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Abstract. By studying a construction of Nahm, we compute the moduli spaces
of monopoles with maximal symmetry breaking at infinity for SU(N), SO(N)
and Sp(N); these are found to be equivalent to spaces of holomorphic maps
from P! into flag manifolds.

Introduction

Let P be a principal G-bundle over [R3, G a compact group, V a connection on P
with curvature F, φ (the "Higgs field") a section of ad(P), the associated adjoint
bundle: (V, φ) is a monopole if it solves the Bogomoln'yi equation, F = *Vφ, and
if it satisfies the boundary condition of having finite action, with φ tending
toward a finite limit at infinity, with values in a fixed G-orbit in ad(P). Such
monopoles, particularly for the group SU(2\ have been extensively studied in
recent years, from various points of view [JT, Hi, Mu]. One particularly successful
construction, due to Nahm [N], describes these monopoles in terms of solutions
to some non-linear ordinary differential equations, Nahm's equations. A theorem,
whose full proof is due to Hitchin [Hi], shows that for 5(7(2), there is a natural
equivalence between SU(2) monopoles and an appropriate class of solutions to
Nahm's equations. Using this, Donaldson was able to give a description of the
moduli space of SU(2) monopoles:

Theorem [Dl], Given an isomorphism ίR3 ̂  IR x C, compatible with the usual
metrics there is a natural correspondence between a circle bundle Mk defined over
the moduli space of SU(2) monopoles of charge fc, and the complex manifold Rk of
rational maps /:£% -> P^ of degree /c, with /(oo) = 0.

In terms of the monopole, the extra circle corresponds to the choice of a framing
at infinity; see [AHi, Hu].

Recently, in [HuM], a proof was given of the validity of Nahm's construction
for all the classical groups, for monopoles with maximal symmetry breaking at
infinity. This condition means that if G is the gauge group with maximal torus T,
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the Higgs field at infinity takes values in a fixed adjoint orbit of the form G/T.
These monopoles have a discrete classification given by their "topological charge."
an element of π2(G/T) defined in terms of their Higgs field at infinity. This charge
is essentially an r-tuple (m1 ?..., mr) of integers, where r = rank(G); it can be shown
that, once suitable normalizations are made, mi ̂  0. For SU(N) the result is then:

Theorem [N, HuM]. There is a natural correspondence between:

A) Elements of a non-empty union Mm = M(m1,...,mN_1) of connected compo-
nents of the moduli space of SU(N) monopoles of charge m = (m 1 ?..., τ%_ J

with φ asymptotic to a conjugate o/diag(μ!,...,μN), μ1 < ••• <μN, and
B) Conjugacy classes under l/(m7 ),/or each non-zero mp of analytic u(m ̂ -valued

functions lTj{z\ i— 1,2,3, on the intervals (μpμj+ί), such that,
1) The lTj solve Nahms equations

2) At a boundary point μp setting t = (z — μ )̂, with the convention
m0 = mN = 0,

i) ifmj-1<mj,
— there exist finite, non-zero limits C]= lim lTj_i(f) and 'T}-^) is analytic at

~

— For t > 0, one can conjugate lTj(t) by a unitary matrix so that one has the
expansion near t = 0:

K -i)
\1

J

0( mj-mj-t-Λ

V v 2 /

nί mj mj-ί 1 1υ\t 2 )
r} +

t )

mi-l

. . . . ; . . . . . .
T

m — m i

The upper diagonal block is analytic in t; the lower diagonal block is meromorphic
/ m j - m j - i - l \

in t, and the off-diagonal blocks are of the form r 2 ; x (analytic in t).

ii) ifmj-1>mj,
one has the same boundary behaviour, but with the roles of(μj^1,μj)9 (μpμj+1)
reversed.

iii) ϊ/w,--! =mj9

one has finite analytic limits Cf,Cϊ~9 of the 1T from both sides of μp if one sets

one asks that A+(ζ) — A~(ζ) be of rank at most one for all ζ.
3) For Wj-i Φ Wj the residues rlj define an irreducible representation of su(2).

For the groups SO(N), Sp(k) one embeds SO(N) into SU(N), Sp(k) into Sl/(2fc)
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in the natural way. One then has the following table.

A G-monopole with embedded As an SU(N)- and is has SU(N)
for G = G-charges: in SU(N) monopole, its Higgs charges mi9 with

field is asymptotic
to diag(μ,) with:

S0(2k) p!,..., pk-2 N = 2k ^i=—/^2k+ι-ι mi = m2k-i = Pi
P + ,P- z = l , . . . , / c i = l , . . . , f c - 2

S0(2k + l) pl9...,pk N

With this in mind, one then has

Theorem [N, HuM], There is a natural equivalence between

A) Elements of a non-empty union Mp of components of the moduli space of
G-monopoles of charge p, with φ asymptotic under the inclusion of G into
SU(N) to a conjugate 0/diag(//y), μ1 < •- < μN, and

B) Conjugacy classes under U(nij)for the m7 Φ 0, of analytic u(m ̂ -valued functions
lTj(z) on (μjyμj+1) ΐ— 1,2,3, satisfying conditions:

1), 2), 3) as above, and
4) There are matrices Cj with

Cp cj-ί being compatible in the obvious way at the boundary points, and with

CN-j+ι=cJ far Sp, cN_j+1 = -cJ for SO.

Remark. Mm is essentially the union of the components of the moduli space
containing multi-monopoles looking like the sum of simple monopoles spaced far
apart; we shall see later that Mm is in fact connected. It is widely expected that
the monopole moduli itself is connected: this is in fact the case for Si/(2) and SU(3)
[T]. If so, then the theorem above applies to all monopoles.

Once this correspondence with solutions to Nahm's equations is proven, it is
natural to try to emulate Donaldson and describe the space Mp. This is the purpose
of this article; we prove a conjecture of Atiyah and Murray:

Theorem. Let G be a classical compact group (SU(n), Sp(n\ S0(n))ι let T be a
maximal torus of G and g0 a fixed element of G.

Given an isomorphism [R3 ~ (R x C, compatible with the usual matrics, there is
a space Mp mapping to Mp, which over the open set in Mp of irreducible monopoles
is a principal T-bundle, and a natural bijective correspondence between Mp and the
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complex variety Rp of rational holomorphic maps

f-.P^G/T

of degree p such that f(co) = g0T.
The fibre of Mp over Mp corresponds to a choice of framing of the monopole at

infinity; see Sect. 4.
The strategy of the proof follows that of Donaldson:
— One first divides Nahm's equations into a "real" equation and a "complex"

equation, in such a way that the complex equation is invariant under a complex
group 0 of gauge transformations; one then shows by variational methods that
each ^-orbit contains an essentially unique solution to the real equation.

— One then classifies the ^-orbits in terms of rational maps. Essentially, we
will find that the algebraic data we can extract from a ^-orbit describes a rational
map in terms of "poles and residues."

The result, and its proof, constitute another example of the remarkable link
between solutions to the anti-self-duality equations and holomorphic objects. (Both
monopoles and Nahm's equations are examples of the anti-self-duality condition
on R4, reduced by translational symmetries.) The correspondence with holomorphic
objects functions essentially by forgetting part of the structure of a solution to the
anti-self-duality equations. Conversely, one shows that one can recover the solution
to the anti-self-duality equations from the holomorphic object, essentially by solving
a variational problem. Other examples of this general pattern can be found in
[D2,D3,UY,B].

The paper is organized as follows: the first four sections deal with the case of
SU(N)', the fifth will show how to extend the result to the case of SO(N) and Sp(N).
In Sect. 1, following Donaldson, we will show how Nahm's equations divide into
two parts, one invariant under a real group of gauge transformations, the other
under a large complex group ^ of gauge transformations. In Sect. 2, we show how
each ^-orbit contains an essentially unique solution to the real equations. Section
3 classifies solutions to the complex equations in terms of rational maps. Section 4
will interpret this rational map in terms of the twistor construction of monopoles,
generalizing [Hu].

