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Abstract. A Coulomb-like system is a system in which the usual 1/r Coulomb
potential has been replaced by a potential that goes as l/rα for α near one. Such
potentials do not have the mean value property, which forms the basis of the
Lebowitz-Lieb argument to control the long range Coulomb interaction [5],
so whether or not such systems actually exhibit thermodynamic behavior is an
interesting question. In this paper I generalize the proof of the limit for a crystal
with Coulomb potential given by Charles Fefferman [1] to cover these
Coulomb-like potentials.

1. Introduction

The statistical mechanics of systems of electrons and protons interacting via the
Coulomb interaction has long been a subject of interest. One would like to know
a little more about systems with a pair interaction that goes as some power α φ 1
of the inverse distance simply to answer the question "In what sense is the Coulomb
potential special?" In this paper I hope to demonstrate that the Coulomb potential
(α = 1) is not special, at least in the sense that as one moves away from α = 1
nothing catastrophic happens and the resulting systems still have a thermodynamic
limit.

First, the basic set-up. The states of our system of Λ/Ί electrons and N2 protons
are taken to be the eigenfunctions of the quantum mechanical Hamiltonian

Nί N2 1 1 1 1 1
HN^BR^ Σ ~-'cι^χJ + Σ ~κ2Δyk + - Σ T~ ΓΊ^ + Λ Σ 77 ΓΓ~"jϊ~ΣjT: ΓTί— — —

with Dirichlet boundary conditions on some large ball BR. The eigenfunctions
ψ(x !,..., XN 1 ? y !,..., yN2) are assumed to all be L2 functions that are separately
antisymmetric in the x and y variables. In the following the appropriate L2 space
will be denote L2((BR)N1+N2) or L^(BR). The operator we have written down is
self-adjoint for 0 < α < 2 (see, e.g. Reed & Simon [6]), so we will consider that
range of α in the following.

For convenience we will consider only the grand canonical ensemble: a
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given eigenstate of Nt electrons and N2 protons appears with probability
exp(μ N-βE(ψ))/Z(μ,β,BR), where E(ψ) = <HN,SRψ\ψy and Z(μ,β,BΛ) =

£ Tr[exp(μ JV-/ΪHw>J,B)].
Nι,N2^0

The subject of this paper is a proof of

The Existence of the Thermodynamic Limit for Coulomb-like Systems. The quantity

tends to a finite limit as R-+ oo.
The limit is a pointwise limit, but since the functions ΠR are convex and can

easily be shown to be bounded the limit is actually uniform on compact sets.
The common method in most such proofs of the existence of the infinite volume

pressure limit is to compare the original large system with a system composed of
a number of sub-components and demonstrate that the strength of the interactions
between the components is relatively small compared to the strength of the
interactions among the particles in a given component [7]. The original proof for
Coulomb systems, due to Lebowitz and Lieb, made clever use of the mean value
property of the Coulomb potential; namely, any neutral, spherically symmetric
distribution of charge does not induce a potential at a distance. The idea of the
Lebowitz-Lieb proof was to cover a large region very efficiently with a large
number of disjoint balls of various sizes and create a system of neutral collections
of particles lying in the balls. They showed that it is possible to approximate the
actual Z very closely with the Z that comes from the system of balls and thus
demonstrate the existence of the thermodynamic limit [5]. This clever use of the
mean value property allows one to overcome the problems associated with the
long range character of the Coulomb potential.

More recently, Charles Fefferman has given an alternative proof of the existence
of the limit for Coulomb systems [1]. Fefferman looks at a system of nuclei arranged
in a lattice, such as one would find in a crystal. This arrangement is not rotationally
invariant, so the original method of Lebowitz and Lieb fails. The method used is
to compare the original system with a "phony" system of non-interacting
subcomponents. One makes this comparison by creating a set of injection operators
that map a simple Hamiltonian defined on the phony system to an operator
H^ BR on the original Hubert space and showing that the differences between
H#NίβR and HNtBR are small.

The proof in the present case is based on Fefferman's proof for crystals. Although
one can follow the same arguments fairly closely on the whole, it is necessary to
make a number of modifications of the original proof. The most important
modification that one needs occurs in the places where Fefferman makes use of
the mean value property. The most important instance of this modification comes
when one tries to get some control on the effects of the potential at short range:
one can replace Fefferman's original arguments in that case with a proof based
on some ideas developed by Fefferman and Llave in their study of the relativistic
stability of matter problem [3]. Other modifications are necessary for technical
reasons based on the fact that the exponent in the potential is not one. Two such
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modifications are the introducion of an average over the sizes of the balls found
in the decomposition of the large system and a slightly modified proof of the main
lemma below.

