(C) Springer-Verlag 1989

P-Adic Feynman and String Amplitudes

E. Y. Lerner ${ }^{1}$ and M. D. Missarov ${ }^{2, \star, \star \star}$
${ }^{1}$ Kazan State University, Kazan, Kazan, USSR
${ }^{2}$ Centre de Physique Théorique, CNRS-Luminy, Marseille, France

Abstract

We derive an explicit representation for p-adic Feynman and Koba-Nielsen amplitudes and we briefly outline the connection between the scalar models of p-adic quantum field theory and Dyson's hierarchical models.

1. Introduction

As we have shown previously (see [1], submitted to "Theoretical and Mathematical Physics" in May 1987), the scalar models of the field theory over the p-adic field Q_{p} are the natural continuous analogs of Dyson's hierarchical models (see [2-5]). More precisely, the discretization of the field theory over Q_{p} on the hierarchical lattice of p-adic numbers with zero integer part is a model of Dyson's type. The traditional methods of quantum field theory such as Feynman diagrams, renormalization theory and Wilson's renormalization group have analogs in the p-adic case. The main results of [1] are briefly outlined in Sect. 2 .

On the other hand, there has been recently some interest on the possibility of a p-adic formulation of string theory (see [5-12]).

All this explains our interest in the Feynman amplitudes over the p-adic field. The remarkable feature of p-adic models is the exact representation of Feynman and string scattering amplitudes as a sum of elementary functions. Namely, let us consider a general Feynman amplitude over Q_{p} in coordinate representation,

$$
\begin{equation*}
F\left(x_{v} ; v \in V_{\mathrm{ext}}\right)=\int \prod_{v, v^{\prime} \in V_{\mathrm{cxt}} \cup V_{\mathrm{int}}}\left\|x_{v}-x_{v^{\prime}}\right\|_{p}^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{\mathrm{int}}} d x_{v}, \tag{1.1}
\end{equation*}
$$

where the integral taken over $Q_{p}^{\left|V_{\text {inl }}\right|}, p$ is a fixed prime number, Q_{p} is a p-adic field, $\|\cdot\|_{p}$ is a p-adic norm (further on, the sign p will be omitted), $V_{\text {ext }}\left(V_{\text {int }}\right)$ is a set of external (internal) vertices, $a\left(v, v^{\prime}\right) \in \mathbb{C}$ for each pair $v \in V_{\mathrm{cxt}} \cup V_{\mathrm{int}}, v^{\prime} \in V_{\mathrm{ext}} \cup V_{\text {int }}$ (we identify a pair $\left(v, v^{\prime}\right)$ with $\left.\left(v^{\prime}, v\right)\right), d x$ is a Haar measure on Q_{p}, normalized such

[^0]that
\[

$$
\begin{equation*}
\int_{\| x \mid \leqq 1} d x=1 \tag{1.2}
\end{equation*}
$$

\]

Every given vector of external variables $x=\left(x_{v} ; v \in V_{\text {ext }}\right) \in Q_{p}^{\left|V_{\text {ex }}\right|}$ generates on $V_{\text {ext }}$ a hierarchy A_{x}. We recall (see, for example $[4,12]$) that a hierarchy A on a finite set V is a family of subsets of V, such that $V \in A,\{v\} \in A$ for every $v \in V$, and for each pair $V^{\prime} \in A^{\prime}, V^{\prime \prime} \in A$ either $V^{\prime} \cap V^{\prime \prime}=\varnothing$ or $V^{\prime} \subset V^{\prime \prime}$, or $V^{\prime \prime} \subset V^{\prime}$. For every $V^{\prime} \in A$ we denote by $\tau\left(V^{\prime}\right)$ the minimal set in A, which contains V^{\prime}, but does not coincide with V^{\prime} (we assume $V^{\prime} \neq V$). In the following we shall consider only hierarchies such as

$$
\begin{equation*}
1<\left|K\left(V^{\prime}\right)\right| \leqq p, \quad V^{\prime} \in A^{\prime} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{align*}
K\left(V^{\prime}\right) & =\left\{V^{\prime \prime} \in A \mid \tau\left(V^{\prime \prime}\right)=V^{\prime}\right\}, \tag{1.4}\\
A^{\prime} & =\left\{V^{\prime} \in A:\left|V^{\prime}\right|>1\right\} . \tag{1.5}
\end{align*}
$$

In our case, the hierarchy A_{x} on $V_{\text {ext }}$ is defined as

$$
\begin{equation*}
A_{x}=\left\{V \subset V_{\mathrm{ext}}: \max _{\substack{v \in V \\ v^{\prime} \in V}}\left\|x_{v}-x_{v^{\prime}}\right\|<\min _{\substack{v \in V \\ v^{\prime} \in V_{\mathrm{ext}} \backslash V}}\left\|x_{v}-x_{v^{\prime}}\right\|\right\} \tag{1.6}
\end{equation*}
$$

Note, that for every A on $V_{\text {ext }}$ there exists $x \in Q_{p}^{\left|V_{\text {exl }}\right|}$ such that $A_{x}=A$.
Let

$$
F_{A}(x)= \begin{cases}F(x), & \text { if } A_{x}=A \tag{1.7}\\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{equation*}
F(x)=\sum_{A} F_{A}(x) \tag{1.8}
\end{equation*}
$$

where the sum goes over all hierarchies on $V_{\text {ext }}$.
Let $A_{x}=A$. The main result of Sect. 3 is the following:

$$
\begin{equation*}
F_{A}(x)=\sum_{I(A)} \prod_{V \in A^{\prime}} C(V, I) \max _{\substack{v \in V \\ v^{\prime} \in V}}\left\|x_{v}-x_{v^{\prime}}\right\|^{\lambda(V, I)} \tag{1.9}
\end{equation*}
$$

where the sum taken over all partitions of $V_{\text {int }}$, indexed by the elements of A^{\prime} :

$$
\begin{gather*}
I(A)=\left\{I(V), V \in A^{\prime}\right\}, \quad I\left(V^{\prime}\right) \cap I\left(V^{\prime \prime}\right)=\varnothing, \quad \text { if } \quad V^{\prime} \neq V^{\prime \prime}, \quad\left(\bigcup_{V \in A^{\prime}} I\left(V^{\prime}\right)\right)=V_{\mathrm{int}}, \tag{1.10}\\
\lambda(V, I)=a(V(I))-\sum_{V^{\prime} \in K^{\prime}(V)} a\left(V^{\prime}(I)\right)+|I(V)|, \tag{1.11}\\
V(I)=\left(\bigcup_{V^{\prime} \subseteq V} I\left(V^{\prime}\right)\right) \cup V, \tag{1.12}\\
C(V, I)=\int \prod_{v, v^{\prime} \in I(V)}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in I(V)}\left(\prod_{V^{\prime} \in K(V)}\left\|y_{v}-\alpha_{V^{\prime}}\right\|^{a\left(v, V^{\prime}(I)\right)}\right) d y . \tag{1.13}
\end{gather*}
$$

Integral (1.13) taken over $Q_{p}^{|(V)|},\left\{\alpha_{V^{\prime}}, V^{\prime} \in K(V)\right\}$ is an arbitrary set of p-adic numbers, such that $\left\|\alpha_{V^{\prime}}-\alpha_{V^{\prime}}\right\|=1$, if $V^{\prime} \neq V^{\prime \prime}$ (coefficient $C(V, I)$ does not depend on the choice of $\alpha=\left\{\alpha_{V}, V^{\prime} \in K(V)\right\}$. Here we use the notations

$$
\begin{gather*}
a\left(W, W^{\prime}\right)=\sum_{v \in W, v^{\prime} \in W^{\prime}} a\left(v, v^{\prime}\right), \quad W, W^{\prime} \subset V_{\mathrm{ext}} \cup V_{\mathrm{int}}, \tag{1.14}\\
a(W)=a(W, W) . \tag{1.15}
\end{gather*}
$$

We see that the integral representation for $C(V, I)$ is a generalization of the integral representation of string scattering amplitude in the Koba-Nielsen form.

