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Abstract. A generalization of a previous group manifold quantization
formalism is proposed. In the new version the differential structure is circum-
vented, so that discrete transformations in the group are allowed, and a
nonabelian group replaces the ordinary (central) U(1) subgroup of the
Heisenberg—Weyl-like quantum group. As an example of the former we obtain
the wave functions associated with the system of two identical particles, and
the latter modification is used to account for the Virasoro constraints in string
theory.

I. Introduction

The use of group theoretical formulations has increased, since the pioneer work
by Ne’eman and Regge [1], making easier and more natural the incorporation of
infinite dimensional symmetry groups to dynamical systems and generalizing the
basic quantum structures. In general terms the nonlinear sigma model on group
manifolds [2,3] and string theory on group manifolds [4-6] are examples of
modern formulations where the Lie structure of a certain group plays an important
role (see also refs. [7-117] and references therein). It constitutes a step towards the
algebrization of physical theories, an evolution analogous with that previously
suffered by Mathematics itself.

In this paper we present a generalization of a group approach to quantization
[12-14] in which a Lie group G and its canonical structures were the only starting
points (see also ref. [13] and references therein). The structure of the group itself
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was that of a principal bundle with structure group U(1) (or R for the classical
limit). Although central extensions were mainly employed, some nontrivial bundles
were considered as well [15, 10].

The idea of a formulation of dynamics on a group manifold has support in the
strong parallelism between the configuration space of certain physical elementary
systems and the corresponding symmetry groups. To be more precise the
comparison is best established between a generalized configuration space including
the evolution of the wave function (or the Hamilton principal function) and
the group of transformations leaving the Lagrangian strictly invariant. For
concreteness, let us consider the free spinless particle in three dimensions. The
lagrangian (1/2)mx?, defined on M = R*xR3xR, is not strictly invariant under the
action of the Galilei group G. This fact is not due to the structure of the space M
considered but a consequence of the non-trivial cohomology of G with values in
the co-adjoint representation [16]. The symplectic cohomology group H*(G, %*)
(where %* is the dual to the Lie algebra ¢ of G) or equivalently H*(G, U(1)) [17]
(see also ref. [12]) is an obstruction to the existence of strictly invariant lagrangians.
The minimal modification to be made in order to break down that obstruction is
either to extend the manifold M by S! (respectively R) and the group G by U(1)
(respectively the additive group R) [14]. The simplest non-trivial Lagrangian which
is strictly invariant under the U(1) central extension G(m) (respectively R central
extension G, is that leading to the Schrddinger (respectively Hamilton-Jacobi)
equation for the free particle.*

The parallel between the extended configuration space M = MxS' and the
group manifold of @(m) is that the former is the manifold of the quotient group
Gm/SO(@3). For the solution manifold we have @(m)/{50(3) x time translations},
ie., the quotient of G, by the subgroup which plays no role in the group extension
process. It is in fact a quantum manifold in the sense of refs. [16] and [27]. Working
on the bigger manifold @(m) requires, however, the incorporation of certain
restrictions on the wave function ¥ (Hamilton principal function S in the case of
@(m)) associated with the non-symplectic parameters of SO(3), time translations
and U(1) (R) subgroups. In particular, the restriction associated with U(1),
denominated U(1)-equivariant condition, is written as ¥Y({xg) = { ¥(g), (e U(1),
geG(m) or i{d¥/d( =iV in the infinitesimal form (S(¢*g) = ¢ + S(g), PR, GeG
or dS/d¢ = 1). The remainder appears as a part of a generalized polarization [12, 14]
(see refs. [16] and [27] for the standard definition of polarization).

The above features corresponding to the free particle can be extended to
numerous finite-dimensional systems [14] as well as infinite-dimensional ones as
a result of a perturbative method of computing group laws [10] which, in principle,

! It must be remembered that the non-extended Galilei group G does not leave invariant the
wave function of the free particle. Under a boost parametrized by V, ¥(r,t) behaves as ¥'(r',t') =
exp (im/h){1/2V*t + V- Ry} ¥(r,t) = exp (im/h)é(g; 1, 1), where m is the mass. The cocycles of H*(G, U(1))
have the form &(g;¢'), now ¢,g'eG, except for an arbitrary coboundary, i.e., &.op(91,92) =n(g1*9,) —
n(g,) — n(g,), where 7 is a real function on G. For the Hamiltonian principal “wave” function we have
equivalent expressions: S'(r',t') = ml(g; 1, t) + S(r, t). Nevertheless the # constant can now be discarded
as the function S already incorporates the dimension of an action
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enable us to apply the quantization formalism to any Lie group G. Thus, a vast
number of dynamical systems could arise as associated with classified groups. In
each case the quantization procedure seems to be quite clear although calculations
are definitely non-trivial.

