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Abstract. The authors study the eigenvalue branches of the Schrodinger
operator H — λW in a gap of σ(H). In particular, they consider questions of
asymptotic distribution of eigenvalues and bounds on the number of branches.
They also address the completeness problem.

Introduction

Let V(x), W(x) be real bounded functions on Rv satisfing

(a) K(x)^l ,

(b) lim W{x) = 0.
|x|->oo

Let H denote the self-adjoint operator — A + V on L2(RV).
This paper is devoted to the study of three questions concerning the eigenvalue

branches of the family of Schrodinger operators H±λW, in a gap of σ(H):

(1) For W^O we consider the asymptotics of the number of branches which cross
an energy E in the gap and which emerge from below. To be more precise, we
compute the number of branches oίH + μW which cross the level E e R — σ(H) for
0 < μ < /,, as 2 -» oo.

(2) When W^O and suppV^ is contained in BR, the ball of radius R, we prove a
semi-classical phase-space type bound on the number of eigenvalue branches of
the family H + λW, / > 0 , which cross a given level E in the gap. In particular, we
show that the total number of such branches is finite and is bounded by the volume
of the ball BRi

φ{branches E-(A) which cross E] ^CORX,

where Co is independent of Weί-^{BR\ Wτ^0, so long as suppWcBR.

(3) We address the "completeness problem" (cf. Deift and Hempel [DH]) for W
which change sign: i.e., for each E in the gap, does there exist a λ>0 so that
Eeσ(H-λW)Ί
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Problems involving eigenvalues in a spectral gap of a Schrόdinger operator as
above arise naturally in the investigation of impurity levels in the one-electron
model of solids, and in particular in the theory of the color of crystals. We refer the
reader to [BP, DH, HI, GHKSV], for example, for more information. Partial
results on these questions have been obtained in [Kl, DH, HI, and GS].

One may think of questions 1-3 above in terms of the so-called generalized (or
weighted) eigenvalue problem: given W and Eφ σ(H\ we seek λ>0 and ueL2(RV)
so that

(H-E)u=±λWu.

As E lies in a gap, H — Eis not a positive operator, and the eigenvalue problem is
called "left indefinite". If, in addition, W changes sign, the problem is also called
"right indefinite", and the existence and asymptotic distribution of (real) gen-
eralized eigenvalues no longer follow directly from classical methods; for further
information on (left and right) indefinite problems, see [AM, DH, FL, GHKSV].

As a "folk theorem," the asymptotic distribution of eigenvalues is related to the
rate of growth of certain volumes in phase space associated with the classical
energy of the quantum system. The symbol of the operator H, viewed as a classical
Hamiltonian, determines a region in phase space in which a classical particle with
given energy is allowed to move. The uncertainty principle, however, demands that
each bound state (eigenvector) requires a cube of volume (2π)v in phase space, and
therefore the total number of bound states is approximately equal to this volume
(see [RS, F]).

Define the eigenvalue distribution functions,

N±(λ,H-E, W):=#{O<λj<λ;Eeσ(H + λjW)},

i.e., N + (/I, H — E,W) is the number of eigenvalue branches which cross E for 0 < λ}

<λ and emerge from above (respectively below). Hempel [HI, H2] has proven
that for 0 ^ W(x) rg c(ί + |x|)~α, α > 2, the phase space volume correctly predicts the
growth oϊN + {λ,H-E9W):

lim N+(λ,H-E,W)λ~vf2

λ-+oo

lim λ~v/2Vol{(x,p)eR2v

where ωv is the volume of the unit ball in Rv.
We will prove that if W(x)^0 and W(x)~c\x\~a as |x|-»oo for some c, α>0,

then

lim N_{λ,H-E,W)λ-v/a= $ dρ(t)Ύo\{yeRv; - φ Γ α < ί - £ < 0 } ,
λ-+oo 0

where ρ( ) denotes the integrated density of states for H,

ρ{E): - lim (Vol(β))"x # {eigenvalues E < E of H in the cube Q].
Vol((2)->oo
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As we will see, this result is not in general in agreement with the corresponding
phase space volume,

(2πΓv lim λ~v/a Vol{(x,p)eR2v; -λW<p2+ V-E<0}.

As

\ dρ(t) Yol{xeW; -c\x\~a<t<E<0}
o

E

= lim λ~v/a jdρ(ί)Vol{xeRv; -λW{x)<t-E<0},
λ">00 0

we see that the correct asymptotics for N _ are obtained by replacing p2 -f V-± t and
(2πyvdp->dρ(t) in the phase space volume. The quantum states which contribute
to iV_ have bounded kinetic energy and so it is no surprise that the folk theorem
fails; nevertheless, the phase space picture suggests useful bounds for related
problems which can be made rigorous, as in problem (2) above, and also in [HI]
where the author derives phase space bounds for N+(?., H — E, W).

The paper is organized as follows:
In Sect. 1, we provide some notations and basic results on Birman-Schwinger

kernels and on the exponential localization of eigenfunctions of H — λW. Most
propositions are stated without proof; more details may be found in [HI, H2].

In Sect. 2, we study the asymptotics of N_(λ,H-E, W) for W^O with the
prescribed asymptotic behavior W(x)~c\x\~a as |x|->oo. We will also discuss
briefly the situation where W(x) satisfies different asymptotics as |x|-»oo, for
example W(x)~e~ηM, η>0.

Section 3 treats the case where W^O is supported in a finite ball BR. We
present two entirely different approaches for obtaining the phase space estimate

sup N _ (λ, H-E,W)S CORV, (*)

the first based on exponential localization of eigenfunctions and the other using
Dirichlet decoupling and trace estimates. The estimate (*) is crucial in solving the
"completeness" problem of Sect. 4.

In Sect. 4 we consider W=W+ — W_, W±^i0, and under mild and natural
assumptions on the decay rate of VF_,

0 ^ W^(x)^c(l + |x|)~α, α > 2 ,

we prove that, for each E in the gap, there is indeed a λ = λ(E)>0 with
E E σ(H — λW). This result completes the work begun by Deift and Hempel [DH]
and continued in [HI]; for a different approach to the "completeness" problem,
see [GS].

1. Preliminaries

In this section, we introduce the approximating operators and present some of the
theorems which we will use throughout the paper. In most cases, the proofs have
been omitted, and the reader is referred to an appropriate source.
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General Notation. If A is a self-adjoint operator, {PA(A), A a Borel set} denotes its
spectral decomposition.

First, let H denote the self-adjoint operator — A + V for 1 <; FeL°°(Rv), acting
on L2(RV) with domain H2(RV). Our analysis of the operator H will rely upon
comparisons with Schrόdinger operators on bounded regions in Rv, so we
introduce:

Definition 1.1. Let ΩcR v be a domain with piece wise C00 boundary.
(1) The Dirichlet Laplacian, — AQ, acting in L2(Ω) is the unique self-adjoint

operator associated with the closure of the quadratic form q(u, v)= \Vϋ Vu with
domain C^(Ω).

(2) The Neumann Laplacian, — AQ, acting in L2(Ω) is the unique self-adjoint
operator associated with the form q(u, v)=$Vv Vu with domain H1(Ω).

We also define the operators

Hn:=-Δ°n+V (1.1)

for Bn the ball of radius n>0, and note that Hn^ ~Aβn.
The following estimate (see [HI, H2]) on the growth of the spectrum of — A®n is

a simple consequence of WeyΓs Law:

Proposition 1.2. There exist constants c 1 ? c2, c3>0 so thai

for all μ>0 and n>0.

The Birman-Schwinger Principle implies the following result.

Theorem 1.3. Let T be a self-adjoint operator and E e R - σ ( T ) . Suppose /LΞgO is a
bounded operator with A(T — E)~ι compact. Then the Birman-Schwinger kernel
K\ — All2(T — E)'1Aί/2 is compact and the following are equivalent:

(1) E is an eigenvalue of T — λA of multiplicity m;
(2) λ~ι is an eigenvalue of K of multiplicity m.