1. Nahm's Equations and Nahm Complexes
3

We begin, as in [Dl], by setting B(z)= ^ι

iT(z)dpi. (We drop the subscript
i = l

index where we are not concerned about which interval (μj9μj+1) we are discus-
sing, or when this is implicitly obvious.) Nahm's equations are then equivalent
to the anti-self-duality equations dB + B ΛB = — *(dB + B Λ B) on the 4-space
[R4 = {(z,/?1,p2,p3)}: to get Nahm's equations, one has simply gauged the dz-
component of B to zero. It is then natural to reinsert this (skew-adjoint) component
°T(z) into the equations; setting

+[°T,'T], (1.1)
dz

Nahm's equations become
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Vz(
ί71) + ̂ Σι^[JX*Γ]=0, ΐ = l , 2 , 3 . (1.2)

This equation is invariant under unitary gauge transformations; if u(z) is such a
transformation, then

u(lT) = u lTu~l, i = 1,2,3

u(°T) = u°Tu~1 — -γ-u~l (1.3)
αz

maps one solution of (1.2) to another.
The isomorphisms [R3 = C x R in the hypotheses of the theorem allow one to

introduce complex coordinates (z + ipv\ (p2 + /p3) and to write, in a corresponding
fashion

Nahm's equations then become:

1. The "complex equation",

2. The "real equation",

F(α, ]8) = ̂ (α + α*) + 2([α, α*] + [ft /ί*]) = 0. (1.6)

Let g(z) lie in G/(m, C): setting

ιag^_ί ΛR\_s1β^-ι^ / j γ\

one finds that such a transformation preserves solutions to the complex equation;
the real equation, on the other hand, is preserved only if g(z) is unitary.

We now consider boundary behaviour, on an interval (μj9μj+1).

Definition. μ7 is a superior (respectively inferior, neutral] boundary point of (μj9 μj+ J
ifmj>mj-1 (respectively <, =).

μj+1 is a superior (respectively inferior, neutral) boundary point oϊ(μj9μj+ί) if
mj>mj+ί (respectively <, =).

At a boundary point μp we will denote by

—k or kj the absolute value | w7 — w7 _ x | of the "jump"
—in or nϊj the maximum of (mp m7 _ J
—m or W y the minimum of (w7 , Wj- i)
—7 the index of the smaller dimension (either (7 — 1) or 7).

At a boundary point μ of (μj9μj+1)9 setting ί = z — μ, the boundary conditions
of a solution to Nahm's equations are then, up to a unitary conjugation:

If μ is inferior, α7 , /?,- are analytic at ί = 0, with values α, β at ί = 0. (1.8a)

If μ is neutral, aj9 βj are analytic at t = 0. (1.8b)
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If μ is superior, splitting Cmj as C™ 0 Ck, one has, near t = 0:

jy j.(k-l)}2y\ / p ^(fc-l)/2

with: i) 17, F, Wand P, β, Λ analytic at ί = 0. (1.8c)

ii) X, S are meromorphic, with simple poles at ί = 0, and residues x, s, such
that, in an appropriate basis:

u
1 0

ή

o

•••1 Π

Furthermore, at μj9 α, β satisfy the patching conditions:
If mj φ πij_ 1 (μj not neutral), then the limits α,β of (1.8a) are equal
to the C/(0), P(0) of (1.8c). (1.9a)

If nij = mj-i (μj neutral), one has limits α+, β+ from both sides of μ^ ;
there then exist column vectors u, w in Cmj with

(α+ + α* ) - (α_ + α* ) - ±(-uΰτ + w

One can then choose for each jumping point μ7 , a vjy

If m7 / m7 _ 1? let ^-eC1" be a unit vector in the - I eigenspace

of the residue x of (1.8c). There is an S1 of possible choices. (l.lOa)

If nij = mj-ι, let υj be the couple (w, w) of (1.9b); when (w, w) φ (0, 0),
there is again an S1 of possible choices; when (w, w) = (0, 0), the solution
is continuous at μ7 and corresponds to a U(N — 1) monopole
embedded in SU(N). (LlOb)

We will now define our complex gauge transformations, taking these boundary
conditions into account.

Definition (1.11). Let ^ be the set of (N — 1)- tuples g = (g1,...,gN-ί), with gj a
C1-map,

smooth on the interior, such that

1. At a superior boundary point μ,gj preserves the decomposition Cmj =
C^ +Cfc, and gj has off diagonal blocks whose derivatives are 0(ί(fc~1)/2).

2. g satisfies the following patching condition
i) at a non-neutral boundary point μ, let g denote the limit from the superior
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side, and g the limit from the inferior side; let h denote the m x w upper
diagonal block of g; then h = g.
ii) at a neutral boundary point, the limits from both sides coincide.

We define ^R c ̂  to be the set of those #'s with g unitary.

Definition (1.12). A Nahm complex is a triple

(α, β, v) = ((«! , . . . , %_ i), (0! , . . . , βN- J, (υl9 . . . , %))
with

α, , βj : (μj9 μj+1)-+ gl(mj9 C)

and i) if πij φ m; _ :, ̂ eCmj

ii) if mj = nij-iiVj = (up Wj)eCmj x Cmj

satisfying the conditions:

2. <xj9βj smooth in (μj9μj+1).
3. α, β satisfy the boundary conditions (1.8 a, b, c) up to the action of an element

of 9.
4. β (but not necessarily α) satisfies the patching condition in (1.9a,b).
5. For m^Wy-!, the Vj satisfy (1.10 a), but are not necessarily unit vectors.

For mj = mj-ί9υj is a couple (M, w) satisfying ( / ? + — / ? _ ) = -^uwτ, as in
(1.9 b).

Definition (1.1 3). Two Nahm complexes (α,/?,ι?) (af9β'9υ') are equivalent if there
exists 0e^ with

gmj(μj)(vj) = ή V7, (See (1.7))

A r^α/ Λ/β/zw complex is a Nahm complex such that

1. α,j8 solve the real equations.
2. α, β satisfy the boundary conditions (1.8 a, b, c) up to the action of an element

3. (α + α*) satisfies the patching condition corresponding to the one for α in
(1.9 a, b).

4. When mj ̂  m^_ 19 the t>7 are unit vectors, and when m^ = m7 _ ! the f j satisfy
(l.lOb).

Proposition (1.14). There is a natural bijectίve correspondence between

1. Solutions to Nahm's equations, satisfying the conditions of Theorem 2, along
with Vj satisfying (1.10a,b\ (with υj unit vectors for w^Wj-J; modulo the

action of Y[ £/(w7 ).
7=1

2. Real Nahm complexes, modulo the action of &R.

Proof. Given a solution to Nahm's equations, one can, by unitary gauge trans-
formations which are non-constant only on a compact subset of the
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intervals (μ, μj+1) arrange for the boundary and patching conditions to be satisfied.
One then has a real Nahm complex. Conversely, by going to a flat (Γ0 = 0) gauge,
one obtains a solution to Nahm's equations.

Proposition (1.15). ("Normal form").
a) Away from a boundary point, or at an inferior or neutral boundary point, the

α and β of a Nahm complex are locally equivalent (i.e., by an element of&) to

α(z) = 0, β(z) — β0,

b) At a superior boundary point μ, setting t =
equivalent to, in the splitting Cm = C™0Ck:

constant.

μ, a Nahm complex is locally

α(ί) = -

0 0

(fc-1)

-m-

( fc- i )
4

-fc-1-

β(t) =

h
t(k-l)/2.f

0

0

o
1/t. 0

0

'••1/ί

t(k VI 2- g

tk~le0

tk-2e,

tek~2

t

m

k-l

with eteC, /:C™-+C, #:C
of β from the inferior side.