2. The Main Lemma

As stated above, the idea of the proof of the thermodynamic limit is to compare
the actual Hamiltonian with a modified Hamiltonian that comes from an
"exploded" system. The most difficult portion of the analysis is the comparison of
the actual potential energy with the "phony" potential energy that appears in the
modified Hamiltonian. Our resource for dealing with this problem is the main
lemma proved in this section. This lemma is of some interest in its own right as
a method for comparing Hamiltonians with similar potential energies:

Main Lemma. Given an even function k(x) satisfying

\ d β

x k ( x } \ ^ C ( κ , β ) \ x \ - « - β for \ β \ £ 3 and all x, (1)

the potential that k(x) gives rise to,

satisfies

in the sense of operators on

Proof. First of all, (1) says that k(x) is like \x\~a in a certain special sense. One
useful way to express this "likeness" is via the Fourier transform. The Fourier
transform of | x |~ α looks like (Const) |£ | α ~ 3 . The Fourier transform of k is similar
in that it satisfies \k(ξ)\ ^ C|ξ|α" 3. To see this, write fc(x) = k ί ( x ) + k2(x) with both
&! and k2 even functions satisfying (1). Suppose further that we fix some ξ' and
require that k^(x) be supported in ;x| ^ 2 | < f | ~ 1 and k2(x) be supported in

First note that

2\?\~l ΓYαl4π
f x\~*d*x = C(α)4π J r2~*dr= l J (2\ξf

' ~ —\χ\<2\ξ'\~ 3 — α

This implies that the Fourier transform satisfies \k^)\ ^ C(α)|ξT~3 for °ur one
special fixed value of ξ.

The second function, k2(x\ is supported away from the origin, so the same
argument will not work. Instead, we use the derivatives of k2(x) to control its
Fourier transform. We claim

$\Δk2(x)-Δk2(x-y)\d2x<C(a)\ξ'Γ1 (2)

for |j;| <c 1 |£' |~ 1, cί « 1. Taylor expanding Δk2(x — y) to first order in y gives

\β\ =
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for some Y in \y\ < c-Jξ']"1. Equation (1) together with the fact that k2(x)
has support in Ix^T1 give \dfi

xΔk2(x - Y)\ ^ C\ \x\ - c,\ξ' \~ 1 Γ 3 ~ α for
| j » | = l s o

S\Δk2(x)-Δk2(x-y)\d3x£C j
\χ\>\ξ'\-1

= C\ξ'\~1 J r-i-*dr = C(u)\
r = ( l-cι) |ξ ' |- ι

Comparing the Fourier transform of zi/c2(x) — Δk2(x — y) with the left-hand side
of (2) and noting that in particular one is free to set ξ = ξ' gives

''^ (3)

Setting y = (c1/2)ξ/ |ξ / | " 2 in (3) gives the inequality \k2(ξ')\ ^ C(a)\ξ α~3.
Putting the inequalities for the transforms of /c t(x) and k2(x) together

yields the inequality: \k(ξ'}\ <> \k^'}\ + \H2(ξ')\ ^ C\ξT3. Finally, note that the
constants we have been writing down have not depended on our choice of ξf: they
depend at most on the constants in (1), α, and on the geometry of the situation.
That means that the desired inequality holds independent of our choice of ξ'.

Now consider a new potential k#(x) — | x |~ α — ck(x), where c « 1. The constant
c will be chosen small enough to guarantee that /c#(x) has positive Fourier transform.
We will compare K[fc#(x)] with a continuous version obtained by picking a function
φ(x)eC£(B(0, 1/3)) such that J φ(x)d3x = 1 and $xyφ(x)d3x = 0 for 0 < | y | < 10,
setting φj(x) = [_δ(zj)~\~3φ(x/δ(zj)\ where the operator δ(Zj) is the distance from
the particle at zj to its nearest neighbor, and writing p ( x ) = ^ Y j e j φ j ( x — Zj). One

then constructs the smoothed out potential k#{p} =^k^(x~ y)p(x)p(y)d3xd3y.
Because k# has positive Fourier transform the smoothed out potential operator

is a positive operator. Hence if we can control the difference between V[k#~\ and
k#{p(x)} we can control F[k#].

The difference can be written as a sum over pairs of particles of terms

\k\zj-z,)- k^φjtφ^Zj-z^l (4)

plus a sum of self-energy terms with size bounded by C]Γ [(5(z7 )]~α.

Taylor expanding k#(x) to order three in (4) and using the moment properties
of the φj to eliminate the lower order terms gives an upper bound of

for the difference. We can control (5) in turn by introducing the functions
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Now

y Lδ(Zj)T ίδ(Zj)T

=

^CΣ J G(x)F*(x)d*x
/ \χ-Zj\<δ(Zj)l3

= C J G(x}F*(x)d*x,
R3

where F*(x) is the maximal function of F (see Stein [8]). The Maximal Theorem
allows us to bound the last integral from above by

j

The same argument with zk in place of z7 gives

Clearly £ |/c#(z7 — zj- k#^φj^φk(zj — zk)\ ^ C£ [^(z^ )]"01. This equation com-
j.fc " j

bined with the fact that k#{p] ^ 0 gives

)]-«. (6)

The next section contains a proof of the inequality

Σ [δ( .̂)] "α ̂  (//ΛM,R 4- CίαXNi H- N2)). (7)
j

The inequalities (6) and (7) together with the definition of k#(x) yield

! + JV2)) + C7[|xn

and the main lemma is proved.
Note: From time to time in the following it will be necessary to apply the main

lemma to —K(x) instead of K(x); in those cases the main lemma still applies and
one gets inequalities like K[-K(x)] ̂  -C(HN^Bκ + C(N1 + N2).

3. Controlling the Potential at Short Range

The proof of the main lemma reduces to showing the following operator inequality
on L2

N(BR):

Σ Lδ(Zj)ΓΛ ^ (HN,BR + C(α)(N t + JV 2)). (1)
j

The proof of this inequality will make use of some ideas first seen in Feffermann
and Llave [3]. For technical reasons it is actually more convenient to prove the
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inequality on L^((R3) and then view (1) as a special case of the more general
inequality.

