbs states starting from quantum fields given first in a
bounded region of space-time. This construction is a "multi-time" analogue of the
Kolmogorov's construction of Markov processes from Markov kernels, the basic
analogue of Markov (transition) kernels being the local specifications studied e. g. in
[Dol, LaRu], (which handle in particular the case of statistical mechanics). See
also, for a more general setting and the abstract study of the related Martin-Dynkin
boundary [Fό2, Pr]. Gibbs states have been discussed in quantum field theory in
[GRS1,2, DoMi, FrSi, AHK5,7], see also [Sim, GUa] and references therein. Far
reaching connections of the concept of specifications and Gibbs states with
potential theory have been studied in [AHK3, Rό2,3, Ze2], The construction of
particular Gibbs states has been achieved in polynomial interactions, see [GUa] and
references therein, trigonometric [FrSe] and exponential interactions [AHK1,
FrPa], see also [AHK15] and references therein. The question of the structure of the
space of Gibbs states to a given interaction (specification), an extension of the one
dimensional problem of constructing Martin-Dynkin-boundaries (cf. [Fό2, B1P,
NgZ]) is of great interest.

Uniqueness results have been given in statistical mechanics [Do, Fόl , AHKO,
Pr, Gco] (and references therein) and quantum field theory, for weak coupling
trigonometric interactions [AHK7] and general exponential interactions [Zel], see
also [Gie 1 ]. In the present paper we present a general condition for uniqueness for
P(φ)2 models and as an example we apply it to the φA interaction. A related result is
also discussed in [Gie 3]. The case of weak P(φ)2 models is solved in another paper
of ours [AHKZ].

Weaker uniqueness results in sense of independence of classical boundary
conditions for thermodynamic functions or Gibbs states are contained in [GRS 1,2,
GUa, FrSi]. Structural results for the space of Gibbs states in the case of non-
uniqueness have been obtained in classical statistical mechanics of lattice systems
(following ideas by Dobrushin, Minlos-Sinai, Gercik) by Pirogov-Sinai [Sin] (and
references therein). In specific models of classical lattice statistical mechanics,
complete structural results are known, [Aiz, Hig], see also [Me]. The extension of
Pirogov-Sinai results to the study of phase transitions in quantum field theory have
been given in [Im2] (see also [GUa, FrSi] and references therein). Structural results
on the complete space of Gibbs states have been given in the case of free fields in
[HoSt] (see also [Ro3]) and in the case of trigonometric and exponential
interactions in [Ze4].

In the present paper we introduce an FKG-order in the set of Gibbs states
for quantum fields, analogous to the well known FKG-order for lattice systems
(cf. [Pr, BeHK, Sim]). In particular we consider FKG-maximal states and prove
their extremality for some P(φ)2 models.

As to the (global) Markov property the first proofs in classical statistical
mechanics of lattice systems were obtained in the case where one has uniqueness of
Gibbs states [AHK6,7, AHKO, Fol , BePi, Go], extensions to the case of non-
uniqueness for FKG-maximal states were given in [Fol, Go, Ze5]. For other
models of statistical mechanics see [Wi]. For a proof that all Pirogov-Sinai states in
classical lattice statistical mechanics have the global Markov property see [Ze3].
For counterexamples to the conjecture that all extremal states have the global
Markov property see [Kel, Isr] (see also [Ke2, AFHKL] for further discussions of
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equivalence conditions of the global Markov property and criteria for it, also in
relation to extremal Gibbs states).

We already mentioned above results on the Markov property of Gibbs states in
quantum field theory (free fields, fields in a finite space-time volume with general
interaction, fields over IR2 for trigonometric and exponential interactions). In the
present paper we give the first proof that also the weak coupling φ\ interaction has
the global Markov property. Our method is based on a combination of methods to
establish uniform continuity of local specifications and the exploitation of the
FKG-order we introduced. It should have applications also to other models. In a
companion paper we prove the uniqueness of Gibbs measures for weak coupling
P(φ)2 models using cluster expansion [AHKZ].

The structure of the paper is as follows:
In Sect. 2 we introduce the basic space of regular probability measures, in which
later on we will introduce our Gibbs structure. We also recall basic results on the
Dirichlet boundary value problem with distributional data which will be used to
represent the conditional expectations needed for discussing local specifications and
the Markov property. A basic estimate on the solution of the above Dirichlet
problem (of the "large deviation type") is given in Lemma 2.1.

In Sect. 3 we introduce the concept of local specifications and a concept of uniform
continuity for them. Roughly speaking this expresses a weak dependence of the
conditional expectations, associated with complements of bounded open sets, on
boundary conditions near their boundary μ-a.s. with respect to a given regular
probability measure, as well as a continuity property of sample paths of the field. In
Theorem 3.1 we show that every local specification associated with quantum fields
in two space-time dimensions is uniformly continuous a.s. with respect to Gibbs
states of the specification.

In Sect. 4 we introduce an FKG-order for quantum fields on the lattice and in the
continuum. For this we use the representation of specifications given by solutions of
the Dirichlet problem for distributions mentioned above.

In Sect. 5 we discuss extremality in the set of Gibbs states. In particular we prove
(Proposition 5.1) that uniform continuity of local specifications together with the
convergence of the specification with boundary conditions "dominating at infinity"
towards μ yields extremality of μ. This criterion is then applied to the φ^-moάd to
prove extremality of its Gibbs states, in particular the FKG-maximal Gibbs states
are extremal (Propositions 5.3, 5.4). Extremality of Gibbs states for models with
exponential respectively trigonometric interaction is also proven and uniqueness
results are given (Theorem 5.6).

In Sect. 6 we give a general method for studying the global Markov property for
quantum fields. This method is based on uniform continuity of local specifications
for conditional Gibbs measures, together with control on the solutions of the
Dirichlet boundary problem for distributions and the FKG-order for continuous
fields which we introduced. We apply the method to prove the global Markov
property for weak coupling symmetric φ\ fields.
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In Sect. 7 we give some remarks on the structure of the set of Gibbs measures. In
Proposition 7.1 we show that certain Gibbs states μ± are FKG-maximal and so
extremal. In Proposition 7.2 we prove that at the points of differentiability of the
pressure in P(φ)2-models with respect to an extremal magnetic field there is a unique
extremal Gibbs measure. We conclude the paper by formulating some expectations
concerning the structure of Gibbs states for general P(φ)2 models.

The main results of this paper have been announced at the Symposium of the
Bernouilli Society in Rome (June 1988) and at the International IAMP Conference,
Swansea (August 1988) (to appear in the Proceedings, eds. I. Davies, A. Truman,
1989).

2. Regular Probability Measures on ^'(IR 2 )

Let !F be a family of bounded open subsets A of IR2 with piecewise ^-boundary
dΛ. Let #o = {Λne2F, n eN} be a countable base of J^, i.e. an increasing and
absorbing (i. e. An c An +1 and for all A e #" there exists w e N s . t . i c An) sequence of
elements from #~. We shall always assume that #"0 is a Fisher sequence in the sense of
e.g. [Isr] i.e., as/ί->oo, cld(0, δAn)

bS\5An\^c2d(0,dAn)
b for some constants q , c2,

b = d—\, where \dA\ means the length of dΛ.
Let us introduce the Sobolev norm || || _ 1 on the space of tempered distributions

fe ff '(IR2) with Fourier transforms which are functions / s.t. j -^ j ^ < °°'
by setting iR2 q + m °by setting

with m0 > 0 constant.
We call H. 1 (lRd) the Sobolev space with this norm. Let G = ( - A + ml)"ι, with

A the Laplacian on IR2. Then

l|/Γ-i= ί \ Kx)G(x-y)f{y)dxdy .
IR2 IR2

Let Σ denote the Borel σ-algebra in ^ ^ ^ ' ( I R 2 , IR). Let φ(f), ϊe9 be the free
Nelson Markov field, i.e. φ(f) is the generalized Gaussian random field with mean
zero and covariance

with (f,g}_1= j j f(x)G(x—y)g(y)dxdy. φ(f) is thus the coordinate map at /
R 2 IR2

on <3)'. We can look upon φ, cf. [AHK7], as a random field indexed by measures

ρ of finite energy i.e. such that φ(ρ) has mean zero and covariance

( ρ , ρ ' ) _ i Ξ ί ί dρ(x)dρ'(y)G(x— y) < GO. Let ΓC4) be the σ-algebra generated by
IR2 IR2

φ(ρ) with suppρczyl. Any function F on (β\Σ) which is £ (/Immeasurable for
some ΛeϊF is called a local function.
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Definition 1. A probability measure μon(<3',Σ) is called regular if for some/? 2:2,
any Λne3F there exists a constant cn>0 s.t.

for any feH_1 with supp fc:Λn, and such that J(supp /, dΛn) ^ 1, where
d(A,B) = inΐ{\x—y\,xeA,yGB} is the distance of two sets A,B.

We call Jίγ the set of all regular probability measures. For any Z-measurable
function Fand any probability measure μon{β\Σ) we use the notation μFϊor the
expectation E(F) of F with respect to μ. We call/?, cn the parameters of regularity
of μ.

Remark. The above definition of regularity is in fact independent of the chosen
parameter ml (cf. [AHK7]).

Remark. By the construction of 2-dimensional scalar quantum fields with
exponential, trigonometric and polynomial interactions one obtains measures μ
which are regular in the above sense. In fact all measures associated with such
models satisfy the bound

^^^expCfliiG^ii^+ftii/iiii+ciiG*/!!^), (2.2)

for some constants b>0, a, c ̂  0/? ^ 4 (where || | |L denotes the L^-norm) (cf. [GlJa,
A H K 1 J , FrSi]).

It is shown in [AHKZ] that (2.2) implies the regularity bound (2.1) with cn s.t.
cn = C\Λn\

112 fo r some C > 0 (where \An\ denotes the volume of An).
Let ΛeέF and consider the harmonic measure (Poisson kernel) ψdz(x), for

zed A, xeA, i.e. the solution of ( — A + ml)ψ^(x) = 0 for xeA and ψd?(x)->δz(xr)
for x->xf, x' edA.