™, /z:C™-+C^ /wear maps. Furthermore, h is the limit

Proof. The complex equations, modulo gauge, are locally trivial; solving

dw

dz
= — 2αw (1.16)

for a basis of vectors w ί9 then performing the gauge transformation S with
S'1 =(w!,...,wO T j.) gives the result in a). For b), one considers the equation for

the transformed w' = D w, where D = diag(l,..., l,ί ( k~1 ) / 2,...,ί ( f c~1 ) / 2). Using the
boundary condition (1.8 a), the equation for w' has a regular singular point at ί = 0.
Applying the theory of such o.d.e.'s (see, e.g. [Ha]), and transforming back to w,

one sees that, as in [Dl],
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1. There is a unique w:(ί) satisfying (1.16) with

Iim(r(fc~1)/2w1(z)-t;) = 0.
ί^O

2. Setting W;(ί) = jSί~1(Owι(ί)J then wt(t) solves (1.16) and

3. There are solutions u^ή -u^t) to (1.16), whose last k components vanish
at t = 0 to order (fe + l)/2, and which are linearly independent at t = 0.

Setting S ~ ί ( t ) = ( u 1 ( t ) 9 . . . 9 u m ( t ) 9 w 1 ( t ) 9 . . . 9 w k ( t ) ) 9 S transforms one to a gauge
with α = 0, and β a constant matrix of the form

0 g

e0

However S is not regular at ί = 0; if one sets S 1 = S ^diagίl ••• l,ί (7c 1)/2'
ί(- fc + 3)/2,...,ί(k~1)/2), then 5 is regular at ί = 0, and, in fact, lies in 0. Under the
action of S, α, /? become of the form stated in the proposition; as S lies in ,̂ one sees
that all but the top row of F is zero.

2. Solving the Real Equation

We now want to show that each ^-equivalence class of Nahm complexes contains
a solution to the real equation, unique up to the action on ^R; gauging °Tto zero,
this, by Proposition (1.14) is the same as showing that each equivalence class of
Nahm complexes yields a solution to Nahm's equations, satisfying the conditions
of Theorem 2; this solution is unique up to the action of the U(nij).

We prove this in two steps: we first show that we can obtain on each interval
(μj9μj+1) solutions of the desired form, satisfying the boundary conditions. We
then show that the solutions on the different intervals can be patched together
uniquely, to give us our global solution. The first step follows Donaldson
[Dl, Sect. 2] closely, so many details will be omitted.

A) Solution on an Interval. Fixing a solution (α, β) to the complex equations over
an interval [c9d~]9 the real equation F(g(oί9β)) = 0 for g a (sufficiently smooth) map

has a nice variational description in terms of a functional & on the space of such
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maps. F = 0 is the Euler-Lagrange equation for

^to) = ί \0(*) + 00*)Ί2 + 2|0(/?)|2</z. (2.1)
c

One notes that 3? is invariant under unitary gauge transformations. It is convenient
to factor this out. Let 2tf = G/(ra, C)/U(m) be the space of positive hermitian
matrices; one defines

h = h(g) = g*g:(c,d)^jr. (2.2)

Now suppose that (α, β) is such that it can be gauged to a constant (0, βQ) on
[c,d~\. One has the existence and unicity property:

Proposition (2.3) [Dl, pp. 395-397]. For any h+,h, in J^, there is a continuous
g: [c, d] -> G/(m, C), with h(g) = h^, h+ at c, d respectively such that (α, β) = g(Q, β0)
satisfies the real equation JF(α, β) = Q in (c, d).

If 9ι>02 are any two such g's with h1(z) = g%gi,h2(z) = g*g2 taking on equal
values at the endpoints c,d, then hl(z) = h2(z) throughout (c,d); the solution is thus
unique up to a unitary gauge transformation.

The main tool for proving uniqueness is a "convexity lemma" for the eigenvalues
of h: for /ιe^f with eigenvalues λi9 set Φ(h) =

Lemma (2.4) [Dl, p. 396]. //(α, β) = g(oc, β) over [_c, d], then

in the weak sense.
To extend (2.3) to an interval where (α,/?) have poles, one must first put (α,/?)

into a "nice" form.

Lemma (2.5) [Dl, p. 398]. Let (x9β9υ) be a Nahm complex. Then there is an
equivalent "nice" Nahm complex (α',/?',ι/) with:

i) F(α',j8') bounded,
ii) |α' — α r*| bounded,

iii) I t>j I = 1, w/ien m^ φm^v.
iv) Γte residues of the matrices 1T corresponding to α',/Γ αί superior boundary

points are conjugate under a U(k) transformation to the standard irreducible
representation τ{ ofSU(2) on Cfc c C*

With this, one has

Theorem (2.6) [Dl, pp. 399-402]. Let (α, β, v) be a Nahm complex, nice in the sense
of (2.5). Then there is a gf:[μJ ,μJ +1]->G/(mJ ,C) continuous, smooth on the interior,
with h(μj) = h(μj + l ) = 1, and (dg/dz) bounded in (μj,μj+l) such that

1. g(a,β,v) solves the real equation, with α = α* over (μj,μj+1), i.e., defines a
solution to Nahm's equations.
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2. This solution is bounded, continuous at an inferior or neutral boundary point;
at a superior boundary point μ there is a unitary matrix v with

bounded.

Any two such g's give solutions which are conjugate by a unitary matrix.
There remain two properties of the solutions Ύ(z) on (μpμj+l) to be proven.

One is that the 'Thave the correct analytic and meromorphic behaviour; the other
is that they have the correct block decomposition at a superior boundary point.

In the SU(2) case treated in [Dl], to show that the solutions are meromorphic,
one appeals to the theorem of Hitchin [Hi], which says that the 1T of (2.6) yield
an SU(2) monopole; this in turn gives one enough regularity to assert that the 1T
have the appropriate analyticity. In the SU(N) case, one cannot appeal to the
similar theorem in [HuM]; the reason is that the construction of the monopole
from the T in this case assumes the analytic behaviour of the T. One must therefore
proceed differently.

We will exploit the fact that Nahm's equations can be expressed in terms of
flows on the Jacobian of a curve embedded in TPi . We briefly recall the pertinent
details of this construction; more can be found in [HuM], [Hi]. Let ζ be a standard
coordinate of P l s and let η -> η(d/dζ) be the associated fiber coordinate in TPX. Now
write

A(z, 0 = Λ0(z) + A,(z)ζ + A2(z)ζ2 =(2T + i 3T)(z) + 2i l T(z)ζ + (2T-i 3T)(z)ζ2

= 2β(z) + 4iκ(z)ζ-2β*(z)ζ2.

Nahm's equations can be rewritten as:

dA

Let G(k) denote the lift to TP1 of the standard line bundles (9(k) on P t; one
also defines a line bundle L2, for zeC by the transition function εxp(zη/ζ) from
{ζ + 00} to {ζ φ 0}. Now define the sheaf Xz over TP t:

0 _» β( - 2)®- (y?Id~A(z'C))) &®m -+ χz -> 0. (2.8)

Xz is supported on the (compact) curve

X(z,0) = 0}. (2.9)

Because Nahm's equations are in Lax form, S is an invariant of the flow. One can
show that if A solves Nahm's equations, Xz = XQ®LZ. Also, one can prove that

H°(S,Xz)^H°(Sn(ζ = ζ0\Xz) for all Co- (2.10)

To obtain A(z9ζ) from a flow ^0(χ)Lz, one
1. forms the (rankm) vector bundle V over C whose fiber at a generic z will

be H°(S,XZ) (more properly, V will be a direct image sheaf under a projection
SxC-»C).
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2. One then defines a natural geometric endomorphism Ά(z,ζ) of VZ9 for the z
verifying (2.10), by the diagram:

A(z,ζ0)

multiplication

by the fiber (2 H)

coordinate η

Note that as the sections on the left are supported on discrete points distinct from
η = oo, the map is well defined.

