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Abstract. We present a computational strategy based on exact sequences for
determining the dimension of endomorphism valued cohomology groups for
complete intersections in complex projective space. This cohomology group
gives rise to part of the gauge singlet spectrum in superstring compactifications.
We establish the underlying justification for the known deformation theoret-
ical algorithm, and by comparison with the exact sequence method, indicate
its limitations.

1. Introduction

Any attempt to extract phenomenological predictions from the compactified
superstring requires, as the most basic ingredient, an understanding of the low
energy particle content. As is by now quite familiar, for smooth manifold
compactification this corresponds to an understanding of the cohomology of the
compactified manifold as well as that of certain holomorphic vector bundles
constructed upon it. To be concrete, we specialize to the E8 x E8 Heterotic string
[1] compactified on a Calabi-Yau manifold K (a complex threefold of SU(3)
holonomy). Although there are other possibilities (for example orbifolds [2]),
Calabi-Yau compactification has so far yielded the most realistic superstring
phenomenology [3]. As described in [3, 4] the massless particle content of such a
theory is given by bundle valued d harmonic forms H*(K, Bt% where the B{ are
various vector bundles associated to the vacuum gauge bundle Vx to which (half of)
the left moving world sheet fermions couple [1] (more precisely, vector bundles
associated to the principle bundle i^x associated to VJ. The latter arise from the
representations of S, the structure group of f̂  which appear in the decomposition
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of the 248 of £ 8 under SxG, with G the maximal subgroup of £ 8 commuting with S
[5]. In the most familiar case of "'embedding the spin connection in the gauge
group," we take Vί = T, where T is the tangent bundle of K, thus giving S = SU(3)
and G = E6. This gives rise to the decomposition

248 = (78,1) + (27,3) + (27,3), +(1,8), (1.1)

where the numbers in parentheses are the E6 and SU(3) representations. The (78,1)
are the E6 gauge bosons, the (27,3) and (27,3) are matter multiplets in the
fundamental representation of Ebi which occur with multiplicities dim Hι(K, T)
= dimH2Λ{K) and dim if ^K, T*) = dvmHuι(K) respectively. These numbers
have been computed and used in model building for certain Calabi-Yau manifolds
[3, 6, 7], and recently they have been tabulated for all Calabi-Yau manifolds of the
complete intersection type [8]. In this letter we address the problem of the last term
in Eq. (1.1), that is a number of E6 singlets in the low energy theory, which as we see
is given by dimHι(K, EndT), where EndT represents the bundle of endomorph-
isms of the tangent bundle. These fields can play an important role in low energy
phenomenology both through Yukawa couplings to ordinary matter, nonre-
normalizable interactions which can affect flat directions in the superpotential,
and have been used in supersymmetry breaking schemes. It is thus important to
know at the very least how many such fields a given compactification yields.

2. Computing H\K,End!)

From previous work on computing Hι(K, T) [9,10] we are familiar with two basic
approaches to the computation of cohomology: deformation theory and exact
sequences. In fact these two approaches are closely related, with exact sequences
providing the justification for deformation theory. More precisely, the study of
exact sequences yields precise conditions under which deformation theoretical
arguments are valid. When these conditions are not met, the only recourse is to
perform the full exact sequence computation. Thus we see that the exact sequence
computation lies at the heart of the issue. As, such, we shall first present an exact
sequence procedure for the computation of the dimension of H\K,EndT) and
then show how a deformation theoretic interpretation of this computational
strategy is sometimes valid.