The generalization that we propose here is twofold. On the one hand we want
the formalism to incorporate discrete transformations on the same footing as
continuous ones. This means that discrete transformations can appear, not only
connecting two separate sectors of the theory as in certain gauge field theories (see
ref. [ 18] and references therein), but also playing the role of co-ordinate-momentum
pairs as in the case of quantum strings on a torus [19]. On the other hand the
structure group U(1) (or R) of the quantum group G viewed as a principal bundle
must be, in general, replaced by a group T which need not be abelian and which
contains some U(1) (or R) subgroup. Our intention in so doing is, in particular,
to generalize the U(1)-function condition on the wave functions, i{d ¥/d{ =i ¥, in
order to accommodate non-abelian constraints in a natural and consistent manner,
i.e., compatible with the polarization conditions. Non-abelian constraints have to
be imposed when quantizing nonabelian gauge theories [20] as well as string
theories [21,22] (a partial study of constraints was already made [13] in the
framework of the previous formalism [12]). As a by-product the quantization
1-form [12], which is a connection 1-form on the principal bundle [23] G, acquires
new (vertical) components (those on the structural group T of G) transforming as
ghosts under T. We will not be concerned here with ghost nor any other element
of the BRST formalism [24,25] but we refer to ref. [26], where the transformation
properties of the vertical components of the connection 1-form are analysed.
Another particularity of “non-abelian” quantization is that the # constant is
included in a set of constants characterizing the irreducible representations of T.
h was associated with the U(1) group law, usually joined to the cocycle £(g', g) to
compensate its dimensions (see footnote 1).

Two quite different examples have been chosen to illustrate the generalized
quantization formalism. We consider one in which a discrete transformation is an
essential ingredient of the theory and another one where the essential point is the
raising of constraints as a consequence of enlarging the structural group. The first
one is the quantization of two (n in general) free identical particles, the discrete
transformation being that of identifying both. The second one, not so simple, has
the group Virasoro ® {Affine 2SU(2)} [11] as G and the dynamics is closely
related to that of strings on the SU(2) group.

The organization of the paper is as follows. In Sect. I we motivate the general
theory with the help of the free particle example and present the essential structure
of the group manifold quantization approach. After commenting on the kind of
modifications required by the presence of discrete transformations in G or
nonabelian ones in the structural group, we generalize in Sect. III the previous
formalism following a parallel exposition. Section IV is devoted to the example of
the nidentical particles system whose associated quantum group G contains discrete
transformations. Finally, in Sect. V we apply the generalized formalism to a
particular fibration on the group Virasoro ® {Affine 2SU(2)} the fibre (structural
group) of which contains the Virasoro subgroup.
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II. Quantization Formalism on a Connected Lie Group:
The Free Galilean Particle

The group approach to (Geometric) Quantization [12—14] generalizes the mathe-
matical structure underlying the symmetry transformations associated with
quantities appearing in the basic Poisson brackets
{(mV,,K'}=6l, i,j=1,...,n. 2.1
These quantities are conjugate co-ordinates and momenta of the symplectic
manifold of solutions of a mechanical problem. The commutation relations (2.1)
are none other than the only nontrivial commutators of the Heisenberg—Weyl
group HVV(m)? an U(1) central extension of the additive group of the symplectic
vector space of dimension 2n [16]. Its group law is written
A=A+ A, AeR",
Vi =y Vi, VeR", 2.2)
{"={Cexp[(i/2h)malg’, g)1, (eU(1),
where g represents the element (4', V), w is the canonical symplectic form of the
symplectic vector space, m is a positive real number, the mass, and # is the Planck
constant introduced to make the exponent dimensionless. The relations (2.1) are
also the commutation relations among (right-) invariant vector fields of q Weim
once the identifications X% — P, =mV;, 1/mXR, —K;, X% — 1 have been made.
An irreducible representation of the Poisson algebra {P;, K’} =0/, {P,,P;} =0=
{K', K’} which assigns i# to the function 1 (i.e. a quantization) is achieved by letting
X {i,,),)? 5,1, act, as orclinary derivations, on functions ¥ on H Wy which are
U(1)-equivariant (i.e. X ¥=i'¥) and which have null Lie derivative along the
direction of the left-invariant vector field X{,,, which, in the costomary language
of the geometric quantization, generate what is called a polarization [16,27,28].
A more complete example of what later on in this section will be called a
dynamical (or “quantum”) group is provided by enlarging the group law (2.2) by
some rotation and evolution parameters. The following group law, which defines
a central extension G(m) of the Galilei group G (see references in [12]) constitutes
a simple example:

B" =B+ B,

A=A +RA+VB,

V'=V'+RY,

R'=R'R,

(' = Lexpim/QR)[R'V-A'~ R'A-V' + V'R AB]. (2.3)

Here we have made use of one of the possible cocycles or local exponents (g, g)
of the cohomology group H?*(G,U(1)) of the Galilei group G; the classes in
H?*(G, U(1)) are parametrized by the (positive) real number m. Expression (2.3) will
correspond to the spinless free particle of mass m [12].

The important feature of a group law like (2.3) is its principal bundle structure
with fibre U(1) and base @(,,,)/ U(1) as well as the fact that the fibration is canonical.
The fibration distinguishes one component of the left-invariant one-form 6% on
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@(,,,): the vertical component which in local co-ordinates is just the component
60X dual to the fundamental vector field i{9/0( = Z. This ordinary (R-valued)
one-form, which in this case is given by

O =(m/J[V-dA— A-dV]—(1/2m)V>dB + hd(/(i0), (2.4)

is a pre-contact one-form on the manifold G, since it has a nontrivial
characteristic module C g (see ref. [12] and references therein). C 4 is generated by
XL and XL, ie, the left-invariant vector fields in the kernel of the Lie algebra
cocycle. In particular, X% has integral curves obeying the classical equations of
motion (Hamilton equations) except for the { co-ordinate equation which is
responsible (in non-trivial physical systems) for the Bohr-Sommerfeld quantization
rules [14]. The equations themselves require the identification of B, 4,m}V with
the physical variables ¢, x, p respectively.

The quantization is finally realized as in the case of the Heisenberg—Weyl
algebra except that now the polarization is enlarged by the characteristic subalgebra
(X% XL). Thus, the full (generalized) polarization is {X§, X%, X £} and the
wave functions are complex functions on @(m) such that i

EY=i¥, XLw=0 XL¥=0 X,¥=0 (2.5)

In particular, the last equation in (2.5) is nothing other than the Schrodinger
equation in momentum space

ihd¥/ot = p*/2m) . (2.6)

The U(1) group law (" in (2.3) was expressly written so as to manifest the global
(compact) structure of U(1). Writting { locally as { = exp iy/h, where the U(1) local
parameter y admits dimension of an action, turns (2.3) into the group law for the
central extension of G by the real line R. The last line in (2.3) is rewritten y” =
¥ + ¥ +mé(g,g) The quantization form (2.4) is now

O =1m[V-dA— A-dV]—LmVdB + dy 24)

and the equations of motion (the X% generator) identify y with the action of the
system. The “wave” functions are now real R-equivariant functions S on G and
the “wave” equation X%.S = 0 turns out to be the Hamilton—Jacobi equation [14].

The example above provides the background for the formalism of quantization
on a connected Lie group [12—15] whose essential ingredients we describe below.

Definition 2.1. (Connected) “Quantum” Group. A (connected) “quantum” group is
a connected Lie group G which in turn is a right-principal bundle having as fibre
an one-dimensional Lie subgroup T (U(1) or R).

We must remark that the compact structure of T, T = U(1), will be responsible
for the quantum nature of the associated physical system, while an open fibre,
T = R, will lead to the classical description (Hamilton—Jacobi). The particular case
where G is a central extension by U(1) of a Lie group G corresponds to a quantum
system which admits a classical limit: the central extension of G by the local group
law (the additive group R) of U(1). The classical limit then appears as a local
version (from a local chart) of the quantum structure. As mentioned above the %
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constant is naturally removed from the classical group. On the other hand, a group
G whose group law breaks down when opening U(1) reproduces the dynamics of
a system without a classical limit.

Let 6 be the canonical left-invariant one-form on G [23] and @ its vertical
component [14] (see a~lso ref. [10]), dual to the fundamental vector field X GEe
ZYG)~ %, where ZX(G) stands for the algebra of left-invariant vector fields on
G (X(G) generates the finite right action on G on itself). The one-form @ will play
the role of a connection form on the principal bundle G and its curvature Q = d @
that of a presymplectic form. It can be proved [12] that in the particular case of
a central extension the quotient of (G, ®) by the characteristic module C =
{(XeZ(G)/iy®=0=iyd®)} is a quantum manifold [15].