Let

$$
\begin{equation*}
F_{1}=\int \prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V} \prod_{i=0}^{k}\left\|y_{v}-\alpha_{i}\right\|^{a(v, i)} d y_{v} \tag{1.16}
\end{equation*}
$$

where $0 \leqq k<p, \alpha=\left\{\alpha_{i}, i=0, \ldots, k\right\}$ is an arbitrary set of p-adic numbers, such that $\left\|\alpha_{i}-\alpha_{j}\right\|=1$, if $i \neq j, V$ is a finite set, $a\left(v, v^{\prime}\right) \in C$ for each pair $v \in V, v^{\prime} \in V$ (we identify $\left(v, v^{\prime}\right)$ with $\left.\left(v^{\prime}, v\right)\right)$. In Sect. 4 we prove that the calculation of this integral can be reduced to that of the following one:

$$
\begin{equation*}
F_{2}=\int_{\substack{\left.\mid v_{v}\right\}<1 \\ v \in V \backslash\left\{v_{0}\right\}}} \prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V \backslash\left\{v_{0}\right\}} d y_{v}, \tag{1.17}
\end{equation*}
$$

where $y_{v_{0}}=0$. We shall prove that

$$
\begin{equation*}
F_{2}\left(a_{V}\right)=p^{-|V|+1} \sum_{A} \prod_{V^{\prime} \in A^{\prime}} \frac{1}{p^{a\left(V^{\prime}\right)+\left|V^{\prime}\right|-1}-1} \cdot \frac{(p-1)!}{\left(p-\left|K\left(V^{\prime}\right)\right|\right)!}, \tag{1.18}
\end{equation*}
$$

the sum taken over all hierarchies A on V.

2. P-Adic Scalar Models and Dyson's Hierarchical Models

Let a generalized random field $P(\phi)$ on the Q_{p} be given, i.e. a system of probability distributions $P\left\{\left(\varphi, f_{1}\right), \ldots,\left(\varphi, f_{m}\right)\right\}$ with the usual conditions of accordance. Here $f_{i}=f_{i}(x), i=1, \ldots, m$ are arbitrary test functions in the space $S\left(Q_{p}\right) . S\left(Q_{p}\right)$ is a space of locally piece-wise finite complex-valued functions on Q_{p} (see [15]).

We define the scaling operator

$$
\begin{equation*}
R_{\lambda}^{a} P(\varphi)=P\left(\|\lambda\|^{1-(a / 2)} \varphi_{\lambda}\right), \tag{2.1}
\end{equation*}
$$

where a is a real number, $1 \leqq a \leqq 2, \lambda \in Q_{p}$,

$$
\left(\varphi_{\lambda}, f\right)=(\varphi(\lambda x), f(x))
$$

and $P\left(\|\lambda\|^{1-(a / 2)} \varphi_{\lambda}\right)$ is a generalized random field with probability distributions

$$
P\left\{\left(\|\lambda\|^{1-(a / 2)} \varphi_{\lambda}, f_{1}\right), \ldots,\left(\|\lambda\|^{1-(a / 2)} \varphi_{\lambda}, f_{m}\right)\right\} .
$$

A generalized random field is scaling invariant if

$$
\begin{equation*}
R_{\lambda}^{a} P(\varphi)=P(\varphi) \tag{2.2}
\end{equation*}
$$

for all $\lambda \in Q_{p}$. A generalized random field is called translation invariant if $P(\varphi(x))=P(\varphi(x+a))$ for any $a \in Q_{p}$.

It is easy to see that a generalized gaussian random field with zero mean and binary correlation function

$$
\begin{equation*}
\left\langle\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right\rangle=\mathrm{const}\left\|x_{1}-x_{2}\right\|^{a-2} \tag{2.3}
\end{equation*}
$$

is a scaling and translation invariant random field.
By \mathscr{D}_{p} we denote the set of all p-adic numbers with zero integer part. If

$$
\begin{equation*}
x=\sum_{i=n}^{\infty} a_{i} p^{2}, \quad 0 \leqq a_{i}<p-1 \tag{2.4}
\end{equation*}
$$

is a p-adic number, then $\{x\}$ denotes its fraction part

$$
\begin{align*}
& \{x\}=\sum_{i=n}^{-1} a_{i} p^{i}, \tag{2.5}\\
& \mathscr{D}_{p}=\left\{x \in Q_{p}: x=\{x\}\right\} . \tag{2.6}
\end{align*}
$$

\mathscr{D}_{p} has a natural hierarchical structure, which consists from all sets of the type

$$
\begin{equation*}
V_{i}^{n}=\left\{x \in \mathscr{D}_{p}:\left\|p^{n} x-i\right\| \leqq 1\right\}, \quad i \in \mathscr{D}_{p}, \quad n=0,1,2, \ldots . \tag{2.7}
\end{equation*}
$$

The discretization of a generalized random field φ on \mathscr{D}_{p} is defined as a random field ξ on \mathscr{D}_{p} such that

$$
\begin{equation*}
\xi=\left\{\xi_{j}=\left(\varphi, \chi_{j}\right), j \in \mathscr{D}_{p}\right\}, \tag{2.8}
\end{equation*}
$$

where $\chi_{j}(x)=\chi(x-j), \chi(x)$ is the characteristic function of the ball $Z_{p}=$ $\left\{x \in Q_{p}:\|x\| \leqq 1\right\}$. The following operations on a random field $\xi=\left\{\xi_{j}, j \in \mathscr{T}_{p}\right\}$ are defined by the formulae

$$
\begin{gather*}
r_{\lambda: ~}^{a}: \xi_{j} \rightarrow \xi_{j}^{\prime}=\|\lambda\|^{-(a / 2)} \sum_{i:\left\{1,-1,=-1, \in \mathscr{\mathscr { O }}_{p}\right.} \xi_{i}, \quad\|\lambda\| \geqq 1, \tag{2.9}\\
t_{i}: \xi_{j} \rightarrow \xi_{\{j+i\}}, \quad i \in \mathscr{D}_{p} . \tag{2.10}
\end{gather*}
$$

If a generalized random field φ is a translation and scaling invariant, then its discretization is invariant relative to actions $t_{i}, i \in \mathscr{D}_{p}$ and $r_{\lambda}^{a},\|\lambda\|>1$. The gaussian scaling and translation invariant random field on Q_{p} also may be defined by the hamiltonian

$$
\begin{equation*}
H_{0}=\frac{1}{2} \int\|x-y\|^{-a} \varphi(x) \varphi(y) d x d y . \tag{2.11}
\end{equation*}
$$

One can show that the discretization of the random field with the hamiltonian (2.11) is a gaussian random field on \mathscr{D}_{p} with the hamiltonian

$$
\begin{equation*}
\tilde{H}_{0}=\frac{1}{2} \sum_{i, j \in \mathscr{X}_{p}} d(i, j) \xi_{i} \xi_{j}, \tag{2.12}
\end{equation*}
$$

where

$$
d(i, j)= \begin{cases}\|i-j\|^{-a}, & \text { if } i \neq j \tag{2.13}\\ \frac{p^{-a}-p^{1-a}}{1-p^{1-a}}, & \text { otherwise }\end{cases}
$$

Note that the hamiltonian \tilde{H}_{0} is the hamiltonian of the gaussian Dyson hierarchical model.

