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Abstract. In this second paper the technical part of the results about the
Supersymmetric JV=1 massless Sine-Gordon field theory, at finite (space)
volume, is given. The proof that the theory exists and is analytic in the
coupling constant λ and that, at finite (space) volume, its Witten index is 1, is,
therefore, completed.
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Introduction

This paper completes the previous one [hereafter called (I)] giving a reasonably
detailed version of the proof of Theorem 1. We have chosen not to squeeze this
proof in the appendix of (I) because it is another example (after those given in
Gallavotti, Gallavotti and Nicolό [1] and Benfatto, Gallavotti and Nicolό [2]) of
how the tree expansion allows us to use the Renormalization Group to provide
very good estimates of the perturbative expansion of the field theories.
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1. The Definition of the Effective Potential

As discussed in Sect. (4) (I) the effective potential is defined by the equation

nx> L L V ^ (i 4)(i)

Remark. All symbols we do not define here have been defined in (I) and their
definition is unchanged.

The original Euclidean interaction ViN\φ[=N\ψ[=N]) defined in (3.3),(I) is
rewritten in a slightly different way for technical purposes:

x J d2xd2y:eiaiσίφίύN]{*) + σ2φί-N]m:e-«2σίσ2Cί-N]^
Λ2

where we used that xp{2) ψ{1)=- liψ^ψi\ the fact t h a t : eίθ'ψί ~N]{x): - eiθ'ψ[ ~N](x) as

= (ψ[=N](x)ψ[=N]{x)} = 0, and finally the well known relation:

g e ^ a 2 φ ( y ) ) . e-a2σισ2C(x,y) (12)

Remarks, i) The reintroduction of Grassmann variables 0's to write

ψW ψ^=-2ί$d2θeiθ-ψil) (1.3)

is a useful technical device. It has nothing to do with the notion of superfield which
we will not use anymore.

I 2 '2J 'ii) With A we will always mean the space-time volume — —, — ] x | — —, —
where T can be finite or infinite.

2. The Tree Expansion

We will not give here the details of the tree expansion but we refer to Gallavotti et
al. [1], and Pordt [3]; we just recall that one gets it starting from (1.4), (I) with the
following recipes:

a) Integrate one frequency scale after the other,
b) At each frequency perform a cumulant expansion (in λ\
c) Collect this multiple expansion together.
A tree is just a graphical way of individuating a specific term of this expansion,

which is made of truncated expectations of truncated expectations of ... on
different scales. The point is that we can get a very good estimate for each of these
terms which takes care of the natural length scales of the various factors.

Tree expansion allows us to incorporate pretty well the renormalization
counterterms and this is its more relavant aspect so that one is also able to use it to
study the flow of the running coupling constant.

In the present case, nevertheless the theory is relatively simple and does not
need counterterms as discussed in the next section. Tree expansion is, here, just a
reorganizing device apt to get best estimates.
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3. The Counterterms

As discussed in Sect. 9 of (I) in the scalar Sine-Gordon theory the only
counterterms are constant counterterms (field independent): = Ck(Λ,N), k^n if
α2 e [α2_ 1? α

2) which are divergent as JV-»oo. No field dependent counterterms are
needed up to α2 = 8π, where the theory is not anymore superrenormalizable.

An analogous situation is present here with the difference that now

(3.1)

Nevertheless it is well known that the supersymmetry, has the effect of
"smoothing" the divergences. This is what, of course, happens also here. In fact if
the theory is regularized in the ultraviolet and in the infrared in such a way to be
still supersymmetric in the sense discussed in Sect. 2 of (I) then it follows from the
results of Sect. 6 that all the counterterms are equal to zero:

Ck(Λ,N) = 0 Vk,N,Λ. (3.2)

For technical reasons this has been proven up to α2 = 2π, but we conjecture that it
is true at least up to α2 = 4π.

Moreover also if we would choose a regularization of the theory which does
not preserve the supersymmetry, the original supersymmetry still leaves its mark in
the sense that now the counterterms, one would introduce in analogy with the
scalar case, are not zero, but remain finite as iV—>-oo.

4. The Recursive Construction of the Effective Potential

As discussed in Sect. 2, see the references therein, a tree is a graphical object
corresponding to different truncated expectations. At any bifurcation of a tree is
associated a frequency h corresponding to the scale length γ~h of the correspond-
ing truncated expectation. Therefore in a tree expansion there will be a sum over
the trees and a sum over the frequencies of the trees.

Starting from the definition (1.1) of the interaction it is possible to write the
general structure of the expansion of the effective potential on scale k:

~ °° n

V - Σ» Σβi λqi + 2q2 X \d2θ J d2x J d2xd2y
1 0 ff,ffi;ff2 ΛQi Λ2i2

where

(4.2)

d2θid
2θ2...d

2θqι,

(x,x,y), (4.3)
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and the Wick product is defined as usual.
The crucial part of the tree expansion is still hidden in the ̂ )qι(Λ, N; £, g, θ).
Its explicit expression is:

^qi(Λ,N;x,σ,θ)= £ τ Σb [σ i ; σ 2 ] HjD^^yj) VΛ%τ,h;Έ,σ=,θ),
v\(τ) = q\ ho>k 1
V2(τ) = q2 (4.4)

where £ τ is the sum over the topological trees, Σb is the sum over the frequencies of
the tree bifurcations, v^τ) and v2(τ) fix the number of final lines associated
respectively to V1 and V2, h0 is the frequency of the lowest bifurcation, \σx σ2] is a
product of σ's due to the decomposition of the sinαφ functions appearing in V2 and
the D[-N] also are associated to the final lines of V2 type.