Note that the Hamiltonian contains kinetic energy terms for both protons and
electrons: if we were to fix the protons at arbitrary locations yi9...,yNi and prove

(2)
zj\

with the kinetic energy of the Λ/\ electrons only, it is clear that (2) would imply
the L£([R3) version of (1).

The method of Fefferman and Llave works on operators that are homogeneous
in dilations of the coordinate system; therefore, we will prove

for C(α) some constant to be specified and κ(α) sufficiently large. The simple
inequality (proved by the Fourier transform)

,4)

combined with (3) proves (2).
The method of Fefferman and Llave makes use of a continuous decomposition

of space into balls B(z,R) centered at zetR3 with radii #,0 < R < oo. The simple
equalities

1 . Γ . d3zdR
-=C 1(α) J J χ(x,yeB(z,R))—^^-, (5)|<χx~y\

where

g(1+oc)(3+α)
c ιW~ 22 + απ

and

where

α(l +α)Γ(α)sin α-

will allow us to write the familiar kinetic and potential energy terms as integrals
over these balls. Equation (5) is trivial to prove and (6) follows from the Fourier
transform. Inserting (5) in (6) gives

α(3 + «)Σί ί ί ί, _ ,̂, ^

d3xd3M3Nl~3x

k

dRd3z
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Rather than use this complicated expression for the kinetic energy we will use
the fact that on balls B(z, R) containing more than one electron

J J \\l/(x,x')-ψ(x,xf)\2d3xd3xd3Nί-3x'^ J (N(z,R;x)-l)+\\l/(x)\2d3Nix,
R3Nl~3B(z,R) R3*1

(7)
where N(z, R; x) is the number of electrons in B(z, R) for a given value of x1 , . . . , xNl

and the operation ( )+ returns the argument for positive arguments and zero for
negative arguments. The inequality follows from the antisymmetry of the wave
function in the x variables [3].

The potential energy can be written as a linear combination of terms like (5):

where M(z, R; y) is the number of protons and N(z, R', x) the number of electrons
in B(z, R). The expression for the short range potential looks more complicated.
For our purposes it will be sufficient to use the lower bound

ϋ

dRd3z
4 + α 'R

What we will do now is to combine to short range potential with the ordinary
potential to produce a Hamiltonian with an "augmented" potential,

Faug plus a kinetic energy /c(α) ( — Δ)"12 will give us an "augmented" Hamiltonian
to work with. The object then is to show that the new Hamiltonian is a positive
operator. Inequality (7) and the two expressions for the potentials above can be
combined to give

Φ)Σ ί ί ί ί ι
k zeU2 R>Qx'e(U\B}Nl 1 B(z,R)

V lx

where

- , , 6π

(4 + α)(6 + α)Γ(α)sin( α^

The operator Ω(z,R;x) is simply the combination of appropriate things from
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each of the three expressions:

β(z, R; x) = M(M - 1) + N(N - 1) - 2MN - N(χ(M ^ 1) + χ(N ̂  2))

- M(χ(N ^ 1) + χ(M ̂  2)) + φ)(N - 1)+ .

See Fefferman & Llave [3] for the details of a proof of a similar estimate.
This rather complicated quadratic form must be radically simplified if we are

to have any hope of understanding it. One simplification is to think of the entire
structure as a sum of individual "atoms" based on the division of the form into
parts, each of which is assigned in some clearly defined way to a given proton.
Since the integrals above are integrals over balls B(z, R) it is natural to have a
scheme that distributes the contribution of an individual ball to one or more
protons associated with the ball. Balls containing one proton will give their entire
contribution to that proton. Balls containing more than one proton will divide
their contributions equally among the protons in the ball. Finally, if a ball contains
no protons we will simply throw that term away. This has the result of making
the form less positive: for any κ(α) > 0 we have Ω(z9 R; x) = N(N - 1) - Nχ(N ^ 2) +
κ(α)(N — 1)+ ^ 0 for balls having no protons.

Consider the set of all balls assigned to a given yjf Those balls that have many
electrons in them can be expected to have more energy than other balls; this is in
fact the case. Those values of z and R for which JV(z, R) ̂  2 have

-,.

while balls in which JV = 0,1 have Ω(z,R;x)/M(z,R;x)^(M - l)-4χ(N>0)-

Clearly the thing to do is to look at a given proton and treat all the terms
with one or no electrons with care and replace all the terms with many electrons
with the crude lower bound (8). The resulting quadratic form still contains an
integral over all the other electron coordinates; in view of our crude estimate, we
can without loss of generality fix the coordinates x'etR3^1"3 of the other electrons
and only worry about a single electron. This has the virtue of replacing the
complicated many electron problem with a somewhat more simple one electron
problem. Since this discussion is centered on a given proton it is natural to introduce
a change of variables from (z, R) to (w, R), where y^ = z + Kw.

The problem now is to analyze a quadratic form which looks like a sum over
nuclei of integrals over w and R. For a given y 3 and w this form is

= ί ί \u(X)-u(y)\WXd>y—+- (9)
07t o x,yeB(R)

dR
ί

B(R)

where R is the smallest radius for which AΓ(w, R) > 1 and M(R] = M(w, R} is a
positive increasing integer-valued step function that counts the number of protons
and thus depends on the positions of the other protons. Therefore, what we need
to show is that for κ(α) sufficiently large Q(u) is ^0 for any choice of the function
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M(R). This will finish the proof. (See Fefferman & Llave [3] for the details of a
similar reduction.)