3. One trivializes V by an appropriate connection; A(z, ζ) then becomes a matrix
A(z,ζ)9 and solves Nahm's equations. One such connection could just be the
connection V0 defined by evaluation at ζ = 0 (in an appropriate trivialization). In
a V0 constant basis, by (2.11), one has that Ά(z9Q) = 2β(z) is constant in z. This,
however, is incorrect; the connection appropriate to solving Nahm's equations is

It is clear from the above that the solution one obtains is analytic, whenever
(2.10) holds, and so wherever A(z9ζ) is finite. There remains the problem of a
superior boundary point. Note that steps 1 and 2 are essentially algebraic; A(z9 ζ)
is meromophic in any geometrically defined basis of V. In particular, with respect
to the V0-flat basis, the matrix of A is meromorphic. We will denote this matrix
by B(z, ζ). Any essential singularity of the solution A(z9 ζ) of Nahm's equations is
then due to the passage from a V0-flat basis to a V-flat basis. Let/(z) be the matrix
linking the two; one has:

A(z9ζ) = f(z)B(z9ζ)f(zΓl, (2.12)

A1(z)=-2^Γl

9 (2.13)

51(z)=-2/-1^. (2.14)

Now suppose one is at a superior boundary point of (μj9 μj+ j); for definiteness,
take this to be μ7 . One can choose the matrix g(μj) of Theorem (2.6) to preserve
the decomposition Cm > = Cmj~l@ Ck at μ7 . Furthermore, referring to Proposition
(1.15) and the fact that β = constant in the V0-gauge, to Lemma (2.5) and to
Theorem (2.6), one sees that near μj

(2.15)

with t = (z - μj)9 (λ, , . . . , λmj) = (0 . . . 0, (k - l)/2, (k - 3)/2, ...,-(*- l)/2), fce#, and
dg/dt bounded along the real axis at μjm Differentiating, one obtains:

As B1 is meromorphic, one sees that M = (gk)~1(d(gk)/dz) has the block decom-
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position near μ7

P(t) t^Q(f)\

tp/2R(ή S ( t ) ) '

with P, g, R, S meromorphic, and p = 0,1 with p,(k — l) having the same parity.
As d(gk)/dz is bounded, P, g, P, 5 are in fact analytic at t = 0. Solving for (gk\ one
sees that (gk) has a similar decomposition, with g, P vanishing at £ = 0. In turn,
the T's of (2.6) also have a similar decomposition, with S meromorphic, P,g,#
analytic, and for k> 1, ίp/2g, ίp/2# vanishing at t = 0.

To complete our discussion of the solutions on the interval, one must show
that the off-diagonal blocks vanish to the correct order at t = 0, for a superior
boundary point with k> 1. One notes that, setting the off diagonal blocks in the
Nahm complex to zero, and applying (2.6), one obtains a different solution 1T'
which is block diagonal, i.e., a sum of a gl(k) and a gl(m) solution. We view 1T as
a perturbation of 'T', and set

(2.17)

From what we know from the above, ab bb ci9 dt are Frobenius series ty x (analytic
in ί), with y ̂  0 for db y > 0 for bb ch a{. One has the equation for Δ1T:

0. (2.18)
at

This equation has a linear term with a simple pole at ί = 0, and a smooth
quadratic term; as we know a priori that the solutions are ty (analytic in ί) y ̂  0,
we find that, as in the linear case, — y must be an eigenvalue of the residue of the
linear term. As

with TJ(/C x k) matrices defining an irreducible representation of su(2) one finds, for
the terms bi9 that

+ lower order = 0,

and a similar equation for the c{. This polar term has a representation theoretic
interpretation; each column of the matrix of b's can be thought of as an element
of the representation S2®Sk~1 of sw(2); in these terms, the action of the matrix of
τ's on the b's is given by Σei ® ei9 where the e?s form the standard basis of su(2). In
terms of Casimir operators:

Decomposing S2®Sk~1 into irreducibles as Sk + 1 ®Sk~1 ®Sk~3, and using
C(Sk) =-k(k + 2)/4, one gets as possibilities for γ:(k- l)/2 on Sk + \ - 1 on Sk~ 1
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— (k + l)/2, on Sk~3. The only positive y is (k — l)/2, and so bt vanishes to order
(k — l)/2. The proof for the ct is the same.

Remark: Once one knows the boundary behaviour of the 'T, it is easy to show,
using (2.13), that if g(μj) respects the decomposition Cmj = C- ® Cfc at a superior
boundary point, then g satisfies at μ7 the constraint for lying in ^ in fact, the g
of (2.15) has analytic diagonal blocks, and off-diagonal blocks of the form
jίfc + D/2. anaιytic<

Given a Nahm complex, then, we have produced a solution to Nahm's equations
over (μjίμj+l) with the correct boundary behaviour. Alternately, we have, in the
orbit of ,̂ a solution to the real equations.

There arises the question of how many different solutions one can produce in
this way. Note that one obtains gauge equivalent solutions from g,gf if g'g~l(μj),
g'g~1(μj+ι) lie in U(mj). At a neutral or inferior boundary point μ one's degree of
freedom is thus g*g(μ)e3?(mj) = Gl(mj,<C)/lJ(mj). At a superior boundary point,
one has "used up" part of this freedom to produce the "nice" Nahm complex of
(2.5); g lives in G/(m) x U(k) and so the degrees of freedom, modulo unitary
transformations, is ffl(m). Summing this up:

Theorem (2.18). Let rj = mm(mj,mj-ί). Let (α,/?,ι;) be a Nahm complex. The
solutions to the real equation, over the interval (μj9μj+1) lying in the <$ -orbit of
(α,β, v) are, modulo the action of &R9 parametrized by

with the convention J^(0) = {point}.

B) Patching Together the Intervals. We now show inductively in (j — i) that for a
given Nahm complex the set m^ of solutions on an interval (μi9 μ,-), i <j satisfying
the boundary conditions at all boundary points and the patching conditions at
the "interior" boundary points μk9 i<k< j9 modulo ^R, is parametrized by
2tf (r, ) x ffl (TJ). As Jtf (r^) x J^(rN) is a singleton, this will prove existence and
unicity.

Consider then (μί9 μ^\ (μj9 μk\ i< j < k. We would like to show that fixing
fi j e^fa), hkeJjf(rk) there is a unique /ί7 6J f(r7 ) such that the solutions on
(μi,μj)9(μj,μk\ corresponding to ( h i 9 h j ) 9 ( h j 9 h k ) 9 respectively satisfy the patching
condition at μjt

Without loss of generality, let us take hι = hk= 1. Let us fix a "base" solution
(α,/?) for both intervals corresponding to Λ / = 1. For each hj9 there is a ge& such
that h = g*g satisfies λ(μf) = 1, λ(μ7 ) = hj9 h(μk) = 1, and the transform (α, β) = g(oc, β)
also provides a solution over (μί?μ7 ) and (μjyμk). The key ingredient is:

Lemma (2.19). Let h be as above, and define φ = Φ(h\ φ = Φ(h~l) as in (2.4). Let
Δφ'9 Δφ'9 denote the jumps in φ', φ' at μ^. (Here ' denotes d/dz.) Then, for some
constant K,

(μk-μj) (μj-

Δφ' ^ - φ(μj) — ί— - + 7— -̂τ + K.
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Proof. One begins by noting that, as h is analytic near any μh one sided limits
ψ'± (fa) °f φ' eχist at Pi- Also, at any interior boundary point μl of (μh μ7 ), from the
equation

20' = 0« - «&

and the fact that both α, α satisfy the patching conditions, one gets a similar patching
for gf; this continuity of g' gives us

From the fact (2.4) that φ" ̂  0 weakly, one easily obtains, by Rolle's theorem,
that on each interval (μhμl+1), i ̂  / < / + 1 ̂ 7,

and so

and so after summing, (φ(μ/) = φ(μk) = 0),

φ(μj) ^ φ'_(μj)(μj - μt) + /C3.
Similarly,

which is what we need. The proof for ψ is similar.

Proposition (2.20). Let μ^ be a non-neutral boundary point. Fixing hhhk, there is a
unique /i^ eJf (r7 ) such that the corresponding solutions on (μ^μj) and (μjyμk) satisfy
the patching conditions at μ^ .