The whole problem to control the a{f)qι is, of course, to have an explicit
expression of V^N(τ, h;%,σ, θ). Before starting the construction of \^(τ, h;x,σ, θ)
with a recursive technique we rephrase the estimate of Theorem 1 of (I) in terms of
the a£?qι(Λ,N;z9Q9θ) in the following way (we leave the transcription to the
reader):

Estimates of Theorem 1. We define

\W^qx(Λ,N ^^θ)θi\\ = Σσ_ ί dhδix^^^θθjJ^A.N ^q,^, (4.5)

where we excluded one integration using the translation invariance, and

0I=UJSI0J j = (*i,ΐ) ^ ( U ) /e{l,...,^}. (4.6)

Estimate (3.5) of (I) is equivalent to:

\\*ΐ?qM9N;ί9q9θ)θI\\^C^ + 2*>\ (4.7)

where for fc^O C depends on α but not on k,Λ,N.
For k= - 1 (in this case F ( ~ 1 } = l

\\J-q\\Λ,N;x, σ, Θ)Θ7|| ̂ (C(L))(^ + 2^ (4.8)

and C(L) diverges as L->oo, but is still N independent.

Remark. The factor θ7 tells which and how many xp[-k\x) are present in the
estimate of that part of the effective potential.

4.1. Recursive Expression for V}kl

We assume that τ has s0 subtrees τ l 5 ...,τSo merging in its lowest bifurcation of
frequency h0. Graphically:

Fig.l
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We consider the tree before integrating over the x's and summing over the σ's.
Therefore any final line has a label (x, σ, r), where r e {1,2} tells which potential Kr is
associated to that final branch. Fixed (x,σ,r) we have the following relation:

χ /Λgiαφ^ ho](χ(i),σ(D). . g M = h o ] (x ( 1 ) ,0 ( 1 ) )Λ

/. giaφl ^ ΛO](χ(so), σ(so)). . ̂ t i Λ O ]( X (S O ), fi(*o)) .\\

where

S[>k^.) — Sφ[>k]( )£ψ[>k]( ) and the truncated expectation is defined with respect
to the joint measure \P{dφ{ho))μ{d\p{ho)){-).

Extracting from the right-hand side of (4.9) the dependence on the fields φ[-k\
ψ[-k\ with standard techniques we obtain the following recursion relation:

VΛ%τ, h x, t,β)=—. ft tfW, /?(i); ϊ(ί), g(i>, ?(i))
S! lS o !

{

φ

<h°X^g)- L

• ' ] •
6 [Λo]" e - - ..e - . ; , . . .

/. ^iαφt ^ ho](χ(*o), σ(so)). . e i ψ l ί ^o](χ(«o), g(«o)) Λ\

where:

and Xj, x7- can be now x, x, y and the same for σ^σ,-).
From Eq. (4.10) one can write an explicit expression for Vj^N but we will in fact

look for a global estimate for this expression. To do that we have first to find an
appropriate way of writing the factor

όίh0]\\ e = = " β -Λ J

/. eiaφlhθ~\(χ(so), σ(*0)). . g I y fcθ](χ(*θ), fi(*θ)) .\\ (411)

of (4.10). This will be discussed in the next section.

5. The Factorization Theorem

The results of this paper are mainly based on the possibility of obtaining an

expression for —- <^o ]() such that one can apply separately on it the bosonic and
5 0 .
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the fermionic estimates. To discuss this result, which does not strictly depend on
this field theory model, we introduce some simplified notations.

We define

φ(ί) = aφ[h°\x{i\ g ( 0), ψ(ί) = ίψ[h°\x(i\ θ{i)). (5.1)

Then

α2 U^V\ τ"">)

where

= ~ C(i,j) = α2 ^V\ ),

<ψ(ίMJ)> = - S(i,j) = £/£o](τ(£>, τ®),

(5.3)0 1 ^ x<p).

We are interested to find an appropriate expression of

$T/.ei$ e e Λ

where <fT is with respect to the product measure J P(dφ)μ(dψ) ( ).
Equation (5.4) can be expressed as a sum of Mayer graphs using only the

algebraic structure of the truncated expectation, namely:

(5-4)= ^ Σ Π (e^WM-l), (5.5)
s-geGξ {i fieg

where Gc

s is the set of all the connected Mayer graph with vertices {1,2,..., 5}. The
factorization theorem is the following (its proof is in Appendix A):

Theorem 1.