Further we shall have to deal with the hamiltonians in momentum representation. A hamiltonian in the ball $\Omega=\left\{k \in Q_{p}:\|k\| \leqq R\right\}$ is an expression of the form

$$
\begin{equation*}
H(\sigma)=\sum_{m=1}^{n} \int_{\Omega^{m}} h_{m}\left(k_{1}, \ldots, k_{m}\right) \delta\left(k_{1}+\cdots+k_{m}\right) \prod_{i=0}^{k} \sigma\left(k_{i}\right) d k_{i} \tag{2.14}
\end{equation*}
$$

A formal hamiltonian is a formal series in ε

$$
\begin{equation*}
H=H_{0}+\varepsilon H_{1}+\varepsilon^{2} H_{2}+\ldots \tag{2.15}
\end{equation*}
$$

whose coefficients are finite-particle hamiltonians of the type (2.14). In what follows the coefficient H_{0} will be fixed:

$$
\begin{equation*}
H_{0}=\frac{1}{2} \int_{\Omega}\|k\|^{a-1}|\sigma(k)|^{2} d k . \tag{2.16}
\end{equation*}
$$

Wilson's renormalization transformation, as in a real case, is defined by the formula

$$
\begin{equation*}
R_{\Omega, \lambda}^{a} H=\ln \left\langle\exp \left(R_{i}^{a} H\left(\sigma_{0}+\sigma_{1}\right)\right)\right\rangle_{\mu\left(d \sigma_{1}\right)}, \tag{2.17}
\end{equation*}
$$

where $\left(R_{\lambda}^{a} H\right)(\sigma)=H\left(\|i\|^{-a / 2} \sigma\left(\lambda^{-1}\right)\right)$ is a hamiltonian of the random field in the ball $\lambda \Omega, \sigma(k)$ is a configuration in the ball $\lambda \Omega, \sigma(k)=\sigma_{0}(k)+\sigma_{1}(k), \sigma_{0}(k)=\chi_{\Omega}(k) \sigma(k)$, $\sigma_{1}(k)=\left(\chi_{i \Omega}(k)-\chi_{\Omega}(k)\right) \sigma(k), \chi_{\Omega}(k)$ is a characteristic function of the ball Ω, and the average taken with respect to the gaussian measure $\mu\left(d \sigma_{1}\right)$ with zero mean and binary correlation function

$$
\begin{equation*}
\left\langle\sigma_{1}(k) \sigma_{1}\left(k^{\prime}\right)\right\rangle=\delta\left(k+k^{\prime}\right)\left(\chi_{\lambda \Omega}(k)-\chi_{\Omega}(k)\right)\|k\|^{1-a} \tag{2.18}
\end{equation*}
$$

The branch of gaussian fixed points of Wilson's renormalization group is determined by the hamiltonian $H_{0}=H_{0}(a)$. An investigation of the spectrum of the differential of the renormalization group on this branch shows that $a_{0}=\frac{3}{2}$ is the bifurcation point. One can try to construct a new branch of non-gaussian fixed points as power series in the deviation of the parameter a from the bifurcation value a_{0}. As in the real case, (see [16]), we seek a solution in the class of projection hamiltonians, in the form

$$
\begin{equation*}
H=H(\sigma, \varepsilon)=\ln \left\langle\exp \left\{u(\varepsilon) \varphi^{4}\left(\sigma_{0}+\sigma_{1}\right)\right\}\right\rangle_{\mu\left(d \sigma_{1}\right)}, \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi^{4}(\sigma)=\int \delta\left(k_{1}+\cdots+k_{4}\right) \prod_{i=1}^{4} \sigma\left(k_{i}\right) d k_{i} \tag{2.20}
\end{equation*}
$$

σ_{0} is a configuration in the ball Ω, and the average taken with respect to the gaussian measure with binary correlation function

$$
\begin{equation*}
\left\langle\sigma_{1}(k) \sigma\left(k^{\prime}\right)\right\rangle=\delta\left(k+k^{\prime}\right)\left(1-\chi_{\Omega^{2}}(k)\right)\|k\|^{1-a}=\delta\left(k+k^{\prime}\right)\left(1-\chi_{\Omega}(k)\right)\|k\|^{-(1 / 2)-\varepsilon} \tag{2.21}
\end{equation*}
$$

The only quantity which is not defined here is $u(\varepsilon)$, which we assume to be a formal power series in ε :

$$
\begin{equation*}
u(\varepsilon)=\sum_{i=1}^{\infty} u_{j} \varepsilon^{j} . \tag{2.22}
\end{equation*}
$$

In the computation of a projection hamiltonian divergences appear. Namely, in
φ^{4} theory with the propagator

$$
\begin{equation*}
\left(1-\chi_{\Omega}(k)\right)\|k\|^{-(1 / 2)-\varepsilon} \tag{2.23}
\end{equation*}
$$

the diagrams with two and four external lines have poles when $\varepsilon \rightarrow 0$. The theory of analytic renormalization analogous to the real case exists in the p-adic case. One can show that

$$
\begin{align*}
& R_{\Omega, \lambda}^{a} \mathrm{~A} \cdot \mathrm{R} \cdot \ln \left\langle\exp \left\{u(\varepsilon) \varphi^{4}\left(\sigma_{0}+\sigma_{1}\right)\right\}\right\rangle_{\mu\left(d \sigma_{1}\right)} \\
& \quad=\exp \left(\tau \beta(u) \frac{d}{d u}\right) \text { A.R. } \ln \left\langle\exp \left\{u(\varepsilon) \varphi^{4}\left(\sigma_{0}+\sigma_{1}\right)\right\}\right\rangle_{\mu\left(d \sigma_{1}\right)} \tag{2.24}
\end{align*}
$$

where A.R. denotes the analytic renormalization with minimal subtractions, $\tau=2 \ln \|\lambda\|$,

$$
\begin{equation*}
\beta(u)=\varepsilon u+\sum_{n=2}^{\infty} c_{n} u^{u} \tag{2.25}
\end{equation*}
$$

and the coefficients c_{n} for $n \geqq 2$ do not depend on ε.
The renormalization projection hamiltonian A.R. $\ln \left\langle\exp \left(u(\varepsilon) \varphi_{4}\right)\right\rangle_{\mu\left(d \sigma_{1}\right)}$ is invariant under the action of the renormalization group, if

$$
\begin{equation*}
\beta(u)=0 . \tag{2.26}
\end{equation*}
$$

This equation has two solutions in the formal power in ε. The solution $u=0$ corresponds to a gaussian fixed point. A nontrivial non-gaussian solution is obtained from the solution of

$$
\begin{equation*}
\varepsilon+\sum_{n=2}^{\infty} c_{n} u^{n-1}=0 . \tag{2.27}
\end{equation*}
$$

It is easy to check that $c_{2} \neq 0$ and therefore Eq. (2.27) is indeed solvable. This solution is a p-adic field-theoretical description of the non-trivial solution in Dyson's hierarchical model, which was investigated in [2-5].