It is possible to define φ^Λ (x) for any η e 3 \ x e A in such a way that x-> φ^Λ (x)

is — zj-\-m\-harmonic in A. Moreover there exists a μ-measure 1 subset Ω(A) of

3)' s.t. Ω(A)eΣ(dA) and for ηeΩ(A), φηΛ(x) is the locally uniform limit in xeA

of ^ ( x ) = J ΨdΛx)<η,hκ( -zϊ> for hκe^0°°(^2), hκ(x)-+δ(x), K ^ ^ ,
dΛ

ηκ = η*hκ.We set ^ ( x ) = 0 for ηe@f-Ω(A). We call ^ W t n e solution of the
Dίrichlet boundary value problem in A with boundary condition η (ref. [AHKZ,
Rol,2]).

It is useful to remark that ψd

η

Λ( ) is also the Lp(μ ®dx, 3>r x A), 1 Sp < °o limit
ofψ^( ) as κ:->oo. Define for Λe&, \Λ\>1, 0<ε<\ :

For any ωEC°°(IR2), ω^O we shall set ωdΛ = infxedΛω(x).
We then have the basic estimate

Lemma 2.1. Lei ωeC°°(IR2). Then for any regular measure μ on (&)\Σ) and any

0 we have

μ<ηeί
xedΛ
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for some constants a,b>0 (independent of A, ε) andc(Λ) with c(Λ) = cn,cn andp ^ 2
being as in the Definition 1 of regularity.

Proof. Let χeC0«(IR), \ 7>χ*0, /(*) =

Define

( ^ \ (2.3)

Then we have [using Sobolev inequalities and the fact that χε,Λ(x) = 0 for

s u p | ι A ^ ε ( x ) | ^ \ ( ) Ψ Ϊ Λ ( ) \
xeΊR2

with a numerical constant a > 0. Hence

xeδΛ

So using Tchebyshev's inequality we get

ω,

(2.5)

^ | | M ^ | | + 2 ) . (2.6)

Let us introduce the notation:

H^3J^Λ(x) = (-Δ+ml)UΛ(x)φdHx)

= (-Δχt,Λ(x))φ?Λ'{x)-2VχtιΛ(x)-rψ?Λ'(.x) (2.7)

(for all xeIR2, where we used harmonicity of ψ?Λε) and denote by J*'Λ(x) the
corresponding random variable.

Then we have by Holder inequality

= j Π d2xiμ((π Jε

η

 Λ(xι)
(supper ••=! W' =i

χ . J " - 1 j d2xμ((Γn'
Λ(x))2n). (2.8)

supp/ε>/1
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From this using regularity of μ we obtain

1 J 4

(x)]|^_1]). (2.9)

From this we get, estimating the volume of supp χε Λ :

s u p [E112]^"1^-,
d(x,dΛ)<l;

+ εp/2\\J*>Λ(x)\\ILί]) (2.10)

if |3/1|^1 (since we replaced \dΛ\ by \dΛ\p/2. Now we have

iμf ^C^.i^Mx^^Cx)! | |^-M β(^)||-1H-4|FΛz t^(Λ:)|| | |F J c^?^(Λ:)||_1 | .

(2.11)
By definition of χε Λ in (2.3) we have

(2.12a)

(2.12b)

( d \
with some constant c > 0 (independent of AeέF0 and ε > 0 I with Vi = ̂ — = 3f J.
We have also, using the fact that the singularity of KdΛε(x, x) is logarithmic:

sup | | ι / ^ ( χ ) | | _ i = s u p (Λ:^(Λ:,Λ:))1/2^c|ln + ε|1/2 (2.13a)
d(x,dA)<f d(x,dΛ)<j;

(where KdΛe = G-GδΛε and G ^ ^ ί - z l ^ + wg)"1, ΔdΛε being the Laplacian with
Dirichlet boundary conditions on dΛE, ln + e^max(|lne|, 1)), again with some c>0
(independent of ΛG^0) and 0 < ε < l . Moreover

sup llF^^Wll-^ sup UmlV^V^K^'fryW2

d(x,dΛ)<j- d(x,dΛ)<f y^x

^cε'1 (2.13b)

with some c>0 (independent of Ae#o) a n <^ 0 < c < 1.
Combining (2.10) with the bounds (2.11)—(2.13) and using (2.6) we get the

inequality in the lemma with some constants α,b>0 (independent of A e#"0) and
D

For an increasing function ωeC00(IR2), ω^O and a decreasing function
ε:#o->(0,1) we define, with Aε = At{Λ) for y le#o, the following subset of <&' \

ncΛ, sup

= U Ω£,ω,n • (2 1 4 )

Such a function ωdΛ will be said to be dominating at infinity if the conclusion of the
following lemma holds:
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Lemma 2. Let μbea regular measure and(c(Λ),p) be its corresponding parameters of
regularity. Assume c(Λ)^\Λ\N° for some 7V O GN. Let

ω(jt)ΞΞeβlWl, α > 0 (2.15)

e(Λ) = e-£dΦ-°Λ). (2.16)

Let the Fisher sequence An be s.t.

^ ) ( 2 1 7 )

for any given δ > 0 and some positive constant B(GC). Then

μ(ΩEfω) = l . (2.18)

Proof. For any AneF0 we have by definition (2.14)

μ(@'\Ωεω)^μ(@'\Ωε^n) (2.19)

and

0 , Λn^Λ, sup \ψ™e(x)\>ωdΛ
xedΛ

ne2': sup | ^ (x)| >ωdΛ\ (2.20)

Now using Lemma 2.1 with ω, ε given by (2.15) and (2.16) and using the assumption
on Λn respectively we get the bound

α

Beτdi0'δΛrn) (2.21)

with some B>0 independent of Am (and α, if we take n sufficiently large).
The right-hand side of (2.21) can be made arbitrarily small if we use the

assumption (2.17). This ends the proof. •

Remark. With the choice (2.17) we have

Ί Γ l n n ) 4 . ^

3. The Uniform Continuity of Local Specifications

Let μ be a regular probability measure on (β\ Σ) (in the sense of Sect. 2).
We shall consider local specifications δ in the sense of [F52, Pr], defined for

P{φ)2 models in [Rό3] (and references therein), δ is by definition a family Eη

Λc,ηeΩ
with Ω a μ-measure 1 Borel subset of @)', Λe^ and E\c is given by
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with the interaction UΛ given by

UΛ(φ) = i d2x:v(φ):0(x) ,
A

with v of polynomial, exponential or trigonometric type and : : indicating normal
ordering with respect to the Nelson's free field measure μ0 [the Gaussian measure
with mean zero and covariance ( — A+mly1].

μd

0

Λ is correspondingly the Gaussian measure with mean zero and covariance
( — AdΛ-\-ml)~1, with, as before, AδΛ the Laplacian with Dirichlet boundary
conditions on dΛ.

For any local specification δ as above we define as Gibbs measure μ for δ any
probability measure on (Ω,ΣnΩ) such that for any

for all bounded measurable F.
The set of all Gibbs measures for δ will be denoted by <g(δ). By d&(δ) we shall

denote the subset oΐ&(δ) consisting of Gibbs measures which have no nontrivial
convex linear representations in terms of other elements from <g(δ).

Remark. Gibbs measures and local specifications have been constructed for
Euclidean fields with exponential, polynomial and trigonometric interaction in two
dimensions see e.g. [GUa, Sim, GRS1,2, FrSi, AHK1,15, Zel] and references
therein, see also [Rό2].

Definition 1. A local specification δ = {E\c}Λe& on (β\Σ~) is called uniformly
continuous μ-a.e. iff there is a function ε: .#Q->(0, 1) such that for any bounded
measurable local function F (in the sense of Sect. 2)

lim \EpΛ\F)-EUF)\ = 0 , μ-a.e. (3.1)

Theorem 3.1. Let $ be a local specification for any interaction UΛ of the polynomial,
trigonometric or exponential type and let μbea regular Gibbs measure for δ. Then $ is
uniformly continuous μ-a.e.

Proof. We prove first Lemma 3.2 for all interactions. The case of polynomial
interactions is then handled by Lemma 3.3, the ones of trigonometric respectively
exponential interactions by Lemma 3.4 respectively 3.5.

Let us denote for Ae^0, with ε = ε(Λ)

, φ

d

φ

Λ)-UΛ(φ) (3-2)

We have then

Lemma 3.2. Let μe@(δ) be a regular measure. Suppose that

\imμ\δUΛε\ = Q (3.3)

and with some constant 0< C< oo independent of ΛeϊF0

(3.4)
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Then $ is uniformly continuous μ-a.e. (if necessary by replacing ϊFQ in Definition 1 by
a subsequence IFQ).

Proof. For any cylinder function F(φ) = F(φ(/i) , . . . , φ (/„)), Fe^^W), ^ 0 ,
fi E @, i = 1,...,«), we have, using the definition of the conditional expectation and
calling φ the integration variable with respect to μd

0

A,

with

Dividing numerator and denominator by the factor μd

0

Λ (e~
UΛ<<φ+Φη }) and using the

properties of conditional expectation we get that the above is equal to

Using this we get the equality which is the starting point of the following:

μ\EfεF{φ)-E\cF{φ)\

(3.5)

?-δUΛ;ε

+ 3

where we used for the inequality simple properties of conditional expectations,
measurability properties of the functions involved, a meanvalue theorem and the
majorization

(3.6)

The second sum from the right-hand side of (3.5) converges to zero as /ljIR2

through #o (because of regularity, see [AHK7]).
Our assumption (3.3) implies that δUΛε converges by subsequences to 0, hence

μ-a.e. (3.7a)

for some #Q' C #" O .