Definition 2.2. Characteristic Subalgebra and Evolution. The equations of “motion”
are those associated with the left-invariant vector fields which generate the module
Co

It may easily be shown that Cg is generated as a free module by a set of
left-invariant vector fields. These vector fields span an horizontal (with respect to
©) subalgebra %, of the Lie algebra @ of G. The absolute time evolution is
usually associated with one element in the centre of 4 4.

Definition 2.3. Full Polarization. A full polarization, 2, is a maximal horizontal
(with respect to ©) left subalgebra containing the characteristic subalgebra.

When the dimension of G is finite, Definition 2.3 eliminates the ambiguities
of the standard definition of polarization [16,27] in the geometric quantization
approach. For infinite dimensional groups G Definition 2.3 seems to be quite
adequate as it agrees with analogous structures (that of Borel subalgebras) of
infinite-dimensional Lie algebras (see ref. [10] and references therein) which
characterize the representations as well. Also the possibility exists of generalizing
this definition allowing £ to contain only a proper subalgebra of % . The existence
of such a non-full polarization seems to be related to anomalies.

Definition 2.4. Wave Functions. We define wave functions as (complex) functions on
G which satisfy

a) the condition of being T-function from the left,
P(gr+9)=9gr*¥(9) VgeG, greT, 2.7)

ie. Y({g)=(¥(9) for (eU(l), ¥Y(g9eC and S(x+g)=yx+Slg) for yeR,
Y(g9) = S(g)eR.
b) the generalized Planck (or polarization) condition

Xty=0 vXlez. (2.8)
In differential terms, a) reads
XR.¥=i¥ for T=U(l) (2.9a)
and _
X8.¥=1 for T=R, (2.9b)

expressions which will decide the quantum or classical character of the physical
operators. The Schrodinger equation just appears as one particular equation from
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those in (2.8). Condition a) above requires a further comment: only when the group
G is a central extension by U(1) or, rather, when U(1) is a central subgroup, may
(2.7) be written from the right,i.e. ¥(g*gy) = gr* ¥(9) = ¥(9)* gy, thus reproducing
the ordinary U(1)-function condition on a right principal bundle. Thus, when U(1)
is not central the parallelism with the geometric quantization approach is in this
respect broken.

Definition 2.5. Dynamical Operators. The dynamical operators are the right-
invariant vector fields on G, Z%(G), acting on the wave functions as ordinary
derivations.

Note that the action of Z%(G) is compatible with the polarization conditions
since the right- and left-invariant vector fields commute. The T-function condition,
nevertheless, could restrict the set of true operators to a subalgebra of ZX(G) in
the case where T is not central (see Sect. IIT where this question is analyzed further).

The formalism now ends with the definition of a hermitian product which
makes the space of wave functions #/(G) a prehilbertian space. The definition of
the hermitian product, with respect to which the operators generate (pseudo-)
unitary transformations, requires the use of an invariant measure (unitarity appears
for determinate values of the parameters in the theory, for instance, cohomology
parameters for centrally extended groups). It is obtained from the left-invariant
forms on G [14].

II1. Algebraic Quantization on a Group

The use of discrete symmetry transformations inside the quantum group G requires
a generalization of the geometric formalism briefly described in the previous section.
Indeed, in the previous formalism all restrictions on the wave functions, i.e., the
T-function condition and the generalized Planck condition, were imposed through
Lie derivatives defined by infinitesimal generators of the group action. Moreover,
the definition of the polarization £ itself made use of a differential form, O,
intimately related to the differential system Z%(G). Thus, we have to start by
reinterpreting in finite or integral form the T-function condition (it was already
given in finite form [(2.7)] and the generalized Planck condition (Definition 2.4b)).
Specifically, the polarization condition will now read

¥(g+G,) = ¥(9), (3.1

where G, will be the subgroup generalizing the transformations generated by the
left-invariant vector field of £ in the previous formalism. In particular, what was
previously the characteristic module associated with ©, Cg, is now replaced
by a subgroup of G algebraically characterized without any reference to a
differential form. We shall label this group G.