The form Q is homogeneous under dilations, so without loss of generality we can
set R = 1. It is also enough to prove positivity only for the case w = 0 (and hence
B(R) = {x\\x\<R} below) and for radial u [3].

We are going to compare Q with the following quadratic form:

A Mellin transform argument shows that for u radial, square integrable, and
00

vanishing near 0 and oo one can make the substitution u(x)= j \x ~(3~α)/2 + ι>
- 00

00

[u(i)~\dy and see that the form becomes Φ(ύ)= J m(y)\ύ(y)\2dy with m(y) ^ 0
— oo

/ 3α(3 + α)2 2 / 1 3 + α 1\
for all y. Explicitly, m(γ) = —— ^ (4π)2(2π)—— - - + - -

V 8π(3-α)2 3 + α \ 3 ((3 + α)2/4) + y2 ctj

A little bit of manipulation will make (9) and (10) look more alike:

J \u(x)\2](M-l-χ(M^2))^d*x
B(l) 0 Jt<

^2)) J \u(x)\2d3x-^
IX\<R K

2))-3-^ f \u(x)-u(y)\Wxdiy
87CjR |χ|,|j,|<Λ K

4 4

-~ ί Î§rd3x. (11)

Applying Φ(w) ̂  0 to functions u supported in the unit ball gives

3α(3 + α)2 1 <m |φ)P
~ ~ ^ ί ί I W W- W ^)I d*dyi^- ί ^̂ Γ--αj O I X I ^ K Λ Λ w<1 |x|

+ α)2 « , , 7 x
/2 ί ί IΦ)

f- ί
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Comparing (11) and (12) we see that (11) will be true provided

1 / κ (α) \ (3 + α)2

- — \- M(R) — 1 — χ(M(R) ^ 2) ^ =-
4\M(R) J (3 — α)

and

These are satisfied for

4. The Swiss Cheese Decomposition

We now arrive at the description of the particular construction we will use to set
up our proof of the existence of the thermodynamic limit. As stated earlier, the
proof is based on a decomposition of some large region of space into smaller,
simpler regions. When dealing with radial potentials it is natural to consider
decompositions of space that preserve the spherical symmetry of the problem. The
original idea of Lebowitz and Lieb was to decompose regions in space into sets
of disjoint balls with geometrically increasing radii, a so-called swiss cheese
decomposition of space. The specific swiss cheese used in the present proof is a
version of the original Lebowitz and Lieb decomposition due to Hughes [4]:

Covering Lemma. Let a sequence of radii 1 ̂  Rl < ••• < RM,Ri+1 > ^5Rh be given.
Let Q be a large cube, \Q\ > (12(M + 5))3|£ΛM|. There exists a family of disjoint
balls, all contained in Q, having radii Rly...,RM such that for all i

M + 6 |β| M + 5

Proof by Induction. Suppose q balls of size Rt have been packed into Q for
i=; + l,. . . ,Mwhere C ί 6(|β |/[(M + 6)|BΛί|], |β|/[(M + 5)|BΛί|]). Let β'be the
complement of the set of balls that have already been placed in Q for i >j. Since
it is trivial to place CM disjoint balls of radius RM into a cube Q with size
\Q\> 2M2\BRM\, the lemma will be proved if we can show that it is possible to
put Cj disjoint balls of size Rj into Ωj.

Let ΩJ

d = {x\ The distance from x to the complement of ΩJ is > d = 2 ( 3 ) 1 / 2 R j } .
Imagine covering Ωj with a grid of cubes of side 2Rj. If we throw away all the
cubes that touch the complement of Ωj we will still be able to cover a fraction of
the volume of Ωj that equals or exceeds \ΩJ

d\/\Ωj\ with cubes. Since we can place
one ball in each such cube we have

# of balls = # of cubes ̂
\Ωj\ 8R?'1 ' j

We must show that
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_ _ _
8Rj=M + 6 \BRj\'

for once we have this inequality we can throw away what is necessary to put Cj in
the proper range.

If λ is the side length of Q we have

because any point that is more than d = 2(3)1/2.R, from the boundary of Q or more
than Rt + d from the centre of an existing ball in the covering is guaranteed to be
in Ω{. Thus we will have shown (1) if we can prove

«>™ = M + 6

This is equivalent to

(2)

Elementary calculations show that (2) is true if |β| *>(12(M + 6)f\BRM\ and

The actual thing we will need is the decomposition of some large ball BR into
swiss cheese balls. It is easy to construct this decomposition if one first decomposes
the large ball into cubes Q and applies the lemma. There is a slight subtlety involved
because the boundary of BR will naturally cut across some of the balls and cubes
in the covering. We will include in their entirety any balls or cubes that touch the
boundary. To get estimates on how many balls of a given size touch BR we first
note that for a given / this quantity is bounded below by

I u (Balls of size R: in a given Q;) I , „
— —-η —-(#of Qλ that lie entirely in BR)

and bounded above by

I u (Balls of size Rt in a given βλ)|

\Q
•(#of β λthat touch J5Λ).

λl

Now (# of Q that lie entirely in BR) ^ ' , " , - and (# of Q that touch BR) ̂
\Qλ\

. Recall that - - < of size ̂  in eΛ)| _J__
- - '16*1 "M + 6 = \Qλ\ =M + 5>

1 I ί cλ\ I u (Balls of size jR, that touch £Λ) |

\BR\

R l~ M + 4'
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The inequalities all the way to the left and right hold for R sufficiently large
compared to A, for example R = c(M + 7)λ.