We shall now use that the assumption (3.4) together with the property of
conditional expectation implies
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Consider, for any bounded measurable function F:

By martingale convergence theorem E\CF converges in L1 as /If R 2, hence by
subsequences a.e. On the other hand exp( — δUΛε) converges to 1 by (3.7a) along
#Ό'. By Fatou's lemma then for y l e # 0 " < = # 0 ,

limsup μ((Eη

ΛcF)e-δUΛ'ήSμF . (3.7b)

On the other hand by conditional Jensen's inequality

By (3.3) the right-hand side goes to one a.s. as A]IR2 along J^'. Hence for F^
bounded measurable, using again the properties of conditional expectation,

liminΐ μ(FEη

Λce-δUΛ>ή^t

From (3.7b), (3.7c) we get

lim Eη

Λce~δυΛ>E=\ μ-a.e.

for some J^'cz J ^ .
Let us now consider

μ(F(φ)
e-δUΛ,ε(φ)

-δUΛ
- 1

By (3.7a) and (3.7d) the integrand goes pointwise, as ylflR2 in
other hand F being bounded we can bound the integral as

(3.7c)

(3.7d)

(3.8)

to zero. On the

< F
e~δUΛ,ε(φ)

?-δUΛtl

Using that μ is a Gibbs measure together with the bound (3.6) the right-hand side
is bounded by 2 \\F | ̂ . Hence by weak compactness we can choose a subsequence
#o" s.t.

i F(φ)
ε)

- 1 >0

as A]IR2 in

Let now

This gives the stated uniform continuity of S. D

(3.8)

(3.9)

be the function describing a P(φ)2 interaction in the region Λ, with P a semibounded
polynomial. The Wick ordering is, as before, with respect to the free field measure.
Let μ be a Gibbs state for the local specification given by the above interaction.

We have the following

Lemma 3.3. Let
(3.10)
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Then, with όUΛ,ε given by (3.2), (3.9):

| = 0 , (3.11)

and there is a constant 0 < c < oo independent of Λe^0 such that

Proof To get (3.11) it is sufficient to show, by the definition (3.2), (3.9) oίδUΛε, that
with

FΛtE = ϊ d2x:φk:o(x)(ψ6

φ

Λ>(x)-φd

φ

Λ(x)) (3.13)

we have lim μF% ε = 0, for any O ^ & ^ d e g P - l and 1 ^ / ^ d e g P , « + Λ: g deg P,

where deg P is the degree of P.
Let us set

(3.14)

We can perform the integration by parts in the expectation μF^ε to eliminate
δφ£'ε(x), using the local equivalence of μ with the free measure μ0, and we get:

μ[(iμ2zdixδεφ
d

z

Λ(x)G(z-x)k:φk~1:o(x)(δeφ
e

φ

Λ(x))(n-l)χΛ(x))FΛJ

μ[\d2x: φ* :0(x)(δεψ*Λ(x))"" 'χΛ(x) {ίίd2zd2yδtψ
s

z

Λ(x)G(z-y)]

k:φk-1:o(y)(δεψ
d

φ

Λ(y))χΛ(y)

-μ[F\d2xχΛ(x): ψk : 0(x)(δ εφ
e

φ

ι(x))"" J ^

G(z-y):P'(φ):0(y)] (3.15)

(for such computations see the "integration by parts formula" in [GUa], following
[DiGl]). We note that by definition of δεψ

M we have '

(3-16)

= {KdΛ'{x,y)-Ke\x,y))χΛ{x)χΛ(y) (3.17)

+(KeΛ°(x,y)-G(x,y))χΛ(x)χΛΛΛ(y) ,
where

KdΛ(x,y) = G(x,y)-GdΛ(x,y) , (3.18a)

KaΛ (x, x) Ξ lim KδΛ (x, y) (3.18b)

and analogously for 3/lε.
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By successive integration by parts analogous to (3.15) we get the expectation of a
sum of (at most 52n) monomials of the form

e
\ Π :φk :0(xi)w(x1,...,x()dx1...dxί (3.19)

ί = l

(kt<degP — 1, /rg2/? + 2) with the kernels w(x1,... ,xt) defined as the products of
the kernels of type (3.16) and (3.17).

The expectation of (3.19) can be estimated by Ls(dxί...dxι)-norm of
w(x 1 ?..., Λ;Z) for some s e N , see e.g. [GUa]. From the definition of these kernels this
norm can be estimated by a finite product of Lr norms (for some r e N ) of the kernels
v1( ) and v2(', •)• Since as is shown in Appendix 3.A, for any r e N :

, (3.20a)

* , (3.20b)

with some a,b>0 and a constant c>0 independent of Λ, ε, so by our assumption
about ε(Λ) we get (3.13). This finishes the proof of (3.11).

Let us assume from now on, for simplicity of notation, that μ is of the following
form:

μ(.) = Hm μχ(.) ,

with

(The general case can be handled similarly.)
We have then, using the local Markov property of μχ:

= μo[e-u^φ\EξΛ'e-u^)f4)

Λ(e-ϋ-(-φ'+^λ'y)] , (3.21)

withEQΛε the free conditional expectation, i.e. the conditional expectation with
respect to μ0, given the σ-algebra Σ(dΛε) [we used here again the local Markov
property, and the Γ(d/tε)-measurability of ψφΛε(x)].

By conditioning inequality [GRS1, Sim] we have:

(3.22)

(where we used the definition of \\ιd

φ

Λc and conditional expectation). From (3.21),
(3.22) we get then

ZΛ~μχe-δu^μ0 [e ~ u

e"υ^Λφ+ΦίΛ'))Z(AΛ)luΛ , (3.23)

(with φ,φ' integration variables).
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Using (3.23) and Jensen inequality to estimate Z^\AE)KJA\^A w e g e t

(3.24)

By standard arguments [GUa] we get the bound uniform in the volume A

Λ\ (3-25)

with some c>0 independent of Λ, A and ε.
Using the Duhamel expansion (cf. [GIDi, GRS2]) we get also

(3.26)

with c >0 independent of A, A and ε (see Appendix 3.2).
This together with the definition of μ and our assumption about ε (A) finishes the

proof of (3.12), since |ylε\yί| can then be bounded by a constant. •

By combining Lemmas 3.2 and 3.3 we get the proof of the theorem in the case of
polynomial interactions.

We shall now complete the proof for the case of trigonometric interactions. For
this we use the following

Lemma 3.4. Let UΛ(φ) = ^d2x\dv((x):cos(xφ:0(x) with supp v c ( - 2 | / π , 2 | /π) ,

§dv<cc. Λ

Let μbe a Gίbbs state for the local specification corresponding to the interaction
UΛ. Let ε(A) be as in Lemma 3.3, then the same conclusions as in Lemma 3.3 hold.

Proof. Similarly as in the case of polynomial interaction we only treat explicitly the
case of Gibbs measures constructed with free boundary conditions, the other cases
can be handled analogously. To show (3.11) in the present case it is convenient to
prove that

f = 0 . (3.27)

We find an estimation as A]ΊR2 on μ(όlfΛ ε)
2, namely that it goes to zero, using the

trigonometric identities, integration by parts formula (to remove δεψ^Λ) and
standard bounds for the measure μ [FrSe, FrPa].

To show (3.12) we use Jensen inequality and analogous arguments as in the
polynomial case to get the bounds

(3.28)

with

and φ respectively φ' is the integration variable of μΛε respectively μd

0

Λε. The left-
hand side of (3.28) converges to one [from (3.27)] and by analogous arguments we
have also

Mm μΛ,EUΛΛΛ(φ) = 0 • (3.29)
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For estimation of the first factor from right-hand side of (3.28) we make the

expansion of the exponential into power series and then estimate each term

separately, using the bounds for expectations with respect to μΛε and μd

0

Λε (if

suppί/v(α)c:( — 2 j / π , 2 j/π) then the gaussian integrations with μ6

Q

Λε are sufficient

to get the estimation yielding convergence to one). •

Lemma 3.4 together with Lemma 3.2 yields the proof of Theorem 3.2 for
trigonometric interactions. Similarly we get the proof of the theorem for
exponential interactions using the following:

Lemma 3.5. Let UΛ = λ\ d2x$dv(oc): eaφ :0 (x) with λ>0 and v a probability measure

on ( — 2 j / π , 2 |/π), : :0 being normal ordering with respect to free field measure μ0.
Let μbe a Gibbs state for the local specification corresponding to the interaction

UΛ. Let ε(Λ) be as in Lemma 3.3, then the same conclusions as in Lemma 3.3 hold.

Proof. As before we consider explicitly only the case where μ corresponds to half-
Dirichlet boundary conditions [AHK 7, Sim], the other cases being similar. Then we
have μ = lim μχ, with

Moreover for Λ e ̂ Q, ΛεaΛ (as in Lemma 3.3), we have (using the definition of
μχ and conditional expectation)

= μd

o

λe ~ uhΛ(ψ)μdΛ e - uΛ(φ+φd

φ

Λ>)

^μfe-u^μ6

o

Λ°e-u^+^ , (3.30)

where we used the conditioning inequalities (proven similarly as for the polynomial
interactions, by expansion of the interaction term in a power series).