To seck an algebraic characterization of G, we note that C o might have been
defined as the maximal horizontal subalgebra. Y. such that [¥. & LG)] is
horizontal. In fact, making use of the Maurer—Cartan equations one can write,
on left-invariant vector field (® is also left-invariant),

dOX,Y)=—O([X,Y])), (3.2)
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so that one has ©([X,Y])=0 VXe%, , YeZX(G), because iyd® =0=i,06.
Finally, the horizontality condition can also be replaced by an algebraic one given
in group terms rather than using Lie algebra generators. Labelling GC@ the
characteristic subgroup having ¢ €3S its Lie algebra, the horizontality condition for

[%c,, ZH(G)] is replaced by
(G, GINT =15, (3.3)

where [,] now stands for the group commutator ([¢’,g]=¢'g9’~*¢~!). Thus, (3.3)
constitutes the algebraic characterization of G for the case of a connected Lie
group G.

The same algebraic condition (3.3), but with G replacing G, along with the
algebraic version (3.1) of the polarization condition provides the generalization of
the geometric formalism needed for the incorporation of discrete operations. How-
ever another generalization is required if the structural group T is to be larger
than U(1) or R and especially if T is nonabelian and therefore noncentral. T in
(3.3) must be replaced by the one-dimensional (U(1) or R) subgroup of T to which
it generalizes. In general T will be, in turn, a principal bundle (perhaps trivial)
having T, = U(1) or R as the structure group. In this case it is the structure group of
the enlarged group T that must be put in (3.3).

A consequence which follows from the noncentral character of T and from the
fact that wave functions must obey the T-function as well as the Planck conditions
is that the prehilbertian space #(G) will not be stable under the whole set of
(finite) left transformations (generated by right-invariant vector fields when G is
a connected Lie group). This will lead us to select a preferred class of left translations
defining “good” operators.

Moreover, it has to be realized that if T is larger than U(1) or R a representation
space bigger than C is also needed and that in general more than one representation
of T may be utilized in the T-function condition. In this case non-equivalent
quantizations will correspond to each of the representations of T.

Finally we must point out that a T-function condition by the whole group T
might be in general too strong for some groups G and that some sort of polarization
subgroup T, of T should be used. This actually happens when an “anomaly” is
present in the Lie algebra of T or, in general, when some of the parameters in T
play the role of co-ordinate-momentum pairs. The group T itself is, in this case,
a quantum group and the maximum set of compatible constraints that can be in
general imposed on any representation is indeed a polarization. As a general rule,
the complete constraint subgroup T can be imposed on the wave function only if
T/T, is a subgroup of G,. On the other hand, if G, contains only a polarization
subgroup T, of T, a polarization subgroup T, of T, dual to 77, must replace T
when writing down the T-function condition.

After this rather detailed justification of the algebraic quantization structure
Wwe now give a more concise account.

Definition 3.1. “Quantum” Group. A “quantum” group is a (Lie ?) group G which
in turn is a right-principal bundle with structure group T.
We will think of T as containing a one-dimensional subgroup T, (U(1) or R).
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Indeed, T will be a principal bundle having T, as the structure group. Of course,
the principal structures we are referring to are defined in algebraic (as opposed to
differential) terms.

Definition 3.2. Characteristic Subgroup and Evolution. A characteristic subgroup
G is a maximal subgroup of G such that

[Ge, G1nTy =15 GenTy=1;. (3.4)

The right translations by elements in G are the generalized evolution transforma-
tions in terms of which the generalized equations of motion will be given as a part
of the finite polarization conditions that follow. The finite Schrodinger equation
will be associated with an element in the centre of Gg.

Definition 3.3. Full Polarization. A full polarization G, is a maximal subgroup of
G such that (see comments after Definition 2.3)
Ge=G,, G,NnT,=1g. (3.5)

Let T, be a polarization subgroup of T,ie., T,is defined with respect to T just as
G, was with respect to G. Let us consider the subgroup Ty generated by T,u T,
which generalizes the notion of a Borel subgroup [29].

Definition 3.4. Wave Functions. A wave function is a function ¥ on G, taking its
values on a vector space E, such that

a) W is a Tg-function from the left

¥(gr,%9) = Dlgr,) ¥(9), (3.6)

where D is a representation of Ty on E which characterizes the quantization.
b) ¥ satisfies the generalized Planck condition

¥(g+G,) = ¥(9) (3.7)

The space of wave functions is labelled H(G).

In Definition 3.4, D(¢g;,) generalizes the natural representation of U(1) on the
complex numbers C where ¥ takes its values. Now the wave functions take values
on the carrier space E for the concrete representation D. In turn, this carrier space
could be obtained by using the group quantization formalism again but now with
T as the starting point. In this way the whole procedure remains quite canonical
(an analogous situation appears in induced representation theory when the little
group of an orbit is again a semidirect product of two groups).

