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Abstract. We solve the coexistence problem for the periodic discrete Mathieu
operator in all parametric cases. The main tool in the proof will be Bezout's
theorem for projectίve plane curves. As an additional result we obtain the gap
opening and gap growth powers for this operator.

0. Introduction and Main Results

Define for fe:Z—>R the linear recursion operator Hb:C
z->CZ by

(Hbg)(n) = g(n + 1) + bng{n) + g(n - 1).

There exists an actual interest in the cases where the potential b is almost periodic,
in particular in the discrete Mathieu operator (with real parameters A, α, v) which
one obtains by taking b = Ab{3Λ<) with b(*>v} = 2cos(2πnoί — v). Thus explicitly

{HAh(a,v)g)(n) = g(n + 1) + 2Λ cos (2πna - v)g(n) + g{n - 1).

This operator, a discrete version of Mathieu's periodic differential operator, is
interesting from the mathematical as well from the physical point of view
[1-7,9,12,16,18,19,21]. Here we shall occupy ourselves only with the periodic
potential case, i.e., where α is a rational number p/q (always written in its canonical
form). The following theorem completely solves the coexistence problem for the
periodic discrete Mathieu operator.

Theorem 1. For all1 ΆeR*, p/qeQ, veR all the q — 1 gaps of the periodic discrete
Mathieu operator HAb(P/q,v) are non-degenerate, with the exception of the middle gaps
(which are {0}) in the cases ve(2π/#)Z, q = 0 (mod 4) and the cases ve(π/q) + (2π/q)Z,
q = 2 (mod 4). O

The coexistence problem for Mathieu's differential operator has been solved by
Ince [14]. Partial results for Theorem 1 had already been obtained in [3,6]. The

1 For a subset X of C we denote X\{0} by X*
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punch to complete these results will be Bezout's theorem for projective plane
curves. The needed intersection numbers are provided by the gap opening and gap
growth powers of Theorem 2.

In order to define these powers in general we now review quickly some
spectral theory for periodic recursion operators. For this theory we recommend
[13,15,16,20].2

Let fc:Z->R be periodic with positive period q? Consider the operator family
(HAb)AeR. For all ^ G R the spectrum σ(H Λbil2{Z]) consists of q bands EX(A),
E2{A\...,Eq{A) which we number from the left to the right on the real axis. The
q— 1 closed intervals between4 them Gγ(A\ G2{A),. ..,Gq^1(A) are the gaps. The
two boundary points of each gap GN are real-analytic functions of the real parameter
A. Denote the 2-tuple of these functions by /^, λ^. For A = 0 all gaps are
degenerated, thus λ£ (0) = λN (0). Denote the power series expansion about A = 0
of the signed gap length λ^ — X£ by ]Γ α7- ̂ ' One has a Laurent series expansion

for A -> + oo of λN — λ£ of the form ]Γ βjN(]/A)J. We call the leading powers

of these expansions respectively gap opening powers O(b)N and gap growth powers
I(b)N. Thus

Notice that these powers may be + oo, which means that the corresponding gap
is degenerate for all AER. The way to calculate these powers is Rayleigh-
Schrδdinger perturbation theory which can become very complex in general.
However it turns out that for the periodic discrete Mathieu operator tricks exist
that make the determination of these powers easier.

Defining for p/qeQ the permutation τp/q of {0,1,... ,q — 1} by

τP/q(n) = pn(mod q)

we can state our Theorem 2.5

Theorem 2

A) For the gap opening powers of the family (HAb(P/q,v))AeR one has

Oφ^ X - mίn(τ ^ΛO, q - τ^(N)) if N * | .

l^)q/2=l if veR\-Z.
A q

2π
= +oo ίfq = 0(moά4\ ve —Z.

2 It is possible to translate almost everything in the classical book [14] into the discrete case.
3 In the following q always denotes a positive integer.
4 Also numbered from the left to the right.
5 See also Remark 1
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= +00

ifq = 2 (mod4), ve-^Z.

ifq = 2 (mod 4), ve- + — Z .

i/ <?Ξ=0(mod4), VG-+—Z.