Using the definition of conditional expectation value we rewrite the right-hand
side of (3.30) in the form

dλe - Uχχ

^μδ

0

Λ(e-
u^Λ^Aφ)) , (3.31)

where in the first equality we used the properties of conditional expectation and in
the last inequality we used the positivity of the considered interaction. Now using
the Jensen inequality we get

(3-32)
with

(3.33)
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On the other hand, again from the Jensen inequality, we get

exp(-μχδUΛJZμΛe-ΛU*" . (3.34)

From (3.32) and (3.34) using the exponential bound for the measures with
exponential interactions we get as in [Zel] (Lemma 1.4.2) that

Inn μΛίεUΛΛΛ(ψ) = 0 (3.35)

and (using also Lemma 1.5.1 of [Zel])

Urn μΛ\δUΛJφ)\=0 . (3.36)

This ends the proof of Lemma 3.5 and Theorem 3.1. D

4. The FKG-Structure on a Lattice and in the Continuum

Let ^ be as in Sect. 2. For As3F and ωe^(IR2) let \jj6

ω

Λ be the solution of the
following free Dirichlet problem

(-A+m2)φd

ω

Λ(x) = 0 in A

ψd

ω

Λ(x) = ω(x) in Ac

(this correspondends to the quantity \j/^Λε introduced in Sect. 2, in the case where
η = ω). Let μ0 respectively μd

Q

Λ be the Gaussian measure with mean zero and the
covariance G respectively GdΛ (as in Sect. 2). For any polynomial, exponential or
trigonometric v, as in Sect. 2, let

UΛ(φ) = ί :v(φ):0(x)d2x (4.2)
A

with the normal ordering : :0 with respect to μ0.
Let us define correspondingly E% as the local specification to the interaction UΛ,

as in Sect. 2 (with the continuous function ω instead of the distribution η).
Let δ > 0 and let Z2 = {nδ = (nιδ, n2δ\ neZ2}.
Let f p f n ^ . For Aδ e 3Fδ we define the energy functional on (Ωδ = 1RZ*, Σδ)

(Σδ the Borel σ-algebra in IR^):

HAM)A&2 Σ qid-Δt + nftq^ , (4.3)
Z ieΛδ

with Δδ the Laplacian on Έ2

δ (see Appendix A4).
We also define the free lattice measure μOδ by

μo^ΞΞlimμ^ , with

iHM) ( 4 . 4 )

with (50 a point measure concentrated on {^ = 0} and # Q a filter of finite subsets of
7ί2

δ invading all the lattice. (We remark that the above limit is unique in the set of all
probability measures supported on tempered sequences.)



394 S. Albeverio, R. Hoegh-Krohn, and B. Zegarlinski

Define the lattice interaction by

UΛa(q) = δ2 Σ -v^i) o,5 , (4-5)
ΪGΛ0

with normal ordering with respect to μOδ. Then we define the measures E%Cfδ by

5e-11*'to-uΛ<>)-1} , (4.6)

with δω the point measure on Ωδ concentrated on {ω(iδ), ieZd} for a function

Lemma 4.1. For any rectangle A e #", in the sense of weak convergence of measures:

WmE%ciδ = E% . (4.7)

Remark. The lemma can be extended to hold for any sufficiently regular set A e #",
see e.g. [GRS1].

In the following we shall call for simplicity regular sets the sets in #" for which
(4.7) holds.

Proof First we note that changing the integration variables

q^q^ql + ψ^ (4.8)

with φ^δ a solution of Dirichlet problem (4.1) but on the lattice, we get

(4.9)

q+ΦtΛ

δ))

Now it is known [GRS1, Sim] that the measure μ£δ can be represented as the
restriction of μ0 to the σ-algebra generated by {φ(fnδ) :nδeAδ}, for suitable test
functions/^ (defined in Appendix A.4). Using our Lemma A.4.4 together with the
Theorem VIII.5 [Sim] (see also [GRS1]) for polynomial interactions we get (using
also the definition of UΛ)

)) = E%{F) , (4.10)

for any cylinder function F(φ) = F(φ(Jί),...9 φ (/„)), Fe%(W),fe@,
This ends the proof of our lemma, for the case of polynomial interactions. In the
case of trigonometric respectively exponential interactions one proceedes in a
similar way. •

It is known (see [FKG, GRS1, Sim, GUa]...) that on lattice we have an FKG
structure which we formulate as follows:

For any increasing measurable function F, iδ e Έ2

δ:

δ(F) . (4.11)

This is expressed by the writing E% δ S E% δ.
FKG
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We extend the definition of the symbol ^ also to the continuum case, writing
FKG

E% S E% iff ω^ώ , ω,ώe#(IR2) =>E%^E% .
FKG

Our Lemma 4.1 and (4.11) imply immediately:

Proposition 4.2. (FKG-structure in continuum). For any regular set Λe^ and any
ω, ώe^QR2):

ω S ώ^>E% S E% (4.12)
FKG FKG

Remark. FKG-structures have various consequences see e.g. [Pr, Sim, BeHK, Go,
Ze5]. In the next sections we shall exploit the above FKG-structure for the study of
Gibbs measures of Euclidean fields.

In the following the concept of FKG-maximal Gibbs measure will be useful.
We call a Gibbs state μe^(S) FKG-maximal if it is maximal with respect to the

partial order ^ defined in <&(δ) by μ rg μ' iff for any bounded measurable local
FKG FKG

increasing function F we have μF^μ'F.

Remark. In the case of compact specifications (defined in [Pr, BeHK]) the existence
of FKG-maximal Gibbs states have been shown and properties of them have been
studied (see [Pr, BeHK, Ze5, Go, Fδl]).

5. The Extremality

Let μ be a regular Gibbs measure for a local specification δ = {EΛC}Ae& on (β', Σ)
(as in Sect. 2). Let #"0 be a countable increasing absorbing family of open sets as in
Sect. 2. Let &(δ) be the set of Gibbs states for δ and d&(δ) be the set of extremal
points of @(δ). We have the following

Proposition 5.1. Suppose there is ωe^(IR d ) satisfying ω\dΛ = ead(0'dΛ) for some α > 0
and any Ae^0, such that

μ = \imE% . (5.1)

If δ is uniformly continuous μ-a.e. {in the sense of Sect. 3) then

Proof. Let F be an increasing bounded measurable local cylinder function. Let Λn9

Q, Λn^Λ. Then for ηeΩεωn [where Ωεωn is defined in (2.14)] we have

E% (F) = (E\c (F) - Ef\F)) + EΦ/\F)

f\ {F) (5.2)

[where we used FKG-order (Sect. 4) and the definition (2.14)].
Since δ is uniformly continuous by our assumption and (J Ωε ω n is from

neN

Lemma 2.2 of μ-measure one (if ε, ω are suitably chosen) so the first term from the
right-hand side of (5.2) converges to zero as yijIR2. The second by our assumption
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(5.1) converges to μ(F). Hence we get μ-a.e.

lim E 3 e ( F ) ^ μ ( F ) = lim E%{F) (5.3)

(J^o — ^ o ' t n e 1™^ ^y subsequences exist by martingale convergence theorem). On
the other hand by the definition of Gibbs measure

μX\mE\e(F) = μF .

This then, together with (5.3) implies

μ-a.e. (5.4)

This in turn implies μed%{£) (see e.g. [Fό2, Pr]). D

Remark, a) The proof is similar to the case of lattice fields [Ze5].
b) The same result holds if we replace ω+ =ωby ω~ = —ω.
c) In the set of Gibbs states supported on 5^' this implies μ is FKG maximal, as

shown by using similar methods as in [BeHK, Ze5], as we shall discuss later on.
The above proposition implies also a uniqueness result if we have lim E%ω = μ.

Namely if $ is μ-a.e. uniformly continuous for ω as in Proposition 5.1 for some
other probability measure μ and μ ((J Ωεωn) = 1 we get for μ a.e.

μ = \\mE2cω ύ \\mEn

Ac ^ \\mE+c

ω = μ , (5.5)
&o FKG J^o FKG J^o

so we have
lim EΛ'c = μ, μ a.e. (5.6)

This is the uniqueness result we alluded to.
Now we will verify (5.1) in some particular models of euclidean field theory in

1R2. We will discuss separately the case ofP(φ)2 interactions (starting with the : φ4:2

case), exponential and trigonometric interactions.

The Extremalίty of the : φ4 :2 Model. Let for A e J^,

UΛ(φ) = \ :λφ* + bφ2+hφ:0(x)d2x (5.7)
Λ

sufficiently big (as specified below).
Let $ = {E\c}Λe& be a local specification corresponding to the interaction (5.7)

(cf. Sect. 3).
Let

μ = limE°ΛC . (5.8)

This measure is known to exist (e.g. [Nel3, Sim]).

Lemma 5.2. / / ω e ^ ( R 2 ) , ω ^ O then

E% ^ E% (5.9)
FKG
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and for any fe 2), / ^ 0

-E°Aφ(f), U'(φ)(ψd

ω

ΛχΛ)) , (5.10)

with E(F,G) = E(FG)-E(F)E(G) and φd

ω

Λ(x) the solution of the boundary value
problem ψ^Λ(x) of Sect. 3, as a distribution tested with the test function f

Proof The first statement has been proven in Proposition 4.2. To prove (5.10) we
use the lattice approximation and the GHS inequality (e.g. [Sim]). We have

- μtfδ(e-u* *Meφ*(h& ) , (5.11)
with

KΛδiJδ)= Σ_ ω{jδ) for ίδedAδ , (5.12)

jedΛc

ό

and zero otherwise.
For fe Of, / ^ 0 we have

° ) ds -f E%tδφ(f)
o a s

( 5 1 2 )

where in the inequality we used GHS inequality.
From integration by parts we get

£ / 4 ' 0 θ ))) , (5.14)

where

U'Miδ{ )) = δ2 Σ (4λ:φ3

ό:0(iό)
iδeΛs

+ 2bφδ(iδ) + h)ψ™δ(iδ) , (5.15)

and we used that

Φί1s(iδ)= Σ G(iδ,jδ) Σ Q0"<5) (5.16)
jδe6Λδ j'δedΛc

ό

is the solution of the free Dirichlet problem for ( — Δδ + ml) on the lattice (see
Lemma A4.2).