Also, this decomposition misses a tiny fraction of the volume; one can cover
that remaining volume with a grid of unit cubes and subsequently dilate the cubes
by a factor of two to give a complete covering.

For technical reasons related to the particular potentials we are investigating
here, it will be necessary to introduce an ensemble of dilated swiss cheeses consisting
of balls of radius sRt where the Rt are the radii in the original covering. The values
5 will vary continuously from some smin > 1/2 to 1. Each value of s will induce a
particular covering of [R3 and of BR. It is clear that if the original swiss cheese
radii satisfy the condition of the covering lemma the radii in the contracted cheese
will still obey the condition because the condition only requires that the sizes of
successive radii have a certain minimum ratio: that ratio is preserved under uniform
contractions of the radii. All of the above results still hold: we will still have

1 u (Balls of size s#t that touch BR) \ 1<

M + Ί- \BR\ -M + 4

for alls, s m i n ^s^l .

5. The Exploded System

Once one has created the swiss cheese it is possible to pull the original system on
BR apart into a set of non-interacting subsystems. Suppose a value of s and
associated swiss cheese have been fixed. Let us denote each of the elements of the
swiss cheese, either a ball or one of the small cubes in the remainder set, by
uj(sy To each such element uy(s} we can associate an element u\(s} in an "exploded
set" consisting of the original elements uγ(s) translated by vectors ξy(s) in such a
way that the elements of {u\(s}} are disjoint.

On this exploded system one introduces a "phony" Hamiltonian, Hphony(s,N,BR)f

acting on some subset of LN2(uu\(s)) that has the correct symmetry. Hphony breaks
up as a sum of terms on cubes and balls: on cubes the Hamiltonian has only the
kinetic energy of the particles in the cube, and on balls the Hamiltonian features
kinetic energy and interactions among the particles in the same ball via the l/rα

potential,

Here the Laplacian terms are understood to be the Nt particle Laplacians with
Dirichlet boundary conditions on {®u\{s}}. For convenience we will denote the
Laplacian terms — ΔNtCX.

Aphony js jn some sense an approximation to the real Hamiltonian which lives on
BR. In order to compare /fphony with HN BR we have to have some method for
moving the phony Hamiltonian over the correct Hubert space. This is accomplished
by defining an injection ί(s):Lχ(BR)-+Lχ(vu\(s)).

To create such an injection we introduce the following partition of unity, {φγ(S)}'>
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2. Each φy(s) is supported in a particular wy(s).
3. For the balls, the φy(s) are translates of functions φiίS(x), where

Φι,s(x)εCZ(BsRi)9 φitS(x)=l on£ ( s R f _ s ) and

\3β

xφitS(x)\^C for \β\£3.

4. For the cubes, the φy(s) satisfy |3^y(s)(x)| ̂  C for |j8| ^ 3.

(Recall that since the cubes in the covering were first chosen to cover the
remainder set and then blown up by a factor of two, the cubes overlap all of the
balls slightly and act as "glue" to hold everything together and make it possible
to satisfy conditions 1 to 3 by making appropriate adjustments in the partition
function over each individual cube within the parameters allowed by 4.)

Since any wewy ( s ) has a unique expression as w = z + ξy(s) for some zeBR we
can extend any ψeLχ(BR) to be zero outside (BR)N and define i(s)\l/(wί,...,w\N\) =

\N\

\jj(z± , . . . , Z|#| ) γ[ φyi(s}(zί). The injection allows us to pull Hphony back to an operator

H$BR = i*(s)°H^(s9N9BR)°i(s) on L2

N(BR).
We note two important facts about this injection. First of all, i(s) is not onto:

i\l/ must satisfy a compatibility condition due to the fact that more than one point
in utty(s) may correspond to a single zeBR. Secondly, i(s) maps orthonormal
sequences to orthonormal sequences. The inner product on the exploded system
looks like

<i(s,τ)!P|i(s,τ)Φ> = J J ίΨ(v

= Σ J -f iΨ(\v1 wlNl)ίΦ(\vl "\vlNl)d3\v1'"d3wlNl.
yi(s)-yiM(*)«il(s)x-x«iiMW

We use the definition of the injection to write this as an integral on the original
Hubert space:

We can take the sum inside the integral and use the fact that an integral of one
of the partition functions over an element of the swiss cheese is the same as the
integral of that same function over all of BR to get

\N\

(B ) |N| ί=1 al ly(s)

Finally, we use the fact that the sum is exactly one to see that this is exactly the
inner product on the original space:

Thus the injection i preserves inner products and orthogonal sequences get sent
to orthogonal sequences.
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These two facts about i(s) combine to give us the important trace inequality

Tr [exp (- jWfS&J] ^ Tr [exp (- £Hphony(s, N, £*))]. (1)

We need one more step to facilitate the comparison of HN BR and Hi(s\ The
latter depends in a certain definite way on the exact nature of the swiss cheese.
We can "smooth out" Hi(s} by averaging over translations and contractions of the
swiss cheese. For each fixed s we can translate the covering of [R3 by a set of vectors
τ in some large ball Bd whose radius is larger than that of BR. This gives rise to a
new partition of unity {φy(s}(z — τ)}, a new Hubert space L^(uMJ,(Sjτ)), a new
injection z(s,τ), and a new operator Hί(s'τ\ Each new choice for 5 in turn produces
an entirely new set-up. Note, however, that translating the cover does not change
the truth of our claims for the properties of i shown above.