Proof. We compute the norm tr((zl(α + α*))2) of the jump ^l(α + α*) at μj as a
function of 4α,4α*, and h, and find:

tr(4(de4 α*) 2)=tr[ft(4α)Λ" 1+4α*-i(4Λ /)Λ" 1] 2. (2.21)

where /z, 4/ι' are evaluated at μ; .
Let us suppose that /ι(μ7 ) has distinct eigenvalues, and diagonalize h by unitary

gauge transformations on each side of μ7 . This modifies A α by an essentially
irrelevant unitary factor. Setting h = diag(eίf) and expanding (2.21), one obtains

where ti = ti(μj\ At[ = Δt'^μj). This is of the form (quadratic polynomial in
Δt'i) + positive. As Δφr = Δ(max trf, Δψ' = Δ(min ί£)', one obtains as the quadratic
term in the polynomial is positive, a bound

tτ(Δ(& + α*)2) ̂  c((Δφ'Y

for some positive c, which extends to the case of non-distinct eigenvalues. As hj
tends to infinity in ffl (r,-), the same must be true of either φ2 or i/f2; by Lemma
(2.19), one of Δφ', Δψ' also tends to infinity.

In short, the map p: Jf(r7 )->[R+, sending hj to tr(^i(α + α*)2), is proper, and
so it has a minimum.
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There are two possibilities for a critical point (α,β) of p: either Δ(aί + α*) = 0,
or the differential of Λ(a -f α*) is singular. We now exclude the latter. We choose
a unitary gauge so that α = α*: performing an infinitesimal gauge change (1 + sx)
preserving the real equations with x self adjoint, x(μί) = x(μk) = 0, we obtain

*)) = - 2(Δx' + ΔX**).
as

By the infinitesimal version of (2.19), the norm of Δxr is bounded below by that
of x(μ7 ) and so the differential is nowhere singular.

The only critical points of p are the zeros of Δ(S, -f α*); as the differential of
Δ(oί + α*) is nowhere zero, the zeroes are isolated; a min-max argument shows that
it is unique.

Proposition (2.21). Let μ; be a neutral boundary point. Then, as above, fixing hί9 hk

there is a unique hj such that the corresponding solutions on (μi9 μ7 ), (μj9 μk) satisfy
the patching conditions (1.9b) at μ7 .

Proof. Again, let α, β denote our "base" solution; by the proof of the preceding
proposition, we can suppose Δa. = 0. Let u9 w be the vectors such that A β = — ̂ uwτ.
Let g be a gauge transformation corresponding to hy. if (α, β) = g(a, β), we want, at μ 3

Δ(& + α*) = i( — guu*g* + g ~ 1*ww rgf " 1),

and so, at μj9 we want

M = Δ(sr)9-*+g-*Δ(g')*-guu*g* + g-Vywτg-*=Q. (2.22)

Computing tr(M2) = trfe^M2^*"1), one finds:

ir(A(h')h~l - huu* + ww^/Γ1)2. (2.23)

Again, by a unitary change of gauge, it is sufficient to consider h =
The diagonal in g*Mg*~1 contributes to tr(M2) terms of the form:

pf = (ΔW - ef utΰt +

and the off-diagonal, terms of the form:

σtj = etl+tjuiΰίUjΰj + ^ " ^ " ^ w ^ W f W ^ W j — UiΰjWjWi — Ujΰ^iWj.

The σ^ 's are of the form (positive-constant): as for the pi9 ordering the eigenvalues
by t1 ̂  ••'• ̂  ίm, one has that either PI -> + oo, or pm— >• — oo uniformly as /ι7 -> oo,
by Lemma (2.19), and so the map/: 3tf (m^-ί (R+ defined by f(hj) = tr(M2) is again
proper, and / has a minimum.

Again, we show that the differential of M(hj) is nowhere singular. Let α = α*,
and make, as above, an infinitesimal gauge transformation g = 1 -f sx, x self adjoint,
preserving the real equation; we have

— (M) = 2Δ(x') — xuu* — uu*x — xww* — ww*x.
as
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This will be nonzero if x is nonzero, by the infinitesimal version of the argument
given above; if one conjugates so that x = diag(ίt ) then one has for the diagonal
terms of dM/ds:

-(M)u = 2Λ(t'i) - Ίt^ΰ, - 2ί iw iw ί

If t1 ̂  ••• ^ ίm, then, at μj9 Δ(t'm) < —Ktm9 Δ(t\] > — Kt^ for some positive K, by
the infinitesimal version of (2.19), and so \(d/ds)(M)\ >c\x\, for some positive c.

As in the preceding proposition, there is then a unique hj for which M(hj) = 0.
Combining (2.20) (2.21), one has by induction that there is on (μl,μN\ a set of

solutions parametrized by 2tf(rv} x 2tf (rN), i.e., a point.

Theorem (2.22). Each ^-equivalence class of Nahm complexes contains a unique
^^-equivalence class of real Nahm complexes.

Remark. It is perhaps appropriate here to insert a remark about the continuity of
this procedure, i.e., if (α, β, v)(t) is a continuous family (in some appropriate sense)
of Nahm complexes, is the procedure which assigns to (α, /?, v)(t) the corresponding
real complex (α',/?',t/)(ί) continuous? The answer is yes, and the reason is to be
found in Lemma (2.4). Suppose that (u,β9v)(0) = (oι',β',v')(Q); then F((α,j8)(f)) is
small for small ί, and using lemma (2.4), one finds that fixing h(μί) = h(μN) = 1 the
h corresponding to the gauge transformation sending (a,β,v)(t) to (α',/J',ι/)(ί) is
then also small.

3. Nahm Complexes and Rational Maps

We will start by giving a sheaf theoretic formulation of a based rational map
F: Pί-^SU(N)/T suited to our purposes. As is usual, in what follows, we denote
by the same symbol a vector bundle and its sheaf of sections. Let E be the trivial
rank n bundle over P1 ? with a fixed global basis {eί9...9eN}. One can define a
standard flag of subbundles:

Let Ef denote the "anti-standard" flag:

EΪ = \eN>eN-l>- ' ' >eN-i+l /•

A map F:¥>ί^SU(N)/T can then be thought of as a flag EΪ c£- c •••
c E^_ 1 c E of subbundles of E. We "base" the map F by asking that E^ coincide
with Ef at oo, i.e., F(oo) = Ef .

If the map F is of degree m = (m1 , . . . , ?%_ x ), one has that E^ /E^_ 1 is the line
bundle @(kN-i+ί), where ki = (mi — mi^1) (see, e.g., [M]) (ra0 = mN = 0); on the other
hand, Ef /E^_ί ^ Θ. Now consider the sum E* + £#_,; except over a finite set of
points, £f

+ H- E^_t = £, and so the sheaf

is supported on a finite set of points. Similarly, £+_ ί + E^_f is of dimension (N — 1),
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anywhere where either Ef + E^_t or E^L1 + E^_ί+1 is of dimension N9 i.e., away
from the intersection of the supports of <2, and Qi-1. In other words, the sheaf

is a line bundle away from ^^pp(Qi)nsupp(Qi_1). Furthermore, one has exact
sequences

0^0-^Λβ^O, (3.1)

0_ί;(fc.)-,p.Λβ£_1-,0, (3.2)

for i = l,...,N. Note that β0 = β j v=0. One has an exact sequence (see [HuM,
Proposition 1.12])

(3.3)

QN-I

where the map between the last two terms is (pl "-pN)}~^(πι(Pι)
π2(P2)~ P3(P3\ ->πN-ι(PN-ι) — PN(PN)) Embedding E in the center term, E* is
composed of sections of the form (s1 •• sί,0 •••()) and E^ of sections of the form
(0,...909tN-i+l9...,tN).

As Qι is supported on points, h1(Pί9Qi) = 09 and so, as the space of rational
maps of fixed degree is connected, /z°(P1 , Qt) = h° — hl is a constant. For the generic
rational map [G], supρ(βί) is mt points, over each of which Qt is the skyscraper
sheaf C.