B) For ί/ze ^αp growth powers of the family {H4b(Piq,s))AeR one has

I(biplq'v))N = 0(bip/q>v))N - 1

ίfve(2π/q)Z, N + q even or vε(π/q) + (2π/q)Z, N + q odd. O

1. Some Basic Objects

In addition to the previous paragraph we shall state here some notations,
conventions and properties of basic objects.

1. We define Γf(ίeZ), S:CZ->CZ by (Ttg)(n) = g(n + t), (Sg)(n) = g(-n) and define

2.

Jίr

1>z = ker(Γt-zId)
£,iW = ker(ST2j-wId)

',(Ht) = ker(Jϊt-εId)

dim(^,2) = ί?

dim^ni^H

d i m ( ^ . 1 n £ , . _ 1 ) =

=

dim(^ > _ 1 n£ i . 1 ) =

=

dim(F f l >_1n£S f_1) =

=

2"

"V

J]

_2_

~^~

_2_

(ίGZ* 5 .

(seiZ,

(εεC).

zeC*\
wε{~l,l}),

( Z G C * ) .

h 1

f- 1 ~

I

- Γ
-—

if

if

if

if

if

Li"
•

SGZ,

1 Z2

seZ,

seJ + Ẑ

SEZ,

I β l + Z.

seZ,

se^ + Z.
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3. We denote the eigenvalues counted with multiplicities of a linear transformation
H in a finite dimensional vector space by σp(H).

4. Let b:Z—>R periodic with period q. Define the discriminant Aq\C-*C by
Λq(ε) = Ύr(Tqls (H ^ Δq is a monic polynomial of degree q with real coefficients,
thus z^eR[ε]. The main properties of Δq are described by the so-called
oscillation theorem. We explicitly call attention to the fact that Δq has q—\ real
critical points κί < κ2 < • < κq_ x; these satisfy κNeGN. Gap GN is called a periodic
gap if N + q even and an anti-periodic gap if N + q odd. We call σp(Hb^ ) the
g-periodic spectrum and σp(Hb^ ) the g-anti-periodic spectrum. They αeter-
mine the bands and gaps completely.

5. Sometimes we denote explicitly the dependence of the discriminant on b\ for
example Δq(A,p/q,v,ε) for HAb(P/q,v).

2. Some Useful Spectral Topics

Here we shall present four propositions that we need to get around the proofs of
our two theorems. We start with the Aubry-Wannier duality [1,21] which we
would like to present in the following form.

Proposition 1. (Aubrey-Wannier Duality). Fix p/qeQ, k, veR. Then ^:^q^~ιVq->
^q/kq defined by

is a linear isomorphism such that the diagram

AH(l/A)b(p/q'k)

commutes for all XeR*. O

The following relation has been proved [4,5] in the context of a generalisation of
the discrete Mathieu operator.

Proposition 2. (Butler-Brown-Chambers Phase Relation). For all p/qeQ, A, veR,
εeC one has the relation

Δ q(A, p/q, v,ε) = Δ q{A, p/q, π/2q, ε) - 2Aq cos (̂ v). O

Our third proposition gives an useful alternative way to look at gap opening powers.

Proposition 3. Let b:Z ->R periodic with period q. Consider the family (HAb)AeR. For
AeR denote by K ^ A ) < ••• < Kq-^A) the q—l critical points of the polynomial
Δq(A9')eR[έ]. Fix Ne{l,2,...9q - 1}. Then

1. κN:R-^R is real-analytic.
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2. M:R-*R defined by M{Λ) = ( - \)N + qΔq(Λ,κN{A))-2 is real-analytic, M(0) - 0,
M ^ O .

3. Tfte leading power of the power series expansion about A = 0 o/ M equals
2O(b)N. O

1. The critical points of Z^(,4,.) are all different. Apply an analytic version of the
implicit function theorem.

2. Because AqeR[_A,ε] it follows that M is also real-analytic. The oscillation
theorem implies that M ^ 0. An analysis for A — 0 gives M(0) = 0 (see also for
example [10]).

3. Notice that (dΔq/dε)(A, κN(A)) = 0, (d2Δq/dε2) (A, κN(A)) Φ 0. Applying the Morse
lemma with parameters [8, page 19] to the function (—\)N + qΔq(A,ε) — 2 gives
the desired result. •

The following proposition is a generalisation of an idea used in [3J.