Now using (5.13) and the fact that from Lemma 4.1 respectively A4.3 E%δ and
ψ^δ converge as δ-+0 we get (5.10). •

From the above lemma we get that if E% has the cluster property uniformly in
the volume (which we have by the above mentioned choice of parameters λ, /z, b)
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then the right-hand side of (5.10) converges to zero as /L|1R2 if ω(x) = ea^ for
some 0 < α < r a , where m is the physical mass for the model [Sim]. Using the fact
that equality of first moments and FKG inequality imply equality [FrSi] and
Proposition 5.1 we obtain

Proposition 5.3. If the interaction UΛ is given by (5.7) with λ, h, b as specified
there, then

μ = \\m E°Λc = \\m E% (5.17)

for ω(x) = £α"*" with some α such that 0<ot<m (m the physical mass). Moreover

Proof a) By analogous arguments we can get the same result for h < 0.
b) A similar result has been obtained before in the lattice case [Ze5].
c) The parameter α in the above Proposition can be chosen to be an increasing
function of m0, since the physical mass is increasing with m0 (cf. [GUa]).

Since to get Proposition 5.3 we used only (the convergence of the lattice
approximation and) the fact that the measure E%? for 0 < ω o ^ ω has a cluster
property uniform in the volume, so by analogous arguments (taking ω 0 to be a
constant boundary condition) we get in the multiphase region (when /ι = 0, b
sufficiently smaller than —1) the extremality for the FKG-maximal measures.

We note that the existence of E%? in this case follows from [Im2, Gid].
Let μh be the measure defined by (5.8) with /zφO in (5.7). We define the Gibbs

measure μ+ as
( ) li (^^)/ί(^^)) (5.18)

for h > 0 large enough [FrSi]. Similarly we define μ_ by the same formula with h < 0,
\h\ sufficiently large. By [FrSi] we have μ± are FKG-maximal.

We can then formulate the following

Proposition 5.4. For the interaction (5.7) with h = 0 andb < —1, \b\ sufficiently big, the
FKG-maximal measures μ± satisfy

μ±=\imE±ω (5.19)

for any ω of the form ω(x) = eα"x" for some α>0. Moreover they are extremal.

Proof. Let£ = {EΛc}Λ€^ be the local specification for the interaction (5.2) with h, b
as assumed. Then, by Theorem 3.1, $ isμ-a.e. uniformly continuous for any /zelR.
Hence we get, as for (5.2)

μ+ ^ limE% (5.20)
FKG J^o

(and this holds also, with the reverse inequality, for h < 0 and — ω instead of ω). On
the other hand for any Gibbs measure μ for $ we have

(5.21)

So if lim E%ω exists we get (5.19) (and analogously for μ_), [using μ± are maximal

and (5.18)].
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Since one can show [Im2, Gid] that

μ+=lim E%S

with OOQ > 0 being a translationally invariant configuration of minimal energy, so
using Lemma 5.2 (with ωj" instead of zero) and the fact that E*%§ has a uniform in
yle#o cluster property [Im2, Gid] we get

μ+ =lim E$ =lim E% (5.22)

(here we used the GHS argument of Lemma 5.2.)
(Analogous arguments work for μ_ .) •

The Extremality for Exponential Models. Let for ΛeϊF

UΛ{φ) = λ J d2x jφ(α):e α %(x) (5.23)

with /l>0 and rfρ(α) a probability measure on ( —2|/π, 2 |/π).
Define £^ c for above interaction UΛ(φ) as in Sect. 3.

Lemma 5.5. Lei ωe^(lR 2 ) , ω^O, then

° , (5.24)

and for any fe @, f*t 0,
Λ{f) . (5.25)

Proof. (5.24) follows from the convergence of lattice approximation. To show (5.25)
we take first the lattice approximation E%δ of E%. Then we have

% ( O ) > (5.26)
0

where h^δ was defined in (5.12).
Using the arguments from the proof of Lemma 1.5.1 of [Zel] we get for ω^O,

= Ψί%f) (5.27)

(where we used the definition of ψ^δ)-
From (5.26) and (5.27) and convergence of lattice approximation (Sect. 4) we get

E^φ(f)^E°Λcφ(f) + ψd

ω

Λ(f) . D (5.28)

Remark. The same holds if one adds the term hφ(χΛ) with h e IR to the interaction
(5.23) [since (5.27) holds in the same way).
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As a consequence of Lemma 5.5 and Proposition 5.1 we get

Proposition 6.5. The measure μΞlim E% satisfies

μ = \imE%c (5.29)

for ω = £ α " x " and 0 < α < r a o , and so

Remark. The parameter α can be chosen to be an increasing function of m0 (cf.
[Zel]). We can extend the above proof to the case of trigonometric interactions

UΛ(φ) = λ J d2x:sin(otφ(x) + β): , (5.30)
A

λ small, |α| < j/2π, 0^/?<2π, by using an integration by parts in (5.27) and using
cluster expansion arguments of [AHK7, FrSe].

We summarize the results of this section in the following

Theorem 5.6. Let UΛ be of the φ 4 respectively exponential respectively trigonometric
form given by (5.7), respectively (5.23) respectively (5.30). Then the Gibbs measures
μ± = lim E%ω with ω(x) = e α | W I , 0 < α < m, (with m the physical mass) are extremal

Gibbs states. In the case of weak coupling φ or trigonometric or exponential
interactions we have uniqueness of Gibbs states in the sense that μ+ = μ _ (hence the set
of tempered Gibbs states has only 1 point).

Remark. The parameter α can be chosen to be an increasing function of the free
mass m0.

6. The Global Markov Property

Let Q c IR2 be an unbounded open set with a piece wise # * -boundary dQ and such
that I R 2 - g is also unbounded. Let Λe^0 (with ^0 as in Sect. 2), AnQ=£0 and
AnQcΦ0. We assume that dAndQ consists of a finite number of points. We say
that a probability measure μ on (β', Σ) has the global Markov property (GMP) if for
any EeΣ(Q), GeΣ(Qc) bounded measurable we have

E(FG\Σ(dQ)) = E(F\Σ(dQ))E(G\Σ(dQ)) ,

where E(-\Σ(dQ)) means conditional expectation with respect to μ and Σ(dQ)
(cf. [AHK7, Fol]).

We write then for simplicity μ e GMP. We say μ has the local Markov property if
the above relations only holds with Q replaced by Q n A with A bounded and open.

Let ω e ^(IR2) and μ an extremal Gibbs measure as in Proposition 5.1 such that

μ = lim E°c = \im E%c , (6.1)

with E%c belonging to a specification for an interaction of the type considered in
Sect. 5. Let ψ^iΛnQ)(x) be the Poisson kernel considered in Sect. 2 and consider
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This is an element of H_1(K2). Consider φ(f) with φesuppμ. We denote this
random variable also by

Let us define
\ ( )) . (6.2)

Here E^%r is defined as E?ΛnQ)c but with η(χ(zedQ)ψd

z

(ΛnQ)(x)) instead of

Remark. If more general interactions than those of Sect. 5 are considered then we
should replace E$gQ)c by E ^ ^ d Λ for some bounded configuration ω 0 e^(IR 2).

Suppose that the interaction which gives the specification is symmetric (i.e.
invariant under φ-> — φ) and we have using this symmetry and the definition of

= 0 = μQtAφ(f) (6.3)

(for any ΛelF0).
Our assumption (6.3) implies that if

lim μQΛ ^ μ (6.4)
jF 0 FGK

then by [FrSi],
lim μQΛ = μ . (6.5)

By an argument in [Go] this implies that μ has the global Markov property i.e.

μ e G M P (6.6)

To prove (6.4) let us take, for a fixed /L o e#o, GeIQCnAo, FeΣQnΛo to be some
bounded (measurable) cylindric and non-negative functions. Then for Λo a A e # Q
we have with ε>0, using the definition of μQ A and the properties of specifications

μQ i Λ GF=

fΛ%) (6.7)

with ή the integration variable with respect to the measure E\c.
Let us consider E^®CF, for F bounded increasing.
By first replacing ή by a regularized version ήκ, taking a lattice approximation

E?ΛnQr,δ(F) o f EfrnQy using FKG order [since E?χnQ)Cfδ(F) is an increasing
cylinder function] we get for G bounded increasing

Ef\GE^Q)CίδF)^E%{GE^Q)^δF) , (6.8)

if ηeΩεω n [this set is defined in (2.14)] so that ψ%Λε^ω.
Now taking the continuum limit δ j 0 and afterwards removing the regulariza-

tion K we get

f Q r F ) . (6.9)
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Let χΛn ωbe the characteristic function of Ωε ω n. Then we get from (6.8), integrating
with respect to μ, inserting (1 — XA,CO) + XA,CO o n the right-hand side and bounding

. (6.10)

Using

[which is proven again by going to a lattice as in (6.8) and using FKG order],
and the compatibility conditions of a specification, we get from (6.11)

%Qγ (6.12)

Inserting (6.12) into (6.10) we get

f\^ \\F\\jG\\o0 . (6.13)

Recalling XΛ,ω = XΩε,ω,n f° r some n (since Ae^) we can choose ε as a function of A
s.t.

μ ( l - L , J ^ 0 as /LTR2 , (6.14)

as in Lemma 2.2.
Inserting this into (6.13) and by going to subsequences we get

lim μEψ/\GEη^QyF)^lim E%{GF) , (6.15)

and the limit on the right-hand side, by (6.1), is equal to

μ(GF) .

Hence, using (6.7) we see that if

lim \μ(E\c-EφjΛ)(GEη^QyF)\=0 , (6.16)

then
lim μ0 ΛGF^μGF . (6.17)

This implies, by an approximation argument and the definition of FKG-order

l imμ Q y l S μ , (6.18)
#Ό ' FKG

which together with our assumption (6.3) gives (6.5) and so the global Markov
property for the measure μ.

Let us now consider (6.16). We can and do assume that

F(φ) = F(φ(f,),..., φ(fn)) (6.19)

with Fe<tf\WLn),fie3>, suppf^QnΛ, / ^ 0 and 1 1 ^ , H ^ i ^ o o (with dt the
derivation in the i-th argument).

