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Abstract. An analytical proof is given that the motion of n point vortices in the
plane is non-integrable for n>3. The basic geometric configuration, which
models a situation often found experimentally, consists of two opposite strong
vortices and two advected weak vortices. We use "Melnikov's method," as
presented by Holmes and Marsden [Commun. Math. Phys. 82, 523-544
(1982)]. The Melnikov integral is explicitly evaluated, by residues, in the
limiting situation where one of the weak vortices is very close to one of the
primaries.

1. Introduction

Our aim here is to present a completely analytical proof for the presence of
horseshoes in the dynamics of 4 point vortices, using the Melnikov method as
presented by Holmes and Marsden [HM]. The hydrodynamical background can
be found in Aref [A1-A3J; for the mathematical relevance of this and other non-
integrability problems, see Kozlov [Kz, Kzl]. The Dynamical Systems prere-
quisite here is the statement (with caveats, see Sect. 4): "the presence of transversal
homoclinic points implies nonexistence of further (analytical) integrals of motion."
Non-expert readers may find all the relevant material in Guckenheimer and
Holmes [GH].

Our choice for a special geometrical setting consists of two strong, opposite
vortices, and two weak, advected ones. Two-dimensional flows whose structure is
dominated by strong, opposite couples are fairly common: Couder and Basdevant
[CB] call those couples "Bachelor couples" in a remarkable double pun (they are
very stable and a homage to Prof. Batchelor).

Ziglin [Zl, 1980], using another special configuration, gave a semi-analytical
proof for the non-integrability: the Melnikov integral is evaluated numerically.
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Commenting on [HM], Ziglin [Z2, 1987] pointed out that his approach does not
posses the "exponentially small difficulty," as these authors have suspected. With
due apologies to Prof. Ziglin (since we have followed [HM] on a first technical
report [KC1, 1983], we would like nevertheless to present the following excerpt
from an extended technical report [KC2, 1985]:

"As far as we know, Ziglin (1980) was the first author to show the nonintegrability of a four vortex
problem. Ziglin considers the advection of a particle by the flow generated by three equal vortices.
Some objections were raised initially to his approach (Holmes and Marsden, 1982), but it is
entirely correct (Marsden, 1 984, personal communication). In order to compare our method to his,
we make a brief review of his work. Ziglin's perturbation parameter ε is of geometric character,
namely the deviation from the primaries equilateral configuration. When ε = 0, the phase portrait
of the marker possesses several separatrices, on a frame such that the primaries are at rest. The
Melnikov integral was shown to be not equal to zero by a numerical calculation. Subsequently, in
a small note (addendum to Khanin, 1982), Ziglin gives a short mathematical argument, to show
that the non-integrability of the unrestricted system follows immediately from the persistence of
hyperbolic structures."

This paper is organized as follows: in Sect. 2 we prove transversal separatrix
splitting for a restricted problem. It is intended as a warm-up for non-experts,
although we assume that the reader is familiar with [HM]. In Sect. 3 we prove
transversal separatrix splitting in the general case; the analysis is much more
laborious, but it turns out that the physical interpretation of the result is the same
in both cases. In Sect. 4 we discuss the usefulness of Melnikov's method for
Hamiltonian systems in the light of Lagrangian intersection theory [W]. The
computational details are left to the appendices.

Remark. During the editorial process, a paper by Ottino et al. [O] came to our
attention, which could give some perspective to our work. See also, in the same
Nature issue, the "News and Views" article by S. Wiggins, whose Fig. 1 is precisely
the basic setting of our paper.

2. Bachelor Couple with a Restricted Problem
(and Chaotic Behavior)

A single vortex at the origin in the complex plane generates the flow whose
trajectories are the solutions of z = ikz/\z\2. We call |fc| the strength of the vortex (in
the customary fluid dynamical terminology, the strength or circulation is 2π|fc|).
Following Helmholtz, in order to set up the dynamics of vortex systems, one
simply drops out the influence from each vortex on itself.