JePb

x Π b ^ T ( eiφ:\Pb) <$τ(;.eiψ(Pl):,...,:eίψ(Pt):,:eiψϋί):,...,:eWs):)
1

1 '
= -τ Σ Ylb^τ('-el

(5.6)

where
s s

Σ —V V V V V v ί l l P - f ) ίS 7Ϊ
~ 2-um L& Lt h h{Pb}λ\Vj Γb~ίΛ) \J'')

{Pb} 0 {l...s}D0t 1 (si,...,s t) | F b | = s b

\@\=m Σbsb = m

and

vi J s )-\ J s ) ~ U 6 r b P.S;
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Remarks, i) Fixed m, £<# is the sum over all the possible groups of m vertices
e{l, ...,5} and

^ J (59)

and we define s = s — m.
ii) For any fixed 01 and t we remark that

Σ, 1=CT, (5.10)
( s i , . . . , s t ) ; Σ b s b = m

1

where Cί is a constant independent from J> and ί. £ { P b } is the sum over all the
| P b | = s b

partitions of the vertices e f in ί groups of s1,...,st elements respectively.
Moreover

ml " (5.11)

ϋi) V(Λ)= Σ Vϋ). (5-12)
JePb

^τ(:eiφ:\Pb) = ̂ τ(:eiφ{aύ:,...,:eίφ{a^:), (5.13)

where MDPb = {au ...,flSb}
iv) Finally we remark that, due to the definition oϊψ(ί) in Eq. (5.1), it is clear

that

δ(eiψ(i))~1=δ(e~itp(ΐ)). (5.14)

To understand how the estimates will be performed we rewrite (5.6) in the following
way

(5 6)= - ^ Σ^ Σ, Σ Σ k Γ ' '•",""• 'mw.
Si 0 {l...s}D® 1 (su...,st) \Pb\=sb ml

\9t\=m Σbsb = m UPb = @

1 1
b — Γ ^ τ ( : β ^ : \ P b ) — <f Γ ( β / v ( P l ) , . . . , eiψiP<\ eiψUί\ ..., e f ^ > ) Π i «{e"ft/;

5 & ! πs! 1 J

(5.15)

The claim is that, after integrating over the θ's, we are able to give a good bound to
the { } independent on the choice of Pb.

Once we pull the estimate of the { } part out of the multiple sum, from
Eqs. (5.7)...(5.11) it follows:

^Σ» Σ^ ί Σ Σ;pb}(ίUU ,V f)^CS2, (5.16)
SI 0 {l...s}DM 1 (si,...,s t) | P b | = s b

\Sk\—m Σbsb = m

where C2 is a fixed number > 0.
We insert (5.6) written as in (5.15) in (4.10) and we obtain a recursive expression

for V^]

N. We are able to manage because we can provide appropriate estimates for
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all its parts,

1 so so
—_ V V V V V c!
„ i Lm L® Lt L L{Pb}V0*'
SQI 0 {l...so}D0l 1 (si,...,st) \Pb\=sb

/s 0

v(f! s ! ct|W ΓΊ y(ho)(τ(ι) L(ι).χ(ι) σ(ι) n(ι)\

V i

so

1

so

1

1
/ T—r XpT ( iφ(ho) I

x l>rτό(ΛoA e :lp

s0 \

i 1 (Λo) _]/

and the ϋ 0 means that we are referring to the vho bifurcation.
In the next section we prove the bosonic and the fermionic estimates which

allow us to get an estimate for the coefficients of V}^N thought of as a polynomial in
the 0's variables.

6. The Bosonic Estimates

The bosonic estimate is an estimate for

= [^-^[υ^J-hK'>ΛfW%
(6.1)

We have introduced the subscript v because this estimate will appear in many
factors associated to different frequencies in the estimate of V$N. Essentially, given
a tree τ, each of its bifurcations has a factor like (6.1). For the estimate being a useful
one it must give:

a) a non-factorial dependence on the number nv of final lines merging in that
bifurcation,

b) a good locality factor saying that this function is essentially local on the
scale y~hv,

c) a good hv dependence which would make the final sum over the frequencies
convergent as N-+oo. We denote:

Tϊ&(hυ)(:eiφm'\pb;v)= ~JF V(Tv,Pb,Zv\pb,<Iv\pb), (6-2)
sb' sb'

where τv is the tree whose lowest bifurcation is v and Pb means the restrictions only
to the subtrees associated to Pb. We estimate (6.2) using the Battle, Federbush
technique [4], (see also Glimm et al. [5] and Gopfert and Mack [6]).
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The final result for a generic frequency hv and a generic tree τ is

ft F^\τV9Pb,xv\Pb,σv\Pb)
1 ^

Σ Ws(Iλff
ίepb

x Π (y^kωlf"^^' 2^^ 0], (6.3)
iePb V J

where C3(y) is a function of y which can be bounded by Clogy,

t

m = \0>\:=γji \p.\ (remember that {Pb} is fixed),
1

t t

nv\& = Σb nv\&b = Σb Σ nυM J
1 1 iePb

and n,(ί) is the number of final lines which merge in the bifurcation viι) which is one
of the sv bifurcations immediately before v.

τ^ is the subtree of τ which has v{ί} as lowest bifurcation.

U^\^\ q") = U*»\τf) [see Eq. (4.10)] .