Definition 1.4. (a) For K compact and / > 0 , define

(b) Let T, A, E be as in Theorem 1.3. Then define

N±(λ,T-E,A): = n±{λ,All2{T-E)~ιAλ!1), λ>0.

By the Birman-Schwinger Principle, N + (λ,T—E,A) counts the number of
(generalized) eigenvalues λ{ of the eigenvalue problem (T—E)wt = ±λiAuί which
satisfy 0<λt<λ.

The advantage of introducing the Birman-Schwinger kernel in our context is
that it permits the direct application of min-max methods to infer information
about eigenvalues which lie in the gaps of σ(H). For example, one may prove the
following monotonicity property for 7V± (cf. [Kl, HI, H2]):
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Theorem 1.5. Let T be self-adjoint with [E,E'~\Cσ(T) and let ^4^0 be a bounded
operator with A{T-E)~ι compact. Then for any />0,

N_(λ, T-E,A)^N-(λ, T-E\ A).

The proof is a consequence of the fact that the eigenvalues of the Birman-
Schwinger kernel are increasing with E,

oE

In addition, there is monotonicity with respect to A:

Proposition 1.6. Let T be self-adjoint, Oeρ(T). Let A, B be bounded operators with
AT'1 and BT'1 compact, satisfying O^A^B, and let α 1 ^ α 2 ^ . . . > 0 ,
β1^β2^...>0 denote the positive eigenvalues of Aι/2T~λA1/2 and B1/2T~1B1/2

respectively. Then

Proof Let Aε: = A + ε, Bε: = B + ε for 0 < ε ^ l and let KA{ε): = AιJ2T~ιA\12 and
KB(ε): = Bl/2T~ ιBιJ2. We denote the (min-max) eigenvalues of KA(ε) and KB{ε) by
α ε̂) and β^ε) respectively. Now, for ε> 0, AιJ2 (and BιJ2) are continuous bijections
and

as ε->0 by the spectral theorem. Consequently, | |i^(ε)-i^(0)||->0 as εJO, and
α^ε)-^^ as εJ,O, for each fixed i. (Note that for ε > 0, KA is no longer compact, but its
spectrum in (y(ε), oo) is discrete, where y(ε) > 0 and y(ε)!0 as ε|0.) Similarly, βi(ε)-*βi
as ε|0. Therefore, it is sufficient to show that

for any i fixed and some εf > 0.
By min-max, we have

φ)= inf sup p
Oz-i ueOt -i \\U\\

with Ok denoting any fc-dimensional subspace. Now the (non-singular)
substitution

transforms (T~ 1AιJ2u, A\l2u) into (T~ ιBll2v9 BιJ2v). Furthermore, the assumption
A^Bimplies that ||υ\\ S IIu\\ for, inserting x = B; ί/2y into {A\ί2y,y)^(B\l2y,y\ we
get \\All2B;ll2\\ g l , and taking adjoints we have \\B;ll2All2\\ ^ 1 .

Finally, the condition ueθ^x is equivalent to veiBl^A^^O^^1, and
B1/2A~ll2Oi_ι ranges over all (i — l)-dimensional subspaces if Oi^1 does.

Therefore, we obtain

{T
atS inf sup V
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and we are done. /Note that as α f(ε)>0, sup (T~Mε

1/2w, Al/2u)
| ίu | | 2>0alsoΛ • V veo^,

Since we may replace T by — T in Proposition 1.6, we have the following
Corollary.

Corollary 1.7. Under the assumptions of Theorem 1.6, we have

N±(λ,T,B)tN±(λ,T,A), λ>0.

The main technical device that we employ in this paper is to replace the
operator H with approximating operators Hn acting on balls or cubes of size n, and
compare their respective Birman-Schwinger kernels. If the Birman-Schwinger
kernels are close enough, then the following simple lemma ([HI, H2]) assures us
that the counting functions for the Hn will give a good approximation for the
counting function N±(λ,H — E, W):

Lemma 1.8. Let K and K' be compact self-adjoint operators. LetO<ε^ί be given,
and suppose that for some 2 > 0 we have \\K — K'\\ <ε/2/l. Then

The essential ingredient in obtaining the bound necessary to apply Lemm 1.8 is
the following statement of exponential localization for the operator H:

Proposition 1.9 (Hempel [HI, H2]). Suppose that McC is an open bounded set so

that MCo(H). Then there exist constants c,κ>0 so that for all m^\Zvβ and n>m

we have,

for all zeM, where χm is the characteristic function of the ball (or cube) of radius m.

Proposition 1.9 gives exponential decay for the resolvent of H in the L2-sense;
for results on the pointwise exponential decay of the integral kernel (H — z) ~ * (x, y\
see Simon [S3].

Consider the Birman-Schwinger kernels

where WR: = W- χR, and χR is the characteristic function of the cube
CR: = [-R, Ry. As a first application of Proposition 1.9, (see [HI, H2]) we have

Lemma 1.10. Suppose W satisfies Org W(x)^c(ί + |x|)~α, for constants c and α>0.
Then there exists a constant c0 so that

and there exists a cλ>0 so that for all R^iR(λ,ε) = c1(λ/ε)11* we have

N±(λ,H-E,WR)^N±(λ,H-E,W)^N±((ί+ε)λ,H-E9WR).
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(Note that the lower bound

N ±(λ, H - E,WR)^N ±(λ, H - E,W)

follows from monotonicity, Corollary 1.7.)
Finally, we introduce the localized operators H%\= — ^c n + V a n d

Hn =-A%n+V acting on L 2 (Q for the cube Cn = [-n,n]v. Using" standard
truncation methods and Proposition 1.9, the resolvent kernel of H may be
approximated by ther kernels of the localized operators H% and H^.

Proposition 1.11. Let b>abeso that [α, b"] C ρ(H), and suppose E e (a, b). Then there
exist E+ e [£, b) and E~ e(α, E] so that E^ φ σ(H%) and so that

for |/v/2 <m<n, with c,κ>0 independent of m, n. (A similar bound holds for Hζ.)

Applying Lemma 1.8 again, the desired approximation by localized operators
is achieved:

Lemma 1.12. Let a, b, E^ be as in Proposition 1.11, and letε>0 be given. Suppose W
satisfies 0 ̂  W(x) ̂  co(l + |x|) ~α for some c0, α > 0. Then, there exists c1>0so that if
jR>c1(//ε)1/α and n = 2R, we have

-^λ,H^-E:,WR)^N±(lH-E,W

The following well-known estimate will be useful when W is compactly
supported (see [S3] for a more general version):

Lemma 1.13. Let ΩcRv be open, UeU°(Ω) a real valued function, and suppose
feHfoc(Ω) satisfies

-Af+Uf = 0.

Then for any ψ e C^(Ω\ W) we have:

where U _ = max( — U, 0) and

From the exponential decay of the resolvent (Proposition 1.9) and the above
bound we obtain the following (technical) lemma:

Lemma 1.14. Let ΩcRv be an open (possibly unbounded) set, and let feH2(Ω)
satisfy (-A + V — E)f = 0. Furthermore, let φeCcc(Ω) and suppose suppφCΏ and
Γ: = suppPφ is compact inΩ. Then, if K is a measurable subset of {xeΩ; φ(χ) = \}
we have

where 3(φ):= \\Aφ\\a0 + 2{d(Vφ))ll2(\ +E) and d(φ) is as in Lemma 1.13.
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Finally, we shall need a restatement of exponential localization for compactly
supported potentials. Choose φ1 e C^iB^) so that 0 ̂  ψι{x) ̂  1 and φ^x) = 1 for all
xeBίi2, and define φk(x): = φι(x/k). The following lemma is due to Hempel:

Lemma 1.15. Suppose that [α,ί?]nσ(iί) = 0. Then, for R>0 fixed, there exist
constants k0, c, κ>0 with the following property: if 0 + feD(H) satisfies an
equation

(H-E)f = Uf,

with some ί/eL°°(Rv), suppt/CBR, and Ee\_a,b~], then we have

\\(H-E-U)(φkf)\\<ce~κk\\φkf\\, (1.2)

\\{\-ψk)f\\<ce^k\\f\\ (1.3)

for k ̂  k0.

