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Abstract. In this paper we prove results in resonance scattering for the
Schrόdinger operator Pv = — h2Λ + V, V being a smooth, short range
potential on R". More precisely, for energy λ near a trapping energy level λ0

for the classical system defined by the Hamiltonian p (x, ξ) = ξ2 + V(x), we
prove that the scattering phase and the scattering cross sections associated to
(Pv* Po) have the Breit-Wigner form ("Lorentzian line shape") in the limit
λ->0.

0. Introduction

We consider in this paper the semiclassical asymptotics of the scattering phase
s(λ,fϊ) and the total scattering cross-section σ(ω, λ,h) associated to the
Schrόdinger operator P = ~h2 Δ + V{x) on Rπ, for λ near a trapping energy level
λ0. By this, we mean that the classical flow associated to the Hamiltonian
p(x,ξ) = ξ2~\- V(x) has trapped trajectories inp~ι(λ0). Moreover, we will here
assume that classical particles are trapped in p'1 (λ0) due to the presence of a
potential well.

This configuration gives rise to the well known shape resonances for the
quantum Hamiltonian, which have been extensively studied in the last few years:
see for example the works of Helffer-Sjόstrand [He-Sj], Combes-Duclos-Klein-
Seiler [C-D-K-S], and Hislop-Sigal [Hi-Si].

On the other hand, the problem of the short wave asymptotics for the
scattering phase has been studied by many authors in optical and acoustical
scattering problems. Let us mention for instance the works of Jensen-Kato
[Je-Ka]; Majda-Ralston [Maj-Ra]; Petkov-Popov [Pe-Po] and Ivrii-Shubin [Iv-Sh].

For the Schrόdinger operator, there are works of Colin de Verdiere [CdV] and
Guillope [Gu] in the high energy limit, and of Robert-Tamura [Ro-Ta] in the
semiclassical limit h -»0.

However, all these results require a kind of non-trapping assumption in order
to avoid problems caused by resonances (or poles of the S-matrix) close to the real
axis.
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For the scattering cross-section, Robert and Tamura [Ro-Tal] have studied
the semiclassical asymptotics of σ(ω, /,, h) under the non-trapping condition. Let
us also mention the works of Sobolev-Yafaev [So-Ya], Yajima [Yaj], and Enss-
Simon [En-Si], where the last three works concern averaged (in λ or in ω)
scattering cross-sections, and hence do not require a condition on the classical
flow.

For physical reasons, related for example to time delay, it is believed that
resonances close to the real axis should produce big variations in the scattering
phase. We refer the interested reader to the book of R. G. Newton [Ne, Chap. 12]
for the link between the time delay and the scattering phase. This qualitative
behavior is described for instance in the well known Breit-Wigner formulas (cf.
[La-Li, Sect. 142]).

In this paper we give a rigorous proof of these formulas for the scattering phase
and the scattering cross-section in the semiclassical limit. In particular, we prove
that the scattering phase increases by 1 at a shape resonance (see Corollary 2.3).
We use the results obtained by two of the authors in [Ge-Mal] on the asymptotics
of the spectral function of P to prove our result, using also estimates on the
resolvents of P in the same spirit as in [Ro-Tal].

We also want to mention a recent paper of Nakamura [Na] who studies Breit-
Wigner formulas for the scattering amplitude under assumptions very similar to
ours.

Let us now recall some results about scattering theory.
We shall always assume that Fe CGC(R";R) is such that, for some ρ > 0:

(VQ) VαeN", | Da

x V(x) | ^ C a<x>" f i- | a |,

where <%> = (1 + |,τ | 2) 1 / 2. Moreover, we shall assume that Vis always short-range
(ρ > 1) or stronger assumptions necessary to define the scattering phase and the
scattering cross-section.

We consider the wave operators:

W±=s— lim exp(-//P) exp(itPo)
t-* ± oo

which exist and are complete under assumption (VQ) with ρ > l . Then, the

scattering operator is defined by:

s = w* w+

and can be decomposed on the spectral representation of Po = — h2Δ as:

ω) = (S(λ)f(λ, ))(ω)

for λ > 0, ωeS"'1 £(/,) is the scattering matrix and is unitary on L2(Sn~ι).
If ρ > n, then S(λ) = 1 — 2iπ T(λ), where T(λ) is a trace class operator. It is

then possible to define det£(A) (which is of modulus 1), and the scattering phase
s(λ,h) is defined by:

(In physics books, the definition detS(/,) = e2is(λ>/ι) is also used.)
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n -\-1
If now we only have ρ > —^—, then T(λ) is a Hilbert-Schmidt operator. If we

denote T(θ,ω,λ,h) its distribution kernel, then the total scattering cross-section
σ(ω,λ,h) is defined as:

σ(ω,λ,h) = c(λ,h) j \T(θ,ω,λ,h)\2dθ,
Sn-1

where c(λ, h) = (2π)n+ι λ~{n~ί)l2 hn~ι.
dE

Now. let us denote by dEλ = -^ dλ the spectral resolution oΐ P for λ > 0, and
de A dE

by -^ (x, y, λ, h) the spectral function of P, i. e. the distribution kernel of -^T-. Then,

from the stationary scattering theory for Schrόdinger operators, and the Birman-
Krein theory [Bi-Kr] (see for example the book [Re-Si] and [Ro-Ta]), we get the
following remarkable formulas:

aλ
(A, h) = ̂  f (2 V(x) + x V V{x)) % (x, x, Λ, h) dx, (0.1)

2 A ^ n OA

ll2 h-1 JJ % (x,y,λ,h) V{x) V{y) eίvJ{x'y) ω/hdxdy. (0.2)
RnxRn OA

ds
Let us remark here that, since s{λ, h) is only defined modulo Z, -^ carries all

QA

the relevant information on s(λjή. Formulas (0.1) and (0.2) will be essential for
proving our results.

The plan of the paper is the following: ^
- In Sect. I, we prove a global semiclassical estimate on -^.

OA fa
- In Sect. II, we use this estimate to get a Breit-Wigner formula for ~ψ when

ρ > n + 1, and we show that the increases Δ+s (/?) of the phase shift around the real
part of a resonance tend to 1/2 as h tends to 0.

- In Sect. Ill we give a Breit-Wigner formula for the total scattering cross-

section for ρ > —^—.

I. Technical Preparations

In this section we prove a technical result which will be used in the next section to
estimate some remainder terms in the scattering phase.

We consider the semiclassical Schrόdinger operator:

where Ve C 0 0 (R"; R) satisfies:

(HI) Vhas a potential well in an island, which means:
There exist a connected open set O (c R n and a connected compact set U <c O

such that:
V^λ0onU, V>λ0onO\U9 F<Λ0onRn\O.
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Here λ0 > 0 is some fixed energy level.

(H2) V is dilation analytic outside the island (9, i.e.
V has an holomorphic extension to

{ze(Cn I | I m z | ^ £ 0 < R e z > , Rezis in a neighborhood of W\O}

and satisfies | V(z)\ = $(<z>~ρ) uniformly in this set, where ρ > 0, ε0 > 0.

(H3) λ0 is non-trapping outside the island O, i.e.:

V (x, 0 e Γ* R" such that /? (x, £) - Λ0 and x e R"\<9, then

I expt Hp (x, ξ) I -• GO when | /1 -> oo.

Here p(x,ξ) = ξ2 + V(x) is the principal symbol of P, and /fp denotes the
hamiltonian field associated to it.

Under assumptions (H1) to (H 3), we can define in a neighborhood of λ0 the set
Γ(h) of the resonances of P, as in [He-Sj] or [Ag-Co] (cf. [He-Ma] for the
equivalence between these definitions).

We assume also then:

(H4) There exists a complex open set Ω (h) with Ω (h) n R + 0 shrinking to {λ0} as
h tends to 0, such that Γ(h)nΩ(h) is a simple point {ρ (//)}, with: Ve > 0, 3Cε > 0
such that

In fact, by the results of [He-Sj, Sect. 9], this assumption actually is an
assumption on the point spectrum, near λ0, of the Dirichlet realization of P in a
neighborhood of the well U (see also infra).

Now, we denote by R(λ±iQ,h) the usual boundary values of the resolvent
R(z) = (P — z ) " 1 , obtained by the limiting absorption principle. Recall that
R(λ ± ίθ,h) are bounded operators from l?s into ZAS, where

Ll = L2 ((x}2s dx), for s > \.

Then, the result of this section is the following one:

Proposition 1.1. Under assumptions (HI) to (H4), and denoting 2Γ = R"\O (the
sea), we have:

uniformly for h > 0 small enough, andλ e I{h) >= Ω (h) n R. Here So > 0 denotes the
Agmon distance (associated to the metric (V(x) — ΛO)+ <ix2j between U and dθ.