Definition 3.5. “Dynamical” and “good” Operators. We shall name “Dynamical”
operators the left translations L, geG acting from the left on the arguments of
the functions on G. The subgroup H,c G of dynamical transformations which
are compatible with (3.6) and (3.7) will be called the subgroup of “good” operators;
G, is the maximal subgroup which fulfills

Ad(G)[ Ty, G,] <G, (3.8)

We will see in the examples of Sect. IV and V that the set of dynamical operators
also makes physical sense even though it only preserves the space of T,-functions.
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Finally we note that an invariant (from the left) scalar product can be defined
in the form

= Z 1(9) P*(9)D(9) (3.9)

if the representation D of Ty is unitary. Of course, Z w is a generalized (discrete-

continuous) left-invariant measure on G (see Ref. [1 1] for the continuous case).

IV. The System of n Identical Particles

One of the most significant modern geometric quantization formalisms is that of
Souriau and Kostant [16,27] (see also Ref. [28]) which predicts the existence of
two inequivalent quantum manifolds on the symplectic manifold M of solutions
associated with a system of n identical particles [16], i.c., of as many inequivalent
quantum manifolds as there are elements in the dual group of the homotopy
group (the permutation group S,) of the manifold M. Nevertheless, the explicit
construction (which is not given in the original papers) is quite involved. Indeed,
the space of solutions of a system of n identical particles is mathematically realized
by taking the quotient by S, of the product of n manifolds identical to the mani-
fold of solutions of one particle, and it turns out to be a manifold only for dim
M < 2. For dim >3 the additional operation of eliminating the diagonal from
M x M x --- x M is required, a procedure which leads to rather involved manifolds
for n>4 [30]. For n=2 and M = R™ with m > 3 one finds R™ x p™~!(R) x R.

In our algebraic formalism the quantization of n identical particles moving in
an m-dimensional space can be achieved, without subtracting any submanifold,
for arbitrary n and m. We shall limit the explicit calculations to the case of two
identical particles moving in R* although the group law for n of them as well as
a few comments on this general case will be given at the end of this section.

For two particles the problem is essentially reduced to that of one (reduced)
particle whose inversion with respect to the origin (centre of mass) is given by the
interchange operation between both particles. Our (non-connected) group law is
then (we put i=1)

B"=B + B,

A"=A"+RnA+V'B,

V'=V'+R7V, 4.1)
R"=R'R,

{"=UClexpip{d" RV + B(V'-Rn'V +1/2V"?)},

' =n'n,

where B, 4, V, R are similar to the Galilean parameters given in (2.3), u stands for the
reduced mass and neZ,, i, either the identity or the exchange operation.

Although (4.1) corresponds in fact to a central U(1)-extension G o of a Galilei
group GI in which O(3) replaces SO(3), the structure we are interested in is that
of a right principal bundle on the Galilei group G with fibre T = U(1) x Z,. We
shall name this structure G(G, U(1) x Z,).
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A crucial calculation in what follows is the group commutator of two arbitrary
elements. Writing the generic element g as (B, 4,V, R; {, n) we get

[g,91=(0,(1 — Ad(R)(R)m)(4'— V'B) + (R'r' — [R,R])(4 — VB

+ Ad(R)(R)nBY’ — R'n'B'V, (1 — Ad(R)(R)m)V

+ (R —[R, RV, [R, R];expiu{é(g,g9)— &g ', 9)

—&g g +g g N+ g9 g7 LD, (4.2)
where &(g', g) — the GI cocycle — is 1/(ip) times the exponent appearing in (4.1). The
rather complicated term &(g'g,g'~*g~!) is given by

—(A"+R7"A+V'B)[R,R](V + RnV')+ (B + B)(V' + R'n'V)
‘[R,RI(V + RnV') = 1)2(V' + R'V)?). (4.3)
A direct calculation provides G and G,
G = {Time trans.} U {SO(3)} U Z,
G, = Gcu{Space transl.}.