For instance, two vortices of equal strength but opposite signs in an otherwise
irrotational flow move uniformly on parallel lines perpendicular to the line joining
their centers (this is an elementary but nonetheless important fact). We fix units so
that fcjL = — k2 = 1/2, \z1 — z2 =2, so that the velocity is 1/4. We consider the motion
of a marker (i.e., a point of the fluid with zero vorticity) in the flow determined by
the primaries z l 5 z2. The following is elementary.

Proposition 1. In a moving coordinate system in which the primaries are at rest at
zl= — z2 = ί, the adυected particle mil obey the Hamiltonian

v=-Fu, , ,

r1 = \z — i|, r2 = |z + i\) .
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The phase portrait is depicted in Fig. 1. Figure 3 of [CB] strikingly depicts the
qualitative ubiquity of these structures.

Definition. The double restricted problem of four vortices consists of a Bachelor
couple z1? z2 with two "offsprings" (i.e., two weak vortices) z3, z4 of equal strength
ε ~ 0 such that their action on the primaries is neglected.

This terminology is borrowed from Celestial Mechanics [WS]. If ε is set equal
to zero, then the equations for the offsprings uncouple, yielding two independent
(albeit exactly equal) phase portraits as in Fig. 1. The interaction Hamiltonian for
the weak vortices, in the moving frame, is

) = F(Pι, <2ι) + G(p29 q2) + εtf1^, qί9 p2, q2) , (2)

where z3=pl + iqi, Z4 = p2 + iq2, H
ΐ=log\z3 — z4, F = G as in (1).

We stress again that the perturbation on the primaries has been neglected, but
not their mutual action. The point is that Hamiltonian (2) is precisely in the context
for homoclinic behavior in interacting "F —G systems" [HM]. We let ε = 0, first,
and take z4 moving along a closed orbit from the family (p2(t,h), q2(t,h))
parametrized by the values G = h. Take z3 moving along the separatrix (p^t), <?ι(ί))
of F given by

As the parameter ε is "turned on," these motions are perturbed. What happens
can be physically described as follows:

Vortex z4 motion is only slightly varied, but each time z3 approaches one of the
saddle points, it must "flip a coin" to choose which branch to follow (so escapes are
also possible). Furthermore, if 5 vortices are considered (two strong and three weak)
then Arnold diffusion occurs [HM1]. Here there is a slow transfer of amplitude
between oscillations of two of the offsprings mediated by a third moving near the
separatrix.

We observe that in order to apply [HM] it is not necessary to express the
closed orbits z4 in terms of action angle variables /, θ (I = I(h)). Unfortunately,
z4(ί, h) cannot be given in terms of elementary functions, so the task of evaluating
analytically the Melnikov function seems hopeless, at first sight. However, near
Zi = i we may write, up to 0(r2) terms,

= l/2r2
(4)



646 J. Koiller and S. P. Carvalho

It follows that the Melnikov formula of [HM] can now be explicitly evaluated
by residues [KC1], yielding an asymptotic formula for r ̂  1. We do not present it
here because it turns out that the result is the same for the unrestricted problem
[KC2], which we will treat next.

3. Melnikov's Integral for the Unrestricted Problem

So far we have ignored the fact that the offsprings induce an 0(ε) perturbation on
the couple. Physically, one may worry that the pair will eventually collide or split
apart to infinity. Mathematically, horseshoes are features of Poincare maps. Our
construction depended on choosing a reference frame in uniform motion, and this
is no longer possible in the general case.

In order to address these difficulties, we must consider the ODEs for the
distances between the vortices. We recall from [Al] that for a system zα, 1 ̂  α ̂  m,
then £aβ = \za — zβ\ obey

where the sum extends over all y Φ α, /?; AΆβγ is the area of the triangle with vertices
at zα, Zβ, zy (function of the distances via Perron's formula); σaβγ = ±1 gives the
orientation (+1 for zα, zβ, zγ counterclockwise).