δ is a number G(0, 1),

where {ί1? ί2,..., ί s j = P b and d(τ l 5 . . . , τfc) is defined as the distance between the k
cluster associated to the subtrees τ l 5 . . . , τk. (yhv\xτφ\) is a slightly symbolic notation
to indicate a first order zero appearing when all the points in τ ^ shrink to a point.
This zero turns out to be crucial in the estimates only when the subtrees τ ^ has only
two final lines and it is neutral. In that case (yhv\xτy)\) = (yhv\x+ — x~\)

Therefore we have for the bosonic part the following bound:

v FT Λu^iΊ v h ( l ~ ε ) ^ n r ( ' ) , 2δn (i), 0 //C /1\
X 11 17 I^τj/Ίλ υ υ V° 4 J

iePb
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7. The Fermionic Estimates

From Eq. (5.17) we define:

Γ ίsv \ ~ 1 Ί
ώψ[<hv]\e )\lliώψ[<hv]\e ) J

r i τ . {h)p . (h)p . ( h } . sv _. ( h , . Ί

| _ ί ! s ! {hv) ' ' " ' ' ' " " ' i ι {hv) j

(7.1)

where θ{v) are the 0's associated to the final lines of type Vι [see Eq. (1.1)] which
merge into the bifurcation v.

If τ has qί final lines in its bifurcation v, the number of 0's which are present is at
most 2(q1\υ)^2nv, where qί\v is the number of lines of type 1 which merge in v.
Therefore θ{v) is a 2qγ^-components vector.

To get the fermionic estimates we have to expand ^ ,

Λ(τw, hv, {Pb}v, xw σw θ{v)) = Σiv ^BIυ(τw hϋ9 {Pb}v, xw σv), (7.2)
{ί...2qi}\vDlv

where

&ϊl= Π θj. (7.3)
jelv

Remark. Looking at (7.1) it is clear that fixed θ(fi, BIv is just the sum of the different
terms in the expansion of (7.1) which produce a factor θ(fi in front. The number of
these terms is bounded.

In fact looking at (7.1) it is clear that there are C]/vl terms, with C 4 > 0
independent from the other parameters. Moreover the following relation is trivial:

{1...2qι}\V

υDlv ~~ ~
\Iv\=mv

Once that we know that BIv of Eq. (7.2) is the sum of a controllable number of
terms we look for an estimate of the generic of them. The generic addend of BIυ has
exactly the form (7.1) with the only difference that each term eiψ has to be replaced
by a product of i/ 's. It is on these expectation or truncated expectation of products
of fermionic fields that we apply the Gawedzki-Kupiainen estimates they used to
study the Gross-Neveu model [7].

Therefore we have

BIυ = ΣQ Bψv, (7.4)

where ΣQ1 = &lv\ a n d Bψv satisfies the following ρ-independent estimate:

where d(Pί ...Pt;jί ...js) is the distance between the subgroups of clusters

τJ P i , . . . , τv\Pt [see Eq. (6.3)] and the clusters

as each ψ{hv) or ψί<hv] brings a factor y2.

τυ\Pι, . . . ,τ ϋ | p t [see Eq. (6.3)] and the clusters τ J J l ? . . . , τ J j V The factor y v 2 appears
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8. The Final Estimates of the Effective Potential (I)

From the definition (6.1), (7.1), and Eq. (5.17) we have:

U\Σ *K hυ9 {Pb}ω Sυ9 σv) Λ{τw hw {Ph}v, xw σv, 0^)1 (8.1)
veτ ){Pb}v J

\τw K {Pb}v, xΰ, ?v, θty = Σiv 0?X(τ,, K {Pb}v, xo, συ).
{1...2qι}\vDlv

and

We need the following decomposition of ^!^(τ,/z;^, g, 0 :

K$(τ, b; s, g, θ) = Σi W/U τ > Λ; s, g), (8.2)
{1...291}D/

where fixed τ, {1 ... 2^} are the indices associated to the 0's appearing on the final
branches.

We observe now that we have the following identity:

Π Σiv = ΣL Σ I Σ Π ΣJ V . (8-3)
veτ {1...2qι}\υDlv 0 {1...2gi}D/ (Si ...«#) t;beτ /n{l ...2qι}VbDlVb

\I\=L ΣJnJ = L \Ivb\=nb

where τ is fixed and has in its final lines 2qι 0's. Lis just the number of the 0's which
are extracted: the order of the generic term of the polynomial (8.2).

Σi sum over all the possible choice of L 0's between the 2qί which are
{1...2qί}Dl

\I\=L

present. Moreover

ΣL ΣI l ^ C | ί ι . (8.4)
0 {1...2qι}Dl

\I\=L

# is the number of bifurcation of τ which can have 0's in their associated truncated
expectations,

# = C 6 9 l . (8.5)

Σ chooses how many 0's one picks from each of these bifurcations,
( S i ...n#)Dl

Σ l^C^C?* 1 , (8.6)
( « i . . . « # )

and finally Σiv decides which 0's have to be chosen at each bifurcation.
In{1...2qιfυίDlυί

| / W 1 | = » i

Remark that a fixed 0 can be chosen from many different bifurcations. Then

ΣiVί l ^ C ^ i ^ C S - , (8.7)
I n { ί 2 q } i D l
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where nVι are the final lines of type 1 which merge in the bifurcation vί. Therefore
we have

Π Σ/, = Σi (U Σiv V
 ( 8 8>

veτ {1...2qι}\υDlυ {1 ... 2qι}Dl \veτ κjvlv = lj

and from the previous inequalities

Π Σiv ^ c i q i Π clυ- ( 8 9 )
veτ uvlv=l veτ

Therefore we can rewrite (8.2) in the following way:

VΛ%τ,h;z,σ,θ)= Σi. A(U Σ Z^ΠC?)" 1 )