Proof. We want to apply Lemma 1.14, making the identifications Ω: = RV — BR,
φ: = l - φ k ; Γ: = suppVφ kcB k-B k / 2, and K: = R v - B 2 k . As dist(Γ,K)tk and the
constant 3(1 — φ^^Cgfe"1, we obtain

for fe^/c0 by Proposition 1.9. As a consequence, there is a constant c\ >0 so that
( l e t t i n g ic: = κ/4, kx\ = 4k^

lί/lRv-^JI^^β-^H/H, k^k,. (1.4)

Using (1—φj(iί —£)/ = 0, fe>2i^ (and applying Lemma 1.13 with ψ: = Vφk) we
have

kJ , (1.5)

by (1.4). As fy: = dist([α,b],σ(iί))>0, it follows from (1.5) that

for fc^/c2. Now (1.3) follows from (1.2) and the estimate

\\(H-U-E)(φkf)\\^\\(H-U-E)f\\ + \\(H-U

^\\(H-E)(ί-φk)f\\, k>2R. •

2. Asymptotics for N_(λ,H-E, W)

In this section, we calculate the asymptotic distribution of the negative coupling
constants for non-negative potentials W with appropriate asymptotic decay
properties.

The asymptotic behavior of the positive eigenvalues, N + (λ), has already been
calculated by Hempel ([HI, H2]), in the case that 0 ^ W(x)^c(l + M Γ α f o r s o m e

c>0 and α<2:
lim iV + (/ l ,/ ί-£,^μ v / 2 = ωv(2π)~v J {W(x))v/2dx,
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Fig. 1. The volume in phase space associated with N f

E-V(x)

E-V(x)-λW(x)

Fig. 2. The volume in phase space associated with N _

where ω v is the volume of the unit ball in Rv. If W satisfies 0 ̂  W(x) ̂  c{\ + |x|) ~α for
α > v, then this limit may be expressed in terms of the associated semi-classical
phase space volume, (see Fig. 1):

as A->oo.
If one assumes that W(x) ~ c\x\ ~a for some c> 0 and a > v (see Remark 2 below)

as |x| -> oo, and V(x) is periodic with period module II, then the phase space volume
associated with JV_ is given by:

Vol{(x,p)eR2v; -λW{x)<p2+ V-E<0}

-;tv/αVol{(x,p)eR2v: - W{x)<p2 + V(λί/Gίx)-E<0}

(see Fig. 2). Expanding the y-periodic function

f(x,y) = {(E- V(y))+γ'2-((E-V(y)-W(x))+γ12

= Σ f(x,k)e2πik y

keΠ*
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in its Fourier series, one sees ([A]) that as Λ,-»oo,

Vol{(x,p)eR2v; -W(x)<p2+V(λί/ax)-E<0}

-»J (I [_((E-V(y))+r2-((E-V(y)~W(x)) + γ^dy)dx. (2.0)

The folk-theorem then suggests that lim N-(λ,H — E, W)λ v/α exists and equals

the right-hand side of (2.0). As we will see (Theorem 2.1 and calculation below) this
limit does indeed exist, but is not equal to the above expression.

Assumption (A). The integrated density of states for H,

ρ(E)= lim (VoHρrMimP^^He)
VolQ->oo

for Q a cube, exists independently of the boundary condition imposed on HQ.

This condition holds for almost periodic (and, in particular, periodic) potentials
as well as for a wide class of random potentials - see [KM]. Note also that ρ(E) is a
monotone function. We have:

Theorem 2.1. Suppose W(x)^0 is a continuous function on Rv so that

lim W(x)\x\a = c>0,
\x\ -> oc

for some α>0. Then under assumption (A) we have:

lim N-(λ,H-E,W)λ-"*= lim λ~«' \\dρ{i)-χ{x^.^λWtx)<t^<0]dx
λ -> GO λ ->• 00

- $dρ(t)Ύol{yGRv; ~c\y\'a<t-E<0}.
o

Remark. A simple calculation shows that the two expressions for the limit of
N_(λ,H — £, W)λ~vl<x are equal, and therefore, as noted before, we see that the
correct asymptotics are obtained by setting p2 + V(x)-+t and (2π)vdp->dρ(t) in the
classical phase space formula.

Proof By hypothesis, given ε> 0 there exists Ro so that for every \x\ ^ Ro we have:

(l-ε/2)c|xΓ α ^ί^(x)^(l-fε)c |xΓ α . (2.1)

By Lemma 1.10, there is a cί so that if R = R(λ) = c1(λ/ε)ί/a, then

where WR = WχCκ, and CR denotes the cube (— R, R)v. In what follows, we consider
only λ sufficiently large so that R(λ)^R0.

Fix δ > 0 with (E - δ9 E + δ) C ρ(H). Applying Lemma 1.12 with (a9 b) = {E-δ,E
+ δ\ and n = 2R, we localize H to the cubes Cn:

where the E* lie in the interval [E,E + δ), and E~ e(E — δ, E].
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We shall first prove the following lower bound on N-(λ,H — E, W):

E

liminϊ N_(λ,H-E, W)λ~v/a^ J dρ{ή- Yol{yeRv: -c\y\'a<t-E<0} .
λ-*oo 0

Now, as (H%•+λWR) has purely discrete spectrum, its eigenvalue branches are
globally defined, strictly monotonically increasing functions of λ. Thus, an
eigenvalue branch of (H% -f λ WR) crosses the level Ej~ at some λ} ^ λ if and only if it
lies below the level E^ at λ = 0 and above the level E^ at λ. Therefore, we have

But, a s« = 2

lira ;Γ v /MimP (_ 0 0,£ )(H«) = Vol(C2ciε-1/«)ρ(£), (2.3)

so it remains to calculate the second term. By min-max,

( i ) o (2.4)

where

for ε sufficiently small, and m>R0 for A sufficiently large. Treating each term in
(2.4) separately, we first have:

(2.5)

for some c 2 > 0 as Ro is a fixed constant. Also, if x e Cm — CRo, then Ro S \x\ ̂ )
and, by (2.1), (1 -ε/2)λWR(x)^E + δ, so:

(2.6)

The first term of the sum in (2.4) satisfies (cf. (2.3))

lΠ5 (2.7)
( ) i i J l i

Λ->oo

All that remains is to calculate the second term of the sum in (2.4). Let

Given s>0, divide the region Cq — Cp into finitely many cubes {Qj} with each Q7

satisfying Volg/ ^ 5V. Denote the vertices of these cubes {xk}. Then, Q'y. = λι/aQj are
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cubes which cover CR — Cm. Denote their vertices {xr

k}. Note that VolQ,—»oo as

For each j , let xk be a vertex of Qj for which |xfc | ̂  |x| for all x e Qj. Then
x'kj: = λv/axkj is a vertex of Qj for which |xJJ^|x' | for all x'eQ). By Neumann
bracketing,

Urn λ-^χά[
λ^> oc J

Taking s->0, (recall that ρ( ) is monotone), we obtain:

^ J ρ(£ + δ-( l-ε/2) 2 c |xΓ α )Jx . (2.9)
c g -c p

So, applying (2.3), (2.5), (2.6), (2.7), and (2.9) to (2.2) and (2.4), we obtain:

lim λ ~ v/aN _(A, i/ - E, FF) ̂  Vol(C2g) ρ(E) - Yol(C2q - Cq) ρ(£ + δ)

and taking first δ-+0,

lim λ~vlaNJλ,H-

(note that (1 - ε / 2 ) 2 φ Γ α > £ if M<p), and then if ε->0, we obtain:

lim λ'v/aN4λ,H-E,W)^ J (ρ(E)-ρ(E-c\x\~a))dx

and the form of the limit in the statement of the theorem may be obtained by
changing the order of integration.