Therefore,

Λ°(P1,βί) = mί. (3.4)

(One also has that generically, Pt ̂  &(mι).)

Proposition (3.5). There is a natural equivalence between
— Based rational maps

— Equivalence classes under automorphisms of pairs (S, e\ where S is a sequence
of (9-modules of the form (3.3) with:

— Qi supported over a finite set of points which doesn't include oo,
-h°(Pί9Qt) = mi9

— Pj, Q fitting into exact sequences (3.1), (3.2),
and e = {el9 . . . , en} is a basis of E at oo with e^P^
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Proof. We have shown how, from a map F9 one can obtain a pair (5, e)\ we now
show how to invert this procedure. We first prove that E is locally free, and trivial.
Define sections st of E of the form (sn , . . . , siti _ 1 , 1, 0, . . . , 0), where 1 represents the
section of d? = ker(π ί:P ί->β ί) which is equal to et at oo. Such sections exist, by
the surjectivity of Pi-^QhPi^Qί^1; starting with the section of 09 one "zigzags
up" the sequence (3.3). Let r = (r 1,...,rΛ r) be any other section, local or global of
E. The last term, rN9 is a section of Θ = PN, and so there is a function tN such that
r — tNsNis of the form ( r ' l 9 . . . 9 r ' N _ l 9 0 ) 9 r^_ x is now a section of kQτ(πN,1)^ &9 and
so there is a function tN_-^ with r — ί̂  — f^^s^i of the form (r'ί,...,r^_2,0,0).
Iterating this procedure, one has r = ̂ tisi; if r is a global section, the ί/s are
constants; £ is a trivial bundle, with preferred basis st.

One then defines the subsheaf Ef~ as the subsheaf of E of sections of the form
(0, ..., 0, M N _ ί + !,..., %). Near oo, and in fact away from the support of the Qi9 E^
is obviously locally free. On the other hand, away from oo one can choose
trivializations of (P(feί) = kerπ ί; with respect to these trivializations, define local
sections w£ of E of the form (0,...,0, l ,w / > Λ Γ _ ί + 2,..., wi j jv), using the same zigzag
procedure as above, but moving downward. (wl9...9wi) then forms a basis away
from oo for £f~ , which is then locally free; this is proven by the same procedure
as above.

There remains to show that the Eps embed in E as sub-bundles. This is
equivalent to showing that E/E^ is locally free. However, this quotient is given by

and so one uses the same techniques as above to show that E/E;~ is indeed locally
free.

One can use this to prove

Theorem (3.6). There is a natural bίjective correspondence between
—based rational maps Pl-^SU(N)/T

and
— $ -equivalence classes of Nahm complexes (α, /?, v).

Proof. A) We begin by giving the map associated to a Nahm complex. Following
(1.15), one remarks that on the interior of each interval (μj? μj+l)9 the only invariant
is the conjugacy class of βjt An equivalent datum is the sheaf Qj defined by the
sequence

~ (3.7)

Here η is the standard coordinate on P1 ? and u is a point in (μj,μj+1). Qj is
invariant under conjugation of βj9 it is supported over the eigenvalues of j?7 , and
its isomorphism class at an eigenvalue determines the Jordan form of βjf For
example, for a double eigenvalue α, the diagonal Jordan form corresponds to
(&/(η — fl»®2, while the non-diagonal Jordan form corresponds to Θ/((η — α)2>.
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In any case, from the sequence (3.7), one sees that

, , .

The definition of the Pj is obtained from the behavior of the Nahm complex
near a boundary point μ7 . We distinguish three cases:

1. nij > mj-i'.

normal form proposition (1.15) tells us that βj_1 can be taken to be a
t near and that is c o n u a t e to a matrix with block form:

The normal form proposition (1.15) tells us that βj_^ can be takί
constant near μj and that βj is conjugate to a matrix with block form:

J 1 ' ...... >/ mj - i 0.

SΊ

(3.8)

o
with Uy the (m^ + l)'th basis vector. This form is determined up to the action of
Gl(mj-l9C)9 where s ( β j ^ 1 , f , g ) = (sβj_is~1,fs~1,sg). One computes that:

detW-βJ) = detW-βJ-ί)(ηk-ek-lη
k-1 *o)-/fa1-ft-iW0, (3-9)

where adj denotes the classical adjoint (matrix of cofactors). The e^s are thus
determined by the spectrum of βj and by βj-l9 /, and g. Let π denote the projection
onto the first mj^1 coordinates. We define Pj and the maps Pj^Qj9 Pj-^Qj^1 by
the commuting diagram with exact rows:

0-

(3.10)

Here s/C^ C is defined by Sj = 0 on C^^cC^, and Sj(βn

j(vj)) =
δn,k-ι> (^ = mj — mj- ι)j m tne basis used above, Sj = (0, . . . , 0, 1).

This definition is Gl(mj,ί9C)-m variant. From (3.10) one easily sees that Pj
maps surjectively to QJ9 with kernel @9 proving (3.1); as for the map Pj-*Qj_ί9 it
is also surjective. To compute its kernel, let ί: Cntj~1-^Cmj be the injection into the
first nij-! coordinates, and let iv:C^Cmj map 1 to vjf Then one has the diagram,
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with exact rows, defining a sheaf Rj and maps Rj^Qj_ί9 Rj^Pj'.

0 >Cm'

0 >Cmj-l®0(-l) (C^'^ΘC)®^ >Rj >0 (3.11)

0 >Cmj ®0(-l) ^—> (Cm >(χ)C)®0 >P »0

Rj injects into Pjf Let t(η):Cmj^C be defined by t(η)(aί,...,amj_ί9b1 bk) =
rίk~1bk i- — \~Φ2 + ^ι> and let p be the polynomial (ηk — ek-^ηk~l ---- e0). Then
one has a commuting diagram, away from η = oo:

K; "5) I (3.12)

which defines away from η = oo a left inverse for the map Rj^Pj of (3.11). The
map Pj^Rj has a pole of order fc at infinity, and so Rj ^ Pj( — k). One now notes
that the map Rj-+Qj_l of (3.11) is surjective, with kernel (ΰ\ however this map
factors through PJ9 showing that P7 satisfies (3.2).

The basis of Pj one chooses at oo is that defined by the section (0, 1) of
(Cm'®C)®0.

2. mj-i > mf.

One proceeds as above, with the following modifications: one changes all the
7 indices to (7 — 1), and all the (7— 1) indices to 7; one then replaces Pj-\ by .R,,
and Rj_t by Pjf

3. m^! =mf.

One can gauge the Nahm complex to constant matrices βj9 βj-i, with
βj = βj_ί + uwτ. One then defines PJ9 and the maps by the commuting diagram:

(3.13)

It is trivial to check that (3.1) and (3.2) are satisfied. Again, the trivialization
one chooses at infinity is that given by the vector (0, l)eCmj'0C.
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B) Suppose we are given the sheaf PJ9 g/ corresponding to a rational map. We
want to invert the procedure outlined above, and obtain a Nahm complex. The
first step is to obtain the matrices βj up to conjugacy. To do this, one notes that
as QJ has support not intersecting η = oo, there is a well defined multiplication
map x η:Qj-*Qj. We define βj to be the induced endomorphism of H°(Pί9Qj).

From the sheaves PJ9 and the maps Pj-^Qj9 P7-><2/_ι, we will now obtain
the boundary data of a Nahm complex. To begin, as Pj is a line bundle near oo,
one has a natural identification of P7 ( — /),/> 0, as sections of Pj vanishing to order
/ at oo for / < 0, as sections with poles of order — /.

There are therefore sequences

Also, as we have a fixed coordinate η9 the trivializations of
trivializations of P/( — /)•

We define, using (3.14),

(3.14)

at oo induce

We distinguish three cases:
1. mj>mj_1:
One has a natural inclusion i: F7 -> WJ9 as sections vanishing to order ( — kj — 1).