Proposition 4. Let b, b':Z—>R be periodic functions with period q. Consider the
recursion operators Hh, Hb., Suppose there exists ceR such that

Then for c > 0 all periodic gaps of Hb> are non-degenerate and for c < 0 all
anti-periodic gaps of Hh. are non-degenerate. O

Proof Let κN be the critical point that lies in gap GN of Hb. Then if c > 0 (c < 0)
we have for any periodic (anti-periodic) gap GN the inequality A q(b', κN) = A q(b, κN) +
c ^ 2 + c > 2 ( ^ — 2 + c < ~2). Δq(b\ ) and Δq(b, ) have the same critical points,
so gap N of Hh is non-degenerate. •

3, Proof of Theorem 1; Extreme Cases

Because Ab(p/q>v) = -Ab{plq^ + π) the validity of Theorem 1 for A>0 implies its
validity for A < 0, we may suppose A > 0. Because bands and gaps of a given Hb

remain unchanged if one replaces the potential b by a translated Tt(b) and
because for our b(p/q>v) we have {Tt(bip/q-v))\teZ} = {b{Plq<v + m{2πlq))\meZ}, we may

also suppose that ve[0,2π/q). In order to clarify our proof of Theorem 1 it is
convenient to introduce the following terminology for the gaps GN(1 <Ξ N g q — 1)
of HAb{Piv,v)(p/qeQ,A > 0, ve[0,2n/q)): We call extremal gaps the gaps GN in the
following parametric cases

Γ = -.

Π v = - , ^ = 2 (mod 4), N = -.

IV v - 0, N + f̂ odd.
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V v = —, N -f q even.

a
We call intermediate gaps the gaps in all other allowed parametric cases6. The

validity of Theorem 1 for the extreme cases I, II, III was proved by [3,6]. Continuing
the analysis in [3] one can even prove IV, V: they are straightforward consequences
of Proposition 4 in combination with Proposition 2. •

4. Proof of Theorem 2

Starting from the validity of Lemma 1 below and using the spectral topics presented
in 2, we shall be able to prove Theorem 2 in a fairly quick way.7 The proof of this
lemma can be found essentially in the proof of Proposition 4.2 and the remark
following it in [3]; one has to use our numbering of gaps to obtain our formulation8

of Lemma 1.

Lemma 1. In the cases v — 0, N + q even, N φ q/2 and in the cases v — π/q9 q even,
N + q odd, N φ q/2 one has for the gap growth powers of the family (HAbiP/q,r))AeR

Here is the proof of Theorem 2:
B) The Aubry-Wannier duality implies for AeR* the spectral identities

These in turn imply the desired results.
A) In view of Lemma 1 and B) we already have the results

(*): O(b(p/q-0))N =mm(τ;/}(N),q-τ;fϊ(N)) if N φ | N + q even.

(**): 0 ( b ( ^ π / β )) i V = min(τ;/q

1(N),9-τ;/β

1(iV)) if N φ | q even, N + q odd.

We shall now prove the remaining cases in the steps below.

Step 1.
We have seen already that the middle gap q/2 is degenerate for all ΛER in the
cases V = 0 , ^ Ξ 0 (mod 4) and in the cases v = π/q, q = 2 (mod 4). Thus

0{b{Plq'0))ql2 - + oo if ^ΞO(mod4),

0{b{plq>πlq))ql2 = + oo if q = 2 (mod 4).

Moreover because these middle gaps are {0} (see [3,16]) one has for all ,4eR
Δq{A, p/q, 0,0) = 2 if q ~ 0 (mod 4) and Δq(Λ9 p/q, π/q, 0) = - 2 if q = 2 (mod 4).

6 See also Remark 2.
7 I would like to thank J. Bellissard for pointing out to me the usefulness of Lemma 1.
8 We shall use a minimal version here
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Proposition 2 gives Δq(A,p/q,π/q,0) = Δq(A, p/q, 0,0) + 4Λq (AeR). Using these
three identities Proposition 3 leads to

0(b{Plq>πlq))q/2=- if q = <

. = - if a = '.

