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Abstract We study the rate of convergence to equilibrium of one dimensional
stochastic Ising models with finite range interactions. We do not assume that
the interactions are ferromagnetic or that the flip rates are attractive. The
infinitesimal generators of these processes all have gaps between zero and the
rest of their spectra. We prove that if one of these processes is observed by
means of local observables, then the convergence is seen to be exponentially
fast with an exponent that is any number less than the spectral gap. Moreover
this exponential convergence is uniform in the initial configuration.

0. Introduction

The stochastic Ising model (often called the kinetic Ising model) was introduced
by R. J. Glauber [RG] in 1963. The model that Glauber introduced is one
dimensional and was carefully chosen so that one could explicitly compute the
rate at which local observables relax to their equilibrium values. As a consequence
of these explicit calculations one can see for Glauber's model that the rate at which
convergence takes place when measured in the uniform norm is exactly the same
as the rate when measured in the L2 norm. It is the purpose of this paper to prove
that, in one dimension, the same equality holds for all translation invariant, finite
range interactions and all choices of flip rates that are translation invariant, have
finite range, and satisfy the appropriate detailed balance condition.

By an interaction we mean any collection {JR:R ^ Z} c: U. We say that the
interaction {JR:R £ Z} is translation invariant if, for every R^Z, JR = JR + k for
any keZ; and we say that it has finite range if there is a finite number L (the range)
such that JR = 0 whenever diam(i^)>L. We assume throughout that our inter-
actions are translation invariant and have finite range.

Next, set E = { — 1,1}Z and think of the elements σ of E as configurations on
Z of + 1 valued spins. Thus, σke{ — 1,1} is the spin at site /ceZ of the configuration
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σeE. Also, given a finite, non-empty set JR ̂  z, we will use the notation

ieR

The Gibbs state determined by the interaction {JR:R £Ξ Z} is the unique (we are
in one dimension) probability measure, μ, on E whose finite dimensional conditional
distributions are given by

JRωR+ Σ JRωRnΛrJRnΛc

for any finite set Λ. Here Z(Λ, η) is the normalizing constant needed to make the
expression on the right-hand side a probability measure.

The flip rates of a stochastic Ising model are a family {ck:keZ} of functions
ck:E-+(0, oo) which satisfy the detailed balance condition:

cfc(σ)exp £ JRσR = q(σk)exp - £ JRσR ,
\_R3k J L Rsk J

where σfc is the configuration of spins that agrees with σ expect at k, at which site
the spin is —σk. We will be assuming throughout that, in addition, the cks are
translation invariant and have finite range LeZ + . That is, ck(σ) = Cj(τ) if σt = Tj_k + i

for all ίeZ, and ck(σ) = ck(ω) if σι = ωι for all \k — l\^ L. Clearly, there are many

ways to choose rates so that they satisfy all of these conditions. Glauber took the

rates to be

(σ) = Jl-σktanhί £ JRσRm I

and considered the case when JR = 0 unless R = {k, k + 1} for some k. In this case
the flip rates become ck(σ) = \{\ — (y/2)σk(σk_1 + σ k + 1 )), where y = tanh(2J| 0 1 }).
One of the main points of this paper is that results obtained here do not depend
on the particular choice of flip rates.

Given flip rates {ck:fceZ}, we define the operator if on the space 3F of cylinder
functions by

J?f(σ)=Σck(σ)(f(σk)-f(σ)\ σeE, for /e#\
keZ

The corresponding stochastic Ising model is the (unique) Markov process whose
infinitesimal generator S£ extends S£\ and we denote by {Tt:t ̂  0} the associated
semigroup. The following facts are quite well known:

1. £F is a core for J^,
2. {Tt:t ̂  0} is Feller continuous (i.e. it takes C{E; U) into itself) and has the Gibbs
state μ as its one and only stationary measure,
3. ££ is essentially self-adjoint on the space L2(μ).