The wave functions are complex functions on G(G, U(1) x Z,) which satisfy
the (U(1) x Z,)-function condition and the generalized Planck condition with
respect to the subgroup G. The T-function condition reads (in this case Ty and T
coincide)

P, 7)*(B, A, V,R;{,m)) = D({',n)¥(B, A, V, R; {, m), (4.4)

where D stands for any one of the possible representations of T on C; they are
parametrized by 2s, neZ™,
D(¢, ) = m2s(", (4.5)

We shall restrict ourselves—as it was in fact done in the previous formalism—to
the case n =1 (n > 1 would lead, in general, to vector subspaces of #(G) for n = 1).
The full polarization condition for an arbitrary element g of G, is written

Y(B,A,V R {,n)=¥(B +B,A+nRA+ VBV RR;
U'expip(BV'?/2);n'm), Vg'eG,
and choosing for g the particular value B= — B, A= —n'R' ™! x(4'—V'B),
R=R"! n=n, one gets
¥(B,4,V,R;{,m)=¥(0,0,V, 1;{ exp — in(BV?/2), 1), (4.6)

where the primes have been dropped everywhere. Using simultaneously (4.4), (4.5)
and (4.6) (for the case n = 1) the wave functions become

¥(B, 4, Y, R;{,m) = Lexp(— iuBV?/2)0(V), (4.7)
where @(V) is a function depending only on V' and satisfying

(V) =n*>0(nV). 4.8)
Equation (4.8) provides the expected characterization of either Bose and Fermi
momentum wave functions depending on whether s is integer or half-integer.
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To find the subgroup whose left-translations leave # (G) stable we must solve
Eq. (3.8). To do this, we first observe that if “a” is a rotation, time translation or
inversion one has [T,a]=1; and thus Ad(g)[T,a] =1z. On the other hand,
if “a” is a spatial translation (4') or a boost (V') its commutator with the
inversion is another spatial translation or another boost. Thus, calculating
Ad(g)(4') and Ad(g)(V")Vg, we get

Ad(g)(4') = (0,7R 4", 0, ;exp iu(nA'RY), 1)¢G,

Ad(g)(V') = (0,0, iRV", L;exp iu( ARV’ — BV"?/2), 1)¢G,,.

Accordingly G, ={Z,}u{SO(3)}u{Time transl.}. The corresponding (good)
operators, i.e., the right generators (up to a constant factor i and putting = 1)
of the continuous transformations on G, and the discrete nontrivial operator of
Z,, have the following action (g is the SO(3) parameter)
iXE.O(V) =121 D(V),
iX8.0(V)= —iV A djaV DY),
oY) =(—1H*oV). (4.9)

We end this section with the generalization of the group law (4.1) to the case
of n identical particles. Disregarding rotations the group law can be written as
follows:

B'=B'+B,
A = A+ Ayory+ ViB,

Vi=Vit Ve

{"={"Cexp lmz (Vo1 + BV Vs + 3V}

n =, (4.10)

where n now runs over the permutation group S,. The entire formalism can be
followed step by step with the natural generalization of the one-dimensional
representations (4.5) which must now be rewritten

D(¢, m) = sign (m)*¢". (4.11)

Nevertheless, the group S, is now non-abelian and therefore additional irreducible
representations of dimension greater than one can be considered as well. The
corresponding wave functions will have the symmetry of some Young tableau.
The analysis of these new quantizations and their connection with parastatistics
[31] deserves a separate study.

V. The Principal Bundle Virasoro ® {Affine 25U(2)} - 2.50/(2)

We now consider a typical case of nonabelian constraints: the Virasoro constraints
L,so ¥ =0 that the wave functions of strings (on a group manifold) must obey
[21,22]. These constraints will appear as Ty-function conditions from a concrete
principal bundle group whose fibre contains the whole Virasoro group. As no
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discrete transformation is considered we may think of invariant vector fields, Lie
algebra structure etc. Thus, for instance, Lie commutators of the (say) right-
invariant vector fields of the semidirect product of the U(1)-extended Virasoro
group and the Affine SU(2) loop group [11] are

[RR, XE]= —2i%E , — 2aq +iN/2)0, _ , XE,
[XR.XR1=—iXR . [X§ XE]=iX%

Zg+p? Zh 4 p?
[X(l;qa )?g,,] = O‘qéq. —p)?g
[XRXR]=(n—mXR,  +1/12(cn®—c'n)d, _XE

I In+m
[XR X8 )= —mXR  [XEXR]=—mKE

I Zn+m’

[XR.XR]=—mXE  —mN/25, XK

|

[XR any other] =0 (5.1)

where z,, z¥, 0, m,n,peZ, parametrize Q2SU(2) (z,, 2,0, parametrize SU(2),
0, the Cartan subgroup), l,,, me Z parametrize the Virasoro group, and { =expi¢p
the central U(1) subgroup. The algebra (5.1) was already considered in ref. [11]
where all possible quantizations associated with the U(1) central extension structure
of the group Virasoro ® {Affine 2SU(2)} were classified. These quantizations
correspond, in particular, to those which could be obtained by using the standard geo-
metric quantization methods on co-adjoint orbits [32]. Note that the fibration we now
are interested in, i.e., Virasoro ® {Affine 2SU(2)} —» 2SU(2) is different and has,
in turn, the non-abelian U(1)-centrally-extended Virasoro group as the structure
group.