There are two integrals of motion,

Notice that there are only 2n — 3 independent distances (say, given by /12 and
^ίp ^2p 7 —3, ...,π, forming n — 2 triangles with a common side). Thus for n = 4
there are 5 independent distances /12, fl 3, /23, /14, ̂ 24 so (5) reduces immediately to
an ODE on a five dimensional phase space. We want to use the integrals of motion
(6) to further reduce the dynamics to a three dimensional phase space: we will then
be in good shape to look for chaotic behavior.

Definition. The pseudo action-angle coordinates (/, θ) for /14, /24 are the action
angle coordinates for z4 motion on an "instantaneous" unperturbed restricted
system (phase portrait given by Fig. 1) z1 ?z2,z4.

This construction is reminiscent of the Keplerian "elements" in Celestial
Mechanics. Notice that /12 enters here as a parameter: z4 = z4(/, 0; *f12). Hence it
follows that the dynamic variables of the problem can be replaced by

J ? P j ^12' ^13ί ^23-

We introduce one more parameter ρ in the problem; namely, we do not assume
that the weak vortices have equal strength: fc3 = ερ, k4 = ε. It will turn out that ρ
does not appear in the final result.

Our strategy is to use the integrals of motion in order to eliminate the variables
/, /12. Then the three dimensional autonomous system for θ, *f13, /23, where the
independent variable is the time, can be reduced to a two-dimensional non-
autonomous system for *f13, ^23 (where the independent variable is θ). The 0(ε)
perturbation is 2π-periodic in θ and we can perform a Melnikov calculation.
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There is an immediate difficulty in this program, however: the integrals

Hε= -/ ,

are functionally dependent for ε = 0. However, we may consider instead (this key
idea was given to us by Prof. R. C. Robinson)

Gε = (1/fi) lHε + k2/2 log( - Gε/fc2)] , 6 Φ 0 ,
v°)

GO- lim Ge = kρF(tί3,t23) + kFVl4,t24),
ε-+0

where
F(α, &) = logfl/fo - (a2 - b2)/2S2

2 . (9)

It is interesting to observe that Hamiltonian (1) is recovered from (9) if we set
^12 = 2(Z l = i, z2=-i).

In Appendix A we outline the calculations leading to the following

Proposition 2. Using the integrals Hε = h, Gε = g, one obtains the reduced system

d/dθ(^S2

3) = (l/ω(g,h))tϊ(/2

3^
2

3; Q + ετVϊ^θ; g, ft, ρ)] + 0(ε2) , (lOa)

where ω(g, ft) is the angular frequency for θ in the unperturbed motion of z4, and

t—lfrr A / y - 2 _ _ / - 2 /-2_ /-2\
I — /Cσ1 23^1i23V ί23 ^12^13 ^ 1 2 ^ ?

^ ̂  (Λ°2/fc) fo log A 3/^23 + log ̂ 14/^24)

Remark. The reader can verify easily that (9) is an integral for the planar vector-
field f.

We need now a minor variant of Melnikov's formula in [HM], whose proof we
give, for completeness, in Appendix B. Consider a system of ODE's

x = f(x) + εr(x, ί) + 0(ε2) , x, f, r e R2 . (11)

Assume that r is T-periodic in time, that the unperturbed system has a separatix
curve x(t) and possesses moreover an integral of motion F(x). Let a e ( — oo, oo), and
consider the normal line La to the separatrix through x(α). It first meets the
invariant curves C", Cs

ε of the Poincare map (time T return) on the points x"'s(α).
Using the level lines of F to measure "distances" along La one gets the Melnikov
distance oo

. (12)

Proposition 3 (Melnikov's criterion), (i) // M = M(1) changes sign at a, then for s
small enough, C" and Cs

ε intersect transversally ε-near the point x(a) of the separatrix.
(ii) The first Melnikov function is given by

M(a)= J (FF(Jc(ί + α)) r(x(t + a\t))dt. (13)
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Notice that the factor ω(g, h) in (lOa) is immaterial for the sake of Melnikov's
criterion. Moreover, the integral may be done directly with respect to time (instead
of the angle θ), using the original distance variables.