The proof of the upper bound

limsvφN-(λ,H-E, W)λ'v/a^ j dρ(t) Vol{j;eRv; -c\y\~a<t-E<0}
Λ-+oo 0

uses Dirichlet bracketing instead of Neumann bracketing, but is otherwise
identical, and is left to the reader. •
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Remarks. 1. The condition on the asymptotic behavior of W(x) may be weakened
somewhat to allow for angular dependence. Without significantly changing the
above proof, the condition W(x)\x\~a-+c may be replaced by:

lim t*W(tξ) = c(ξ)>0
t-

uniformly for |ξ| = l. In this case,

lim N_(λ9H-E, W)λ~v/a= J dρ(ή Vol{j;eRv; -
Λ->oo 0

2. Unlike the N + result, where the decay rate α must satisfy α>2, the above
theorem for N_ holds for all α>0. In addition, note that for the phase space
volume to exist, the integrability condition α>v must be imposed. Thus, the
asymptotic formulae for both N + and iV_ hold even when the phase space volume
is not finite for finite values of λ.

3. The number of negative eigenvalues is (to first order) unaffected by the
behavior of W(x) on compact sets, as only the asymptotic form of W appears in the
limiting expression.

4. Furthermore, we note that for a>2, the number of negative eigenvalue
grows more slowly than the number of positive eigenvalues. To understand this,
recall that λ } < λ is counted in N + (λ) if E e σ(H + λ W), so one is counting how many
eigenvalue branches of H + λ W cross the level E. When we speak of positive λ, we
are counting branches pulled down from higher energy bands by an attractive
potential ~λW; for the negative λ, the branches are being pushed up from lower
energy bands by a repulsive potential λW. But there should be "more" eigen-states
in the (infinitely many) bands above E than there are in the (finitely many) bands
below E, and hence it is not surprising that N + grows faster than 7V_.

5. Bounds on N + (λ) as well as the asymptotics for JV + (/l) were proven in the
one-dimensional case in [DH], and in v > l dimensions in [HI, H2].

Now, we consider a one-dimensional example and show that the asymptotic
limit of N _ (A, H — E, W) is not in agreement with the phase space volume. Define

A{E):= l i m - J
λ-*ac Tί - o o

where g(x): = |x|~α, α>2, (here c = \\ and compare A(E) with the actual leading
order term for iV_(Λ.) which we computed above,

oo E

B(E):= J j χ{^g(x)<s_E<0]dρ(s)dx.
- o o 0

As noted in the introduction, using Fourier analysis A(E) may be evaluated as

A{E)= - J J ίy(E-V(y))+ -y(E-V(y)-g{x))+']dydx. (2.10)
π o o

Consider the following periodic potential on R:

fO, for

, for
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and let H= —d2/dx2 + V on L2( — oo, oo). It is well known that all the gaps in σ(H)
for this potential (Kronig-Penny model) are all open. Let [_E0, E{] be the lowest
band in σ(H), and suppose that E>EX lies in the first spectral gap. By Floquet
theory, Eo is the first periodic eigenvalue and E1 the first anti-periodic eigenvalue.
Since E0{H)^E0(-d2/dx2+ l)= 1 and Eι(H)^Ex(-d2/dx2) = π2, we have
l e [ £ 0 > £ i ] and E>1 = \\V\\OO.

Formula (2.10) for A(E) may be rewritten as:

1 oo oo / l \

ί ί l(β-V(y))~λl2χ{s>vmdy)χ^g{x)<s-E<Q)dsdx
£71 -oo 0 \0

oo 00

= ί ί X{-g(x)<s-E<O}dh(s)dx
- o o 0

for dh(s)=~\ }(s-7(j>)Γ1/2X.

1

2π

(2.11)

'{s>v(y)}dy \ds. By direct calculation, we have

for 0 < s < 1

for 1 < s.

(2.12)

Note that /i(s)~ *-— ~ρ(s) for s > 1.) Applying (2.12) to (2.11), we have:

2]/s
J X{E> s>E-gix))2]/^ί

1 £ / J

2 π !

2|/s

ds

2iA:rT

Now the first term above,

E

0

4
2|/s

- 1/α
ds

2]/s 6 2j/f

is continuously differentiable in E > 0 for all α > 2. Fixing y with 1 < y < E1 we have

that j (£ —s)"1/α(s — I)~1/2rf>s is continuously differentiable for E near £ t and
1

'(E-s)-
d s

VIE2\/s-l 7/E* 2]/Et-ί

is also C 1 near E = EV In particular, τ4(£) is a C 1 function for E near E υ
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Now, consider B(E). If Λ(λ) is the Hill's discriminant for H — λ, then for s e σ(H),

dρ _ 1 A(s)

ds π γ4-Δ(s)2

(see e.g. [M].) As ρ(s) = 0 in the gap [EUE\

B(E)= j ] χ{s>E^i)]

 Γ]1

- oo 0 '

For E>EX we differentiate to obtain:

by monotone convergence. But, ZίfΈ^φO, as all gaps are open, so this integral is
clearly infinite, so B(E) is not C1 near £ l 5 and thus ^(£) φ β(£) for all E lying in the
gap.

Finally, we remark that if W(x) ~ce~'7|x|, then the asymptotic formula as λ-• oo,

where ω v is the volume of the unit ball in Rv, is again valid. The proof (see [A])
follows the proof of Theorem 4.1 but with some modifications depending on
whether η^κ or η<κ, where K appears in Proposition 1.9 (K is essentially the
exponential decay rate of the Green's function (H — E)~ι(x, y) as |x —j|->oo). It is
an open conjecture that

for all bounded W{x)>0, W{x)-+0 as |x|->oo.

3. An Upper Bound on N_(λ) for W of Compact Support

The aim of this section is to prove the estimate

sup N_(λ,H-E,W)^cR\
λ>0

provided suppWcBR, with a constant c independent of W and R. This result is
suggested by the phase space formula: if suppP^C^^, then

f χ{-λW<P^ v(x)-E«»dxύconst.Rv.

The above estimate will also be of crucial importance in solving the completeness
problem in Sect. 4.
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We shall present two rather different proofs of this bound: the first proof is a
refinement of the approach used in [HI] where a weaker result was obtained, while
the second uses ideas from [DS] on decoupling via Dirichlet boundary conditions.

For later purposes, note that as V eL00, Proposition 1.2 provides the estimate

{ ) \ fc^l, (3.1)

for some constant CE.

Theorem 3.1. Let 1 ̂  FeL°°(Rv), H:=-A + V,and EeR-σ(H). Let CE be as in
(3.1) and C o : = 2 3V CE. Then there is a constant Ro so that for all R^R0,

0R\ (3.2)

Together with Corollary 1.7, this gives:

Corollary 3.2. Suppose W(x)^0 is bounded with suppWcBR. Then

Proof of Theorem 3.1. Choose α, beR so that a<E<b and [_a,b']nσ(H) = φ. Let
JV_= sup N-(λ,H-E,χR) and JVR = min(JV_, 2CoiT). Denote by {e{λ)} the

λ>0

eigenvalue branches of (H + λχR) which cross the level E for some λ>0. To be
precise, for each branch βj there exists an interval If = [α ; , yJ so that <?7 is defined
and continuous for λ e Ij and so that e^) = a and e}(y) = E. In addition, we order
the βj so that y1^y2^.... We also define β = \(E — a) and

JEf = E - 0 Σ /- 2 , i = l , 2 , . . . . (3.3)
z = i

Note that Et is monotone decreasing and Et > a for all i.