We first prove:

Lemma 1.2. For flwy compact set Ka Σ and any α,y?eN" with \a\ -f-1/?| ^ 2, we

/zαt β: Ve > 0,
•3-(2S0-ε)/fc\

\λ-ρ(h)\J

uniformly for h > 0 sma/ί enough and λ
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Proof. Let us first recall a formula from [Ge-Mal]: If we let P act on the Helffer-
Sjόstrand space H(ΛtG,(ξ}2) [where G(x,ξ) = x ξ for \x\ large enough,
p(x,ξ) = λ0], and if we denote by Rt(λ) its resolvent {λel(h), ίφO, | ί | small
enough), then we have for / > 0 (cf. [Ge-Mal, formula (3.12]):

P λyιE;Er + E^λ) w(Pt~λyι-E;Et~(Pt-xy\

(1.1)

where We Q° (0), V + W > λQ on (9, Pt denotes the operator P = -
acting on H(ΛtG' {ξ}2), and £,, E* are defined in the following way: let
ΨeH(ΛtG,\) be the resonant state associated to ρ(/?), normalized so that
<¥r, Ψ}t=ί9 where < , }t is the duality bracket between H(ΛtG,l) and
H(Λ-tG, 1) (which is a kind of extension of the L2-bracket: cf. [He-Sj, Proposition
(8.8)]. Let also P{ be restriction of P to {ueH(ΛtG,(ξ}2), (u, Ψ}t = 0}. Then
Pt' — λ is invertible [with values in {ueH(ΛtG, 1), <«, Ψ)t = 0}] and we have for any
veH(ΛtG,l) and ί+

Et

+υ+ =v+ Ψ.

Of course, we also have a similar formula for R_t(λ). Since λ0 is a non-trapping
energy for P, we know from a result of Robert and Tamura (Ro-Tal] (see also
[Ge-Ma2] for a shorter proof of it) that for any s>\\

\\(x}-sR(λ±ί0)(x)-s\\ =O(h~l), (1.2)

where R denotes the resolvent of P.
lΐχeCo(]R.%),χ= 1 near 2 0 , we know from the functional calculus of [He-Ro]

that, if we set θ(i) = ^~~~ for λ close to Λ 0, then

(Λ ± ιΌ) = Λ(Λ ± /0) (1

is a bounded operator from Hm(R.n) to /7m + 2 (R"), ΫmeR. Since moreover, for
any αe N" the operator <x> ~s{hdxfχ(P) <x>s is 0(1) on L2, we deduce from (1.2)
that:

1) (1.3)

for any α,
From [Ge-Mal, Lemma 1.1], we also know that Rt(λ) coincides with R(λ + iO)

on C0°°(IR"). Thus, using (1.3) formula (1.1) implies, for any K<&Σ:

yι+ ii iκ(hδxγEt(λ) w(Pt ~λy

+ II iκ(hdxfE; E; (Pt -λ)~ι (hdxf \κ is. (i .4)

From [Ge-Ma, formula (3.16)], we have:

l\κ(hdxfEt{λ)W\\ =Ot(e~£°'») (1.5)
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with £0 > 0 independent of /, and, from [He-Sj, Theorem 9.9]:

Vε>0, sup £ \d^Ψ\ = Oε(e-{So~ε)/h). (1.6)

Then, it remains to study the operator

Its kernel is:

Kt(x,y) = hW + M \κ{x) ίκ(y) Si Ψ(x) [dUP-.-λy1 Ψ](y). (1.7)

From the pseudo-differential calculus of [He-Sj, Sect. 6], we know that
(hd)β (P-t~λ)~ι is bounded on H(Λ_tG, 1) uniformly with respect to h.

Now let M — {y e O | d(y, dθ)> η} with η > 0 small enough. Let also φ be the
normalized Dirichlet eigenfunction of P on L2(M), associated to the eigenvalue
closest to Reρ(Λ). We then see as in [Ge-Mal, Sect. 3] that if χeC

χ= 1 on {yeM\d(y,dM)>η}, then:

\\Ψ-Z<P\\H(Λ-tG.i) = Ot(e-^h) (1.8)

with εί > 0 independant of /. (In fact, one can take ε1 = So — ε{rj) with

ε(η)->0 as ^-^0.)

Thus, using (1.8), it follows from (1.7):

+ lκ(x)ίκ(y)d*Ψ(x)μt(y) (1.9)

with

\\μΛmΛ-tGΛ) = Ot{e-^h\

Finally, using Lemma 3.2 of [Ge-Ma 1] and (1.2), (1.6), we deduce from (1.9):

!itfΛ.2(R2n) = O(e-e''*) (1.10)

with ε2 > 0.
Putting (1.5), (1.6), and (1.10) in (1.4), this ends the proof of Lemma 1.2.