(8.10)

This is the appropriate expression to estimate. In fact we estimate the [ ] part
independently from {Pi}v and Iv and then, using (8.9), (5.16) and the definition

one realizes that

Σ = Σ Sv\{tJ,Sί\,...,stυϊ)C2"^ί, (8.11)
{Pb)v tPb}v

Π Σ Σ/. (T
veτ {Pb}v uυlυ = l\ v

We conclude this section writing the explicit expression of the
a%)qι(A9 N;χ,σ, θ) as an expression in the 0's variables in terms of the quantities we
will be able to estimate

= Σi θA Στ ik
{1...2qι)Dl \vι(τ) = qι ho>k

x f π Σ Σ (n
\veτ {Pb}v uvlυ = l \ v

x Π
veτ

τυ> hv, {Pb}υ, Xυ, qv)
 Biv(

τv> K {pb}v> xv> σ j \

Σi θ^^.j^N ^q), (8.13)

and immediately:

= Σσ ί d2x J d2xd2yδ(xί)\^qι.jC(Λ,N;^σ)\ = \\J^qi.jC\\. (8.14)

The study of the right-hand side of (8.14) is now accessible and it will be discussed
in the next section.
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9. The Final Estimate of the Effective Potential (II)

From Eq. (8.13) of the previous section, it is clear that we need an explicit
expression and an explicit estimate of

Γ(τ,{hv},{{Pb}v},{Iv},x,σ)

1 veτ

(9.1)
and of

Jdίδ{X l) |Γ(τ, {hΌ}9 {{Pb}v}, {Iΰ},s, g)|. (9.2)

We start considering the case in which q2 = 0; this means that all the final
branches of the tree τ bring the part ViN) of the interaction [see Eq. (1.1)]. In this
case n = v(τ) = qί. From the estimates (7.5) and (6.4) we have:

\Γ(τ,{hv},{{Pbl},{l«U>z)\

xflί Π π (/"M
veτ \Pbe{Pb}v iePb

x χ\he{-δy^d{τv\Pb)0^QχV-δy^d{P, ...Ptυ;j1 . . . 7 s > ' 7 ^ ) . (9.3)

We remark that

i) The frequencies ht in the factor f] t y
4π "ι are the frequencies of the first

bifurcations the final lines meet. y^h is, essentially, e^c " (0).

ϋ) Σbd(τv\Pb) + d(P1 ...Ptv\h .. hv) = d*(τΰ), (9.4)
1

where d*(τυ) is the distance between the sv clusters merging in τv = length of the
shortest path connecting all the clusters τVl, ...,τVs .

iii) mv — tv^sv [for the definition of mv see Sect. 6, following Eq. (6.3)] (9.5)

We observe that for a generic choice {/„} with the constraint Σ\Iv\ = L^2nv we
have: v

with QV ̂  2nv, ήv is the number of the 0's which are chosen at v. As a θ cannot be
chosen more than once ρv, = nv + nv>^thQ number of 0's which are in u ^ and
merge in v'.
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We can rewrite (9.3) as

\nτ,{hΰ},{{Pb}v},{IΰU9q)\
2

< • " α

-I" Π Π
Pbe{Pb}v iePb

(τυ))fK~K')nvY (9-7)

In Appendix B we prove the following estimate for the first factor of (9.7),

°)π

(9.8)

where M is a fixed number defined in Appendix B.
Plugging this estimate in (9.7) we get:

\Γ{τ,{hυ},{{Ph}v},{lvU,a)\

x Π Π(7*1Ί*τ(/.l)(1" ) 4 -ϊ 1 2 ί 0 ' ϊ > °exp(-SV* d(τ1,))). (9.9)
Pbe{Pb}t; iePb

Remark. The ̂ o ^ is introduced just because we will not make any use of these
zeroes when nv>2. This will be discussed later on. Using the obvious inequality:

with δ' < δ, we easily get (see Gallavotti [8, Appendix A]),

) Π ( π Π (
veτ\Pbe{Pb}v iePb

-r -2(sυ-l)Λ,,

veτ

v ΓΊ ΓT (^-{hv-hυ')\{l-ε)dnτ^ ,2δOτ(ι) ,0X 1 1 1 1 (7 ) Q v

Pbe{Pb}v iePb

= using Eq. (8b)

= Ku ) Π 7
t eτ

X | | | | (γ >) nτv ΰτv [y.ll)
Pbe{Pb}v iePb
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with K>0; therefore
( (--^k\n

\Γ(τ,{hv},{{Pb}v},{Iv},x,σ)\S(KC(M,γ)r{y\^ J ) y2k

x Π

We have now the following result:

Uΐ)

qι=n(Λ,N;x,q,θ)θI\\SΣ^ Στ (U Σ Σi

ho>k veτ L

Γ/α2 \ 1 α2 Ί
(hv-hv>)\[ — - 1 «y + 2 - ( l -ε)όnτM ,2δQτU) , 0 - —Ql(hv ~{hυ> + l))γ{nυ <M)

xy Lv4π J μ " Jy 4 " " J . (9.13)

Let us consider now all the τ's with vί(τ)>2. It is clear that if α 2<2π:

5 Π ^

with

α 2 -2π( l-ε)