We also assume corresponding properties for G.
Let

e-ΨΪΛ)-UΛ(φ) • (6-20)
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ώδΛε

Using the definition of Eχc given at the beginning of Sect. 3 we have, calling φ the
integration parameter with respect to E^ \ setting δεφ

δΛ = φδ

η

Λε — φδΛ and proceed-
ing as in the proof of (3.5),

~δUΛ ε(φ)

^ ^ p ^ ^ (6.21)

Using the definition of conditional expectation we can omit E\c and replace
everywhere η by φ. By adding and subtracting the term

p (6.22)

we can rewrite (6.21) in the form A-\-B, with

^PdH (6.23)

B Ξ μ {([ i - E17-Λ^) ]Giφ+δ^Λ)Y^ρ m(F)} • (6 24)

Since by our assumption GeΣQCnΛo for some ΛoeάFo, so

G(φ + δεφ
a

φ

Λ) >G(φ)μ-α.e.φ . (6.25)

This is seen using the fact that G is a cylinder function with the assumed properties
(6.19), so that

and the right-hand side goes to zero by the properties of φd

φ

A as Λ.|IR2.
From the proof of the uniform continuity of local specifications we know by

(3.8) that for a subsequence / t^R 2

-δUΛ.ε(φ)

->0 , μ-a.e. φ . (6.26)
e-δUΛ,ε(φ)

(6.25), (6.26), together with properties of conditional expectations, imply that B-+0
as yljIR2, by subsequences. Hence to prove (6.6) using (6.25) and the uniform
bounds on F, G, we need only show that μ-a.e.

^ Q y ^ f ^ 0 . (6.27)

This will be shown in Lemmas 6.1-6.3, in which we assume that our interaction UΛ is
such that the measure μ is constructed by the cluster expansion [as for weak P(φ)2

and weak trigonometric interactions].
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Lemma 6.1. For any F like in (6.19) we have for ΛΐlR2 along some subsequence

^o ^-^o

Proof. Let us introduce the notation, for any s e [0,1 ]:

^ ^ f i ) ( 6 2 8 )

with <p' an integration variable with respect to the measure μd

Q

ΛnQ and

• (6-29)

Then we have for jpas in (6.19), by adding and subtracting F(φ' -f φd

φfQ

nQ) and using
the mean value theorem:

i n i/To ( 6.3 0 )

The first term in the right-hand side goes to 0 as A |1R2 by the construction of the
Dirichlet solution \j/%Λ and the regularity of μ (this is similar to [AHK7]).

The second term goes to zero as a consequence of [iΠε — IT7]— Ô and [H]ε->[H]0

pointwise for a subsequence of ^ 0 , on a subset of μ-measure one, as shown in the
next lemma. •

Lemma 6.2. Letε(Λ) = e~yd{0'dΛ)for some y > 0, and let [F]ε be as in (6.28). Then there
exists aγo>0 s.t.for all y^yo and some J^ ' c= #"0, F any bounded measurable function

Here μ = lim/leJίro μΛ is a limit of finite volume measures

μΛ = μ0(e-UΛ )/ZΛ , ZΛ^μ0(e-u-) .

UΛ is an interaction as in Proposition 5.1 [F]ε{Λ) is defined by (6.28).

Proof. Let A, ΆG^0, AnQczΆ. Then by definition of μχ and [F]sε we have:

φ^)-μd

0

ΛnQ(e-u^'+^ΰ) (6.31)

Vφm
Q))\ ,

with ΨHnQ given by (6.29).
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Using the definition of conditional expectation with respect to μ0, (6.31) can be
bounded as follows (using also the definition of μ%):

ίμΛ{\exp(-[UΛnQ(φ -

• F(φ-ψS

φΐe

nΛQ)\} (6.32)

Since A e έF0 was arbitrary we get, using the definition of μ, the same inequality with
μ replacing μj.

We shall now prove that from Lemma 6.3 we can finish the proof of Lemma 6.2
(and hence also of Lemma 6.1).

It is easy to see that what is needed is an estimate of the right-hand side of (6.32)
with F replaced by 1 (this is so as seen by the fact that \\F\\n < oo). This latter
estimate is a consequence of the following Lemma 6.3.

Lemma 6.3. Let Λe^0 be a rectangle with ΛnQΦ0, ΛnQcή=0. We assume also
that \A n dQ \ < c'\dA\ with a constant c' > 0 independent of A e #Ό. Then there exists
y o > 0 s.t./or y^y0 and ε = e~yd{0'dΛ):

for some 1 > a > 0 independent of Ae J^o, y and μ.

Proof Let Άk = {xe AnQ:d(x,dQudA)>3k} for l^k^fi, withή =

^ e t XΛU t>e t n e characteristic function of Άk. First adding and subtracting a
Άx-depending term, we get by the triangle inequality the estimate:

l.h.s. (

-UΛnQ(φ)])\

^ Q (6.34)

In the same way, adding and subtracting a /i2-depending term in the second term of
(6.34), estimating as before and then going in this way by ή— 1 —fold iteration we
get:

l.h.s.

- UΛnQ(φ)])-exp(-[UΛnQ(φ -

-UΛnQ(φ)])\
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n - 1

-Σ
fc = l

~ il,dΛnQ ϊ
4nΨ(όεψ

e

φ

Λ)\dQ)

(6.35)

Since on the right-hand side of (6.35) there are less than [d(0, dΛ)] number of terms
(by our choice of ή), (6.33) will be proven if one will get estimations for each term
from the right-hand side of (6.35) analogous to the one for (6.33) (since ε is decaying
exponentially).

Let us thus consider a single term from right-hand side (6.35) with some O^k^ή
(with obvious definitions for k = 0 and k = ή). Using the representation of μ given in
[FrSi] (recalling our assumption on the interaction!) we get, with

dΛnQ
- )

I i dΛnQ x
~~τ~%Λk+iΨ{δtψ

8

φ

Λ)\dQ'

-UAnQ(φ)]) (6.36)

that

uΛE\(ΛnQ)

I 6ΛnQ_
Ψφ\δΛ

(φ)
dΛ

,)])

(6.37)

with ρdΛε ^ 0 (the boundary density), α > 0 (the infinite volume pressure) defined as
in [FrSi] (we also used the definition of Fkjk + 1 ) .

Now we take the free conditional expectations first with respect to Σ(S[) with
Sk = Λc u (Λk\Λk + 1). We shall denote by Πs the conditional expectation with respect
to μ0 and to the σ-algebra Σ(S), for any measurable set Sc: IR2. Afterwards we will
apply the Holder inequalities together with conditioning inequalities (cf. [GRS1,
Sim]) to remove the volume factor.

(ΛnQ)\Λk

ΛknQ
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The right-hand side of (6.37) can be rewritten by splitting

o ^ \Aε\ = a^ \AL\A\ + a^ \Sk\ + α,, \(Λk\Λk + 1)\

and inserting a conditional expectation (using that in expectations conditional
expectations drop out). So we get:

aJΛλΛt+A | e χ p ( _ Uχ^+ι(φ-

jl?ββm-(Uλk^M-^tiQ% , (6-38)

where

A = ΠSι[e~aJSkle-Us^φ)

e-uSkr,Q(φ-Φd^ΛnQ)+x2k+iΦSX?\lQ)] . (6.39)

1 1 1 1 4
Now using Holder inequality with exponents -H 1 1—= 1, \<q<- we get

q p r s 3
that the right-hand side of (6.38) is less or equal

(6.40)

The first factor in (6.40) is less or equal to one [FrSi]. The second is uniformly
bounded in Ae& if ε = e~yd{0 dΛ). We prove below that

(6.41)

with a constant c > 0 independent of Ae^0 and decreasing to zero with —y

(m0 being the free mass in μ0) and that °

(6.42)

with some constant 0<a' < 1 independent of A and ε. Since the constant y from
definition of ε can be taken arbitrary big if m0 is sufficiently big, (cf. Remark after
Theorem 5.6) so the estimates (6.41), (6.42) give us (6.33).
It remains therefore only to prove (6.41), (6.42). For this it is useful to recall the
relation between the conditional expectations Πs with respect to μ0 and Σ(S) and
the solution \jjds of the Dirichlet problem for — A +rnl in S discussed in Sect. 2:

n

ηeQ)1 (IR2), Fbounded measurable on <3) '(IR2) (or positive measurable). For this see
e.g. [AHK7, DoMi, Rό2,3].
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Proof of (6.41): Using (6.43) and the definition (6.39) of A, we can rewrite A in the
form

A~μ° [e (6.44)

(6-45)

where φ' are the variables of integration with respect to μd^k.
We have set

Φφ^ΨtSkH-ψ^ΛQ) + χΛk+ιφ
δ

(tφϊV -^nfl (6-45)
and we used the properties of conditional expectations [with respect to μ0 and
Σ(dSk)], to simplify the expressions for Φφ entering (6.44).

Let χke%^(R2) with O ^ χ ^ l and

Λ_ ί1 f o r d(x,dSkυdQ)>3
XkM = \0 for d(x,dSkυdQ)<2 .

Let us change the integration variable φ^>φ + χk Φφ in the ̂ ^-integration. Then
we get

J S \ U ( ' + Φ)

q ? ( 6 > 4 6 )

with
hk(x) = (-A+m2

0)χkΦφ(x)

= -2Vχk'VΦφ(x)-(Aχk)Φφ(x) .

We remark that hk(x) is localized close to ΘSkκjdQ, since it is built with the special
smooth function χk and the harmonic function Φφ (observe also the support
properties of χk and χχk+ι).

In order to bound (6.46) we proceed as in the proof of extremality for the weak
coupling P(φ)2 model, see [AHKZ], cancelling the volume factor necessary to
bound the φ'-expectations of exp [— USk(φ' + Φφ)] by introducing a Neumann
condition on the boundary δSk of the set Sk = {xeΛnQ\d(x,dSkκjdQ)^4} and
using a conditioning inequality (cf. [GRS1, Sim]).