3. Feynman Amplitudes in Coordinate Representation

First of all we shall prove that A_{x}, defined by (1.6) with the function

$$
\begin{equation*}
m_{x}(V)=\max _{\substack{v \in V \\ v^{\prime} \in V}}\left\|x_{v}-x_{v^{\prime}}\right\| \tag{3.1}
\end{equation*}
$$

on it, is an indexed hierarchy. We recall that an indexed hierarchy on V is a pair (A, m), where A denotes a given hierarchy on V and m is a positive function on A, satisfying the following conditions:

1) $m\left(V^{\prime}\right)=0$ if and only if $\left.\mid V^{\prime}\right\}=1$,
2) if $V^{\prime} \subset V^{\prime \prime}$, then $m\left(V^{\prime}\right)<m\left(V^{\prime \prime}\right)$.

In addition to these conditions we shall consider the functions $m(V)$ for which

$$
\begin{equation*}
m(V)=p^{n(V)}, \quad n(V) \in Z \tag{3.2}
\end{equation*}
$$

for every $V \in A$.

It suffices to show that if $V^{\prime} \in A_{x}, V^{\prime \prime} \in A_{x}$ and $V^{\prime} \cap V^{\prime \prime} \neq \varnothing$, then $V^{\prime} \subset V^{\prime \prime}$ or $V^{\prime \prime} \subset V^{\prime}$. In fact, let $x \in V^{\prime} \cap V^{\prime \prime}, y \in V^{\prime} \backslash V^{\prime \prime}, z \in V^{\prime \prime} \backslash V^{\prime}$. From the definition of V^{\prime} $\|x-y\|<\|y-z\|$ follows and hence, from the ultrametricity of the p-adic norm $\|y-z\|=\|x-z\|$, but this contradicts the definition of $V^{\prime \prime}$.

It is easy to see that for every indexed hierarchy (A, m) on $V_{\text {ext }}$ there exists $x=\left(x_{v}, v \in V_{\text {ext }}\right)$ such that $\left(A_{x}, m_{x}\right)=(A, m)$. To every indexed hierarchy (A, m) corresponds a family of sets $\{\mathscr{D}(V, m), V \in A\}$, where

$$
\begin{equation*}
\mathscr{D}(V, m)=\left\{y \in Q_{p}: m(V) \leqq\left\|y-x_{v}\right\|<m(\tau(V)), \forall v \in V\right\} . \tag{3.3}
\end{equation*}
$$

We put $m\left(\tau\left(V_{\text {ext }}\right)\right)=\infty$.
Let $\varphi: A \rightarrow V_{\text {ext }}$ be any function such that $\varphi(V) \in V$ for every $V \in A$.
Lemma 1. 1) If $V \in A, V^{\prime} \in A, V \subset V^{\prime}, V \neq V^{\prime}$ and $y \in \mathscr{D}(V, m), y \in \mathscr{D}\left(V^{\prime}, m\right)$. then

$$
\left\|y^{\prime}-y\right\|=\left\|y^{\prime}-x_{\varphi(V)}\right\| .
$$

2) If $V \cap V^{\prime}=\varnothing, V \in A, V^{\prime} \in A$ and $V^{\prime \prime}$ is a minimal set in A, containing $V \cup V^{\prime}$, $y \in \mathscr{D}(V, m), y^{\prime} \in \mathscr{D}\left(V^{\prime}, m\right)$, then

$$
\left\|y^{\prime}-y\right\|=m\left(V^{\prime \prime}\right)
$$

3) $\{\mathscr{D}(V, m) ; V \in A\}$ is a partition of Q_{p}.

Proof. Let $y \in \mathscr{D}(V, m), y^{\prime} \in \mathscr{D}\left(V^{\prime}, m\right), V \subset V^{\prime}, V \neq V^{\prime}$.
Then

$$
\left\|y-x_{\varphi(V)}\right\|<m(\tau(V)) \leqq m\left(V^{\prime}\right) \leqq\left\|y^{\prime}-x_{\varphi(V)}\right\|,
$$

and therefore $\left\|y-y^{\prime}\right\|=\left\|y^{\prime}-x_{\varphi(V)}\right\|$. If $V \cap V^{\prime}=\varnothing, y \in \mathscr{D}(V, m), y^{\prime} \in \mathscr{D}\left(V^{\prime}, m\right)$, then

$$
\begin{gathered}
\left\|y-x_{\varphi(V)}\right\|<m(\tau(V)) \leqq m\left(V^{\prime \prime}\right)=\left\|x_{\varphi(V)}-x_{\varphi\left(V^{\prime}\right)}\right\|, \\
\left\|y^{\prime}-x_{\varphi\left(V^{\prime}\right)}\right\|<m\left(\tau\left(V^{\prime}\right)\right) \leqq m\left(V^{\prime \prime}\right),
\end{gathered}
$$

and hence

$$
\left\|y^{\prime}-x_{\varphi(V)}\right\|=\left\|y-y^{\prime}\right\|=m\left(V^{\prime \prime}\right)
$$

Let $V \neq V^{\prime}$ and $y \in \mathscr{D}(V, m) \cap \mathscr{D}\left(V^{\prime}, m\right)$. If $V \subset V^{\prime}, V \neq V^{\prime}$, then

$$
m(V) \leqq\left\|y-x_{\varphi(V)}\right\|<m(\tau(V)) \leqq\left\|y-x_{\varphi(V)}\right\|,
$$

but this contradicts the first part of the lemma. If $V \cap V^{\prime \prime}=\varnothing$, then

$$
\left\|x_{\varphi(V)}-x_{\varphi\left(V^{\prime}\right)}\right\|<\max \left(\left\|y-x_{\varphi(V)}\right\|,\left\|y-x_{\varphi\left(V^{\prime}\right)}\right\|\right)<m\left(V^{\prime \prime}\right) .
$$

At last

$$
\bigcup_{V \in A} \mathscr{D}(V, m)=Q_{p} .
$$

Lemma 1 is proved.
Everywhere below we have used the next notations: $a_{V}=\left(a\left(v, v^{\prime}\right)\right)_{v \in V}^{v^{\prime} \in V}$ is a matrix, $b_{V}=(b(v))_{v \in V}$ is a vector,

$$
\begin{equation*}
a\left(V, V^{\prime}\right)=\sum_{v \in V, v^{\prime} \in V^{\prime}} a\left(v, v^{\prime}\right) \tag{3.4}
\end{equation*}
$$

$a(V)=a(V, V), a_{V}^{V^{\prime}}=\left(a\left(v, V^{\prime}\right)\right)_{v \in V}$ is a vector, $a\left(v, v^{\prime}\right) \in \mathbb{C}, b^{\prime}(v) \in \mathbb{C}$ for every $v \in V, v^{\prime} \in V$.
Let r_{1}, r_{2} be real numbers, $\infty \geqq r_{2}>r_{1} \geqq 0$. Denote by

$$
\begin{equation*}
f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)=\int_{r_{1} \leqq y_{v} \|<r_{2}, v \in V,} \prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V}\left\|y_{v}\right\|^{b(v)} d y_{v} . \tag{3.5}
\end{equation*}
$$

Lemma 2.