The following result is derived in Appendix C:

Proposition 4. The Melnikov function (13) for the data (lOb) is written as

M(d) = J (/Γ3

2 - Λ~22) [>i 34-4 t 34(^342 ~ ΛV) - ̂ l^Mίt - ίί̂ 2)] dί ,
— 00

where the functions are evaluated at:

£®2 (unperturbed distance between the primaries) ,

Λ ι(t + a/ω\ ^2i(t + Ω/ω) (separatrix) ,

14(0X24(0 (closed orbit of z4 unperturbed motion) ,

Notice that there is no dependence in the parameter ρ. Symmetry consider-
ations show that M(d) is odd. If the zeros are simple, then it follows that the stable
and unstable curves of the Poincare mapping from sections θ = 0 to θ = 2π intersect
ε-near the points given by (/i3(ίj, ^3(ίJ), tn = nT/2, where T is the period of the
closed orbit described by z4 in the unperturbed system. In order to show that the
zeros are simple requires evaluating the Melnikov integral. Our final calculation is
outlined in Appendix D. We summarize it as the following

Theorem. For r <ζ 1 as in (4), the Melnikov function M(a) = M(a, r) has a formal
expansion

M(a,r)= £ ΛBn(α,ω), ω~l/2r 2,
n= 1

where Bn decreases exponentially in ω (the higher n is the higher the rate). Moreover,
the leading term is given by

πrexp[-(l/2r2)(8π/3/3-4)] sin(α). (15)

Remark. The zeros an = nπ correspond to tn = 2r2nπ.

4. Discussion: Melnikov's Method vs. Lagrangian Intersection Theory

We claim that non-integrability follows immediately from (15). However, we must
address a serious point that was raised by the referee. We take the liberty to quote
from his report:

"Apparently only the heteroclinic orbit connecting (p1,^1) = ( + ]/3,0) is treated [Eq. (3)]. This is
not enough to conclude that homoclinic cycles exist, since one must check that solutions can

return from ( — j/3, 0) to (j/3, 0) near the other unperturbed connections. [Fig. 1 is the unperturbed
(PIJ (h) Pnase plane.] The authors must deal with this problem if they wish to use the "usual" proof
of nonintegrability via construction of a "horseshoe-like" invariant Cantor set of recurrent
points."
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In fact, the Dynamical Systems paradigm "transversal intersection of stable and
unstable manifolds implies chaos" is not necessarily true for heteroclinic
connections (see [Kz] or [D]). Thus, if the curved separatrices in Fig. 1 split open
under the 0(ε) perturbation (in a Poincare mapping of a suspension) then we could
not claim that non-integrability follows from (15).

Although one expects, physically, that the curved separatrices will be also
broken with transversal intersection, there are examples in which some sep-
aratrices are and others are not broken under Hamiltonian perturbations of
integrable systems [Kzl]. However, as long as the curved separatrices do not split
open (without intersection), the necessary recurrence needed to obtain a horseshoe
map is guaranteed.

In fact, for Hamiltonian systems the perturbed stable and unstable manifolds
must always intersect!

This follows from the Lagrangian intersection theory of Weinstein [W], as
pointed out in [HM1, Sect. 2, Remark 4]. Moreover, transversal splitting is the
generic situation.

What is, therefore, the point of taking the pains of evaluating Melnikov
integrals? One answer would be that it allows one to analytically check
transversality in specific cases, such as the one presented here. Another one,
reversing the viewpoint, and perhaps more exciting, is that when the Melnikov
function is identically zero (say, for particular choices of parameters) then one has a
symptom of a possible integrability for the system. For instance, Kozlov has
checked this for Kowalesvskaya's top [Kz].