We shall also use from now on the notation μ* for the field measure with Xbeing
a Dirichlet boundary condition on dSk and Neumann boundary condition on dSk.
Then we get that (6.46) is less or equal

(6.47a)
with

B(φ) = μ* [(e-^\sk\sk\e- t/Sk,s~>'+(i -χk)Φφ)

We observe that we used the fact that supp hk a (Sk\Sk) [to drop the factor φ\hk) in
the first expectation]. We have the bound for the first factor in (6.47):

with 0<c-+0 as \-»0, see [AHKZ].
mo
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Here we assumed that

\ΛndQ\SC\dΛ\ (6.49)

for some constant C>0, independent of λ, ml (and dΛ).
The quantity B{φ) in (6.47) is localized in a set which has volume bounded by

(2C+3)4|βyl| (this is due to our definition of Sk, Sk). Using this and (6.48) we get
(6.41) by using in (6.46) repeated Holder inequalities to control separately the term
containing the interaction USk and the term exp[ — φ'{hk) — \ ||λfc||-i] Here we
also use the fact that ||Afc||

 2L1 contains exponentially decaying factors in the distance
from the boundary dSkudQ, as seen from (6.45), which gives us the estimate

(6.50)

for any fixed constant a > 0 and a constant b decreasing in m0.
Moreover we also use a Gaussian integration to control the exp((p'(/zk))-term,

followed again by an estimate of the type (6.50).
This completes the proof of (6.41).
There remains the

Proof of(6.42). We have with Holder exponents t, t\ such that -H—- — -, that the

left-hand side of (6.42) is bounded as follows

1

o

~Γ UΛk\Λk+ί ( (φ-ψί\£ΛQ))+ZXΛkΨ(δ?ψffi\dQ (6.51)
dz V / /

(where we used the fundamental theorem of calculus and Holder's inequality).
The first factor from the right-hand side of (6.51) has (from the Duhamel

expansion as e.g. in [GRS2, GlJa]) the following estimation

^ecm , (6.52)

with a constant c > 0 independent of A e #", ε and z, and decreasing to zero as —Ύ.

ml
(We used here that |J4fcV4k + 1 |<cΊdΛ| with some numerical constant c'>0.)

The second factor from the right-hand side of (6.51) has the simple estimation

^ -w -r / I ΐ\ί Λ ^ Γ\\ I CΛ. (~\Q \

+ ZXΛkΨ(δ^\d0)

/HI//'

^ ^Λk\Λk+1\Ψ~Ψφ\dΛ "Γ^ΛyίicV/(5t^)|δρ;

(6.53)

with some O<Z>'<1 independent of ze [0,1], ε and
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Here we use the definition of όεψφΛ\dQ, in the proof of Lemma 3.3.
By combining (6.51) with (6.52), (6.53) we get (6.42). By what we said before

engaging in the proof of (6.41), (6.42) this proves (6.33), hence Lemma 6.3. By
arguments preceding Lemma 6.3, Lemma 6.1 and Lemma 6.2 are also proven,
which in turn prove (6.27), hence (6.16). But this then yields (6.17), (6.18), which, as
remarked after (6.18) completes the proof of the global Markov property of μ, with
respect to any unbounded open set Q with a piecewise ^-boundary dQ such that
1R2 — Q is also unbounded and Λ n g + 0, AnQcφ0. Moreover dΛ n dQ consists of
a finite number of points and | / l n d g | ^C|3/L| for some constant C > 0 independent
of 0 ̂  λ, a free mass ml > 0 and Ae^0. In the proof we used both λ small and ml

large, but this model is equivalent with the model with —y small (cf. [GUa, GRS1 ]).
m0

Hence we have proven the following:

Theorem 6.4. Let ΛeάF0, with ^0 as in Sect. 2 and let UΛ be the φ\-inter action
UΛ(φ) = λ{\: φ4:(x) + b:φ2 :(*)), AeR, λ^O. Let μ be a Gibbs measure to this

interaction. Then there exist K> 0 s.t. for all —~- g K the measure μ is extremal and is
m0

the unique point in the set of regular Gibbs measures. Moreover μ has the global
Markov property.

Remark. In particular μ in Theorem 6.4 has the Markov property with respect to
halfplanes (just take Q to be such). As well known this implies in particular that the
cyclicity of the time zero fields hold and moreover that t^>φ(t,x), ίeIR, xeIR is a
symmetric Markov process (cf. [AHK15]). The global Markov property, together
with the known results on the quantum fields associated with μ, imply that μ yields
models satisfying all Nelson's axioms for quantum fields (cf. [Nell-4, Sim]).

7. On the Structure of the Set of Gibbs Measures

Let P(φ) be a fixed semibounded polynomial. Let h^ be a positive constant
sufficiently large so that the measures

μ (e~
(p{φ)ΛThχ(pΛ)')

Λ Λ ) ) (7.1)

constructed by the cluster expansion [Sp] are unique [AHKZ].
We will assume from now on that the following property holds:

Assumption. There is a function ωe(£(\R2)2 ω^O dominating at infinity as in
Lemma 2.2 such that

μpiφnh^φ^™ Eχc

ω

p{φ)τKφ . (7.2)

Remark. This assumption is satisfied for the : φ4 :2 model, as discussed in Sect. 5.
Moreover the corresponding statement is satisfied for general interactions on a
lattice [BeHK].
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For a fixed λeIR, h{±) be defined by ±(hoc-hi±)) = h. Let

be the ultraregular states constructed in [FrSi]. If /zeIR is fixed we will write

Proposition 7.1 Suppose that (7.2) is fulfilled then μ± are FKG-maximal Gibbs
measures (in the sense of Sect. 4) for the interaction P(φ) — hφ, i.e.

μ~ S μ S μ +

FKG FKG

(where, as in Sect. 7, Jtr denotes the set of regular probability measures, as in Sect. 2
$p(φ)-hφ denotes the specification of the interaction P(φ)—hφ and $($) the set of
Gibbs states to the specification S).

Proof. Let ωe^(IR 2 ), ω^O be dominating at infinity for μ (in the sense of
Lemma 2.2) and μe^{SP{φ)_hφ)r\Jir. Using the uniform continuity property for
the local specification, proven in Sect. 3, we get using the FKG order

lim £-cω ^ μ ^ lim E%ω , (7.5)
J^o FKG FKG # o

with EΛc£$P{φ)_hφ. By the definition (7.3) we have that the measures μ± are in
^{SP{φ)_hφ). On the other hand we have for any Ά, Ά

ω

FKG ^ τ FKG EA^p{φ)_hχφ(e~H ψΛ)

where we have explicitly denoted to which specification a given measure belongs.
We note that (7.6) gives us the compactness of the sequences

Passing to the limit with A t IR2 through a subsequence ^ using (7.2) together with
the definition (7.3) we get

μ~ ^ lim£7cω ^ lim E%ω ^ μ+ . (7.7)
FKG J^ό FKG J^ό FKG

This together with (7.5) gives us (7.4). •

The above proof implies the identification

μ±=limE±c

ω (7.8)

(which follows from (7.4) and the choice of ω as dominating at infinity).
By using the uniform continuity of <$P{φ)-hφ, we have by Proposition 5.1 the

extremality of the considered measures.
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Let

θiao(P(φ)-hφ) = lim -±- In μ o ( e ~ ^ - ^ ) , (7.9)
&o \Λ\

be the infinite volume pressure.
We recall that oc00(P(φ)—hφ) as a convex continuous function of h is a.e.

differentiable with respect to h. Combining that with the result of [FrSi,
Corollary 4.3] we get the following result

Proposition 7.2. At the points h of differentiability of the pressure α^ (P(φ) — hφ) with
respect to /z G IR, there is a unique (in the space of regular measures) extremal Gibbs
measure

μ = μ

+ =μ- =\[m E%ω . (7.10)

Remark. By the method used in Sect. 6 it should be then possible, using (7.8), to
extend the proof of the global Markov property to the case of the FKG maximal
measures for general P(φ)2 models.

Let us close with some expectations concerning the structure of Gibbs states for
general P(φ)2 models:

Moreover we expect that (if P is non-identically zero) & ($ (P(φ)2))
where M y^}} is the set of probability measures with support on ^ ' ( IR 2 ) . Let us
note however that for free specifications [HoSt], for specifications corresponding to
trigonometric interactions and some exponential interactions [Ze4] there are Gibbs
measures which are regular but not in Jisr qsey

2. We expect that there are only finitely many extremal Gibbs measures for any
P(φ)2-interaction. For Λ:φ 4 : 2 + Z?:φ2:2, b<ζ—ί, one can expect on the basis of
[Aiz, Hig] and approximations arguments of the continuum model by Ising-like
models (cf. [Sim]) that d9(gλ:<f:2+b:φi.) = {μ-,μ + }.

It is expected that in multiphase region δ^(P(φ)2) consists of measures
constructed by [Im2] (using an extension of Pirogov-Sinai theory [PiSi2]).

3. In two dimensions there is no breaking of translational symmetry, i.e. VXG IR2,
Vμ G ̂ (d>p(φ)2)

 satisfy Txμ = μ (with Tx being translation by x) and every Gibbs state
is invariant under time-reflections and is reflection positive.

4. For any μed%(£P{φ)2) we have μ e G M P .
The work [Ze3] suggests \fμe&(&Piφ)2), μeGMP.
Furthermore we expect μe<&($Piφ)2)oμeGMP.

5. The set d^(SP{φ)7) of extremal Gibbs measures should be totally FKG-ordered
(i.e. Vμ, μ'eδ^((fP ( ) 2), μ~ ^ μ ^ μ' or μ' ^ μ ^ μ + ) and so any Gibbs

FKG FKG FKG FKG

measure for SP(<φ)2 fulfills FKG inequality.

Appendix 3.A

In this Appendix we prove lemmas yielding the estimates (3.20) [recalling the
definitions (3.16), (3.17)].
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Lemma A3.1. For 0 < ε < l , / ? e N and

with a constant c>0 independent of p, ε and A.