Before specific computations, it is worthwhile for us to present the general
strategy of the computation. For ease of presentation and explanation we shall
concentrate on the case of a codimension one algebraic variety Y in complex
projective N space, PN. The generalization to higher codimension varieties in
products of complex projective spaces is straightforward, although technically
tedious. We shall discuss some more complicated examples shortly. The calcul-
ation relies on the following three exact sequences:

0-*EpN{-d)->EPN-*EpN\Y-+09 (2.1)

0 ^ r y - V | y ^ < M d ) | y - > 0 , (2.2)

0-+ΘpN^ΘpN(l)®N+ι^TpN-+0, (2.3)

where EPN is a holomorphic vector bundle over F v

5 Y is a divisor on PN of divisor
class [d\ Tγ represents the tangent bundle of Y, TPN\Y represents the tangent bundle
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of PN restricted to Y, and &pN(d) is the tensor product of d copies of the hyperplane
bundle. Generally, the notation A(b) denotes A^)ΘpN(b\ Notice that the second
exact sequence allows us to relate bundles over Y over the ambient space restricted
to Y. The first sequence allows us to further relate such bundles over the ambient
space restricted to Y to bundles over the ambient space. Now, by use of Bott's
formula, Kunneth formula and (2.3) we know the cohomology of any vector
bundle over PN (or products of projective spaces) built from tensor products of the
tangent bundle with arbitrary line bundles. For later use we reproduce Bott's
formula here:

hq(PN,Ωp{k)) = <

k + N-p

k

-fc+/Λ/-fc-f
-k J\ N-p

0 otherwise.

(2.4)

We generally define hq(K, Vκ) to be the dimension of Hq(K, Vκ), where Vκ is a
holomorphic vector bundle over the manifold K, and Hq(K, Vκ) may be considered
(by the Dolbeault theorem) as the qth Dolbeault cohomology group of M taking
values in the bundle Vκ. In Bott's formula, Ωp denotes the p t h antisymmetric power
of 7?K, the holomorphic cotangent bundle of P Λ . There are two notational
conventions which we introduce at this point: first, we shall sometimes omit the
subscript in H*(K, Vκ) and write H*(K, V) when there is no possibility of confusion,
and second, bundles such as T without a subscript refer to the tangent bundle of Y,
whereas the tangent bundle of the ambient projective space will always carry an
explicit subscript, TpN. In addition to the dimensions of these cohomology groups
over PN, we will need one further piece of information: hj(PN,(T®T*)PN) = δ0 .
This follows from the fact that TPN® TP*N = End TPN®@PN, and by the rigidity of P v

In fact, as we shall mention below, stability of End T implies that h°(Y,T(g) T*) = 1
as well.

Our approach therefore is to relate, via the above sequences, the cohomology
of End T to that of bundles over an ambient projective space for which Bott's
formula is applicable.

To make this concrete, we now compute f/*(Y4j5,EndT) for the simplest
Calabi-Yau manifold, the quintic hypersurface Y4 5 in P 4 . That is, the vanishing
locus of a quintic polynomial say,

' l 5 * ? = 0, (2.5)
i— 1

where (z l5 z2, z3, z4, z5) are homogeneous coordinates for P 4 . For ease of notation
we shall often refer to this manifold simply as Y. We see that d = 5 and N = 4 in (2.1),
(2.2), (2.3). We will work with arbitrary N and d for later use. Dualizing sequence
(2.2 (i.e. reversing the orientation and dualizing the bundles) and then tensoring the
result with Tγ (tensoring preserves the exactness), we get

-+0. (2.6)



120 J. Distler, B. R. Greene, K. Kirklin, and P. Miron

Likewise, tensoring sequence (2.2) with Θ( — d)\γ, we get

0-+T(-d)-+TPw(-d)\γ->Θγ->0,

and setting E— TPN( — d) in sequence (2.1),

0->TpN(-2d)-+TPN(-d)->TPN(-d)\γ-+0.