Step 2.
Let q be even. We have Δq(A, p/q, v, ε) = Δq{A, p/q, 0, ε) - 2Aq(cos qv - 1). Because
of Step 1 we have {-l)q/2 + qΔq{A,p/q, v,0) - 2 - - 2 ^ ( c o s q v - 1). Proposition 3
implies now

O(i> ( p / < ! 'VV=~ if v

In the same way we prove

\/2 = q

2 if V E ( V - ) \ J ~ } , ^ 2 (mod 4).

3.
Because KHAb= -H_AbK, where (Kg)(n) = (-l)ng(n), one has 0{b)N = O(b)q_N

(1 g N ̂ q— I). Now let <̂  be odd, N + ̂  odd. Then q — N is odd and (*) gives
O ( ^ ' 0 \ = O(h<"* ° V N = min(τ ^ ί ί - N), q- τ~l(q -N)) = min(q - τ;lq\N),
q-(q-τ;/q\N))).Thus

O(bip/q<°% - minίτ ^ίiV), g - τ^(iV)) if q odd, Λ̂  + q odd.

Let q be odd, JV 4- q odd. We proved in Step 3 that 0{b{Plq'0))N = min(τ~^(N\q-
τp/q(N)) Denote for AER with κN(A) the Nth critical point of the polynomial
Δq(A,p/q,0,.)eR[έ]. Proposition 3 gives that the leading power of the power series
expansion about ^ = 0 of (-l)N + qΔq(A,p/q,09κN(A))-2 equals 2O(biPlq'0))N.
Because of Proposition 2 we have the identity (— l)N+qΔq(A, p/q, π/q, κN(A)) — 2 =
( - l)N+qΔq(A, p/q, 0, κN(A)) - 2 + 4 ( - l)N + qAq. Thus because 2O(b{plq>0))N < q, the
leading power of ( - ί)N+qΔ(A, p/q, π/q, κN(A)) - 2 equals also 2O(bip/q'0))N. Because
κN(A) is also the Nth critical point of the polynomials Δq(A,p/q,π/q,)eR\_έ], we
obtain using again Proposition 3 that 2O(b{p/q>π/q))N = 2O(b{p/q>0))N. Thus

0(bW*'«M)N = mm{τ-,1{N), q - τ^(N)) if q odd, N + q odd.

Step 5.
Using as in Step 4. Propositions 2, 3 we deduce from (*)

% ( ^ ( ) 9 q ; / q { ) ) if N * | , JV + g even

and from (**)

O(bip/q>°% - m i n ( τ ^Nl q - τ~,ι

q (N)) if N Φ^,q even, N + q o d d .



30 P. van Mouche

Step 6.
We have already O(b{plq'0))N = min(τ^(N\ q - τ^(N)) if Nφq/2. Using again
Propositions 2, 3 we obtain

if veU~}\{~}, N:

5. Proof of Theorem 1; Intermediate Cases

Here we shall prove, using Bezout's theorem, Theorem 1 for the gaps GN in the
parametric cases

Q
VI. v = 0, N + q even, N / - , ,4eR*.

2

VII. v = -9N + q odd, N Φ% AeR*.
q 2

These cases include all intermediate gap cases and so a proof of VI, VII will prove
Theorem 1 completely. Bezout's theorem is the following statement [11]: Let F, G
be projective plane curves over C without common components, then (degree
F)(degree G) = £(intersection-numbers of F and G).

Proof of VI. Consider the g-tuple of real-analytic functions that describe the q-

periodic spectrum σp(HAb(P/q,o)^ ) as function of the real parameter A. Because

S(AbiPlq-0)) = AbiPlq'0) one has [if^p/^o), S] = 0, which implies that these real-

analytic functions can be split in a [q/2 + l]-tuple that describes the ^-periodic

0-symmetric spectrum

and in a \_(q — l)/2]-tuple that describes the ̂ -periodic O-anti-symmetric spectrum