Proof. Since for d(x, dA)<\ we have

KδΛ(x, x)^a\lnd(x, dΛ)\ (A3.2)

(see e.g. [GUa, AHK7]) and analogously for δΛε, so we have

ί d2x\KδΛ° (x, x)-KδΛ(x, x)\p

d(x,dΛ)<ε1'2

^cp\dΛ\ j ds\lns\p^c%p\ \dA\εiμ

0<ε<ε112

(the last estimate coming from integration by parts and estimating a logarithmic
term against ε1/4).

For d(x, dA) > ε1/2 we have

\KdΛ°(x,x)-KδΛ(x,x)\Sc3ε
1/4e-bd{x>δΛ) (A3.4)

which implies, using the exponential decay in (A.3.4)

j d2x\KdΛ*(x,x)-KdΛ(x,x)\p^cϊ\dΛ\εp/4r . (A.3.5)
d(x,dΛ)>ε1'2

All constants a, b, ct>0 are independent of Λ, ε,p. From (A.3.3) and (A.3.5) the
bound (A.3.1) follows. Π

Lemma A.3.2. With a constant c>0 independent qfθ<ε< 1, A andpeTN we have

a) \\(KdΛ°(x9y)-KdΛ(x9y))χΛx)χΛ(y)\\P

1/ , (A.3.6)

b) \\(KdΛ<(x9y)-G(x9y))χA(x)χAβ\Λ(y)\\P

^Cp(ειl*\dA\)ιlp . (A.3.7)

Proof. We have, for x,yeA,

\KδΛ*(x,y)-K6Λ(x,y)\ = \GδΛ(x,y)-GδΛ*(x,y)\ . (A.3.8)

For d(x. dA)<εί/2 using the exponential decay of covariances and arguments
similar to those leading to (A.3.3) we get

j d2x j d2y\KdΛ'(x9y)-KdΛ(x9y)\p^cppl εϊ/4\δA\ . (A.3.9)
d(x,dΛ)<ε112 Λ

For d(x, dA)>ε1/2 we use continuity of the difference (A.3.8) in ε and the
exponential decay in d(x,y). We then obtain

J d2x J d2y\KdΛ°(x,y)-KdΛ(x,y)\r
d(x,dΛ)>8112 A

^cpεpμ\dA\ . (A.3.10)

From (A.3.9) and (A.3.10) we get (A.3.6) and (A.3.7). D
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Appendix 3.B

The exponential bound (3.26) follows from Duhamel expansion, for which we need
the following two lemmas below:

Lemma B.3.1.

with cκ = a\n(κ + l) and the constants c,a>0 independent of Λ,ε,κ.

The proof of (B.3.1) is standard and follows from the definition of normal
ordered semibounded polynomials in the field with a cutoff.

Lemma B.3.2.

\ cp\Λε\Λ\ap , (B.3.2)

with a,c,δ>0 independent of Λ9 A,ε,p, and K.

Proof It is sufficient to consider/? even (using Holder inequality).
Then we start with Gaussian integration of the field φ'. We integrate the ψφ^ε,

\j/d

φ

Λε variables using the integration by parts formula [GIDi, GUa] for the measure

μΛ,ε-

From that we get the representation of the left-hand side of (B.3.2) as the sum of
two terms

The first term has just the estimation (B.3.2) (see [GUa, Sim]). The estimation for
the second term A follows from the standard bounds with measures μχz [GUa] and
is uniform in A. D

Appendix 4.A. The Potential Theory on a Lattice

Let #" be the family of open bounded sets A a IRd with piecewise ^ ι -boundaries dA.
For δ>0 let TLd

b\ = {n6 = (nιδ,... ,ndδ)\neTLd}. If At^ then Aδ = AnZd

δ and
Ac

δ = Zd

δ\Aδ. The boundary dAδ of Aδ is defined by

δAδ = {noe Aδ: d(nδ9 A
c

δ) = δ) (A.4.1)

with d( , •) the usual euclidean distance in IRA
The lattice distance is given by

\n — m\= min \nι — mι\ . (A.4.2)
ί = 1 , . . . , d

Let

L2,δEEL2(Zd)EE{f:Zd^1R\δd £ |/(*<5)|2<oo} , (A.4.3)
neΈά

and let
\~d if n = n' .)

. , neZd\ (A.4.4)
otherwise
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be its base. For f^Llδ the lattice Laplacian is defined by

(-Δδf){nδ) = δ-2 Σ (fW)-f(n'δ)) (AA5)
\n' — n\ = 1

The standard result from the potential theory on the lattice is given by the following
lemma (see [GRS1, Roy, Sim]):

Lemma A.4.1. a) There is a unique function Gδ(nδ, •), nδeZδ which tends to zero at
infinity such that

( — Δδ + m%)Gδ(nδ9 •) — enδ . (A.4.6)

The matrix Gδ(nδ,mδ) is symmetric and positive definite.
b) For any Aδ = ΈdnA, AeίF there is a unique symmetric and positive definite

matrix Gδ

Λ(xδ,yδ), xδ, yδeZd

δ such that the function Gδ

A(xδ, •) fulfills

Xό δ (A.4.7)
Gδ(xδ,-) = 0 > for xδedAc

δ .
Moreover

Let G and GdΛ for Λe & be the counterparts of Gδ and Gd

δ

Λ (respectively) in the

present continuum case. Let G(k), keJR.d respectively Gδ(k), k e ( ~ —, — I be the
Fourier transforms of G respectively Gδ. \ d /

Denote by fnδ(x)eH_1 the function defined by

(2π)d/2 δ for |fc.|<π/δ (A.4.9)
f 0 otherwise .

From the definition (A.4.9) we have [GRS1, Sim]

Gδ(nδ,mδ)^(fnδ,G^fmδ)L2{^) . (AA10)

For Aδ being a product of [ - lιδ, l'ιδ ] n TLδ, / = 1,..., dthe lattice Green function Gd

δ

A

with Dirichlet boundary conditions on dAc

δ can be represented using the method of
images as follows [GRS2, Sect. III.3; GUa]:

GSΛ(xδ,yδ)= Σ (-χYnGδ{xδ,rnyδ) , (A.4.11)

where

(rnyδy = (-1)^-^21^) , (AA12)

and εneZ suitably chosen so that Gδ

Λ(xδ,yδ) vanishes if yδedAc

δ.

Lemma A.4.2. Let d^2 and ωe^QR2). For any Aδe^δ the solution ψd

ω

Λ

δ( ) of the
following Dirichlet problem:

ΨdωΛ

δ(xδ) = Q for xδeAδ ,
(A.4.13)

ftW = ωfe) for *δ€Ac
δ
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is given in Aδ by the lattice Poisson formula

Ψ%ϊδ(χδ)= Σ GlΛ(xδ9nδ) Σ ω(n'δ) (A.4.14)
nδedΛδ \ri — «| = 1

n'δedΛc

δ

Proof The proof of this lemma follows simply from the definition of Gδ

Λ in
Lemma A A l b . D

Now we will consider the limit of the solution ψ%£δ as δ ->0. For that we assume A

of the special form s.t. Ά= Π [ —W^AWJ, ni,mieZ + , and take δ = 2~\ leZ + .

(The general case can be treated analogously.) By our assumptions we have

dAc

δ = dΛnZj . (A.4.15)

Lemma A A3. For any xeAn f] Z2

δ ,
b = 2~<

lim ΨίΛδ(x) = ΨίA(χ) 5 (A.4.16)

where φ^Λ(x) is the solution of the Dirichlet problem in the continuum which
corresponds to (A.4.13).

Proof. The proof follows from the fact that for any xeAnf] Z] and nδedAδ.
δ

1
lim - G$Λ(x,nδ) = ψ?Λ(x) . (A.4.17)

This can be seen using the formula (A.4.11) for Gδ

Λ (see e. g. [BrFrSp]). Hence using
(A.4.14) we get

lim φ^Λ

δ(x)= j d2yψyΛ(x)co(x) = ψωΛ(x) D (A.4.18)
δ-+0 ' dΛ

We need a stronger result to get the convergence of the lattice approximation of
euclidean field theory.

Define

- Σ ΨίΛδ(nδ)e~iknδ)Xδ(k) , (A.4.19)
1 nδeΛδ ' /

with χδ(k) the characteristic function of the set <k : \kt\ < — >.
o

Lemma A.4.4. For any 2^p<co,

K™ψδ

ω

Λδ = ΨίΛXΛ (A.4.20)
(5->0

in L p (R 2 ) .

Proof. From definition (A.4.19) of ψ^δ we have

\\ψdΔLΦίΛsL^l§, (A.4.21)
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and using the maximum principle on the lattice (see e.g. [BJS]) we get, uniformly

in ό,

ll^lloo^^lh^HooMI (A.4.22)

From Plancherel theorem we have

Σ + Σ )\Φί1s(nδ)\2δ2 (A.4.23)
d(nδ, dΛ) < ε d(nδ,dΛ)^.ε

for any ε>0. Since from Lemma A.4.3

uniformly on compact subsets of Λ, the second sum on the right-hand side of

(A.4.23) converges to

ί > \ΦίΛ(x)\2d2x .

Since from the lattice maximum principle

lO^HaJoo (A.4.24)

the first sum from the right-hand side of (A.4.23) is bounded by

\\ωldΛ\\ao\Λn{d(x.dΛ)<s}\ .

Due to the fact that ε > 0 is arbitrary we get

I I ^ I I L . ^ I I ^ Z ^ H L , (A.4.25)

For any /e^(3R 2 ) , we have also

that is ψ^δ -• ΨωΛχΛ weakly in L2(IR2) and by (A.4.25) we have also strong
δ^O

convergence in L2. By interpolation using also (A.4.22) we have Z^-convergence.

This ends the proof. •
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