$$
\begin{equation*}
f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)=\sum_{V_{1} \cup V_{2}=V} f\left(r_{1}, \infty ; a_{V_{1}}, b_{V_{1}}\right) f\left(0, r_{2} ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right) \tag{3.6}
\end{equation*}
$$

where the sum goes over all partitions $\left(V_{1}, V_{2}\right)$ of V.
Proof. We prove this lemma by induction with respect to the number of elements of V. For $|V|=1$ this formula is checked directly:

$$
\begin{aligned}
\int_{r_{1} \leqq|y|<r_{2}}\|y\|^{b} d y & =\int_{r_{1} \leqq|y|<r_{2}}\|y\|^{b} d y+\int_{\mid y \|^{b}<r_{1}}\|y\|^{b} d y+\int_{r_{1} \leqq|y|}\|y\|^{b} d y \\
& =\int_{y \mid<r_{2}}\|y\|^{b} d y+\int_{r_{1} \leqq|y|}\|y\|^{b} d y
\end{aligned}
$$

(we used $\int_{Q_{p}}\|y\|^{b} d y=0$).
Note that

$$
\begin{equation*}
f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)=f\left(0, r_{2} ; a_{V}, b_{V}\right)-\sum_{V_{1} \subseteq V_{1} V_{1} \neq \varnothing} f\left(0, r_{1} ; a_{V_{1}}, b_{V_{1}}\right) f\left(r_{1}, r_{2} ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right) . \tag{3.7}
\end{equation*}
$$

Applying the assumption of induction to $f\left(r_{1}, r_{2} ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right.$, we have

$$
\begin{align*}
f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)= & f\left(0, r_{2} ; a_{V}, b_{V}\right)-\sum_{V_{1} \subseteq V V_{1} \neq \varnothing}\left(f\left(0, r_{1} ; a_{V_{1}}, b_{V_{1}}\right)\right. \\
& \left.\cdot \sum_{V_{2} \subseteq V \backslash V_{1}} f\left(r_{1}, \infty ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right) f\left(0, r_{2} ; a_{V_{3}}, b_{V_{3}}+a_{V_{3}}^{V_{1}}+a_{V_{3}}^{V_{2}}\right)\right), \tag{3.8}
\end{align*}
$$

where $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$. By denoting $V_{4}=V_{1} \cup V_{2}$ and changing the order of the summation, we get

$$
\begin{align*}
f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)= & f\left(0, r_{2} ; a_{V}, b_{V}\right)-\sum_{V_{4} \subseteq V_{V}, V_{4} \neq \varnothing}\left\{\left(\sum_{V_{1} \subseteq V_{4}, V_{1} \neq \varnothing} f\left(0, r_{1} ; a_{V_{1}}, b_{V_{1}}\right)\right.\right. \\
& \left.\left.\cdot f\left(r_{1}, \infty ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right) f\left(0, r_{2} ; a_{V_{3}}, b_{V_{3}}+a_{V_{3}}^{V_{4}}\right)\right)\right\} \tag{3.9}
\end{align*}
$$

But

$$
\begin{equation*}
\sum_{V_{1} \subseteq V_{4}} f\left(0, r_{1} ; a_{V_{1}}, b_{V_{1}}\right) f\left(r_{1}, \infty ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right)=f\left(0, \infty ; a_{V_{4}}, b_{V_{4}}\right)=0 \tag{3.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{V_{1} \subseteq V_{4}, V_{1} \neq \varnothing} f\left(0, r_{1} ; a_{V_{1}}, b_{V_{1}}\right) f\left(r_{1}, \infty ; a_{V_{2}}, b_{V_{2}}+a_{V_{2}}^{V_{1}}\right)=-f\left(r_{1}, \infty ; a_{V_{4}}, b_{V_{4}}\right), \tag{3.11}
\end{equation*}
$$

where the summation is over $V_{1} \neq \varnothing, V_{1} \subset V_{4}$. Therefore,
$f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)=f\left(r_{1}, r_{2} ; a_{V}, b_{V}\right)+\sum_{V_{2} \subseteq V, V_{4} \neq \varnothing} f\left(r_{1}, \infty ; a_{V_{4}}, b_{V_{4}}\right) f\left(0, r_{2} ; a_{V_{3}}, b_{V_{3}}+a_{V_{3}}^{V_{4}}\right)$,
$V_{3}=V \backslash V_{4}$. Lemma 2 is proved.

Theorem 1. Let $A_{x}=A$. Then

$$
\begin{equation*}
F(x)=\sum_{I(A)} \prod_{V \in A^{\prime}} C(V, I) \max _{\substack{v \in V \\ v^{\prime} \in V}}\left\|x_{v}-x_{v^{\prime}}\right\|^{\lambda(V, I)}, \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
C(V, I)=\int_{v^{\prime}, v \in I(V)}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in I(V)}\left(\prod_{V^{\prime} \in K(V)}\left\|y_{v}-\alpha_{V^{\prime}}\right\|^{a\left(v, V^{\prime}(I)\right)} d y_{v}\right) \tag{3.14}
\end{equation*}
$$

$\left\{\alpha_{V^{\prime}}, V^{\prime} \in K(V)\right\}$ is an arbitrary set of p-adic numbers, such that $\left\|\alpha_{V^{\prime}}-\alpha_{V^{\prime \prime}}\right\|=1$ if $V^{\prime} \neq V^{\prime \prime}$ (for example, $\alpha=\left\{\alpha_{V^{\prime}} ; V^{\prime} \in K(V)\right\}=\{0,1, \ldots,|K(V)|-1\}$). $C(V, I)$ do not depend on the choice of α. For the other notations see Sect. 1.

Proof. Let $A_{x}=A$ and $\varphi: A \rightarrow V_{\mathrm{ext}}$ is any function such that $\varphi(V) \in V, V \in A$. Let $T(A)=\{T(V), V \in A\}$ is a partition of V_{int}, indexed by elements of A. Denote by

$$
\begin{equation*}
g(V, T, x)=\int_{\substack{y_{v} \in \mathscr{G}\left(V, m_{x} \\ v \in T(V)\right.}} \prod_{v, v^{\prime} \in T(V)}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in T(V)}\left\|y_{v}-x_{\varphi(V)}\right\|^{a(v, V(T)} d y_{v} \tag{3.15}
\end{equation*}
$$

where $V(T)=\left(\bigcup_{V^{\prime} \subset V} T\left(V^{\prime}\right)\right) U V$.
From Lemma 1 it is easy to derive that

$$
\begin{equation*}
F(x)=\sum_{T(A)} \prod_{V \in A^{\prime}} g(V, T, x) m_{x}(V)^{s(V, T)}, \tag{3.16}
\end{equation*}
$$

where the sum goes over all partitions of V_{int}, indexed by elements of A,

$$
\begin{equation*}
s(V, T)=\sum_{\substack{\prime, V^{\prime \prime} \in K(V) \\ V^{\prime} \neq V^{\prime \prime}}} a\left(V^{\prime}(T) \cup T\left(V^{\prime}\right), V^{\prime \prime}(T) \cup T\left(V^{\prime \prime}\right)\right) \tag{3.17}
\end{equation*}
$$