^ # ί 0 ) |/ q i lπ£ 0 l- 1)

as a function of the real parameter A. Define the polynomials9 r±eR[^4, ε] by

r* = det(εW - H

We apply Bezout's theorem to the curves defined by the roots of r + = 0, r~ = 0,
after homogenising r±. One knows that the two boundary points of a gap consist
of a point of the symmetric as well as of a point of the anti-symmetric spectrum.
This makes that we can interpret the gap opening powers and the gap growth
powers + 1 of the periodic gaps of the family (HAb(P/g,o))AeR as intersection
numbers (there may be others). However, this is only correct if there are no common
components, that is, if there are no permanently degenerate (i.e. for all AeR) gaps.
Theorem 2 shows that such a common component occurs only for the middle gap

[17] shows that indeed r* eR[Λ, ε] and that degree (r+) = \_(qβ) + 1], degree (r") = [_(q - l)/2]
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in case q = 0 (mod 4). Because this gap is {0} we can handle this case by factoring
out the component ε = 0.

We shall now show that our gap opening and gap growth powers provide us
with all intersection numbers. The conclusion is then that there are no other
intersections. In particular we have that all periodic gaps are non-degenerate for
v4eR*. We shall distinguish three cases. In the following computations one has to
use Theorem 2 and some simple properties of the permutation τ^\.

Case q Odd.

7V= l,iVodd

q-1

= 2 Σ c

N=l,Nodd

= 2 " Σ " 2 IT
N= l.JVodd

iV=l,iVodd

/ (q-l)/2 q-ϊ

\iV=l,Nodd Λτ = (^+l)/2,iVodd

lin {tpiq{N\ q — τ~^(N))

+ 2 ? Σ mm(τ^(q -N),q- τ^(q - N))
Λ7= l,,Veven

\ N = l.Nodd

= 2 Σ m m

N= 1

+ Σ )m m(T/Vq (^)>^ ~~ Tp/q(N))
N=l,NevenJ

N - 1 \

= (degree r +) (degree r ~).

Case g Even, q =

N= l,Neven

= 2 "Σ'
 (

Λτ - 1 .iVeven

= 2(mod 4).

N-= l,iVeven

= 2( Σ ' + "l )min(τ W £

\ΛT= l,Neven

(q/2) - 1

= 2 Σ
iV = l,iVeven

(a(2y-1
™ni'>'PlqW-"hH-<'p/q\

+ 2 Σ mm(τ-}{q-N),q-τ;,}(q-N))
N=l,Neven

= 4 " £ m m ( τ ^ ( N ) ^ - τ ^ ( / V ) ) - 4 ' £ N = I ? - + 1 ) ( | - 1
Λτ=l,JVeven Λτ=l.Λτeven \ ^ / \ ^

= (degree r + )(degreer~).
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Case q Even, q = 0 (mod 4).

N = X.N e

= 2 *Σ O(bipl<1 °\
JV= ί,Ne\

= 2ί " Σ
s ίV - 1,/Veven JV —g/2 + l , i V e v e n

g 1

Σ + Σ
l / V JV 2 l

(4/2J_-l

= (degree r+ — 1) (degree r" — 1). •

Proof of VII. When we proceed in a manner analogous to VI, this gives the desired
result in this case as well. Notice STτ-ι,JAb{plq'πιq)) = AbiPlq-πlq); Now

P/Q y '

r* = det(εld - H Ahim,mq))w ^ _ ] n £ s M

Here s = ̂ τ~/9

1(l). One has to factor out the common component ε = 0 in
the case q even q = 2 (mod 4). Π •

6. Remarks

1. Theorem 2 gives the gap opening powers for all parametric cases. It is not hard to
show that the missing gap growth powers in Theorem 2 are all — 1 [16].
2. The cases which we called extreme are just those for which the associated gap
growth powers are — 1 or + oo.
3. Our results for rational α may imply some results for irrational α[3].
4. Another route without using Lemma 1 that proves Theorem 1 is given in [16].
5. We would like to conjecture that for any ^-periodic b each gap opening power
which is not + oo is less or equal q/2.
6. We understood that Elliott and collaborators [9] too has recently found a proof
of Theorem 1 using a C*-algebra approach.

Acknowledgements. I would like to thank my thesis advisoi J. J. Duistermaat for the idea of using

Bezout's theorem, E. M. and M. S. Dijkhuizen for useful comments on the presentation.
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