A final remark is that, if one wants to avoid, at this stage, (i) invoking the high-
powered Lagrangian intersection theory (perhaps an overkill) or (ii) performing a
numerical evaluation of the Melnikov function along the curved separatrices (this
would take away the punch, if any, of this paper), there would be still a way out.
One could show, without any work, that all Melnikov integrals M0)(α) vanish, at
the parameter value a corresponding to the points of the separatrices in the vertical
axis of symmetry of Fig. 1. In fact, using a symmetry argument one can verify, by
inspection, that the integrands are odd functions.

Appendix A. Proof of Proposition 2

We apply the implicit function theorem to Hε = h, Gε = g, and solve for *f12, /. We
need only

/44).

Consider Eqs. (5) for /13 and zf23. They can be written as

where f and p appear in (lOb). The point to notice is that r carries a contribution q
arising from f, upon substituting (A.I).
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Appendix B. Derivation of Melnikov's Formula (13)

All Melnikov-type formulas are derived along the same lines. One combines
variational equations with a tricky use of the Fundamental Theorem of Calculus.
Write x*'M(ί,4 the solution of (11) with initial condition χ* "(0, a) = x* tt(α) e Lα

nQ". Then

*t u(ί, α) = jc(ί + α) + εξ' "(ί, a) + 0(ε2) , ( A.2)

where £ s > u satisfies the variational equation (with different initial conditions)

ξ = Df(x(t + a)) ξ + τ(x(t + 4 ί) (A.3)

with ξs(ξu) uniformly bounded for ί>0(f <0). Substituting (A.2) into (12) we get

M(a) = (VF(x(a]}\ξ\a)-ξs(a)}.

Now,

α)K"(α))= f rf/ί/t(FF(x(t + α)| ξ"(ί,α)Λ + (FF| ξ")|t_Γ2,

α) I f (α)) = - ϊ d/dt(VF(x(t + a) \ ξ%t, a))dt + (?F\ ξs)\t=Tί .
0

Letting Tl5 T2-^oo, then FF^^+α)), FF(x(-T2 + α))->0, and ξs>u remain
bounded, so the second terms above drop out. Moreover,

d/dt(VF(x(t + a) I ξ(t, a)) = (d2F •* ξ) + (V-XF \ ξ)

where we have omitted the superscripts s'" and x(t + a) in the derivatives of F. The
reader can check that the first two terms above cancel [since F is an integral for /,
then (PF I f) = 0; differentiate this identity and evaluate at ζ\. The third term yields
(13).

Appendix C. Proof of Proposition 4

The integrand of the Melnikov function is written as

We differentiate the identity (FT|f) =0 with respect to the "parameter" /12,
obtaining

Hence the Melnikov function is written as M(a) = Ml(a) — M2(4 where

00 OO

Mi(a)= ί ( F \ p ) d t , M2(a}= \ (?(dF/dίl2) f ) s d t .

We interpret the result as follows: the first term is calculated with ̂ 2 and an
unmodified perturbation p. It corresponds to the Melnikov function for the
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restricted problem and yields the expression in Proposition 4. The second term
carries the parameter ρ (which appears in s), but

, 23

vanishes identically, since ^a^

Appendix D. Setting Up the Residue Calculation

Using (4), we have

2^234^234 =

4 =

0

u

rsinθ

0

u

rsinθ 1

1

0

1

1

1+rcosθ 1

-1

0

+ rcos$

1

1

1

= - (A.4)

Here u — pv ranges in the interval ( —]/3, j/3) via (3). Inserting into the
integrand of the Melnikov function (Proposition 4), and changing the variable of
integration t to u, we get, after some manipulations,

-rsinθ]

(A.5)

At first glance, there is a term diverging as 1/r, but its coefficient vanishes when
evaluated by residues. The strategy for the calculation goes as follows: we treat ω in
(4) as if it were independent of r, so formally

M(a,r)= Σ *"Bn(a,ω).
n=ί

We expanded (A.5) in powers of r, and performed the residue integrals [KC2].
The calculations are "tedious but straightforward." We observed that the Bn

decrease exponentially with respect to ω as ω->oo. Moreover, the higher n, the
higher the rate. The leading term is (15).
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