In what follows, we will use & to denote the unique L2(μ)-self-adjoint extension
of <£ (i.e. & is the closure of S£ in L2(μ)) and {T r : ί>0} to denote the
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L2(μ)-semigroup generated by S. Thus, for each t > 0, Tt is the closure in L2(μ) of
Tt on C(E; U). Since μ is stationary for {Tt: t ^ 0} it follows that 0 is an eigenvalue
for S£\ and, since μ is the only stationary measure, one knows that the corresponding
eigenspace is the set of constant functions (see [L], [H&S 1], and [H&S2]). It
is also known (cf. [H 1]) that there is a positive gap between 0 and the rest of the
spectrum of & as an operator on L2(μ). We denote this gap by gap2. Thus for all
feL2(μ) we have

|| TJ-(f> \\2 ̂  e~gaP2t HZ" </> II2, ίe[0, 00), (0.1)

where we have introduced the notation </> to stand for \fdμ.
E

Remark (0.2). In conjunction with the fact that, for each fe^,te[0, co)\-*Ttf(σ)
has a bounded derivative for each σeR, the estimate (0.1) leads (via an easy
Borel-Cantelli argument) to the conclusion that Ttf(σ) -> </> as t / GO for μ-almost
every σeE. Thus, since !F is dense in C(E; U) and the T/s are contractions with
respect to the uniform norm || ||u, it is obvious that the same statement holds for
all/eC(£;[R). (In fact, by using a theorem of Stein (see ES, Maximal Theorem,
page 73]) one can even get the same conclusion for all/eL2(μ).)

Because the preceding statements are all modulo sets of μ-measure 0, none
of them tells us anything about any specific σ. In particular, a much more
useful statement would be one which says that there is a ye(0, 00) and a map
feC(E; U)h^Af e(0, 00) for which

^Afe~y\ ίe(0,oo), (0.3)

for every feC(E U). Unfortunately no such statement can hold as can be seen
from the fact that there are σeE such that for all ί ^ 0 the measure determined
by f\-*Ttf(σ) is singular with respect to μ. For such a σ one can construct an
feC{E;R) such that for all γ >0,ϊ ί ϊn f ^ o o |T ί /(σ)- <f}\eyt = 00. On the other
hand, as we will show in Sect. 1, if one is less ambitious and replaces C(£; U) by
#", then not only one can show how to choose fe^\-^Afe(0, 00) so that (0.3)
holds for some y > 0 but even that such a choice is possible for every ye(0,gap2).
To be more precise, in Sect. 1 we prove the following theorem.

Theorem (0.4). For any one-dimensional stochastic Ising model with translation
invariant, finite range flip rates, there is uniformly exponentially fast convergence to
equilibrium in the sense that

inf l im-^log[ | |Γ ( /( ) - < / > | | J = gap2. (0.5)

Remark (0.6). There are several results in the literature which are closely related
to Theorem (0.3). Dobrushin [D] and Sullivan [WS] have proved general theorems
(in particular, they apply both to higher dimensional lattices and to spin-flip
processes which are not necessarily stochastic Ising models), which, when applied
to stochastic Ising models with sufficiently weak interactions (i.e., high temperature),
have conclusions similar to be one in (0.3) for a l l / e # \ Moreover, in [HI] , a
theorem which is nearly as strong as Theorem (0.4) is provided in the case when
the interaction is ferromagnetic and the flip rates are attractive. However, besides
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having more restrictive hypotheses, these earlier results fail to determine the optimal
range of y's for which (0.3) can hold.

Remark (0.7). In [H&S3] and in [H2] there are theorems with the same
hypotheses as Theorem (0.4), but the conclusion is only that there is a ye(0, GO)
such that for

Remark (0.8). As will be apparent in Sect. 1, our proof relies heavily on our
assumption that we are dealing with stochastic Ising models. We have no idea
whether one can get away without making this assumption. In fact, an interesting
open problem is to determine whether for an arbitrary one dimensional spin-flip
process (i.e. one which is not necessarily a stochastic Ising model) with translation
invariant, finite range, strictly positive flip rates there is a y > 0 for which (0.3)
holds whenever/eJ^. In fact it is not even known whether or not the invariant
measure is unique! At the moment, it is not at all clear what one should expect.
The only thing that is clear is that the techniques which we use here shed no light
on the more general situation.

1. Proof of Theorem (0.4)

The proof of Theorem (0.4) is accomplished by approximating the infinite system
whose semigroup is {Tt: t ^ 0} by finite systems. In the finite systems only the spins
inside of a finite interval are permitted to change, and all other spins are held
fixed. To be more precise, let A c= Z be a finite, non-empty interval and define

σk if keΛ

1 if keZ\Λ.

Next, define the operator ifΛ on C(EΛ; U) by

keΛ

It is then an easy matter to check (see [H&S 3]) that <£A is self-adjoint on L2(μΛ\
where

J M M ) = μ(σk = ωk9 keA\σj = IJφΛ), ωeEΛ.