There is also a natural projection π : W j ^ V j defined by H°(Pl9Pj(—l))-+
H°(Pι9Qj-ι)'9 π° ΐ = Id. We can decompose Wj as i(Vj)®keτ(π).

From the sequence Q^>Θ-*Pj( — kj)-+Qj-1-+Q9 one deduces that there is a
unique section ΌJ of PJ9 vanishing to order fc,- at oo, which lies in ker(π) and which
coincides with the basis of Pj( — k) at oo. One then has a decomposition of Wj as:

® <>/* (3.15)

Now consider the map x η:H0(P1,Qj)-+H0(Pl9Qj) ^ Wj. Wj also decomposes
as H°(Pl9Pj( — 2))@(ηk~1υj). On the first summand, multiplication by η is just
that induced by x η:Pj( — 2)->P; (— 1); on the other hand, for (ηk~1vjy, one must
really evaluate in QJ9 multiply by η, then take the corresponding section. In a basis
given by the decomposition (3.15), multiplication by η has the form:

A

J I J mj-\

0

9ι

o

9m,- ,

0 e0

1.

'"'•••. °
0 ' '--I «»_!_

(3.16)
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Furthermore, by comparing the operations

xηiH^P^Qj.
and

one can see that the block A in the matrix above is precisely j?j_ι
2. mj<mj-ί:
One proceeds as above, inverting the roles of Vj and Wj.
3. mj = mj-1:
One has the sequences

O-^G^Pj^Qj^Q, (3.17)

Q^β^Pj^Qj.^Q. (3.18)

Let p be the section of Θ in (3.17), σ be the section of 0 in (3.18), both taking
as value at oo our basis element of Pj. One has:

^(P^P^-ί^^H^P^Q^^H^P^Qj^ (3.19)

H°(P1,P ι /)^H0(P1,β7_1)Θ<σ> (3.20)

^H°(P1,β7)Θ<P>. (3.21)

Consider the map induced on sections by x η : P; ( — 1) -> P7; using the isomorphisms
(3.19), (3.20), this is of the form, for qeH°(Pί9Pj(-l)).

for some wΓ://°(P1,P7 (-l))^C; if, instead, one uses (3.19), (3.21), one gets

m = βj q + p(wτ-q\
As p = σ at oo, σ — p = Me/f°(IP1,P ι /(— 1)), and so

which forces w = vv, and βj = βj_^ + uwτ. The matrices therefore have the correct
rank one jump, and one puts Vj = (u, w).

We have thus obtained
— a conjugacy class [βy] for each interval (μj9μj+l)

m,
— the correct data for a Nahm complex in normal form near each boundary

point μy.
— the "extra data" vj9 for each μjf

It is then straightforward to piece together the various "chunks" of Nahm
complex defined near each μj via gauge transformations which are non-constant
only on compact subsets of the (μ^μy+J's, giving one a Nahm complex.

It is also easy to verify that the constructions of parts A) and B) of the proof
are inverses of one another.

4. Twistors and Monopoles

We have shown that equivalence classes of pairs (solutions to Nahm's equations,
extra data ι;) correspond naturally to based rational maps. This section addresses



636 J. Hurtubise

itself to two remaining problems. One is that of the meaning of the rational map
in terms of the monopole; the other is the related problem of interpreting the extra
data υ. These questions have already been answered in the case of Sί/(2)-monopoles
[Hu], [AHi], and, as the answer here is essentially the same, we will be brief.

We first recall from [M] the twistor transform for SU(N) monopoles. Let
(V, φ) be an SU(N) monopole over [R3, with (V, φ) acting on a rank N bundle
V. One defines a rank N bundle E over TPί = (oriented lines in [R3} by
El = {seΓ(l, v)\(Vu — iφ)s = 0}, where u is a positive unit vector field along the line
/. Let r denote the radial coordinate in [R3.

The boundary conditions of (V, φ) imply that one can define a full flag Ef of
subbundles of E by

i = {sεE^s bounded by r

ke~μN~l + ίr for some fe, as r->oo

Similarly, one defines £f~ by considering decay in the negative direction. Setting
p. = E/(E?_ 1 + £^_;), Qi = E/(Ef + EN_t\ one obtains a sequence of the form (3.3),
but over ΓPV

Now one restricts this sequence to a fiber C0 of the projection TP1-^P1; this
is tantamount to considering only the lines in a fixed direction in [R3, and is what
corresponds to the splitting [R3 ̂  C x [R of the main theorem. Over C0, Qt is
supported over a finite set of points, and ft°(C0, β;) = m f . Furthermore, if one refers
to the construction of the solution to Nahm's equations of [HuM], one sees that
it is an exact parallel of the construction of the Nahm complex from the rational
map in Sect. 3. In other words, E and the two flags of subbundles Ef , E^ , restricted
to C0 d TP)

1, are exactly the restriction to C0 = [Pι\{oo} of the flags involved in
the rational map.

Referring to Sect. 3, (compare [AHi] ), the meaning of the extra information υ
associated to a solution to Nahm's equations is clear; in essence, v determines a
(unitary) trivialization ei of E at oo in Px , such that et, at infinity, lies in Ef n E^_i+ ί .
Interpreting in terms of scattering data as in [AHi, Sect. 3], one has the following
picture. One fixes a direction in [R3, let us say the positive z-axis. The lines in this
direction then correspond naturally to (x + iy)eC. Integrating (Vz + iφ\ one obtains
over C a bundle E containing two flags E*,Ej~9 which are defined by decay
behaviour at +00, —oo respectively. The ι;f's correspond to a choice of unitary
trivialization of the bundle E over C such that Ef is the standard flag, and such
that £;~ tends to the anti-standard flag as |x + ΐj; |-»oo; such a trivialization is
defined from a trivialization of the bundle V over [R3, which is asymptotically flat
as z-> + oo. We refer to such a trivialization as a t -framing; for a given (V, φ),
there is a torus TN of such framings. Given such a framing, a rational map is
defined by the flag E^ , as in [AHi].

The moduli space Mm we have studied is thus that of pairs (monopoles, i -framing).
Its fiber over a point (V, φ) of the monopole moduli space is then the torus TN,
quotiented by the subgroup of TN which stabilizes (V, φ). When the monopole is
irreducible, this stabilizer is simply the S1 of unitary multiples of the identity; the
fiber is then the torus Γ*"1 of SU(N).
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5. The Cases of SO(N) and Sp(K)

We treat the case of SO(N) and Sp(K) monopoles by considering them as SU(N)
monopoles with extra structure. (For Sp, we set N = 2K.) One then just retraces
the main steps of the proof for the SU(N) case, checking at each step what extra
structure must be added.

A) Nahm's Equations and Nahm Complexes. One has [HuM] that for both SO,
Sp, the intervals on which one solves Nahm's equations are symmetric about the
origin:

Let the solutions iTj to Nahm's equations act on vector spaces Vp one has the
extra structure of a nondegenerate pairing

with respect to which lTj(z), lTN_j( — z) are adjoint, i.e.,

c}Tχz)cΓ^CTN_χ-z))Γ. (5.1)

The βj are compatible with the boundary gluing between the intervals, in the
following sense:

— at a non-neutral boundary point μ, one has a projection and an injection:

π/C^-ίC*; ij:C*-+C*.

The compatibility condition is then:

cj-ιπj = ίN-j+ιcj> for " i/>ro/-i, ,52)

cjπj = i N - j + ι C j - ι , for ra/<ro/-ι

— at a neutral boundary point, one asks that cj = cj_l.
For SO(N), one has the symmetry condition:

CJ=-CT

N-P (5.3)
and for Sp(K):

CJ = CT

N-J. (5.4)

Turning now to Nahm complexes, one asks that

W71 = «£-.»» ^

cjβjcr=κ-j ( ' }

for the Vj, one imposes the condition that, at a non-neutral boundary point μ^ ,

c(βlυj)(vN-j+1)=-δltΛ_v_ι for / = 0,...,m-m- 1

and, at a neutral boundary point μpj^(N + l)/2, if tj = (u,w), vN_j+ί =(u',w'),

Cj(u)=-W'. (5.7)
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One constrains the gauge transformations by

g(-zΓlT = cg(z)c-i', (5.8)

these are the transformations keeping Cj constant.
The proof that for each equivalence class of Nahm complexes one has an

essentially unique solution proceeds exactly as before; the unique solution must
then be invariant under c. In fact, this case is already considered by Donaldson,
who treats SU(2) as Sp(l).