Step 1. We organize the branches eu ...,eNR into disjoint collections.
First, define λo: = yu

and no:= # 5 0 . Now assume that λo< ... < / / _ 1 , So, . . . ^ ^ ^ and n0, ...,ni^1 have
already been chosen. Let /• be the smallest λ>λί_ί so that ej{λ) = Ei for some
j^NR. Let

and rii'^ψSi. Clearly, after a finite number of steps, the above process will
terminate, and monotonieity assures us that the St are disjoint. In fact, if we denote
the number of the sets St by J(R), we have

and, as each branch e^ ) meets each Ei at some λ>0, the St must necessarily
exhaust the branches eu ...,eNR, i.e.,

J(R)- 1

N R = Σ ^i- (3-4)
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Step 2. We now consider an approximation of our problem, where H is replaced
by Hk, for a suitable k (see (1.1)):

Let κ > 0 be given by Lemma 1.15, k: = 3R>k0, ε: = e~κR. Letting hf denote
the eigenvalue branches of the family Hk + λχR, λ > 0, we define

Clearly,

dW = dimPiEι + ί-εtEι + e)(Hk + λiχR). (3.5)

Consider {S(#}. As E2i+1-E2ί + 2=β(2ί + 2y2^cfR'~2\ for suitable d and K ^ l ,
we can find i ^ > 0 so that

ΊP~KR R>R

for each 2i g J(JR) — 1 as a consequence, none of the intervals (E2i +1 — ε, £ 2 i + 2 + £)
intersect for 2i^J(R) — 1. Therefore, by monotonicity, all branches ^ f e ) in uS(

2

fe/
must be distinct, and hence:

2i^J(R)-l 2i^J(K)-l

^ d i m P ( ^ i £ + 1 ) ( / ί Λ ) ^ 3 v C ^ (3.6a)

for J?^J?i, by (3.1). Similarly,

g3 vC£ JR
v . (3.6b)

2i+ 1 ̂ J ( K ) - 1

In Step 3 below, we shall show that there exists R2>0 so that (recall k = 3R)

rii^dΦ, i = 0, . . . ,J(Λ)-l , , R ^ ^ 2 . (3.7)

From (3.4), and (3.7) we obtain (with R0: = ma,x{RuR2}X

NR= Σ n^ Σ

for R^R0. As JVΛ = min{JV25 4 3VC£K
V}, it follows that N_ ^ 2 VCER\ R^

and we are finished.

Step 3. Suppose the statement of (3.7) were not true. Then, there exists a sequence
of values of R tending to infinity, for which (3.7) is violated. We denote this
sequence by M. Then for ReM, we may find 0^i(R)^J(R)—l and uu...,udi+ί

(here, and in the sequel, we write i = i(R), dt: = d\k\ k = 3R) which are orthonormal
eigenfunctions for (H + λtχR) with eigenvalues e\9...,e

ι

dι + 1 satisfying Ei+1^ e) ̂  Eh

for j=l,...,di+ί. Let ΨECQ{B1) be so that φ(x)=l for xeB1/2 a n d θ ^ φ ( x ) ^ l ;
define φk(x): = φ(x/k). Consider the truncated functions, {φkUj}. We show first that
there is an R3>0 so that the functions

{φkuJ J=l,...,di+l}

are linearly independent, provided R^
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d τ l

Suppose £ ajUj(pk = 0 with a,- not all zero. Without loss, assume that \a^

*$La1 = \. Then, taking the scalar product with uu we find for R^ko/3,
dτ+l dt+l

^ Σ KN(<PfcWi>Wj)l= Σ l«jl l ( ( i -
.7 = 2 j=2

^ T 11(1 —Φ f c )M 1 ! |^d i c 1 e- 3 f c Λ ^c 2 Λ v e

where we have used uλλ-iιp the estimate (1.3) and

df + l :

But, by (1.3) again,

(3.8)

(3.9)

But clearly Eqs. (3.8) and (3.10) are incompatible for large values of R in the set 3t.
Thus, it must follows that, for some i?4, {wJ φk}J =:1>..>jd. + 1 are independent, for

Now, as the {Ujψk} span a (ί/f4-1) dimensional space, it follows that there is a

ϋ = Σ bjUjψkφO,

which is perpendicular to R a n P ^ ^ ^ ^ ^ + ^ί/^ + z1.^^. Let

By the spectral theorem and the choice of v we obtain (assuming R ^ R4, R e 8%\

On the other hand, applying (1.2) and (1.3), we have:

\\(Hk + XiXR-E)v\\

Σ
l

Σ (ej-£)V/
l

d,+ 1

+1

\ ' 1

Σ 1^11(1 -
l

\ /dΐ 1

\bj\2) +δ( Σ
/ \J=1

l/2

(3.12)

as



Eigenvalue Branches of the Schrδdinger Operator 309

dt+ί

Now we provide a bound for Σ \bj\2: We have

dτ+ 1 dt + 1 _

Σ 16/= Σ btbfauj)

= Σ W ( ( j - <PJX ";) + (<PkUι, (1 - <%)«,) + (φkuι, φkuJ)~]

Thus,

or,

ζ\bj\2j S\\vUl+4CίR
ve-3κR) (3.13)

for R^R5, Re01 chosen sufficiently large that 2cxR\e~3κR<,\. Applying (3.13) to
(3.12) yields:

\\(Hk + λiχR-E)υ\\ S \\v\\ (δ + c4Rve-
3κR)^\\v\\ (δ + c^e-2κR) (3.14)

for R^R6^R5, K e f , with # 6 chosen large enough that Rv

6e~3κR6^e~2κR6.
From (3.11) and (3.14) we obtain

which is incompatible for large R. The proof of Theorem 3.1 is now complete.Q

We now present an entirely different approach for estimating JV_(2, H — E, χR)
using Dirichlet decoupling in the spirit of [DS]. We will obtain an estimate of the
form (3.2), but with a different constant Co, and for all JR ̂  1. Here we shall think of
λχR, 2->oo as a potential barrier whose repulsive effect is less than that of a
Dirichlet boundary condition on dBR in the sense that

H + λχR^-Δ°v-sR + V9 λ>0.

We will need some definitions: write HR:= —AβR+ V\BR, and
HRoo:= - ^ R V - B K + ^ Ί ( R V - B R ) so that HRφHR >00 is just ~zl + Fwith a Dirichlet
boundary condition on dBR, and

We define
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so that, in particular,

H'1 =HR

and

For 1 :gp< oo let ̂ p be the pth Schatten ideal, i.e., &p is the class of all compact
operators K for which Σμf < oo, where the μ ; are the eigenvalues of the operator
|K| = (K*K) 1 / 2. (See, e.g. [S2].) The norm on &p is given by

The following properites of JR are basic to our approach:

Lemma 3.3. For p > v/2 we have JR e &p and there is a constant cp, independent of JR,
so that

We defer the proof of this lemma to the end of the second and proceed to the
second proof of Theorem 3.1.

Proof of Theorem 3.1.