Proof of Proposition 1.1. We follow the strategy of [Ro-Tal], and use the same
notations as in the proof of Lemma 1.2. Let /eC^lR^IR) with supp J a Σ, and
J=\ outside a compact set.

For any/eC^(R w ) with supp/cz K(G Σ, let υ = JR(λ + iθ)(hd)βf, where
N"' \β\^2.
We then have:

Using the fact that v is outgoing (i.e. υeH(ΛtG, 1) with t > 0), we get:

v = R(λ + iO) [~h2A, J] R(λ + iO)(hB)βf+ R(λ + /0) J(hd)βf.
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Thus, using (1.3) and Lemma 1.2, this gives the estimate:

SΌ-ε)/h \

λ-ρΦh)\J

for any K(Q Σ and | α | + \β\ ^ 2 .

This proves that :

0-(2S0-ε)/h \

(1.11)

for any K(QΣ and |
Now we consider v = JR(λ + /O)/, where

/ = <xysJ(x) (hdx)
βg, geC^CR").

As before, we have:

i; = R(λ + zΌ) [-A2Λ, /] i?(/ + zΌ)/ + R{λ + /0)/

and then, using (1.11) and (1.3), we get:

for any αeN", |α
We have proved:

-(2S0-ε)/fι

A — Q\n)

(1.12)

Summing up the information given by Lemma 1.2, (1.11), and (1.12), the result of
Proposition 1.1 follows easily. D

For ending this section, let us now recall the main result of [Ge-Ma, Sect. 3]
which will be used afterwards.

3c oE 3E
Let ^ΓT be the spectral function of P, i. e. the kernel of ̂ - , where dE? = - ^ dλ is

Ok OA " CA

the spectral resolution of P on {λ > 0}.
We also denote d the Agmon distance associated to the degenerate metric

(V(x) — λQ) + dx2, and we define:

3(χ,y) - min (So + d(x, U) + d{y, dθ\ So 4- d(y\ U) -f d(x, do)) (1.13)

where, as before, So = d(U,dO). d(x,y) can be seen as the "touristic distance"
necessary to go from x to y visiting the well U and the sea Σ = RM\O. [Note that
d(x,y)^S0 for any x,y.]

P is defined as in the proof of Lemma 1.2, with

w 6 CQ {{d{x, U) < η}) (η>0 small enough).
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Theorem 1.3 [Ge-Mal. Theorem3.1]. Under assumptions (HI) to (H4), the
de de ~

spectral function -^ of P is related to the spectral function -^ of P by the formula:

rjp rjp 1

3T (x, y, λ,h) = ^ (x, y, λ, /a) - - Im [(λ - ρ(h)) ~ιΨ{x) Ψ(y)} + K(x, y, λ, h),
OA OA π

where K satisfies: Vα, /?eN"

d$dξK(x,y,λ,h) = Oη(e~g{x>y)-εiηm)

locally uniformly for (x,y)efR.2n' and uniformly for λel(h), h > 0 small enough.
Here ε(η) -> 0 as η -> 0.

II. Breit-Wigner Formula for the Scattering Phase
ds

Recall from the introduction that the derivative -^ of the scattering phase is

oe
related to the spectral function -^ by:

~ (λ, h) = ~ I (2 V{x) + x-V V(x)) % (x, x, λ, h) dx. (2.1)
a A LA ]£n (J A

Moreover, the scattering phase is well defined if the rate of decay of V
appearing in (H2) satisfies ρ > n. Here, we shall need a stronger assumption,
namely:

ρ > n + 1 . (2.2)

Then, our result is:

Theorem 2.1. Under assumption (HI) to (H4) and (2.2), one has, for any ε > 0:

ds 1 Ren(h) ί 1 \ /p-(2S0-ε)/h\s 1 Ren(h) ί 1 \ /p-(2S0-ε)/h\

Λ π λ \ρ(h)-λj ε\\ρ(h)-λ\J

uniformly for λel(h), h > 0 smα// enough.

Remark 2.2. Note that, by the results of [He-Sj] or [C-D-K-S], the function

A —• Im -—η-.—τ presents a spike at λ = Re ρ (h) of height | Im ρ (h) \ ~x ^ —
ρ yn) A c ε

. e(2s0-ε)/h for a n y £ > Q ( w i th C ε >0). Thus, Theorem2.1 will provide in many

ds
cases the behaviour of - ^ for Λ near Reρ(/z).