According to Lemma 2

$$
\begin{equation*}
g(V, T, x)=\sum_{T_{1}(V) \cup T_{2}(V)=T(V)} f\left(m(V), \infty ; a_{T_{1}(V)}, a_{T_{1}(V)}^{V(T)}\right) f\left(0, m\left(\tau(V) ; a_{T_{2}(V)}, a_{T_{2}(V)}^{V(T)+T_{1}(V)}\right),\right. \tag{3.18}
\end{equation*}
$$

the sum goes over all partitions $\left(T_{1}(V), T_{2}(V)\right)$ of $T(V)$.
As $f\left(0, \infty ; a_{V}, b_{V}\right)=0$ for any a_{V}, b_{V}, we may write

$$
\begin{align*}
F(x)= & \sum_{I(A)} \prod_{V \in A^{\prime}}\left(\sum_{\substack{\left(U T_{2}\left(V^{\prime}\right) \cup U T_{1}(V)=I(V) \\
V^{\prime} \in K(V)\right.}} f\left(m(V), \infty ; a_{T_{1}(V)}, a_{T_{1}(V)}^{V(I) T_{1}(V)}\right)\right. \\
& \left.\cdot \prod_{V^{\prime} \in K(V)} f\left(0, m(V) ; a_{T_{2}(V)}, a_{T_{2}(V)}^{V^{\prime}(I)}\right)\right) m_{x}(V)^{s(V, I)} \tag{3.19}
\end{align*}
$$

where the sum goes over all partitions of $V_{\text {int }}$, indexed by elements of A^{\prime}, the internal sum taken over all partitions of

$$
\begin{align*}
I(V) & =\left(\bigcup_{V^{\prime} \in K(V)} T_{2}\left(V^{\prime}\right)\right) \cup T_{1}(V), \quad V(I)=\left(\bigcup_{V^{\prime} \subseteq V} I\left(V^{\prime}\right)\right) \cup V, \\
s(V, I) & =\sum_{V^{\prime}, V^{\prime \prime} \in K(V)} a\left(V^{\prime}(I), V^{\prime \prime}(V)\right) . \tag{3.20}
\end{align*}
$$

As

$$
\begin{equation*}
\left(\bigcup_{V^{\prime} \in K(V)}\left\{y \in Q_{p}:\left\|y-x_{\varphi\left(V^{\prime}\right)}\right\|<m(V)\right\}\right) \cup\left\{y \in Q_{p}:\left\|y-x_{\varphi(V)}\right\| \geqq m(V)\right\}=Q_{p} \tag{3.21}
\end{equation*}
$$

we get

$$
\begin{align*}
F(x)= & \sum_{I(A)} \prod_{V \in A^{\prime}} m_{x}(V)^{s(V, I)} \\
& \cdot\left(\int_{v, v^{\prime} \in I(V)}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in I(V)}\left(\prod_{V^{\prime} \in K(V)}\left\|y_{v}-x_{\varphi\left(V^{\prime}\right)}\right\|^{a(v, V(I))}\right) d y_{v}\right) . \tag{3.22}
\end{align*}
$$

Performing a change of variables,

$$
\begin{align*}
& y_{v}=y_{v} p^{-n}, \quad v \in I(V), \tag{3.23}\\
& \alpha_{V}=x_{\varphi\left(V^{\prime}\right)} p^{-n}, \quad V^{\prime} \in K(V), \tag{3.24}
\end{align*}
$$

where $\left\|p^{n}\right\|=m_{x}(V)$, we obtain

$$
\begin{gather*}
F(x)=\sum_{I(A)} \prod_{V \in A^{\prime}} C(V, I, \alpha) m_{x}(V)^{\lambda(V, I)} \tag{3.25}\\
C(V, I, \alpha)=\int \prod_{v, v^{\prime} \in I(V)}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in I(V)}\left(\prod_{V^{\prime} \in K(V)}\left\|y_{v}-\alpha_{V^{\prime}}\right\|^{a\left(v, V^{\prime}(I)\right)}\right) d y \tag{3.26}\\
\lambda(V, I)=a(V(I))-\sum_{V^{\prime} \in K(V)} a\left(V^{\prime}(I)\right)+|I(V)| \tag{3.27}
\end{gather*}
$$

Note that $\left\|\alpha_{V^{\prime}}-\alpha_{V^{\prime \prime}}\right\|=1$ for each pair $V^{\prime}, V^{\prime \prime} \in K(V) V^{\prime} \neq V^{\prime \prime}$. In the next section we shall see that $C(V, I, \alpha)$ does not depend on the choice of α.

Note also that $C(V, I)$ is a Feynman amplitude of the contracted graph

$$
\left.G_{V}\right|_{\left\{G_{V^{\prime}}, V^{\prime} \in K(V)\right\}}
$$

Here G_{V} is a graph with the set of vertices $V(I)$. To each external vertice $\left\{V^{\prime}\right\}$ of this contracted graph we must assign an external variable $\alpha_{V^{\prime}}$.
$\lambda(V, I)$ also has a simple geometrical description.

4. The Calculation of Coefficients $C(V, I)$ and String Amplitudes in the Koba-Nielsen Form

Let us consider an integral

$$
\begin{equation*}
F_{1}=\int \prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a(v, v)} \prod_{v \in V}\left(\prod_{i=0}^{k}\left\|y_{v}-\alpha_{i}\right\|^{b_{i}(v)}\right) d y_{v} \tag{4.1}
\end{equation*}
$$

where $1 \leqq k \leqq p-1,\left\|\alpha_{i}-\alpha_{j}\right\|=1$ if $i \neq j$. This integral is a generalization of Koba-Nielsen amplitude (some examples of this amplitude were calculated in [10, 11]).

We introduce the next partition of Q_{p} :

$$
\begin{align*}
& \mathscr{D}_{i}=\left\{y \in Q_{p}:\left\|y-\alpha_{i}\right\|<1\right\}, \quad i=0,1, \ldots, k, \tag{4.2}\\
& \mathscr{D}_{j}=\left\{y \in Q_{p}:\left\|y-\alpha_{0}\right\|=1,\left(y-\alpha_{0}\right) \bmod p=j\right\}, \quad j \in J . \tag{4.3}
\end{align*}
$$

where $J=\{0,1, \ldots, p-1\} \backslash\left\{\left(\alpha_{i}-\alpha_{0}\right) \bmod p, i=0, \ldots, k\right\}$. As $|J|=p-k-1$, it is convenient to renumerate the family $\mathscr{D}_{j}, j \in J$ by $i=k+1, \ldots, p-1$. Finally,

$$
\begin{equation*}
\mathscr{D}_{p}=\left\{y \in Q_{p}:\left\|y-\alpha_{0}\right\|>1\right\} . \tag{4.4}
\end{equation*}
$$

As above, it is easy to show that $\left\{\mathscr{D}_{i}, i=0, \ldots, p\right\}$ is a partition of Q_{p}. Therefore

$$
\begin{align*}
& F_{1}=\sum_{U_{i=0}^{p}=V_{i}=V_{i}} \prod_{i=0_{v}}^{k} \int_{v \in V_{v}}^{v \in V_{i}}, \prod_{v, v \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{i}}\left\|y_{v}-x_{i}\right\|^{b_{i}(v)} d y_{v} \\
& \prod_{j=k+1}^{p-1} \int_{\substack{y_{v} \in \mathscr{Z}_{j} \\
v \in V_{j}}} \prod_{v, v^{\prime} \in V_{j}}\left\|y_{v}-y_{v^{\prime}}\right\| a\left(v, v^{\prime}\right) \prod_{v \in V_{j}} d y_{v} \\
& \cdot \int_{\substack{y_{v} \in \mathcal{V}^{2}, v_{p} \\
v \in v_{p} \in V_{i}}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{i}}\left\|y_{v}-\alpha_{0}\right\|^{\Sigma_{i=0}^{k}=b_{i}(v)+a\left(v, V V_{p}\right)} d y_{v} . \tag{4.5}
\end{align*}
$$

