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Abstract. We discuss some consequences of the existence of a heat kernel
regularization (HKR) for quantum fields. We demonstrate that HKR applies in
certain examples, using methods which should be useful more generally.

I. The Heat Kernel Regularization

Let J f be a Hubert space and let H ̂  0 be a self-adjoint operator. We consider the
self-adjoint contraction semigroup T(ί) = exp( — tH), ί^O, which is generated by
H. We introduce a scale of Hubert spaces

jTε-*J>f-+Jf_ε, ε > 0 , (LI)

where J ^ is the completion of the domain of Qxp(εH) with respect to the inner
product

<XuX2>^ = <e*H

Xue*H

X2y^. (1.2)

Also, Jf_fi is the dual space to J>fε with respect to < , >^. By if(J"fε3 JfLJ we denote
the space of bounded linear operators mapping fflε into JfLε. Let W be a bilinear
form on jtf* with domain J ^ x J ^ for some ε > 0.

Definition I.I. We say that W has a heat kernel regularization (HKR), if

We^(Jt?ε,^ε). (1.3)

Furthermore, if (13) holds for every ε>0, then we say that W has a strong HKR.

Let
Wε = e~εHWe~εH (1.4)

denote the operator on Jf7 uniquely determined by (1.3). We call Wε the HKR of W.
The condition (1.3) is equivalent to the boundedness of Wε on J^,

Wε 6 5£(π, JT) O WE J^(jTε, JfLJ. (1.5)
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The notion of heat kernel regularization is particularly natural in analysis on
infinite dimensional manifolds, e.g., in the context of quantum field theory [1]. The
existence of a HKR in quantum field theory is a stronger property then the domain
assumptions in the standard Wightman axioms, see e.g. [2]. Its advantage is that it
provides a clean treatment of the operator theory for local quantum fields. Since
the use of the heat kernel has become a standard way to investigate quantum fields,
and since it is often combined with a path integral representation to establish
estimates, the study of HKR is quite natural.

In this paper we discuss the HKR property in the context of the JV = 1 and N = 2
two-dimensional Wess-Zumino models (see [3] for a review). We prove that Wick
polynomials in the local field operators have a strong HKR. Also, we show that
this fact and the spectral condition lead to certain analyticity properties of the heat
kernel regularized field operators.

II. Regularity of Wick Polynomials

In this section we establish boundedness of heat kernel regularized Wick
polynomials in the time-zero field operators. Such Wick polynomials are densely
defined bilinear forms on the Fock space Jf. Our results show that they define
bounded operators from j ^ ε to JfLε for ε>0.

We prove the estimates for the special class of models studied in [4-6]. The
same methods apply to the models presented in [2], and in principle to all other
models studied in constructive field theory. Without loss of generality we can
restrict attention to Wick monomials; polynomials are defined by linearity. Let φ *
denote φ or φ*; in the N = 1 case φ* = φ as the boson is self-adjoint. Likewise, let

y># denote ψ or ψ = ψ*y0, where y0 = ί I. Consider the circle Tι = S1 =IR//Z

and let x = (xl9...,xb)9 y = {yu.. >yf) be points in (Γ 1) 6 or ( T 1 / . The Wick
monomials

ma>2)=: Π ?*(*;):: Π v W : (Π 1)

are defined in [7] as densely defined bilinear forms on Fock space. Here the
product over fermions is taken, by convention, from left to right in order of
increasing j . Also let

Wε(x,y) = e-*HW(x,y)e~εH, (II.2)

where H is the Hamiltonian of the N = 1 or N = 2 models studied in [4-6]. Let || || p
denote the p t h Schatten norm. Our main result is

Theorem ILL For £ > 0, the bilinear form Wε(x, y) defines a Hubert- Schmidt operator
on Jf, and

with C independent of (x, y).

Remark. The proof we give can easily be modified to prove the same result in all
previously constructed, two-dimensional models.