Before proving Theorem 2.1, let us give an easy application of it, concerning
the increases of the phase shift around the real part of a resonance.

Corollary 2.3. Under assumptions of Theorem 2.1, for any δ(h) > 0 such that:
i) Re ρ (h) + δ (h) e l(h) for any h > 0 small enough.

ii) h~nδ(h)-+O and δ(h) | Imρ(/z) | - 1 -> +oo as /z-»0 we have the following
result: the increases of the phase-shift:

Δ±s(h)-.= ± (s(Reρ(h) ± δ(h), h) + s(Reρ(h)9 h)

satisfy: l imA±s(h) = ij2.
h0
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Remark 2.4. In particular, the phase shift keeps positive for h small enough.
Then, we see that this kind of shape resonance agrees with a physical notion of
resonance related to the time-delay: see for example the book of Newton [Ne,
Chaps. 11 and 12]. The fact that the semiclassical limit is 1/2 also agrees with the
well-known physical interpretation of a resonance [Ne, p. 316].

de
Proof of Theorem 2.1. We apply formula (2.1) and Theorem 1.3. Since - ^ is
Θ (/Γn) locally uniformly (cf. [Ro-Ta2; Ge-Mal]), we then obtain: 0A

. . . +Oε(e~{2So~ε)lh) + 0 (/?"") + r(Λ,λ), (2.3)

with

r(λ,Λ) = i f (2 V{x) + xV V(x)) ~ (x,x,λ,h)dx, (2.4)

where, as before, 27 = R M \0 is the sea.

At first, let us examine the first term appearing in (2.3). Let

A=γ.(x V+V x).

We then have the identity between differential operators:

2V+x • VV=2P + \[P,A]. (2-5)
i

Moreover, we know that ΨeC^QR"), PΨ=ρ(h)Ψ, and VαeN"' Vε > 0,
δa Ψ(x) = OM(e~ w* v)-°M) locally uniformly in x (cf. [He-Sj]).

Moreover [{Ψ{x))2dx = 1 + Θε{e~{2So'ε)lh), Thus, using (2.5) and Green's
6

formula (possibly after having changed a little bit δθ so that is becomes smooth
enough), it is easy to see that for any ε > 0:

[ (Ψ(x))2 (2 V(x) + xVV{x))dx = 2ρ(h) + Oε(e~{2So~ε)/h),
ό

so that we get, using also the fact that ρ(h) and Reρ(/z) only differ from a

/ ^ i \ i v v ί v ' / x / \ / A SΛ / (2 Scλ ~~ ε)lh\\ s~\ / J n\ / Λ 7λ /Ό /C\

δe
Then, it remains to estimate r(λ,h). By the properties of -^- given in

Theorem 1.3, it is enough to estimate:

δe
r, (λ, h) - J J(x) (2 K(x) + x V V(x)) ^ (%, x, λ9 h) dx, (2.7)

where / e C ^ R " ) , supp/cii;, ,/= 1 outside a compact set.
Moreover, since 2 F(.x) + xF V(x) = O«*>~ρ) uniformly in R", and

ρ > « + 1, it is enough to prove:
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Lemma 2.5. Under assumptions (HI) to (H4), we have for any s>\ andε > 0:

J(x)<x)~' | | (x,y,λ,h)(yysJ(y) = Oe(hι-"-°) + Oε(^'"

uniformly for (x, j / )eR 2 n ' λel(h), h > 0 sraα// enough.

Proof. Let β, = J(x) <*> ~* J | <x> " s J(x).

Since ^ r = — - (i? (λ + /0) -R(λ~ /0)), we have by Proposition 1.1:

-(2S0-ε)//i\

]. (2.8

Moreover, since (P — Λ) ̂ Γ = 0 on Z^ , we have for any c > 0:

So that, by (1.10), we see that (P+ C)Qλ satisfies the same kind of estimate as
Qλ in (2.8). Iterating the procedure, we find that for any /ceN:

-(2S0-ε)//ι\

j (2.9)

uniformly for h > 0 small enough.
By an easy estimate, we also know that if we take C > 0 large enough, then

(P-f-CΓ 1 is O(/Γ 2) from Hm(ΊR.n) to # m + 2(IR") for any w e R = Thus (2.9)
implies:

-(2S0-ε)/fcN

(2.10)

for any k^O. Then, taking the adjoint, (2.10) is also true in the norm of
k ,L 2 ), and applying again ( P + C)k to Qλ, we conclude from this:

?-(2S0-ε)/fι\

(2.11)

^2

In particular, if we take A: > - and apply Qλ to the Dirac measure 5y o ( > ' O G R Π

arbitrary), and then if we make the H2k — H~2k duality product between Qλ(δyo)
and ί X o ( x 0 e R " arbitrary), we find for the kernel qλ of Qλ (using also the fact that

II ̂ vo Hi/-2* i s independent of jμ

uniformly for x0, y0 in R" which is the wanted result.