Now tensor (2.2) with T*N\Y,

0-> Γ® TP%\Y->(T® T*)pN\γ-+ T*N(d)\Y-^0,

and tensor (2.3) with TP*N( — d),

Finally, let E=TP%{d) and (T® T V in (2.1),

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

In terms of the dependence of equations, we have

(2.H) s,
(2.9) \

(2.8) -(2.7)
(2.6)

So, as an example of the use of the sequences, let's do the first sequence in detail,
for d = 5 and N = 4\

(2.11)

h°
hι

h2

h3

h4

IpΛ

0
1
0
0
0

TP%(5)

224
0
0
0
0

TP%(5)\Y

225
0
0
0
0

In this sequence, we have placed the dimensions of the relevant cohomology
groups as columns; Bott's formula was used to obtain the first two columns and the
third column is calculated using exactness. One proceeds through the chain of
exact sequences until reaching (2.6), where we find

(2.6)

h°
h1

h2

h3

Γ(-5)

0
1
0

224

T®T*P\

X

x + 224
0
t

τ®τ*

y
y + 223
z + 223
z
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where x is equal to 0 or 1 and y = z by Kodaira-Serre duality. In fact, since T is a
stable bundle, we know that End T is stable and hence has no global sections. Thus,
y = \, and so

224. (2.13)

[Note that, since hι'° = 0 for K Calabi-Yau, H1{K,EndT)^H\K,T®T*).~]

3. Generalizations

To extend this technique to the case of algebraic varieties in products of complex
projective spaces, takes very little in the way of new ideas. We merely need to
extend our original sheaf sequences to take account of the "increased" ambient
space. For example, if X = P2 x P 2 , and W is the vanishing locus of a polynomial of
bidegree (3,3) in X, (2.1), (2.2), (2.3) would now be

O v ίCi ί 1 1 λ © 2 . / r ; / \ A\ © 3 /τ\ /r, /A i Λ © 3 rr ( \ Λ\ . A π o1!

—> (_/ v\ — J , — I) —r Cy v-l — 1, \j) \Tj LV v-^U, — 1) —^ 1 χ\ — 1, — i ) —τ\j . I j , j j

Proceeding in the same way as was done in detail for the quintic hypersurface, one
finds that Ήι{W,EnάT) has dimension 176.

One can also carry out this computational procedure for higher codimension
varieties. For example, the Calabi-Yau manifold Y5.3j 3 (the vanishing locus of two
homogeneous cubis in CP5) has h1(Y5;3f3, EndT) = 140, and it is not difficult to
generate these dimensions for the other complete intersection Calabi-Yau
manifolds which are embedded in one projective space.

We should mention that to this point, we have only made use of the most
superficial information provided by the exact sequences: namely the relationship
between the dimensions of the cohomology groups which appear. Much more
information is contained in the maps which realize these sequences. For some
manifolds, the computation of the dimension of H1(K,EnάT) requires the
information embodied in these maps. A example is that of the only three
generation complete intersection Calabi-Yau manifold: the vanishing locus, in
P3 xP3 of bi-degree(3,0), (0,3), and (1,1) homogeneous polynomials [11]. If one
follows the above algorithm in this case, one finds that there are not enough
vanishing dimensions in the long exact cohomology sequences to determine the
number of £ 6 singlets simply from a study of the dimensions of the surrounding
cohomology groups.

By studying the maps which realize the sequences involved in this comput-
ational strategy, this ambiguous conclusion could probably be rectified.

4. Deformation Theory

Until now we have concentrated on the first method of computing cohomology
that we mentioned earlier, namely exact sequences. We now discuss the second:
deformation theory.
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It is important to bear in mind that elements in Hι(K, End T), as emphasized in
this context in [12] have a geometric interpretation. They represent deformations
to the complex structure of the tangent bundle Tκ. By counting the number of
independent deformations to the complex structure of the tangent bundle, then,
one should be able to determine the dimension oϊ H1(K,EndT). To this end, in
[12] the following algorithm is introduced:

First note that a tangent vector1 to PN is equivalent to a collection of n linear
functions {Va} subject to the projectivity constraint

Va=Va + λza, (4.1)

where the {za} are homogeneous PN coordinates and λ is a complex number. For
this PN tangent vector field to be tangent to the hypersurface defined by the
vanishing of a homogeneous polynomial function P(za) the Va must further satisfy