Step 1. Instead of considering H and HR@HR ^ directly, we pass to their inverses:
defining

KM^H^-iH + μXRΓ1, μ>0,

BR{μY = ^Mm{H~ι-E''rίKR(μγ'2

(so that Kg[μ) and BR(μ) are compact; note that (H~γ — E~ v)~J is bounded) we
shall show in this step that

N_(λ,H-E,χR)SnJ\;BR(λ)), λ>0. (3.16)

We first observe as before that the eigenvalue branches of H + μχR are strictly
monotonically increasing. We also note that the operators KR(μ) depend
monotonically on μ; we have

J μ' (3.17)

Now let 0 < λt ^ λ2 < .. denote the coupling constants where the branches of
H + μχR, μ > 0 cross the level E. Suppose that m eigenvalue branches cross E at
some μ e {λj}. Then there are m eigenvalue branches of H ~x — KR(μ) = (H + μχR) ~ι

which cross the level E'1 at μ = μ, i.e., E~ι is an eigenvalue of multiplicity m of
H~1 — KR(μ), and by the Birman-Schwinger Principle (and (3.15)), it follows that 1
is an eigenvalue oϊBR(μ) of multiplicity m. Conversely, if 1 is an eigenvalue oϊBR(μr)
for some μ r > 0 then Eeσ(H + μ'χR) and has the same multiplicity. From (3.17) and
Proposition 1.6 we conclude that the eigenvalue branches of BR(μ) are non-
decreasing functions of μ > 0 . Furthermore, they cannot be locally constant = 1, as
the eigenvalue branches of H + μχR are strictly monotonically increasing.
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As a consequence, at each μ = λj a (non-decreasing) eigenvalue branch of BR(μ)
crosses (strictly) the level 1, and we therefore see that

and (3.16) follows.

Step 2. By (3.17) we have 0rgKκ(/l)^ JR, /l>0, and Proposition 1.6, applied to the
Birman-Schwinger kernel BR(λ) in Eq. (3.16) yields

S\\JR

/2(H-'-E-yιJR'2\\%q. (3.18)

Note that the right-hand side of (3.18) is independent of λ. Now we fix some
peN, p>v/2 and put q: = 2p. As \\ΛB\\MqS \\Λ\\^q | |B| |, for any AeSSφ and B
bounded (see [S2]) we obtain from (3.18)

Since ||(H~x - E ~ x ) ~ 1 1 | is independent of R and || J R | | ^ ||H""11| ^ 1, there exists a
constant cx independent of λ and i? such that

]V _ (2, H - E, χR) S c! trace(JJ) ^ c2Λ
v

by Lemma 3.3 and we are done.Π

Proof of Lemma 3.4.

Step!. Let F : = 7 - 1 ^ 0 , H:=-A + V, -Af:=~Λ°v_δB&, and H':=-A'+V.
Then, the integral kernels of the semi-groups e~ ί 5 and e~H> satisfy the estimate

0 ^ e- tfί{x, y)-e~ tΆ\x, y) ύ (2πt)'v/2 e ~[(w " R)2 + ilyl ~ R)2]/4t (3.19)

for x,yφBR and ί > 0. This inequality is proven in [S1 ] for the case V = 0 however,
by the Feynman-Kac formula, (3.19) still holds true if we include V^O.

Step 2. Applying the Laplace transform, we obtain

0 ^ JR{x,y)=] e-'le-tn(x,y)-e~tfI\x,y)~]at,
o

so that

with constant c1 independent of R. As HR

ι(x,y) = Q for xφBR + 1 or yφBR+ι it
follows that

JR(x,y)^Cle-^ + M'2R\ x,yφBR+1.

On the other hand, for all x, y we have

so that
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for any positive integer p. Using the representation

one easily shows that

2 ^ " l ί | x ~ y |

5 for v>2p

-y\\)e-*χ->\ for v = 2p

for v<2p

for suitable constants c3, c4, c5, and η>0.
Choosing 0<η'^η we finally obtain

(3.20)

(321)

where α = α(/?)>0 for v^2p and α = α(/?) = 0 for v<2p. (Note that for v = 2p any
α = α(v/2)>0 will do.)

Step 3. Here we show that for R^ 1 and any integer p^l,

0^PR^c{p)e-η'M + M-2R)R\ x,yφBR + p.

This is true for p = 1. Assume by induction that the result is true for p. Then for x, y
φBR + p + 1 we have

PR

+ι (x, y) ^ j PR(χ, z)JR(z, y)dz + J PR(x9 z)JR{z, y)dz
\z\<R + p \z\^R + p

p-η'(\x\ + \y\-2R-2p)

<c^ f - dzΛ-Cn f ^ - » / ' ( W + M M
| | R + μ z | v ^ j ; z xμ>

 \\^R

<c e~
rι'

where we have used (3.21) for the integral over \z\<R + p and (3.20) and the
induction hypothesis for the integral over \z\ ^ R + p. This completes the induction.

Step 4. The estimates in Step 3 imply that for p > v/2, PR has a (continuous) kernel
satisfying

for x,yeRv

v5 for

As J^ is positive as an operator, we conclude that it is trace class and satisfies
the estimate trace(J^)rgcpR

v, for R^l. This completes the proof of the
Lemma. •

We do not provide lower bounds for ΛL(/), but we wish to mention some results
concerning the extreme cases, where supp W is either very small or very large.

If the support of FF is very small, the phase space volume calculation suggests
that there may be no negative eigenvalues at all: ΛΓ_(A) = 0 for all λ> 0. This is true
if the dimension is at least two:
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Theorem 3.4 (Hempel [HI]). Let v^2, 1 < FeL°°(Rv), andH=-Δ + Von L2(RV).
Suppose £eR-σ(H). Then there is a δ>0 independent of W so that

N-(λ,H-E,W) = 0

for all non-negative WeLco(Rv) with support in Bd.

Combining the above theorem with Theorem 3.1 we have

Corollary 3.5. Let v^2, 1 S Ve L°°(RV), and H = - Δ + F on L2(RV). Suppose £ e R
— σ(H). Then, there is a cλ>Q so that

for all non-negative WeL°°(W) with support in BR, R^O.

Remark. In dimension v = l, the theorem above does not in general hold. The
question of whether sup JV_(2)>0 or not depends crucially upon the location of

λ>0

suppVFin relation to the zeros of the Green's function (H — E) ~1 (x, x). For more
details, see [HI; Theorem 8.1 and 8.2].

Remark. Theorem 3.1 depends critically on the fact that E lies in a gap of σ(H). For
example if E>0 and H= ~Λ^n, then (3.2) cannot hold for any constant co; for
details see [A], and also [Ki].

Conversely, one might expect that if supp FT is "large enough," that there will be
infinitely many negative eigenvalues. In fact, one has:

Proposition 3.6 (Alama[A]). Suppose VeUc(Rv) is periodic, and H=~A + V.
Suppose EeR-σ(H), with E> μ = inϊσ(H), and W a continuous function which
satisfies W(x)>0 for all xeRv, and W(x)-+0 as |x|->oo. Then, sup ΛΓ_(λ)=αo.

4. Completeness in Rv

Up to this point, the assumption W(x) ̂  0 was fundamental for our investigations.
We shall now use results and methods of the preceding sections to study the
eigenvalue problem

(H-E)u = λ

where

restricting our efforts to the problem of completeness, as formulated in [DH]:

Question. For any given £GR-σ(H% does there exist a real λ such that
Eeσ{H-λW)Ί

To be more precise, we say the triple (H, W,S), where S is a subset of R, is
complete if for any EeR~σ(H) there exists a λeS so that Eeσ(H — λW).

So we merely ask if there exists at least one eigenvalue branch of H — λW which
crosses the level E. The paper of Deift and Hempel [DH] is entirely devoted to this
question; the basic v-dimensional result in [DH], Theorem 1, asserts under rather
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general conditions that the triple (H,W,R+) is essentially complete, i.e., the
eigenvalue branches of H — λW, μ>0 cover the spectral gaps of H with the possible
exception of one level Eo per gap, which is dubbed an "exceptional level." While
[DH] has no results on completeness in Rv, v^2, the paper contains three
theorems on completeness in the ODE case. Subsequent progress was made by
Hempel [HI] when PF_ =min(— WζO) has compact support, and by Gesztesy and
Simon [GS], in the case where W has compact support.

Our main result reads as follows.