But for $i=0, \ldots, k$,

$$
\begin{align*}
& \int_{\substack{y_{v} \in ⿹_{v} \\
v \in V_{i}}} \prod_{v, v^{\prime} \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{i}}\left\|y_{v}-\alpha_{i}\right\|^{b_{i}(v)} d y_{v} \\
& \quad=\int_{\substack{\mid v_{v} \leq 1 \\
v \in V_{i}}} \prod_{v, v^{\prime} \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{i}}\left\|y_{v}-\alpha_{i}\right\|^{b_{i}(v)} d y_{v}, \tag{4.6}
\end{align*}
$$

for $i=k+1, \ldots, p-1$

$$
\begin{equation*}
\int_{\substack{y_{v} \in \mathscr{Y}_{i} \\ v \in V_{i}}} \prod_{v, v^{\prime} \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} d y_{v}=\int_{\substack{\| y_{v},<1 \\ v \in V_{i}}} \prod_{v, v^{\prime} \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} d y_{v}, \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{\substack{y_{v} \in \mathscr{Q}^{2} \\
v \in V_{p}^{2}}} \prod_{v, v^{\prime} \in V_{p}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{p}}\left\|y_{v}-\alpha_{0}\right\|^{\sum_{i=0}^{k} b_{i}(v)+a\left(v, V \backslash V_{p}\right)} d y_{v} \\
& \quad=\int_{v v_{v}<1} \sum_{v, V_{p}}\left\|y_{v}-y_{v^{\prime}}\right\|\left\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{p}}\right\| y_{v} \|^{\left.\sum_{i=0}^{k}=b_{i}(v)+a(v, V)+2\right)} d y_{v} . \tag{4.8}
\end{align*}
$$

In the last reduction we used the change of variables $y_{v} \rightarrow\left(1 / y_{v}-\alpha_{0}\right), v \in V_{p}$. Therefore, we may rewrite

$$
\begin{equation*}
F_{1}=\sum_{\bigcup_{i=0}^{p} V_{i}=V_{i=0}} \prod_{i=0}^{p} g\left(a_{V_{i}}, b_{i}\right), \tag{4.9}
\end{equation*}
$$

where

$$
\begin{align*}
g\left(a_{V_{i}}, b_{i}\right) & =\int_{\substack{\left|y_{v}\right| \mid \ll \\
v \in V_{i}}} \prod_{v, v^{\prime} \in V_{i}}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V_{i}}\left\|y_{v}\right\|^{b_{i}(v)} d y_{v}, \tag{4.10}\\
b_{i}(v) & =0, \quad v \in V_{i}, \quad i=k+1, \ldots, p-1, \tag{4.11}\\
b_{p}(v) & \left.=-\left(\sum_{i=0}^{k} b_{i}(v)+a(v, V)+2\right)\right), \quad v \in V_{p} . \tag{4.12}
\end{align*}
$$

So, we must calculate the integral of the type

$$
\begin{equation*}
F_{2}\left(a_{V}\right)=\int_{\substack{\mid y_{v}<1 \\ v \in V\left\{\left\{v_{0}\right\}\right.}} \prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \prod_{v \in V\left\{v_{0}\right\}} d y_{v} \tag{4.13}
\end{equation*}
$$

where v_{0} is a fixed element of $V, y_{v_{0}}=0, a\left(v, v^{\prime}\right) \in \mathbb{C}$ for every pair $\left(v, v^{\prime}\right)$ (we identify each pair $\left(v, v^{\prime}\right)$ with $\left.\left(v^{\prime}, v\right)\right), a(v, v)=0$ for every $v \in V$ (in our case $V \backslash\left\{v_{0}\right\}=V_{i}$, $\left.a\left(v, v_{0}\right)=b_{i}(v), i=0,1, \ldots, p\right)$.
Lemma 3. Let (A, m) be an indexed hierarchy on V, and

$$
\chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right)= \begin{cases}1, & \text { if }\left(A_{y}, m_{y}\right)=(A, m) \tag{4.14}\\ 0, & \text { otherwise }\end{cases}
$$

where $y=\left\{y_{v}, v \in V\right\}, y_{v_{0}}=0$. Then

$$
\begin{equation*}
\int \chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right) \prod_{r \in V\left\{r_{0}!\right.} d y_{v}=\prod_{V^{\prime} \in A^{\prime}}\left(\frac{m\left(V^{\prime}\right)}{p}\right)^{\left|K\left(V^{\prime}\right)\right|-1} \frac{(p-1)!}{(p-|K(V)|)!} . \tag{4.15}
\end{equation*}
$$

Proof of Lemma 3. Let T be a tree with the set of vertices V and the set of lines $L=\left\{l=\left(\varphi\left(V^{\prime}\right), \varphi\left(V^{\prime \prime}\right)\right), \varphi\left(V^{\prime}\right) \neq \varphi\left(V^{\prime \prime}\right) \mid V^{\prime} \in A, \quad V^{\prime \prime} \in K\left(V^{\prime}\right)\right\}$. Here $\varphi: A \rightarrow V$ is any function such that $\varphi\left(V^{\prime}\right) \in V^{\prime}$ for every $V^{\prime} \in A, \varphi(V)=v_{0}$. To each line $l=\left(\varphi\left(V^{\prime}\right)\right.$, $\varphi\left(V^{\prime \prime}\right)$) we assign a variable $S_{l}=y_{\varphi\left(V^{\prime}\right)}-y_{\varphi\left(V^{\prime \prime}\right)}$. Then for every $y_{v}=S_{l_{1}}+S_{l_{2}}+$ $\cdots+S_{l_{j}}$, where $\left\{l_{1}, \ldots, l_{j}\right\}$ is a path joining v with v_{0}. It is clear that jacobian of this change of variables is equal to 1 . And moreover, $\left(A_{y}, m_{y}\right)=(A, m)$ if and only if

1) $\left\|S_{l}\right\|=m\left(V^{\prime}\right)=p^{n\left(V^{\prime}\right)}$ for every $l=\left(\varphi\left(V^{\prime}\right), \varphi\left(V^{\prime \prime}\right)\right), V^{\prime} \in A^{\prime}, V^{\prime \prime} \in K\left(V^{\prime}\right)$.
2) $S_{l_{1}} p^{n\left(V^{\prime}\right)} \bmod p \neq S_{l_{2}} n^{n\left(V^{\prime}\right)} \bmod p$ for each pair $l_{1}=\left(\varphi\left(V^{\prime}\right), \varphi\left(V_{1}\right)\right)$,
$l_{2}=\left(\varphi\left(V^{\prime}\right), \varphi\left(V_{2}\right)\right), V^{\prime} \in A^{\prime}, V_{1} \in K\left(V^{\prime}\right), V_{2} \in K\left(V^{\prime}\right), V_{1} \neq V_{2}$.
Using

$$
\begin{equation*}
\int_{\substack{\left.s(V)=m\left(V^{\prime}\right) \\ s p^{n(V)}\right) \bmod p=r}} d s=\frac{m(V)}{p} \tag{4.16}
\end{equation*}
$$

$r=1,2, \ldots, p-1$, we obtain the formula (4.15).
Theorem 2. Let $a\left(V^{\prime}\right)+\left|V^{\prime}\right|-1>0$ for every $V^{\prime} \subseteq V,\left|V^{\prime}\right|>1$. Then

$$
\begin{equation*}
F_{2}\left(a_{V}\right)=p^{-|V|+1} \sum_{A} \prod_{V^{\prime} \in A^{\prime}} \frac{1}{p^{a\left(V^{\prime}\right)+\left|V^{\prime}\right|-1}-1} \cdot \frac{(p-1)!}{\left(p-\left|K\left(V^{\prime}\right)\right|\right)!}, \tag{4.17}
\end{equation*}
$$

the sum goes over all hierarchies A on V.
Proof.