The operator we will concentrate on is H^ BR = avg/fj^^, where s runs over
s,τ

some range sm i n^s^ 1 and τ runs over all the points in Bd. It is this operator
whose potential we shall compare with the original H via machinery based on the
main lemma developed above.

First there will be some preliminary manipulations. By virtue of the convexity
of A -> In Tr [exp A] and Eq. (1) we have

In £ e*'N Tr [exp (- βH*NtBJ] g avg {in £ e"'N Tr [exp (- β/Phony(s, N, BΛ)
N s,τ ( N

Since the elements of the exploded system are disjoint, the partition function for
any of the exploded systems decomposes into a product of factors for each of the
u\(s,τ)- We can control the contribution from the cubes by noting that since both
the protons and electrons are fermions we have

, (volume of cube)

by the eigenvalue asymptotics of the Laplacian. Thus we can define

Trexp(μ ΛΓ + βΛNtCX) = c(β,μ) (volume of cube).

The covering lemma shows that the cubes take up a volume in BR that is bounded
by c\BR\/M. Thus

cubes

The product over balls can be given a bound independent of τ because the product
only depends on the number of balls of a given radius in the translated covering
that intersect BR. The number of balls of size sRt in the translated covering that

1 I f$ I
touch BR is bounded above by -——- R Ξc t (s). Consequently one has

M + 4 I BsR. I
an upper bound of the form

(c(μ,j8) £ ( ~ u.Nrr βτj \)
^avg< BR + X ς (s)lnl ^ eμ Tr [exp (- βHNBsR )] I >.
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Note that the situation is not entirely satisfactory now because we still have
an inequality that contains both H# and H. Our method for replacing the H# with
a quantity that contains H instead is the subject of the next section.

6. The Main Theorem

Main Theorem. In the swiss cheese set-up given above if the smallest balls have
radius greater than some Rmίn and the ball Bd is large enough we have

H#

N,BR ^ HN,BR + c(smίn)(l/M)(HN,BR + C(N, + N2)),

where the constant is independent of N and R and

Φmin)=C 1 + C2 (smin/(l-Smin)).

The idea of the proof is to determine the form of the operator H#

N βR, compare
it with that of HNίBR, and show that the difference between the two is an
operator that is small compared to the Hamiltonian plus the total particle number.
The present case closely parallels the original method of Fefferman; for the sake
of completeness I shall repeat most of the relevant details. The interested reader
is encouraged to look at Fefferman [1,2] for the proof in the Coulomb case.

The first thing to do is to determine the explicit form of both the kinetic and
potential energy components of H* BR . For the kinetic energy, it is relatively easy
to write down the definition of the kinetic energy part of Hl(s'τ\ perform a simple
integration by parts and subsequently average over s and τ to get the kinetic energy
part of Hu#

NBR. The result looks like the kinetic energy of HN>BR plus an error
/ c \N\ λ C

term whose magnitude is avgί — £ J|ι/^|2ίί3z1 >-d3z\N\ \ = — \N\. The factor of

C
— comes from the geometric properties of the cutoff functions φyi(s}(Zi — τ): the

fraction of the total volume over which these functions fail to be constant can be
C

bounded above by —.
M

Now we turn to the potential energy terms. Averaging the potential energy
portion of Hί(s'τ) over 5 and τ produces

Γ 1 V P P k#(7 -7 \ \.\llί(7 7 Ή 2 Λ 3 -7 /737J ) 2 A . f j \zi>zj> (\Ψ(zι> '>z\N\)\ a Zi -d z ( Λ Γ |,

where

Γ 1

ί ]
It is possible to simplify this expression somewhat by noting that the cutoff

functions coming from balls of the same size look like translates of the same basic
functions. If we isolate a single ball of size sRt from the set {wy(s) + τ}nBR φ 0
for some value of τ we have for that particular wy(s)

j φ^(x - τ)φ2^(y ~ τ)d3τ = f φl(x - τ)φl(y - τ)d*τ.
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Since the idea is to replace the protion of the integral over Bd that comes from a
given uy(s) with the simpler integral over [R3, we need to count how many such
balls of size ί in a given translated covering intersect BR.

A relevant fact to recall about the construction of the swiss cheese is that the
cheese repeats over length scales the size of the side of the cube Q. If one were to

consider a point deep inside the ball BR (here "deep inside" means more than 2^/2
side lengths of Q) and translate the covering over all τ in some cube of the roughly
the same size as Q, that sort of average would be sufficient for our purposes.
Unfortunately there are some points near the boundary of BR to take into account
as well, if one were to translate the covering over a region the size of β, one would
have to worry about what happens to balls in the swiss cheese that originally sat
near the boundary of BR: they would spend part of their time over points in BR

and the other part of their time over points not contained in BR. in order to avoid
those sorts of subtleties we are translating over a ball Bd whose radius is much
larger than R. All the balls of size sRt in Bd get an opportunity to intersect BR and
each ball in the swiss cheese lies over BR for a fraction \BR\/\Bά\ of all of the τ's.
There is still an error of size l/d due to balls that lie a distance d from the edge
of BR, but this error can very easily be absorbed into the error terms 0(1/M2)

below. There are ——I + 01 —^ | I balls of each size touching BR

for a given value of τ, and as we have just noted, translating only changes things
in the 0(1/M2) term. Putting this all together we see that