The remainder of this section is devoted to the proof of (II.3). We use a path
space (Feynman-Kac) representation of || W^XjjOlll Such representations are
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standard in constructive field theory and were used in [5,6] to establish the a priori
estimates leading to the existence of a theory. Our notation follows [3-6]. We give
a detailed proof of Theorem II. 1 for the N = 2 models. The case of the N = 1 models
is treated similarly. The only difference is that our estimates on determinants have
to be replaced by estimates on Pfaffians along the lines of [6,8].

Let us introduce a regularized approximation to Wε, namely

WE

iκ\x, χ) = e~cH{κ) W(x, y)e ~εH{κ), (II.4)

with H(κ) defined in [4-6]. For K < oc, the Hamiltonian H(κ) involves finitely many
interacting modes, so it is easy to see that Wε

{κ\x, y) is Hilbert-Schmidt. Using
standard methods we obtain the Feynman-Kac representation of

This representation is a sum of terms of the following form. The first term is

b b

Ξl2ε\
3'Ύ\ Φ#( Xj?0)* Π Φ*(xρε)'

x 17 TMr, Φ, Φ*) + FfXiy; φ, φ*) - 2F\«£\y; φ, φ*)-]dμc(φ, φ*), (II.6)
where

F^2ε(y; φ, 0*) = (— 1)* det {(I —K\*2ε(φ, Φ*))~1K\%{φ, φ*)Sσ τk(w; , zk)}

x det3(/ - K\%(φ9 φ*)) exp {- άfKφ, </>*)}, (11.7)

with the sign (— 1)* depending on the choice of φ , and where F\*2

κ

ε

Ί is defined by a
similar expression, but with K[*2ε and <%?ι*2ε replaced by K\*2

κ

ε'
} and <3?ι*2ε\

respectively. (See [5], Eqs. (41-2) for the definitions.) The first determinant in (II.7)
is the determinant of an / x / matrix, while det3 is the regularized Fredholm
determinant. The fact that the entry of the finite dimensional determinant in (II.7)
has a factor K\*]

2ε(φ, 0*) is the result of the Wick ordering of the fermions. Also,
w l 5...,w / ; zu...,zf is a permutation of (y l50), ...,0^,0), (yl9ε\...,(yfiε), whose
only property relevant for the arguments to follow is that |(w7 )2 — (zk)2\ = ε, where
(Wj)2 is the second coordinate of w; . The sign (—1)# plays no role in our proof. The
other terms in the Feynman-Kac representation of (II.5) have the form of a product
of a smooth function in a subset of variables x, y and an expression of the form (II.6)
(with some other b and / ) . It is thus sufficient to study (11.6).

We showed in [5] that

-&lι o(φ, φ*)}, (II.8)

(i.e., K = GO) is Lp, for each 1 <Ξ/? < GO. The only new difficulties arise from the factors
{l-Ky'KS. We consider

xSσjτk(wpzk)}Fu(φ,φ*).

Proposition H.2. For ε > 0,

ί: Π Φ *(xp 0)* Π Φ(xj, e): F^iy; φ, φ*)dμc(φ, φ*\

uniformly in (x,y).

, (11.10)
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Proof. Using Gaussian integration by parts, we see that the integral in (IL10) equals

x Π C((xp ε) - uj) Π C((Xj, 0) - v)dudv \ dμc(φ, φ*). (11.11)
j i )

To estimate (11.11) we apply Cauchy's bound. Let /, g e Lp(T2) for all 1 sΞ p < oo.
For Q e Lm(dμc) we define

C,»? e ) = ί Q(Φ, Φ*)Fι, β(y;Φ+ζf,Φ*+ηgWdΦ, Φ*), (ii. 12)

where (£, / | )eC 2 . Let Dr C C 2 denote a closed polydisc of radius r around the origin.

Lemma 113. For ρeL^, the map {ζ,η)-+^(ζ,η',ρ) is entire. Furthermore,

sup \\έF(ζ,η;ρ)\\ ^ C J ρ | | L o o , (11.13)
(ζ,η)eDr

uniformly in (x, y).