Theorem 4.1. Let 1 ̂  FeL°°(Rv) andH=-A + V. Suppose WeU>(W) satisfies:
(1) W(x)->0 as \x\-+oo;
(2) There exist constants c>0 and oc>2 so that

\x\y\ (4.1)

(3) There exists ρ, η > 0 so that W(x) ̂  η for all x e Bρ.
Then ( J Ϊ 5 ^ R + ) is complete.

Our proof uses the original strategy of [DH] to consider approximating
problems

(βn-E)fn = λnWfn, (4-2)

where the operators Hn act in L2(Bn) and have a spectral gap around E. Following
rather closely the proof of [HI: Theorem 9.1], we show that we can find solutions
of (4.2) with 0 < λn ^ const. Then, letting n tend to infinity, we arrive at a solution of
{H-E)u = λ(E)Wu.

In order to solve (4.2) with 0 < λn ^ Λo, we simply show that Hn — Λ0W has more
eigenvalues below E than Hn, for some Λo independent of n. Here, the main
difficulty arises from the competition between the potential well —λW+ and the
potential barrier /PF_, as λ increases, and we have to employ the estimate (3.2) to
control the repulsive effect of the barrier created by λW_.

For the proof of Theorem 4.1 we need several definitions and lemmas which we
present first, postponing their proof to the end of this section.

As always, we assume lgFeL°°(R v), H=-A + V and EeR-σ{H), in the
sequel. Also, we fix numbers a' < a < b< b' so that [a\ b'~] C ρ(H) and E e (a, b). For
n^ 1, let again Hn=-A%+V\Bn and let

Πn: = P{a,bΊ(Hn) (4.3)

the projection on the subspace spanned by the eigenfunctions of Hn associated
with the eigenvalues in the interval (a', br). Let φ e CQ(B5/6) SO that 0 ^ φ(x) :§ 1 for
all x, and φ(x) = ί for %eJB1/2; define φneCg(Bn) by

φn(x): = φ{x/n).

Let ψn(x): = l —φn(x) and consider the operators

nΨn, (4.4)

where co: = b' — a'; compare the slightly different definition of H = Hn + cΠn in
[DH]. Clearly, Hn is self-adjoint on D(Hn) = D{Hn\ and Hn ^ Hn. The basic spectral
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properties of Hn are a consequence of the following two lemmas which exploit the
fact that eigenfunctions of Hn associated with eigenvalues in (a', b1) are exponenti-
ally localized near dBn.

Lemma 4.2. Let Πn be defined as in(4.3). Then there exist constants κ>0 and n o e N
so that

\\Πnφn\\ύe~*\

Lemma 4.3. There is an nγ so that

for all n^nx.

Remark. The point of Lemma 4.3 is that we have an (essentially) ^-independent
spectral gap of Hn around E. Tn contrast to the operators Hn used in [DH], the
non-local part coψnΠnψn oϊHn is now restricted to Bn — Bnj2 this fact will be crucial
later on, as Dirichlet-Neumann bracketing is applicable to local operators only.

We need yet another pair of operators with Dirichlet boundary conditions:
For 0<R<n/2, let HRtn:= -A°n.BR+V\iBn_BR)9 and

(4.5)

Now, since ψnΠnψn\L2{Bn/2) = 0, and Hn^HR®HR m it follows that

n (4.6)

for 0<R<n/2; this direct decomposition would not have been possible with the
operators Hn in [DH]. Writing

MB: = dimP ( _„,*)(#,,), (4.7)

MΛ,B: = dimP (_ 0 O, £ l )(5Λ, ) I), (4.8)

where E1: = (a + E)/2, we have the following estimate.

Lemma 4.4. Let Ro be as in Theorem 3.1, Mn, MR n as in (4.7), (4.8). Then for any
R^R0, there exists n{R)^2R such that

with a constant k0 independent of R and n.

Remark. Lemma 4.4 says that taking the ball BR out of Bn (and introducing an
additional Dirichlet boundary condition on dBR) will shift at most a finite number
(less that k0R

v) of eigenvalues of Hn beyond the level Ev Although this result is very
intuitive, its proof is the hardest step in obtaining Theorem 4.1.

Proof of Theorem 4.1. Step 1. In this step, we solve the approximating problems
(4.2) with uniformly bounded coupling constants λn>0, for n large.

By Eq. (4.6), we have for n>2R,

Hn-λW^(HR-λW\BR)®(HRtn-λW\Bn.BR).

Discarding the annular region BR — Bρ, we first estimate HR — ?,W\BR ^Hρ — λη, for
λ>0, as W\Bρ^η by hypothesis (3) of Theorem 4.1 (without restriction, we assume
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R ^ max(jR0, ρ) in the sequel.) Next, on the region Bn — BR we use the bound (4.1) on
VF1 to the effect that

Now we tie R to λ > 0 by setting

R = R(λ): =

(recall that Eί: = (a + E)/2); in particular, we have

HR,n-~λW\

Consequently, we obtain for λ >0,

Hn

for n ̂  2R(λ\ whence

for λ > 0, R = #(A), and n > 2#. By Proposition 1.2, we can find constants c 1, c2 > 0
so that

By Lemma 4.4, we have a constant k0 such that

so that

for R = R(λ) and n > n(R) ̂  2R. As R - /1 / α, with α > 2, it is clear that we can find a
y l o >0 so that

whence

for n^no: = n(R(Λo)). Therefore, regular perturbation theory implies that an
eigenvalue branch of the family Hn — μW\Bn, μ>0 must have crossed the level E at
some μ = λne (0, Λo~] for n ̂  n0. In other words, for n^n0 there exist λn e (0, ̂ t0] and
fneD(Hn\ II/JI = 1, such that (4.2) holds.

Step 2. (Convergence step). As 0<λn^Λo, we may suppose that

λn-+λE, n->co

for some λE^0. Furthermore, as Hn^Hn^ —A%, we have

Extending /„ by zero outside Bn it follows by Rellich's compactness theorem that
there exists feHί(W) so that (a subsequence of) fn-*f weakly in H1(RV) and
strongly in L2

loc. As W decays and λn-*λE, we see that
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As (a, b)nσ(Hn) = Φ,n^nί,by Lemma 4.3 and E e (a, b), we have a constant y > 0 so
that, for n^.nι,

||Λ, Wfn || = II(Hn - E)fn || ί; dist(£, σ(Hn)) Z y,

whence \\λFWf\\ = lim \\λnWf\\>0, and it follows that / + 0 and 4 + 0. To
n —* oo

conclude the proof, let g e C^(RV) and r > 0 with suppg c Br. Then for n > 2r we have
Hng = Hg, and hence, for n > 2r,

0 = ((Hn -E-λn W)fn, g) = (/„, (Hn - E)g) - (λn Wfn, g)

= (fm(H-E)g)-(λnWfn,g),

so that

as fn-+f weakly and λnWfn->λEWf strongly. By the essential self-adjointness of

H\c${Rv), it is clear that feD(H) and (H-E)f = λEWf and we are done.Π

It remains to prove Lemmas 4.2-4.4.

Proof of Lemma 4.2. Let unb ί=l,...,in, denote a complete set of (normalized)
eigenfunctions of Hn associated with eigenvalues Eni in the interval (a\ V). By
Proposition 1.2 and using V ^ 1, we see that in ^c^. Defining a sequence of cut-off
functions ζnEC£(Bn) by

ζn =Jl/2*Xn-l>

(where j ε , ε > 0 denotes the standard Friedrichs mollifier and χn is the characteristic
function of Bn), and applying Lemma 1.14 (with Γn: = suppVζncBn — Bn..2), we
obtain

by Proposition 1.9 (here we have also used that 3(ζn) rg c, and that [α', Z?;]nσ(H) = 0,
so that the estimate in Proposition 1.9 is uniform for Enie(a\b')).