(the worst situation is when nv = 2, Qv = 0). Therefore

(9.13) S (C3(y))Sv Cn

9

vy " ρ ( α 2 ) {hv ~ V ) " ^ y " ( ρ ( α 2 ) " ε ' } (Λυ ~ V ) " % (9.15)

choosing 7 enough large so that

/^(C3(yrq% (9.16)

remembering that C3(γ) depends on y logarithmically, it follows that:

Σ{hv} Π y-^a2)-ε){h--hυ')n^D\ . (9.17)
ho>k veτ

We remember now (8.12), that £g:g (const)" and finally that

X l = J / ^ 2 4 " (9.18)
Vί(τ) = n

(Benfatto et al. [2]).
From all that we easily get

l l ^ . ^ i V ^ ^ ^ ^ I I ^ D ^ y f e " 2 ) " ) " ^ ^ (9.19)

which is Eq. (4.7) in the case q2 = 0.
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Remarks. The result we have produced is still incomplete because
a) We have not shown how to manage the case q2ή=0.
b) We have not considered how to treat the case of τ with v1(τ) = 29 v2(τ) = 0.
c) We have not kept explicitly trace of the volume dependence which we

expect to be present in D2 when fc= — 1.
Nevertheless once one has all the steps explicitly done for a class of trees it is

easier to recognize that it is not hard to extend our result to the whole class of
possible trees.

Extension to the Terms with v2(τ) = q2>0. It is not difficult to envisage the
modifications to the estimate of (9.1) when q2φ0.

[]/ 74 π is substituted by
1 /

ΓLy4π ιj(lV2 π Je+*2w«<h**»>ή ^e-^n^c^K^y ( 5 U 9 )

where the second factor has exactly the same origin of the first but refers to the lines
of type 2. The third factor is already present in F2

(AΓ) [see Eq. (1.1)].
hj is, as hb the frequency of the first bifurcation where the / h final line merge.
b) Each final line of type 2 neutral, that is with σjiσj2= —1 brings a field

dependence

and this produces a "first order" zero in (Xj — yj) (the truncated expectation at
level hj has it).

Also in the next bifurcations where only type 2 parts merge and the total
charge of the bifurcation (cluster) is zero then a zero is produced when all the
coordinates coincide. With these remarks the estimate (9.7) has to be substituted
by:

\Γ(τ,{hv},{{Pb}v},{Iυ},S,σ)\

Q2

XQxp{ — oy a (τv)) [[ 11 (7 \χ

τ^\) v v v

Pbe{Pb}v iePb

 v

(9.20)

where in the definition of d*(τυ) the points Xj and ^ have to be thought of as
connected. This point will be discussed later on. n[l) and n{

v

2) are, respectively, the
number of lines of type 1 and 2 which merge in v;
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The next step is, as before, to integrate over the £. At this point we use the
properties of D [-N](x,^). From the definition

= -T1 Σ e" ( *""«p^+D I ,*" 1 (JE, j i ) (9.21)
L, pe2π]LZ2 /

Pi = O

and

UmD^N\xJ) = δ(xJ), (9.22)
N->oo

\D^N\x,y)\Sy2Ne-yNl~χ-~yl. (9.23)

Then the right-hand side of (9.20) can be decomposed in 2q2 terms, each one with at

each j or the factor - -^ Y eίpCx~~y) e x p ^ - or the factor D[=N\
Pepιπ=0

We will consider first the two extreme cases: a) at each j there is the factor
D^N\xJ);

b) at each j there is — JJ Y e tp(*~y)exp JN -
Pi = 0

From this examination we will infer easily the estimates for all the intermediate
situations.

Remark. The absence of the p1 =0 term in the definition of D[-N] looks useless. In
fact all the results discussed here are valid with D[-N] instead of D[-N]. In this case,
nevertheless, the supersymmetry of the regularized theory is destroyed.

Case a. Substituting D[=N] instead of D[=N] in Eq. (9.20) and performing the
same estimates which produce inequality (9.12) we get:

(hv ~hV') - (1 - ε)δnW; 2δn

(2)\ 0δQv; 0 + j — - 2) q(

v

2) + - q[,2) ~ - (1 - ε)δnW; 0δQv; 0

x y L \π / J

-£-Ql(hv-(hv+l))χinv£M)~\

xy 4 π , (9.24)
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where q{

v

2)± = qi πnv... q2 and q2 corresponds to those final lines associate
respectively to σjισJ2 = ± 1 respectively. Of course q2 + q2 =q2 Performing again
the sum over all the frequencies, for a given tree, one immediately realizes that

due to the factor γ 2π q2 y 2π ' 2 these contributions tend to zero as N-+co.

Case b. Here the estimate is done integrating again over all the coordinates
except the zj = (xj — y^). Then the estimate becomes:

\Γ(τ,{hv},{{Pb}v},{Iv},z,σ)\

*— f n.dz,n,e- e 2^ i f f^< c [-w l (^-C I < h j l^»
~\Λ\9*ώ2 iJ J iJ

X yy
(hυ-hv>)\2-(l ~ ε)δnw, 2δnw, 0δQv, 0 + (

y L ° \2
(hυhv>)\2-(l ~ ε)δnw, 2δnw, 0δQv, 0 + ( ~ - 2)n(

t;

2) - (1 -ε)δn^,OδQv,θ\ /(Λ . . .

x y L ° \2π ) υ J . (9.25)

NN

Calling C[hj;N]= ΣΛC ( / l ) and using the decomposition

N- 1

one easily realizes that the first factor is bounded by JΓ9 2, with Jf > 0. The second
factor is easier to control and it gives also a term which can be bounded by ̂ qi with
^ > 0. Finally it is an easy task to realize that everytime there is at least a factor
D[-N] for some j the corresponding contribution is = 0 in the limit ΛΓ->oo.