Finally, let {Tt

Λ:t > 0} be the Markov semigroup of L2(μΛ)-self-adjoint contractions
generated by i f Λ . It will be convenient to allow Tt

Λ to act on functions / : £ - > [R
by setting

T?f(σ) = [Tt

A(fo ΦΛΏ(σ% σeEΛ.

Our proof of Theorem (0.4) rests on several facts about the semigroups
{Tt

Λ:t > 0} and the degree to which they approximate {Tt:t > 0} as A /* Z. We will
state these facts in a sequence of lemmata and will simply cite the place in the
literature where their proofs can be found.
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Lemma (1.1). [H&S4] There is a finite constant C, independent of Λ, and a map
fe^h^Afe[0, oo) such that

\\TJ-T?f\\u^Af[ec<- Σo

where

the distance between Λc and the sites on which f depends

and L is the range of the interaction.
Before stating the next result, it will be helpful to recall the notion of a Dirichlet

form. Namely, given a Polish space M and a weakly continuous transition
probability function Q(t,x, •) which is symmetric with respect to the probability
measure m (in the sense that

Q(t, x9 dy)m(dx) = Q(t, y, άx)m{dy) on M x M

for ίe(0, oo)), one can use the Spectral Theorem to check that, for each φeL2(m\

ίe(0, C X ) ) H > 1 | Π ( φ ( y ) - φ(x))2Q(t,x,dy))m(dx)e[_O, oo]

is non-increasing. In fact, if Stφ(x) = J φ{y)Q(t,x9dy),(t,x)e(O9 oo) x M for φe
M _

B(M; IR), then each St admits a unique extension as a self-adjoint contraction St

on L2(m), {St:t> 0} is a strongly continuous semigroup, and

j λd(Eλφ,φ)L2(m), φeL\m),
[0,oo)

as ί \ 0 , where {Eλ:λe[0, oo)} is the spectral resolution of the identity for
— L (L is the generator of St). In particular, when ψeDom(L),

l i m i ί ( ί WW - <K*))2Q(t> x, dy))m(dx) = - (0, Lφ)LHm).

The quadratic mapping

,φ) = Urn~ ί f J {Φiy) - Φ(x))2Q(t,x,dy))m(dx)e[0, oo]

ZtM\M J
is called the Dirichlet form determined by the symmetric Markov semigroup
{St:t> 0} on L2(m). The original statement of the following result was proved by
L. Gross [LG]. For a proof which covers the present setting, see [DS, Theorem
(9.10)].

Lemma (1.3). Referring to the preceding discussion, suppose that there exists an
αe(0, oo) such that

J φ\x)log(φ\x))m(dx) £ x£(φ9 φ)+\\φ \\2

Hm)log [ || φ | | £ 2 ( m ) ] , φeL2(m\
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and set q(t) = 1 + exp [4ί/α], £e[0, oo). Then for every φeL2(m\

\\Stφ\\L^Hm)^\\φ\\L2{m), fe[0,oo). (1.4)

An estimate of the form in (1.4) is called a logarithmic Sobolev inequality, and
the smallest α for which (1.4) holds is called the logarithmic Sobolev constant.

In what follows, we will use SA to denote the Dirichlet form on L2(μΛ)
determined by {Tt

Λ:t> 0}; and, in keeping with our definition of the action of Tt

Λ

on B{E; (R), we define δ Λ(f /) = δ Λ(f ° ΦΛ, f ° ΦΛ) for / : E -> U.
Because, for each finite Λ, the state space is finite and the measure μA charges

every point, it is not very difficult to check that there will always be an αΛe(0, oo)
for which (1.4) holds for μΛ and iΛ. The key to our proof of Theorem (0.4) will be
the following estimate on the rate at which α Λ grows as Λ / Z.

Lemma (1.5). [H&S3] There is a constant γe(0, oo) such that, for every finite
interval A with\Λ\ ^ 2 and all feL2(μΛ\

J / M o g / 2 J μ Λ ^ y l o g ( | Λ | K ^ ( / , / ) + | | / | | 2 2 ( μ Λ ) l o g [ | | / | | | 2 ( μ Λ ) ] . (1.6)

The proof of Theorem (0.4) is now just a matter of applying these lemmata
carefully. We begin by taking a > 0 and setting At = [ — at,af\.

Lemma (1.7). For every δ>0 there is an a such that for every f e^ and all sufficiently
large t,

\\TJ-Ts

Λ<f\\u^e-δt for all O^s^t. (1.8)

Proof By Lemma (1.1),

Σ {ψ)^Af( Σ
= Nt+l K J \k = Nt+l

(1.9)

where
the distance between A\ and the sites on which/depends

N, = z .