Now, as
in

for / £ L2(RV), we obtain

ύ Σ \\UniΨnU\f\\ύ Σ K X5n/6lί 11/II,

for w ^ n0, and the result follows. Π

Proof of Lemma 43. From the definition of Πn it is immediate that Hn + (b' — a')Πn

has no eigenvalues in the interval (a', b'). Expanding

Πn = φnΠn + φ A ^ « + V̂  nΠnψn,

we obtain
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for n ̂  n0 by the preceding Lemma 4.2. Therefore, the distance between the spectra
of Hn = Hn + (b' — a;)ψnΠnψn and Hn + (b'~a')Πn cannot exceed (b'— a')c'e~Kn. As
Hn

Jr{b' — a')Πn has no spectrum in (a,b), and [α, b~\ C (α', b'\ there exists some nι

such that Hn has no spectrum in (a,b) for n^nu and the lemma is proven. •

Tn order to reduce Lemma 4.4 to Theorem 3.1, we employ two different types of
approximation: first, we use the fact that the eigenvalues of Hn-\- μχR converge
(from below) to the eigenvalues of HRtfl, as μ-»oo. Second, we obtain information
on the spectrum of Hn + μχR in (a,b) by comparison with the operators H-\-μχR,
which have been studied in Sect. 3; this will be the object of Lemma 4.5.

Proof of Lemma 4.4. Recall that E1=(a + E)/2 and let E2:=(a + Eι)/2,
E3: = (a + E2)/2. We approximate the operators HRn by Hn + μχR, μ-*oo: as Hn

Λ-μχR converge to HRn in norm resolvent sense (see e.g., [Ka2, Kal; Chap. 8,
Theorem 3.5]), we have

^ lim d i m P ^ ^ J ^ + μχ*). (4.9)

By regular perturbation theory, the eigenvalues of Hn + μχR, μ>0, form smooth
branches which are strictly increasing functions of μ. (We note that in a gap oϊσ(Hn)
all eigenvalue branches of Hn + μχR have positive derivative.)

Therefore, whenever a branch crosses the level E3, the number of eigenvalues
below E3 is diminished by 1, so we have

( ) ( 3 ] (4.10)

for μ > 0. As

we see by (4.10) that

Returning to (4.9), we therefore obtain

MR>n^Mn- lim N_(μ,βB-E3,χR)^Mn-k0R*

for n^n(R) by Lemma 4.5 below (applied with A: = E3), and we are done. •

The aim of Lemma 4.5 is to show that the estimate of Theorem 3.1 on
N-(μ,H — E,χR) still holds true if we replace H by Hm for n sufficiently large. A
related problem has been studied by Kirsch [Ki]; one should note, however, that
the eigenvalues counted by iV_(μ, Hn — E, χR) must travel the whole distance from
the gap edge to the level E, while in the Kirsch paper no gap is present and
eigenvalues sitting just below E must move only a "little bit."

Lemma 4.5. Let Ae(a,b)Cρ(H) be fixed. For R^R0, there exists n(R) and k0

independent of R and n so that

sup N4μ,Hn-A,χR)^k0R
v

μ>0

for n^
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Proof. Step 1. By Theorem 3.1 we have a constant k0 depending on a only so that

x (4.11)
μ>0

Since the eigenvalue branches of H + μχR for μ > 0 are monotonically increasing,
these branches will either eventually cross the level b or they will asymptotically
approach some level E'^.b. By (4.11), only a finite number of branches can cross
the level α, and so there may only be a finite number of such asymptotic levels in
[α,fc]. Consequently, there exists a Λ>0 and constants α, β with a^a<β^Λ so
that the interval (α, /J) is free of eigenvalues oϊH + μχR for μ > A. (Of course, α, β, Λ.
all depend on R.)

Let .4 0 : = (α + β)/2. Our aim (in Step 1) is to show that, for n sufficiently large, no
eigenvalue branch of Hn + μχR crosses Ao at a μ> A, i.e., there exists no(R) so that
for all n^no(R):

sxxpN4μ,Hn-A0,χR)^N4Λ,Hn-A0,χR). (4.12)
μ>0

To prove (4.12), suppose for a contradiction that there exist μj> A, n; eN, n^j,
and fjeD(Hn) satisfying ||/}|| = 1 and

(Hnj-Ao)fj=-μjχRfj (4.13)

for all 7 G N. Let the cut-off functions ψj and φ 7 : = \—φ} be as before; in particular,

Ψj/2Ψj = ̂  Using Wŷ y" and

H^φ.J^H^φ.J^φ^Hn/j-lVφ^ Vfj-Δφj/2fj

= Ψj/2HnjfJ-2Vφj/2'Vfj-Aφj/2fj,

by the definition of //„, we obtain from (4.13)

| ! ( ^ + A i 7 - Z κ - ^ 0 ) ( φ 7 / 2 / / ) | ] ^ 2 | ! P Φ i / 2 - P/̂ l + lM^-^iU H/ l l^c^-- 1 (4.14)

for all j sufficiently large, using Lemma 1.13.

Now, φj/2fj + ψj/2fj = fj together with (4.13) implies for j large,

\\(Hnj-A0)(ψj/2fj)\\ = \\(Hnj + μjχR-A0)(Ψj2fj)\\

by (4.14). Since (a, b)nσ(Hnj) = 0 for j sufficiently large, and Ao G (α, b) is independ-
ent of rip there exists y > 0 so that

as ;-»oo, whence iiφj/2/j!i^l as j-*oc. Therefore, returning to (4.14), we finally
obtain

for j sufficiently large, and it follows (noting again that Hnj(φj/2fj) = H(φj/2fj))9 that
the operator H + μfiR has an eigenvalue in the interval (AQ — ICJ'1, A 0 + 2CJ~ ι)
for j sufficiently large. But, for j sufficiently large, this contradicts the fact that no
eigenvalue branch ofH + μχR, μ>Λ0 lives in the interval (α, β). This concludes the
proof of (4.12).
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Step 2. Now let Λo be as in Step 1, and let E~ e(a,A0) be as in Proposition 1.11.
Then, by the second resolvent equation, we have (recall that E~ e σ(Hn) for n^ni

by Lemma 4.3),

which gives

- χR(Hn - £„-)-' (cψnΠnΨn)χn(Hn - £ „ " ) " ' χR

+ χR(Hn-E;Γι(cψnΠnψn)γJH-EnΓ
ίχR,

where we have used Πny)n = Πnχnψn — Πnψnχn. By Proposition 1.11,

as n->oo, and by Proposition 1.9,

\\ψJίH-E;rιχR\\-+0

as n^oo. As \\(Hn-E y 'W ̂ dist(E^σ(Hn)Γι ^c3, and \φn\£U IIΠJj^l, it
follows that

hRί(Bn-E r1 -(H-E-y ']χJH0 (4.15)

as n->co.

Step 3. By (4.12), we have an no(R)>0 so that, for n>no{Rl

μ>0

as E~ ̂ Ao, (E~ as in Step 2). By (4.15), we can find n(R)^.no(R), so that the norm
difference of the Birman-Sch winger kernels χR(Hn — E~)~ ιχR and χR(H — E~)~ ιχR

is less than \/(2A0), provided n^n(R). By Lemma 1.8, this implies that

2A0,H-E^χR)^ sup N4μ,H-aaR)^k0R\
μ>0

with the constant k0 from (4.11). Finally, monotonicity implies that

sup N4μ,Hn-A,χR)S sup N4μ,Hn-A0,χR)Sk0R
v

μ>0 μ>0

for n ̂  n(R\ and we are done. Π

An interesting problem which arises from Lemma 4.4 is the question of
whether the same sort of bound holds for Schrόdinger operators other than //, and
in particular for —A. In fact, the bound in Lemma 4.4 does not hold for general
operators, but only in our "gap" situation; for the Laplacian, we have (see [A]; cf.
also [Ki]):

Proposition 4.6. In dimension v = 2, we have

n> R

for each fixed R>0.
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