We would like to apply the main lemma to the potentials ks(x,y) we have
generated with our machinery. Since we have only made some general statements
about what the φitS should look like we are free to pick a more specific set of φitS

to suit our needs. We set Φls(x) = x(\x\^sRt- s/2)* φs(x) for some φseC$(5(0, s/2))
and note that these functions satisfy the conditions we placed on the partition of
unity functions in Sect. five. Now note that

f x

<; l )*y( |AΊ ^ 1)\BsRι_s/2\ ^ Λ V . ~ . = - — = -V s Λ i_ s / 2

has behavior almost like the desired

\BsRi\

The differences can be estimated by noting that </>?, can be trapped between
functions χ(\x ^sRi — s) and χ(\x\ ^ sRt + s). This means that the differences
between the Q[ and the convolutions of characteristic functions are fringe effects
which will change the estimates of functions and their derivatives by some
multiplicative factors that go roughly as the ratio of |# sΛ._ s | to \BsRi + s\, or the
relative size of the fringe area. Provided that the smallest balls in the covering



Thermodynamic Limit for Coulomb-like Systems 271

have radii large compared to one this error can be absorbed into the constants
below.

From the above equality it is easy to see that the derivatives of the Ql

s(X) satisfy

C

':\sRt-s/2\M
for \ β \ £ 2 and all X,

and for \β\ = 3 and XφB2sRt\B2(aRι_s),

\^C for | j8 | = 3 and xeB2sRt\B2(sRi.s}.

In order to get sufficiently nice conditions on the third derivative it is necessary
to introduce the average over contractions of the swiss cheese. This will have the
effect of smoothing out the (2-\X\)2+ singularity in χ(\X\ ^ \)*χ(\X\ ^ 1). It is
precisely this singularity which accounts for the fact that φmin) becomes singular
when smin is one. No such smoothing occurred in Fefferman's original proof; instead
he used a slightly different main lemma, one which was more forgiving in the third
derivative condition for k(x). It turns out that Fefferman's proof can not be
generalized in a straightforward way for the case 0 < α < 1. Hence the main lemma
takes the stricter form that I have used here, and it becomes necessary to introduce
an average over contractions of the swiss cheese radii,

Let us examine the functions avg(β*(JSf)) We have

avgβ?(*) =
1

1 \XL X/smin

βl'(ί)Λ

^

Ό for |

C

(Rt - 1/2)

X |^ 2^ and all β

• 5min for 1
β\ Λ Ivll 1

]"Smin all μ

One gets the following estimates for the derivatives of the smoothed functions:

< 3 and

for | j 8 |=0 and all X

Thus each of the terms in k# satisfies the conditions of the lemma. Unfortunately,
there happen to be M terms in all, so we can only get an inequality like

N2)). (1)

We get the inequality we need by comparing the operators we have with an
intermediate operator that is itself easy to understand and control. Introduce

- Σ

and examine V{_\X\~α — k^(X) — k mt(X)^. To facilitate this comparison we write

M

i= 1
+

1
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where

Φl*ΦL(X)
IB.* I

^ avg f
\BsRi\

M M

so £ (1 — 60) ̂  Σ (C/Ri) ^ C since the smallest balls in the covering have radii
i = l i = l

large comparable to unity.
Some comment concerning exactly what is going on here is in order. The image

to keep in mind is that k# looks roughly like |x "α multiplied by a "staircase
function" which is obtained by adding up a series of M functions which look
roughly like (l/M)χ( \x\<sRi)*χ(\x\<sRi)ϊorl^i^M. This picture is not perfect.
In particular, the staircase function is not exactly one at the origin, and the various
cut-offs that are averaged together to make the staircase function do not all have
the same weights: they actually have weights that are based on what fraction of
the total volume of BR is occupied by balls of size /. The correction term containing
the factors Q1

0 was thrown in so that fet would vanish at the origin. The second
correction term exists to absorb the fluctuations in the volume fractions and thus
give all of the terms in fct the same weight.

It turns out that k\ - k\nt has the right behavior, although there is a slight
difference between the cases α < 1 and α > 1. Consider first the case α > 1:

1. As *->(), RJXf-ik^X)^ and k[nt(X) ^ C/R}9 where C can be chosen
independent of smin.

2. Out near \X\ = smϊnRhR«k\(X) = c sm« ^ C and R?fc|nt(*) - c smi

α

n ̂  C, where
both C can be taken independent of smin.

3. In between these two values of \X\ the functions R ί \ X \ a ~ 1 k l ^ ( X ) and
^ ί |Z|α~1/cin t(J\Γ) can both be bounded above by some constant C which is
independent of both i and smin.