Assuming the lemma, it follows by Cauchy's bound that for (ζ,η)eDr,

d
^Cr\\ρ\\L^

We infer that the Lι -derivative

exists, and that

Analogous statements hold for d/dη. As a consequence, (11.11) can be written in the
form

/ p\ \ ί \

(11.14)Π zF)ϊι.β[2 Σ W) Σ
jeSίuS2θζjJ \ jeSi jeS2

where fJ{z) = C(vj — z)eLp(T2), 1 ̂ p < o o . Using Lemma II.3 and Cauchy's bound
we obtain (11.10), choosing ρ constant.

Proof of Lemma 113. Let u(ζ, ζ, η, ή) be a smooth function supported in Dr. We

s h o w t h a t \

uniformly in y and (ζ,η)eDr. Note that Fhβ depends implicitly also on x through
our choice of fy It is clear that the estimate (11.15) holds uniformly in x. This
estimate implies that the function

defined on C 2 x 5f'(T2) is LX((L2 x Sf'(T2\ \dζdζdηdή\®dμc). Therefore, the weak
derivatives 5/5^and d/dή of ^(ζ,η;ρ) are zero. By the elliptic regularity theorem,

\ρ) is holomorphic. Estimate (11.13) is a consequence of (11.15).
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To prove (11.15) it is instructive to consider first the case of Fltβ(φ,φ*) (no
fermion operators). As shown in [5],

where

where L +

We show

μ

K = {c

is the positive part

that for 1 ̂ p < oo,

sup || i
(ζ,η)eDr

Fl,β(Φ>Φ>*)\ύR(Φ,Φ*

iet4(/ + L+)}1/2exP(

of the operator L =

H|X|i:-ReTr(X2X

i(Φ+ζf,Φ*+ηg)Lp

'), (11.17)

;-τr) . (ii is)

= — K — K* + K*K, and where

* ) - ^ T r L 3 . (11.19)

^ C < o o . (11.20)

To prove (11.20) we proceed as in [9, 5]. We introduce an auxiliary regulariza-
tion λ > 0. Let φ? = χλ * φ, where χλ is a cutoff function. Denoting

(11.21)

and using f,geLp(T2\ 1 rgp< oo, we establish (as in [5]) the following bounds:

<Φ> + C/, Φί + ηg)^C$ \φλ(x)\2(n ~l)dx- O((\ogλT - 1 ) , (11.22)

and

δ), (11.23)

for some <5>0? uniformly in (ζ,η)eDr. These two bounds yield (11.20).
We return now to the general case. Write

(i-κyικ=κ+κ{i-κy 1x, (π.24)

in (II.9). Then the finite dimensional determinant is a sum of terms of the following
form:

KS{w1-zi)...KS(wl9zp)

±det ;' •;

KS(wm-z1)...KS(wm,Zp)

(Π.25)

Here the first p columns have the kernels KS(w, z) as the entries, and the last
m — p columns consist of the kernels K(I — KyίKS(w,z). Expanding (11.25) with
respect to the first p columns, we obtain a sum of terms of the form

a, zh)) det {K(I - K) ~ 'KSiwj, zk)}.

We use Holder's inequality to obtain
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By hypercontractivity, this is bounded if the following two estimates hold:

\\KS(w,z)\\L2^C, (11.26)

and

| |det{K(/-X) ' 1 X t S(w j ,z / c )}det 3 (/-K)exp(~^) | | L 2 ^C, (11.27)

uniformly in (ζ, η) e Dr. To prove these two estimates we need the following.

Lemma Π.4. (i) Let heL2{T2) and let φ\h) = \φ{z)jh{z)dz. Then

{τ2). (11.28)

(ii) Let Uj(w,z) and Vj(w,z) satisfy \\Uj\\^<oo, | |Pj | |H.<oo, where \\ \\% denotes
the negative Sobolev space norm

{1129)

Set

aj(w) = $Uj(w,z):φ*(z^:dz,

βj(w) = SVj(w,z):ψ*(z)ιJ:dz.