VaPa = 0, (4.2)

where Pa = dP/dza. Having thus essentially defined the tangent bundle to our
hypersurface, we can now ask about ways in which we can holomorphically
deform it. The answer to this question lies in relaxing (4.2) to

VaQa = Q, (4.3)

where the Qa are any homogeneous polynomials whose order is the same as that of
the Pa. The latter, as shown in [12] are in one to one correspondence with tensors
of the form paι,ai,...,an which are completely symmetric on the last n — 1 indices, and
vanish when symmetrized on all n indices. Thus, in this computational procedure,
the calculation of i ί^ l^EndT) is reduced to a simple combinatoric exercise. For
example, on Y4t5 one easily computes that the dimension of the space of such
tensors is 224, in agreement with the exact sequence calculation above.

Of primary importance is to understand the conditions under which this
procedure correctly counts the dimension of H1(XΈndT)2. To shed some light on
this question it is useful to rephrase the above deformation algorithm in a language
more suited to our exact sequence calculation. We will illustrate this, again, in the
simple case of 74 5.

The tensor pabcde being symmetric on its last four indices and vanishing upon
complete symmetrization of all five indices may be thought of as an element of the
kernel of the map

φ: H°(F4, O@ 5(4))-+#°(P4,0(5)). (4.4)

If one dualizes the sequence (2.3) and tensors it with 0p4(5) one sees that this kernel
is isomorphic to

H°(P4, 7p*4(5)). (4.5)

1 For simplicity of notation we describe this algorithm for one polynomial constraint in one
projective space
2 The related question of the efficacy of deformation theory in computing hι(K,T) has been
answered in [10]
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We thus see that the deformation method, in this case, is computing the dimension
of the latter cohomology group. Notice that the cohomology of the bundle TP*4(5)
enters into the calculation of Hι(Y4 5 ,EndT) through sequence (2.11). In fact, with
not much effort, one can see from the precise structure of cohomology sequences
associated with the exact sequences (2.11), (2.9), (2.6) that

H°(P\ Tfi{5))^H\Y4ι59 End T), (4.6)

and hence, the polynomial deformation algorithm is justified in this case. Now, this
is as expected since we already mentioned that the deformation procedure on 74 5

yields 224 E6 singlets. The latter justification from exact sequences is useful,
however, in that we see that the argument requires a number of special
cohomological features. Among these requirements are /?2(Y4 5, T( —5)) = 0 and
hι(Y4t5, (T(χ)T*)p4|y4 5) = 0. in the case of K3 (the quartic surface in P 3) the
condition analogous to the first of these requirements is not met, and we find that
hι(K3, EndT) = 90 [this can be computed using the exact sequences (2.6)—(2.12)
with d = 4 and N = 3, or more easily, by using index theory] while the deformation
algorithm only yields 45 [which from our discussion we know to be h°(P3, 7J>*3(4))].
For the case of the bicubic equation in X = P2 x P 2 , the second of these conditions
is not met. Our exact sequence calculation showed /ϊ1(FPζEndT) = 176J while the
deformation method yields 160. It is easy to see that the discrepancy of 16 comes
precisely from the 16 elements in H\X,EnάTx).

In conclusion, we have presented a computational strategy for determining
endomorphism valued cohomology, an essential ingredient for determining the
low energy singlet spectrum of compactified superstring models. We have applied
our method to a number of examples, and compared it with the polynomial
deformation method. We have shown that only under highly favourable
circumstances does the polynomial deformation method correctly compute the
desired cohomology, and we have indicated the obstructions in a coupled of
examples. As for the phenomenologically interesting case of the three generation
manifold, our procedure can probably be pushed further to accomplish this task,
but in the form presented in this paper, it simply is not sufficiently robust. We hope
to return to this question in a future publication.

Note added in proof. We are aware that P. Green, T. Hubsch, and A. Lutken have computed
/?1(End T) for certain Calabi-Yau manifolds [13] and their results agree with those presented here,
and with other examples we have not included.
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