$$
\begin{equation*}
g\left(a_{V}\right)=\sum_{(A, m) ; m(V)<1} \int_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right) \prod_{v \in V \backslash\left\{v_{0}\right\}} d y_{v,} \tag{4.18}
\end{equation*}
$$

where the sum taken over all indexed hierarchies on V, such that $m(V)<1$. Note that this sum is equal to the double sum

$$
\begin{equation*}
\sum_{A} \sum_{\min (V)<0} \int_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right) \prod_{v \in V \backslash\left\{v_{0}\right\}} d y_{v}, \tag{4.19}
\end{equation*}
$$

where the external sum goes over all hierarchies on V and the internal sum goes over all set of integer numbers $\left\{n\left(V^{\prime}\right), V^{\prime} \in A^{\prime}\right\}, n\left(V^{\prime}\right) \in Z, m\left(V^{\prime}\right)=p^{n\left(V^{\prime}\right)}, n\left(V^{\prime}\right)<n\left(\tau\left(V^{\prime}\right)\right)$ for every $V^{\prime} \in A^{\prime}$ and $n(V)<0$.

Let

$$
\begin{equation*}
a^{\prime}\left(V^{\prime}\right)=a\left(V^{\prime}\right)-\sum_{V^{\prime \prime} \in K\left(V^{\prime}\right)} a\left(V^{\prime \prime}\right), \quad V^{\prime} \in A^{\prime} \tag{4.20}
\end{equation*}
$$

Obviously, that

$$
\prod_{v, v^{\prime} \in V}\left\|y_{v}-y_{v^{\prime}}\right\|^{a\left(v, v^{\prime}\right)} \chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right)=\prod_{V^{\prime} \in A^{\prime}} m\left(V^{\prime}\right)^{a^{\prime}\left(V^{\prime}\right)} \chi_{A, m}\left(y_{v} ; v \in V \backslash\left\{v_{0}\right\}\right) .
$$

Note that if $\beta>0$, then

$$
\begin{equation*}
\sum_{n<m} p^{n \beta}=\frac{p^{m \beta}}{p^{\beta-1}} \tag{4.21}
\end{equation*}
$$

Using (4.21) and Lemma 3, we obtain

$$
\begin{align*}
& \sum_{A} \sum_{n: n(V)<0} \sum_{V^{\prime} \in A^{\prime}} p^{n\left(V^{\prime}\right)\left(a^{\prime}\left(^{\prime}\right)+\left|K\left(V^{\prime}\right)\right|+1\right)} p^{-\left|K\left(V^{\prime}\right)\right|+1} \cdot \frac{(p-1)!}{\left(p-\left|K\left(V^{\prime}\right)\right|\right)!} \\
& \quad=\sum_{A} \prod_{V^{\prime} \in A^{\prime}} p^{-\left|K\left(V^{\prime}\right)\right|+1} \cdot \frac{(p-1)!}{\left(p-\left|K\left(V^{\prime}\right)\right|\right)!} \frac{1}{p^{\beta\left(V^{\prime}\right)}-1} . \tag{4.22}
\end{align*}
$$

Here we used that

$$
\begin{equation*}
\beta\left(V^{\prime}\right)=\sum_{V^{\prime \prime} \subseteq V^{\prime}, V^{\prime \prime} \in A^{\prime}}\left(a^{\prime}\left(V^{\prime \prime}\right)+\left|K\left(V^{\prime \prime}\right)\right|-1\right)>0 . \tag{4.23}
\end{equation*}
$$

As

$$
\begin{gather*}
\sum_{V^{\prime \prime} \in V^{\prime}, V^{\prime} \in A^{\prime}} a^{\prime}\left(V^{\prime \prime}\right)=a\left(V^{\prime}\right), \tag{4.24}\\
\sum_{V^{\prime \prime} \subseteq V^{\prime}, V^{\prime \prime} \in A^{\prime}}\left(\left|K\left(V^{\prime \prime} \mid-1\right)=\left|V^{\prime}\right|-1,\right.\right. \tag{4.25}
\end{gather*}
$$

we have

$$
\begin{equation*}
\beta\left(V^{\prime}\right)=a\left(V^{\prime}\right)+\left|V^{\prime}\right|-1>0, \quad V^{\prime} \subseteq V \tag{4.26}
\end{equation*}
$$

by the assumption of the theorem. Finally we get

$$
\begin{equation*}
F_{2}\left(a_{V}\right)=p^{-|V|+1} \sum_{A} \prod_{V^{\prime} \in A^{\prime}} \frac{1}{p^{a\left(V^{\prime}\right)+\left|V^{\prime}\right|-1}-1} \cdot \frac{(p-1)!}{\left(p-\left|K\left(V^{\prime}\right)\right|\right)!} \tag{4.27}
\end{equation*}
$$

The theorem is proved.
This last formula defines also an analytic continuation of $F_{2}\left(a_{V}\right)$ from the domian (4.29) to the whole complex plane as a meromorphic function of $a\left(v, v^{\prime}\right)$, $v, v^{\prime} \in V$.

References

i. Lerner, E. X., Missarov, M. D.: The scalar models of p-adic quantum field theory and hierarchical model of Dyson, submitted to "Theoretical and Mathematical physics"
2. Bleher, P. M., Sinai, Y. G.: Commun. Math. Phys. 45247 (1975)
3. Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics vol. 74, pp. 1-199. Berlin, Heidelberg, New York: Springer 1978
4. Bleher, P. M.: Commun. Math. Phys. 84, 557° (1982)
5. Gawedzki, K., Kupiainen, A.: J. Stat. Phys. 29, 683 (1982)
6. Volovich, I. V.: Number theory as the ultimate physical theory, preprint CERN-TH.4781/87
7. Volovich, I. V.: Class. Quant. Grav. 4, L83 (1987)
8. Grossman, B.: Phys. Lett. B, 197, 101 (1987)
9. Freund, P. O. G., Olson, M.: Non-Archimedian Strings. Chicago, IL: University of Chicago, preprint EFI-87-54
10. Freund, P. G. O., Witten, E.: Adelic String Amplitudes, Institute for Advanced Studies, preprint IASSNS-HEP-87/42
11. Gervais, J. L.: p-adic Analyticity and Virasoro Algebras for Conformal Theories in more than two dimensions, Ecole Normale, Preprint LPTENS 87/32 (1987)
12. Brekke, L., Freund, P. G. O., Olson, M., Witten, E.: Non-Archimedian String Dynamics, University of Chicago, Preprint EFI-87-101
13. Marinari, E., Parisi, G.: On the p-adic Five Point Function, Preprint ROM2F-87/38 (1987)
14. Rammal, R., Toulouse, G., Virasoro, M. A.: Rev. Mod. Phys. 58, 699 (1986)
15. Gel'fand, I. M., Graev, M. I., Pyatetskii-Shapiro, I. I.: Representation theory and Automorphic functions. London: Saunders 1966
16. Bleher, P. M., Missarov, M. D.: Commun. Math. Phys. 74, 255 (1980)

Communicated by K. Gawedzki
Received June 21, 1988; in revised form August 3, 1988

[^0]: * Permanent address: Department of Applied Mathematics, Kazan State University, Kazan, USSR
 ** This work was supported in part by the French Government