Then

hβ 2 2 j J ^
/ = 1 (11.31)

for(ζ,η)eDr

Proof, (i) This is a standard estimate which uses the fact that C, p(w — z) ~ log | w — z
as |w — z|—>0. (ii) Using the bound (see e.g. [5], Sect. IV)

liα ll^.^llftll,,..^, (11.32)

and Holder's inequality, we bound the left-hand side of (11.31) by

C Π k

x Π

x || R(φ + ζf,φ* + ηg)||L4. (Π.33)

Using hypercontractivity we replace the L^-norms by the L2-norm in the above
expression. Since

2 2 { Ύ Ϊ , τ l ) , (11.34)

inequality (11.31) follows.
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To prove (11.26) we apply (11.28) with

h(x) = ζjf(xyS(w-x)S(x-z)

or

h{x) = ηjg{x)jS{w - x)S(x - z).

To prove (11.27) we apply (11.31) with U and V of the form ζjS{w-z)f(z)j or
ηjS(w — z)g(z)j. The proof of Proposition II.2 is complete.

Proposition II.5. For fixed ε > 0,

(i)

f: Π φ*(xp0)* Π ^ ( ^ [ i f L ^ ^ ^ ^ ^
i = 1 7>=:1 (11.35)

as κ;—xx),

(ϋ)

J: Π φ#(xpθr Π φ^^^iCF^f^ φ ^ ^ - F ^ ^ φ^^rfμ^^φ^^O^
-7'-1 i = 1 (11.36)

as JC,K;'->0, uniformly in (x,y).

Theorem Π.l is an immediate consequence of Proposition II.5.

Proof of Proposition II.5. We present the details of the proof of (11.35). The proof of
(11.36) is identical and we omit it. Reasoning as in the proof of Proposition II.2 we
reduce the proof to showing that

:l β ^0, (11.37)

uniformly in (£, η) e Dr and (x, y). Then

(Π.38)

uniformly in (ζ, η) e Dr. Here, ̂ {κ)(ζ, η ρ) is defined by (II. 12) with Fu β replaced by
Ffy. As a consequence, the derivatives oΐ^{κ)(ζ,η;ρ) converge to the derivatives of
^{ζ.η ρ), and the proof of (11.35) is complete.

To prove (11.37) we use the following uniform version of Lemma 3.5 of [10]:

Lemma II.7. Let (Ω,μ) be a measurable space and {//}„> i and fξ measurable
functions depending on ξeK, K compact, and such that

(i) fn-*fξ almost everywhere, uniformly in ξ,

(n) II/^IILP = Q JP>1J uniformly in n and ξ.

Then fξeLp and \\fξ-fn

ξ\\Lq-+0, uniformly in ξ, for all l^q<p.

By hypercontractivity [11], it is sufficient to show that

fa 2 (Π.39)
uniformly in K, y, and (ζ, η) e Dr, and

uniformly in y and (ζ, η) e Dr.
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To prove (11.39) we define R{κ) and υ{κ) by formulas analogous to (11.18) and

(11.21) with appropriate modifications. Then, repeating the arguments of the proof

of Proposition 11.2 and noting that all the Feynman graph estimates are uniform in

K, we find

2 ̂  li ̂ <fc) ii z . 2 ^ I! ̂  lί z . 4

since \\v — v{κ)\\LΛ^O(κ~δ) for κ^κ0 and some δ>0.

Estimate (11.40) is a consequence of the following two estimates which can be

easily established by methods of [5] (cf. Lemma II.3):

J I I ^ i / ? ( 0 + C/; φ5^ + f? )̂ — ^ΓKΦ + CX 0 ^ + ^7^)ll^^^c(Φ3 Φ^)-^0 5 (11.41)
uniformly for (£, η) e Dr, and

ί Wι,βiΦ + ζf, Φ* + ηg)~ άftiΦ + ζf, </>* + ηg)\Pdμc(Φ, Φ*)-+0, (11.42)

as K-* oo, uniformly in (ζ, η) e Dr These two estimates imply that the corresponding

functions converge uniformly in (ζ, η) almost everywhere with respect to dμc. Using

Holder continuity of det3, we infer (11.40).
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