From the definition of Λt, we see that if a is sufficiently large (a > 2L(δ + Ce + 1)
will do) then no matter which (finitely many) sites / depends on, Nt ^ (δ + Ce + l)ί
when t is sufficiently large. Therefore for all sufficiently large t and all 0 ^ 5 ̂  ί,

II TJ - Ts

Λίf \\u £ Afe-{Nί~Cet) ^e~δt. •

We now take a0 so large that (1.8) holds when δ = gap2. For the rest of this paper
At = \_-aot,aot].

In view of Lemma (1.7), proving Theorem (0.4) comes down to checking that,
for each fe^ with </> = 0,

(1.10)
ί-» OO t

The next lemma follows immediately from Lemmas (1.3) and (1.5).
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Lemma (1.11). Let

Γ 45 Ί
qs t = 1 + exp ——— — , 0 < 5 < ί,FLτlog(2aί+l)J' "

y is as in Lemma (1.5) and a0 is as in the preceding definition of At. Then
for all f:EΛt->U and all se(O, oo):

IIT^VHz/* )—ll/llL2ί )• (1-12)

The following lemma is an essentially obvious consequence of the fact that
there exists a Γe(0, 00) such that, for every finite A a Z, μΛ(σ) ^ exp [ - Γ |Λ|]
for all σeEΛ.

Lemma (1.13). There is a Γ< 00 such that for all finite intervals A and all functions

f'EΛ-+n,

\\f\\L^A)^erlA{'q\\f\\L%A) f°ral1 4 = L ( U 4 )

Note that since for every finite interval A we have μΛ(σ) > 0 for every
σε{-1,1}Λ, it follows that | | / | | L oo ( M = | | / | | M for every function f:EΛ^>U.

Lemma (1.15). Lets^: 0 be given and set t = s2-\-s. Then for all f:EΛt-^U,

II TV1'/ L S exp Γ ^ i ] || T£f \\L2{μΛty (1.16)
L w J

Proof Note that Tt

Atf=Ts

AtTs

A

2

tf and apply Lemmas (1.11) and (1.13) to Ts

Λt

operating on T^f. •

Lemma (1.17). There is a finite constant D such that, for eachfe^ with </> = 0,

\\T£f\\L2(μΛt)ύn\\f\\mμ)+\)e-^s2 with t = s2 + s (1.18)

for all sufficiently large s.

Proof From the definition of μΛ it is easily seen that there is a constant D2 < oo
such that if vΛ is the marginal distribution of μonEΛ then ||ίίμΛ/dvΛ | |M ^ D 2 . Thus

Λ

EΛ,

/ | | I 2 ( μ / l i ) = J {T$Άσ))2μΛt(dσ)
EΛ

and therefore \\T£f\\LHμAt)^D\\T£f\\LHμ).
But by Lemma (1.7)

and, since || Tsτ.f\\LHμ) S β" g a p 2 s 2 | | / | | L 2 ( μ ) while e~gap2t ^ g-^ 2 5 2 , we get the desired
conclusion from this. •

After combining (1.16) with (1.18), we have, for every fe^, that for all sufficiently
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large se(0, oo):

IIT^/L^expΓ^^iDdl/H^+^expC-gap^2], (1.19)
L Qs,t J

where t = s2 + s.

Finally note that, since \Λt\^ 2ao(s + s2) + 1 and

45
qStt = 1 + exp

_ylog(2α0(s

when t = s2 + 5,

o (ί = s2 + s) as s^oo. (1.20)
<ls,t

Hence, because (s2/s2 + s)-> 1, (1.10) follows from (1.19) and (1.20).

Concluding Remark

As we have said before, the key to this proof is the logarithmic Sobolev inequality
in Lemma (1.5). The reason why this logarithmic Sobolev inequality is sufficient
for our purposes is that the logarithmic Sobolev constant grows at most
logarithmically fast with the length of the interval. Actually, it may very well be
that, for these one-dimensional Ising models, the logarithmic Sobolev constant
does not really diverge as A •* Z; but, at the moment, we cannot say one way or
the other.

In contrast to the situation with the logarithmic Sobolev constant, one can
show that although an ordinary Sobolev inequality holds for each finite interval
the corresponding Sobolev constant blows up exponentially fast as A /* Z.
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