Proof of Corollary 2.3. Let a (h) = Re ρ (h) and β(h)=-Imρ (h) (> 0). Then we
have:
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using Theorem 2.1 and the fact that α(/z) + δ(h) tend to λ0 as h tends to 0, we get:

β(

and thus:

s{h) = ~ ^tan-1 m j (1 + o{\)) + 0(£Γ<2S°-e>/Λ) \n{δ(h)

which tends to 1/2 as /z tends to 0. By the same argument we also have:

h-+0 2

Remark 2.6. Let Je C00 (R"), supp JaΣ,J=\ outside a compact set. Then, if we
set

Φ(x, λ, ω, h) = [i - #(Λ + /0) ( P - Λ)] (/(X) β^/7Yω^)

it is well known that we have (see e.g. [Is])

~ (X,Λ ,Λ,Λ) = (2πA)" π λ T " J |Φ(x,Λ,ω5/?)|2Jω. (2.12)
CΛ Sn - 1

Thus, an alternative method to estimate r (/,, A) defined in (2.4) would be to use
(2.12) and Proposition 1.1. in that case, it is sufficient to assume ρ>n.
Nevertheless, because of the presence of the square of | Φ | appearing in (2.12), this
leds to an error term of order e"^s^~")ih ] A — (O(/?) | ~ 2. Then, this kind of estimate
can be useful only in cases where one can also get a sufficient lower bound of
Im ρ (h). (For instance when U is pointwise and non-degenerate, Theorem 10.16 of
[He-Sj] describes a situation where Theorem 2.1 is still valid with n<ρ^n-\-\.)

III. The Total Scattering Cross-Section

We have seen in the introduction that the total scattering cross-section σ is given
by:

σ(ω,λ,h) = πλ~1/2 h~~λ j f ~ (x9y, λ, h) V(x) V(y) eιyJ{x~y)' ω/hdxdy . (3.1)
U A

Here, we assume that the index decay ρ satisfies:

e>^-, (3.2)

which implies that (x}s VeL2QR") for s > \, s — \ small enough.
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We then have:

Theorem 3.1. Under assumptions (HI) to (H4) with Q>—r)—, we have for any
ε > 0 :

σ (ω, Λ, h) = — Im --;
1

π Q{h)~ λ
jΨ(x)V{x)eiyλω-χ/hdx
ό

-(S0-ε)/h
IV

Remark 3.2. This result can probably also be deduced from the results from
Nakamura [Na]. However, since the methods are quite different, we give here an
independent proof of it.

Proof of Theorem 3.1. First of all, we remark that, by the same kind of proof as in
Proposition 1.1, we also have:

( ^ ° ^ ) (3>3)

for any ε > 0, s > \, and | α | + \β\ ̂  2. In fact, the only difference comes from (1.4)
where we have now to estimate \\ lKί(hdx)

0CR(λ±!θ)(hdx)
β 1 Kl\\ with K^Σ,

K2(GW. TO do this, we use the fact that

sup
K2

for any ε > 0 and α e Ntι.
Then, using Theorem 1.2, we obtain the same bound as in (3.5) with

replaced by So. As in Proposition 1.1, we then show that

Oλ

e-(S0-ί)/h

which, added to the result of Proposition 1.1, permits us to deduce directly (3.3).
Now, by (3.1) and Theorem 1.2, we see that for proving Theorem 3.1, it is

enough to estimate:

ce
r (ω, /, h) = J ^r (x, y, λ, h) V(x) V(y)eιv~λ{x~v)ω//ldxdy,

Σ x R n OA

as well as the same expression but integrating on Rn x Σ.
For any s>^, we have:

~s-^ Ve~ivJxco/h,

so that, using (3.3), we get:



Scattering in the Semi-Classical Limit 335

Taking s close enough to \ so that <x>s Fe L2 (Rn), and proving similarly the same
estimate when integrating on Rn x 27, end the proof of Theorem 3.1.
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