This produces the nice derivative estimate

4. \d'(k\(X) - feU^I^^-iyn^.-ifrrr-) for 1*1 ̂  S^R'
^i I Λ I \ l Smin /

In the case α < 1 we have

5. As X^Q, k\(X) = 0 and k{nt(X) ^ C/R*9 where C can be chosen independent
ofsm i n .

6. Out near \X\= smin*£, Rfk\(X) = c a^ ^ C and Rfk*nt(X) = c-sm^ ^ C, where
both C can be taken independent of smin.

7. In between these two values of \X\ the functions R*k\(X) and Rfk\nt(X) can
both be bounded above by a constant C which is independent of i and smin.
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This case has derivative estimate

8. |a5(fc|W-fcjn t(x))| g l . = for \X\ίsmίnR,
Λ f I A I y 1 Smin J

Out beyond the neighborhood of the origin we can get away with the following
somewhat cruder estimates:

9. \d^(X)-kinί(X))\^—-- for 5m i nK ; g |ΛΊ ^ 2K; and \β\ ί 3.
\Λ\ \ 1 Smin /

10. For 1*1^2^, Q'(X) = 0, so ( X ) = - . Also k\nt(X)

These hold for all α in the range of interest. The important thing to note here
is the fact that the intervals (ssimRί9 2Rt) are all disjoint. Given that the swiss cheese
radii satisfy ^/ + 1 ^max(15,2 1 / < x }R i we can take a sum over i in the inequalities
4, 9, and 10 for α > 1 or a sum over i in 8, 9, and 10 for α < 1 to get

in both cases, independent of whether α is less than or greater than one.
C(s }

An application of the lemma gives F[/ct - feint] ̂  -- -^L

so that

Using estimate (1) to control the final summation we see that this is

N2))

The only term that remains to be controlled is F[/cint(X)]. This potential is very
easy to understand because |^ΓΓα has positive Fourier transform; up to self energy

C C
terms that go as — £ (N^ + N2)— ^77(^1 + N2) the operator 7[fcint] is posi-

M = K M
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live. So finally

and

^ V\_\XΓ*] + ~-(HN,BR + C(N, + N2)).
M

Putting this together with the kinetic energy results completes the proof of the
main theorem.

7. The Thermodynamic Limit

With M chosen so large that φmin)/M ̂  ε one can substitute the conclusion of
the theorem into Eq. (5.2) and obtain

In £ *<"-<>" Tr [exp ( - β(l +
N

(1)
I ί=ι

Here ε = (ε, ε). The next ingredient we will use is

(2)

Inequality (2) is equivalent to the Lipschitz continuity of the pressure ΠR(β, μ).
This can be shown by the following:

1. ΠR(β,μ) is convex in both variables.
2. ΠR(β,μ) is bounded below: it is easy to cook up an N particle wave function

(\N\<c BR\) for which < H N t B R \ l / \ \ l / y ^ c \ N \ . Thus ΠR(β,
\*>R\

3. ΠR(β,μ) can be bounded above by using the stability of matter inequality
in the form —^AN+V\_\x\~a ~\^ —C\N\ which is a trivial consequence of
the short range inequality from Sect. 4. This implies that ΠR(β,μ)^

Putting (1) and (2) together gives the desired inequality
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M \}

£ Cί(s)ln X ^"Tr [exp(-^5J] H. (3)
= ι #£0 ' / J

Finally, one can make this a statement about pressures by noting that

c ίsl 1 1 M I

,î ^ i^andthus^(^For the purpose of proving the thermodynamic limit, it is more revealing to
average the left-hand side of the last inequality over contractions and rewrite the
inequality in the form avg{ΠλR] ^ max { avg ΠλRk } + ε, where smin ̂  λ ̂  1 and ε

λ k λ
depends on M and smin via φmin)/M.

Claim. This inequality, combined with the fact that ΠR is bounded below (statement
2 above), is enough to prove that lim avg {ΠλR} = Π^ exists. To see this, let ε > 0

K-»oo λ

be given. First pick M sufficiently large that φmin)/M < ε, and then choose any
legitimate sequence of radii {Rk}. These radii induce an .R1 such that avg{ΠλR} ^

max{a\gΠλRk}+ε for all R>R1. Now there are two alternatives: (1) there
k λ

exists a new sequence {Rk,} of swiss cheese radii chosen from R > Rl for
which max{avg/7A Λ ,} 5g max {avg 77^ J — ε, in which case we can choose an

k λ k λ

R2 > R1 and go through the loop again or (2) max {a.\gΠλRk} — ε ̂  avg {ΠλR} rg
k λ λ

max {avg ΠλRk} +ε for all R beyond some ^c ri tiCai? m which case we are done.
k λ

Finally, one can use (3) with very large R > #criticai and correspondingly large swiss
cheese balls chosen from R > #critical to show that ΠR ^ Π^ + 2ε for R sufficiently
large.

To show that ΠR itself has a limit we need to prove that for R large we have
ΠR > Π^ — 2ε. Suppose to the contrary that we can find a sequence {Rj} of radii
going to infinity such that ΠRj < Π^ — 2ε for all j. We have at our disposal an
infinite sequence of these radii, so we are free to select a subsequence of radii such
that the values Rj obey the requirements for swiss cheese radii. We are also free
to pick any number of these radii for use in a special swiss cheese. Let us choose
M radii where M is so large that even if we choose smin = 1 — δ for some small δ
to be specified we can still have φmin)/M < ε/100 in the main theorem. Now consider
one of the Rj. For (1 -δ)Rj^R^ Rj it is easy to show that ΠR<Π00- ε:

1. By minimaxTrCexpί-jSH^J] ^ττ[exp(-βHNtBR)].

- 11 - δϊ~*π* - (1 ~ δr"(π- ~ 2ε)
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Thus for this special swiss cheese we have

^ max ίaγg ΠλRk} + ε/100
λ k λ

^ (1 - <$Γ3(/7oo - 2s) + ε/100 ^IJ^-ε

for δ sufficiently small, which contradicts our original assertion that
lim avg {ΠλR} — Π^ . Hence there can be no sequence of bad radii, and the pressure

R-+OO λ

goes to a finite limit as R-> oo.
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