To illustrate how the Lie algebra (5.1) in fact corresponds to a Lie group which
in turn is a principal bundle having the Virasoro group within its fibre, let us write
down the explicit group law from which the algebra (5.1) can be derived. Up to
fourth order the group law is as follows:

Zn=2p+ 2, —iZy O+ (M =m0z, — 2 22y — 20 pZmZp

—1/22, e OOy — 2y = p 2 2, — i(m — D)2 O
+12m—my)n—my —my)l L2y —my + 05
¥ =¥tz izt O+ (n—m)l ¥ — Xz, — Zy 2z

— 12z} 00, — 2} ZmZi + Um— )z 0,
+1/2(n —my)(n—my —my)ly Ly, 28y oy + o

0/=0,4+0,+n—ml0, . +i(z,_nzk—z¥ .2,
+i(m — P)zy 2y = ZX Zim— ) F (2o 2+ 20— pZm)O)p
+12n—my)(n—my —my)l, 10y — s

=0 +mll,_,+ 12m*L L0+,

d)” = ¢,+ ()b +a€a+ N€N+Céc+ Clic”
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Ca=1/2[nQz¥ 2\ + 2z02%  + 0,0_,) + i(m — n)(z,2%0 _, _,,
— 2320 ) + UOzp2*  — Oz z )
+an+p)2z¥ 2z +22,2% 0,0, )+ -],
En=1/2(05 — 0, — 6,),
= — 12031, + 1/2inm(n + m)2L_, 1,
—12(n + m*(n* + m> + nm)LL L1, + -],
&= 1200 — Iy — 1) (52)

It is clear from (5.2) that the Virasoro group only acts from the left (we write a generic
group law as g” = g’ xg) on 2SU(2); the non-primed , parameters only appear in the
fibre (I,, ¢") group law.

Following our general prescriptions for obtaining quantum wave functions we
start with functions on G = Virasoro ® {Affine SU(2)} restricted by one set of
full polarization conditions. For instance, let us choose the full polarization which
generalizes that used in ref. [11] to calculate the standard representations of Affine
QSU(2), ie.,

gStandard — <X0n<o’ XL XL le<0> (53)

zg<0’ “*zh<o?
The generalized Planck conditions #52"4- ¥ = () must be imposed in addition

to the Tp-function conditions. Here T is the U(1)-extended Virasoro subgroup and
Ty can be chosen as generated by

{(Z,2,,.,><Lie algebra of T. (5.4)
With the representation D of T characterized by
dD(Z,) =i, dD(Z, )= ad,,, (5.5
the Tg-function conditions read
XRy=iy, (5.6a)
)?};Zo.s%aamoav. (5.6b)

Note that taking the dual polarization (Z;,_ ) leads to a trivial result.

To prove finally that (5.6b) are in fact the ordinary constraints imposed in
string theory let us restrict ourselves to the subgroup {l,} ® {Affine 2SU(2)}
whose wave functions are known [11]. In this case (5.3) reduces to

(Kb o XE Kb XED (5.7)
and (5.6) to
XRy=iyp, (5.8a)
XRW=as,,P (5.8b)

(5.8a) is nothing other than our ordinary U(1)-function condition and )?ff) is just
the Sugawara construction of the L, operator. An explicit calculation of the wave
functions on the whole Virasoro ® {Affine 2SU(2)} will be presented elsewhere.
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We will see how the Virasoro group can be realized with or without anomaly
(¢ =0 =¢') although in the latter case on wave functions depending on the Virasoro
group parameters [, as additional variables playing the role of bosonic ghosts.

As a last comment we want to point out the meaning of the subgroup G, of
“good operators” in the present example. Although the actual solution of (3.8) is
nothing other than the SU(2) subgroup, a solution of (3.8) (or rather its infinitesimal
counterpart) inside the enveloping algebra of G would contain the DDF operators
[33]. An alternative possibility of incorporating the DDF set into the scheme
might be found in the theory of hyperbolic Kac-Moody algebras [34]. A formal
hyperbolic Kac-Moody group should provide a subgroup G, containing the
DDF algebra.
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