Remark. The case n = q2 = l has to be treated separately and together with the
case n = qγ = 2. This is done now:

The O(λ2) Contribution to V^)N. We have to discuss this contribution separately
because if we try to use the previous estimates we will get a divergent result as
N-+00. The O(λ2) contributions can be graphically described by the following
trees:

Fig. 2

If we apply to the first tree the estimate (9.13) we get a divergent result as the
factor (1 —s)δnv2δQv0 is missing due to the lack of subsequent bifurcations after
the first one at the frequency h = hv.

Similarly the second contribution is unbounded in N if σxσ2 = — 1, again for
the impossibility of producing a zero. In the scalar Sine-Gordon (for α 2 >4π) the
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analogous problem is cured adding an appropriate constant counterterm. Here
the problem is similar. The needed counterterm is, as discussed in [1]:

λ2Cψ\A) = ̂ T(V2

{N); 2). (9.27)

It is a long but straightforward task to show that, if the theory is supersymmetric
and regularized in a supersymmetric way, the following relation holds:

λ2Cψ\A) = λ2Cψ\A)' + λ2Cψ\Λ)" = 0, (9.28)

where the two counterterms on the right-hand side are such that

and +λ2Cψ)(Λ)"
K V 2

Fig. 3

have the appropriate bounds uniform in N (see B. Scoppola [thesis]).
If we choose a non-supersymmetric regularization the total counterterm is

not = 0 but it is, nevertheless, finite.

The Volume Dependence. In the main result (4.7), (4.8) of this paper there is [in
(4.8)] a bad volume dependence of \\^n~^(A, N; x, σ, θ)θj\\. This is unavoidable as it
is due to the fact that our theory is massless and therefore the covariances of
bosons and fermions do not decay exponentially.

Here we want only to justify why in (4.7) the norm does not depend on A while
it does in (4.8). Intuitively it is very clear: due to the renormalization group
decomposition the covariances used integrating over all the frequency fields
except on the last ones φ{0\ φ ( 0 ) are all massive with a mass depending on the
frequency ~ γh if we stay on scale h. This is not anymore true if we integrate over
the whole field.

The only technical point is the following one: in our estimates we always write

while, choosing for simplicity, the regularized co variance of Eq. (2.15), (I) we have:

Therefore

The factors (L)4π have been omitted but they produce a factor [LAπJ , at order n,
which has to be reinserted in the Wick product, for any k; the remaining volume
dependences cancel between themselves if k ̂  0. The same result holds with the
regularized covariances which are effectively used.



142 M. Cassandro, F. Nicolό, and B. Scoppola

10. Conclusions

In this paper we proved that for α 2 < 2 π the massless supersymmetric Sine-
Gordon theory exists for weak coupling and finite volume. Moreover the theory
is analytic in the sense that its Schwinger functions are analytic in λ. This result is
valid both if we break the supersymmetry with the choice of the ultraviolet
regularization and of the boundary conditions or if we keep the theory
supersymmetric during all the regularizing steps. In this second case, as discussed
in (I), we are able to compute the Witten index of the theory and to prove it is = 1 .

Appendix A

Proof of the "Factorization" Theorem. We start from Eq. (5.5) which we rewrite

s![(5 5)]= Σ U
geG% λeg

λeγs

y s ny t = 0
[Tι] 3[γ<,] for some i

w Π.

{yb}, {%}, {yt} are sets of connected Mayer graphs, [y] is the set of vertices of the
Mayer graph γ. γ can be thought as a set of bonds {λ} sometimes denoted by

]• Therefore it is obvious the meaning of gDy or g\{yb} Dy.
We interchange in (A.I) the order of the sums:

(A l)= Σ M ( U Π ( e c w - l ) Π
γbnγs = φ \ λeγb λeγb

Σ ι w ΓL Π ( ^ a )

y sny t = 0 _ λeys

[7i] ̂  [ys] for some ί

tw J
[)Ί]2>[yt]foranyi λeγt

is connected) z([uy&uy*]) = {1,..., s}). (A.2)

The sets {yb}, {ys}, {yt} define, with the previous conditions, a graph g uniquely. We
write

Σ,,b,( ) = ΣiPb]Y\b Σ (•), (A3)
7bnys = 0 PbnPs = φ ybeGPh

where {Pb} is a family of subsets of {1, ...,5} {1, ...,s}DPb, Vb{l, ...,5}2^b-Pb
One has to fix the obvious rules to avoid the terms in the sum which are

meaningless ffor instance if \Pb\ = 1 X is absentV
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Similarly we have:

Σ ( W ( ) = Σ A > Π S Σ c (•)
0 G

= Π* Σ j w Π s Σ (•), (A.4)

where Gp is the set of connected Mayer graphs whose vertices e P.
We rewrite (A.2) in the following way:

(A l)= ΣipJUJί Σ Π(e c α ) -D
PbnPs = φ Λ I γbeGpb λeyh

Y\esw[ Σff) Πs Σ Π
λεyb Pb?Pίb) yseGp(s

b) λeγ
Lp^)njpt(b) = 0

) Πs Σt Π (e s α )-l)
γseGp(b) λeγs

=0)ΊΊ Σ,wΠ.Jl(eS(1)-i)
Pι^[yt\ λeyt

J J for some i

x χ(uy ί is connected if the P{ are thought of as points) [ (A.5)

It is easy to recognize that

ίm Us Σ. Π
λeyb

(A.6)

In fact

ΓL- Σ Π (esCλΊ-i). (A.7)
ϊs'eGβW λ'eγs'

Plugging it in to (A.6) we get

h= Σm Us Σ Π i
yseGp(t» λeγs

0

(A.8)

where we used the well known relation:

έ\Aγ...An)= ^ ^ X\,*T(AY) (A-9)

and the convention ST(:e"p:\p) = 1 if P s is made by only a point.
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We can write also:

Equation (A.5) becomes:

χ

Π
Lforsomei

x χ(uft is connected if the Pb are thought of as points) >. (A.I 1)

We now look at the [ ] part of (A.ll). Equation (A.ll) is just the sum over all
the possible Mayer graphs (connected) between the following t + s vertices:

\ x

Pί9...,Pt and the remaining {1, ...,s}\[]bPb vertices.
\ i

To each of these vertices is associated :eitp(V):, where

ψ(Pb)= Σ ψ(j) (A. 12)
JePb

Therefore

(All) = (oT('eitp^p^' -βiψiPt)' gίφ0Ί) giψUs)Λ (A 13)

and

Y\bIb(A.I 1) = δτ(eiψ{Pί\ . . .,e i ψ i P t\e i ψ U ι\ . . . ,e ι > α ? ) )Π t δ(e~ίψ{ΐ)). (A. 14)
1

Appendix B

We collect the estimates needed to prove the inequality (9.7); more details can be
found in Gallavotti and Nicolό [9] and Benfatto et al. [2],

>=0. (B.I)
\Veτ ) I

Therefore

Σ Γ ^-\

h L-u i

hv> + l \ί;jeτυ

ϋ

2y(/«d(τ f ;))1-e, (B.2)

where Kγ is a constant >0, ε>0, and d(τυ) is the length of the shortest path
connecting all the points of τv.
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We used the easy estimate

} ( y k \ χ i - χ j ι ) 1 - ' , (B.3)

then we use the following estimate:

^ i - ε ^ i f nυ<M9 (B.4)

and M will be appropriately chosen.
In Gallavotti and Nicolό [9] the following inequality is proven:

f^ΣAΦJ (B.5)
veτ veτ

Therefore

exp({KιM
2γ(yh >d(τtt))1-tχίnv<M))- hi -

(B.6)

The following equations will be used next:

ΣΛ-= Σ n ^ - M + n*. (B.7)
1 v^vo

Σ (su-l)Λc= Σ (hυ-hv,)(nv-ί) + k(n-ϊ) (B.8)

(k is the "root" of the tree). Their proof is trivial (see for instance Benfatto et al. [2]).
Therefore

%) (B.9)

We will use also the following expression:

which follows from (B.8).



146 M. Cassandro, F. Nicolό, and B. Scoppola

References

1. Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormaliz-
ation group methods. Rev. Mod. Phys. 57, 2 (1985)
Gallavotti, G., Nicolό, F.: Renormalization theory in four dimensional scalar fields (I).
Commun. Math. Phys. 100, 545 (1985), and Renormalization theory in four dimensional scalar
fields (II). Commun. Math. Phys. 101, 247 (1985)

2. Benfatto, G., Gallavotti, G., Nicolό, F.: The dipole phase in the two dimensional Coulomb gas.
Commun. Math. Phys. 106, 277 (1986)
Benfatto, G., Gallavotti, G., Nicolό, F.: On the analyticity of the pressure in the hierarchical
dipole gas. (Submitted to J. Stat. Phys.)

3. Pordt, A.: Mayer expansion for euclidean lattice field theory: Convergence properties and
relation with perturbation theory, Preprint ISSN 0418-9833 (1985) Institut fur Theoretische
Physik, Universitat Hamburg

4. Battle, G., Federbush, P.: A phase cell cluster expansion for Euclidean field theories. Ann. Phys.
142, 95 (1982)

5. Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly-coupled P(Φ)2 model and
other applications. High-temperature expansion. In: Constructive quantum field theory. Velo,
G., Wightman, A.S. (eds.). Berlin, Heidelberg, New York: Springer 1973

6. Gopfert, M., Mack, G.: Iterated Mayer expansion for classical gases at low temperatures.
Commun. Math. Phys. 81, 97 (1981)

7. Gawedzki, K., Kupiainen, A.: Gross-Neveu model through convergent perturbation expan-
sions. Commun. Math. Phys. 102, 1 (1985)

8. Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormaliz-
ation group methods. Rev. Mod. Phys. 57, 2 (1985)

9. Gallavotti, G., Nicolό, F.: The "screening Phase Transitions" in the two dimensional Coulomb
gas. J. Stat. Phys. 39, 133 (1985)

Communicated by K. Gawedzki

Received September 13, 1988