B) Nahm Complexes and Rational Maps. One wants an equivalence between Nahm
complexes and rational maps into flag manifolds for SO(N) and Sp(K). The flag
manifolds one must consider are those of full flags El aE2 c ••• ^EN = CN

satisfying EN_ι = Ef with respect to some standard quadratic form. We call these
flags isotropic-coisotropic. For SO(N\ the quadratic form is taken to be

<(α£),&)>= ί>A-ί+ι, (5.9)
i = l

and, for Sp(K)

<(<*ι),(bi)>= Σ 0A-ί + ι-M»-ί + ι. (5.10)
ΐ = l

We will show that, given a oinvariant Nahm complex (α, /?, v\ the rational map
one obtains by the procedure of Sect. 3 is indeed into the submanifold of
isotropic-coisotropic flags. To do this, we proceed in several steps, using the
sequence 0->£-»®P;->Θβi-»Oof (3.3).

i) To begin, one notes that our pairing cj is invariantly a pairing //0(P l5 Qj)®
/f°(IP1,<2jV_ ι / )->C, with respect to which the adjoint of βj is βN-j. From this, we
will define a pairing

where $(w7- + m^^) is to be thought of as the sheaf of functions with poles over
the support of Qj and QJ-I.

ii) We then show that this pairing descends to one over Pj®PN_j_1.
iiϊ) One then considers the induced pairing on local sections of E c (© Pf); one

shows that for sections of E, the poles cancel, and one is left with a holomorphic
pairing. One also checks that the induced pairing on global sections of E is the
standard one. The fact that, in (ΘΛ), Pj is only paired with PN_j+1 then implies
that the flags E + , Ej~ defined in Sect. 3 are isotropic-coisotropic.

Let G = SO(N) or Sp(K) be our group. We define

τ. = - 1 if j > AΓ/2, and G - SO(N)

= 1 otherwise,

σ. = - 1 if j > K = N/2, and G - Sp(K)

= 1 otherwise. (5.11)

Let { , }j denote the pairing between sections of Qj and sections of QN-J defined
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by Cj. We define the pairing of sections of P7 with sections of PN_j_ί by
distinguishing three separate cases:

In this case, P7 is defined by (3.10):

(i*-βj)
0->CW'<8>0(-1) — ̂ -+(Cmj@C)®β-+Pj ^0 (5.12)

and, as mN-j = mj>mj^1 = mN_j+1, PN-j+l is defined by (3.11):
ί^-βN-j+ί\

(5.13)-

Let π = π/:C
w'->Cm>-1 be the projection, and i = iN-j+ί:C

mj-ί-*Cmj be the
corresponding injection; set υ = vN-j+1. Referring to (3.8), we define a pairing
between (a9x)eCm^®C^H0(Pl9PJ) and (b9y)eCmj-l®C*H°(Pl9PN-j+l) by:

Here ^ is the standard coordinate on P x. Now, if (α, x) = ((ηί - βj)u, — Sfu)) one
finds that

((fl, x), (6, };)),• - {π(κ), b}j. , - {u, i(b) + y^_ j+ ! },. - τjSj(u) y. (5.15)

Referring to (3.10) and (5.6), s7 = — τ j { ,%_ j+1} j; also by the compatibility
condition (5.2) π is the adjoint of z. The r.h.s. of (5.15) therefore vanishes. Similarly,
(5.14) also vanishes when (b,y) =(0?H — j8N_ j+1)w, — fN_j+1w). Referring to (5.12),
(5.13), this means that the product (,)7 descends to:

ii) nij <mj^1:
One proceeds in exactly symmetrical fashion; defining the pairing by:

((α, x), (b, j)), =

iii) m^i =m7 :
In this case, one has that PJ9 PN_j+1 are defined by (3.13),

PJV_J.+ 1^0, (5.16)

where βj = βj-ι+uwτ, βN-j+ι = βN-j + u'w'τ. As above, one defines a pairing
between sections of Pj and PN_j+ί9by

(5.17)
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again, one checks, using (5.7), that this descends to PJ (χ)P]V_J +1.
Summing one obtains a bilinear form, with poles, on φ Pt defined by

ί=l

One therefore has a pairing on local sections of E. Referring, however, to the
sequence (3.3) which defines E, and to the definitions of the forms ( , )/, one easily
sees that the poles cancel, giving a pairing E®E-+(9. As remarked above, as the
pairing on E is a sum of pairings on Pi®PN-i+i9 one automatically has that
Ef , El are isotropic-coisotropic. To evaluate the pairing on sections of E, it suffices
as E is trivial, to evaluate at η = oo. Referring to (5.14), (5.17), one sees that only the
+ Tjxy, σjXy terms contribute at infinity and, with respect to the standard basis of
H°(Pί9 E), the pairing is indeed the standard one. Also note that if { , }7 = ± { , }N-J9

then ( , )/= T(,)]v-j + i; from (5.3), (5.4), the pairing on E is indeed symmetric for
SO(N), antisymmetric for Sp(N).

The last thing to be checked is that one can invert the above procedure. One
wants to obtain from an isotropic-coisotropic rational map, a c-invariant Nahm
complex, i.e., a non-degenerate pairing

such that (5.2) to (5.7) are satisfied.
To do this, we note that away from the support of the Qi9 E ̂  (® JP/), and so

pairing on E defines a pairing (,) on sections of (® Pf); this extends over all of P>

1

to a meromorphic pairing. As E+ , £.~ are isotropic-coisotropic, one finds that

(P,.,Pk)/0 only if k = N-i+l. (5.18)

Let q be a section of Qj9q
f a section of QN-j. Then, over PI\{OO}, there is a

section p = (p1 , . . . , p7 , 0 . . . 0) in 0 Pt mapping to (0 ... 0, q, 0 ... 0) in 0 Q^ similarly,
one has a section p' = (0, . . . , 0, p'N_ j+ ^ , . . . , p'N) of ® Pt mapping to (0, . . . , 0, <?', 0 . . . 0).
Define

[4><ϊ}j=- Σ res(p,p'). (5.19)
poles Φ oo

To see that this is well defined, note that p and p' are determined up to addition
of sections of E. Suppose that p is a section of E; then, referring to (3.3),
p' = (0,. .. ,0, fly _,-+!,. . . , P J V ) can be "completed" to p' = (pΊ,. ..,p'N-j,p'N-j+1,...,p'N)
a section of E, and, by (5.18), (p,p') = (p,p'}\ but this last expression stays finite as
p, p' are sections of E. Similarly, if p' is a section of E, one completes p to p, a
section of E, and (p, p'} = (p, p'} = finite.

In a similar vein, one shows that the pairing is non-degenerate. Suppose that
{& tf}j = 0 for all qf. This is equivalent to saying that (p, p') stays finite, for all sections
p' = (0, . . . , 0, p'N-j+ 1 , . . . , p'N) mapping to (0, . . . , 0, QN-J, 0 ... 0); "completing," this
is the same as (p, p') finite, for all p' sections of E. However, p already represents
a meromorphic section of £; if (p,p') stays finite for all p', then p is holomorphic,
and its image qeQj is then zero.

That βj9 βN_j are adjoints of one another follows from the fact that they are
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defined as the maps induced on global sections by the multiplication map x η of
Qp QN-j. For vίN-p atj, one uses the fact that the pairing respects the trivializations
of the bundles over (μp μj+ J, (μN-j-1? μN-j) with respect to which the α's are zero.
The proof of the rest of* relations (5.2) to (5.7) follows from the definition, and the fact
that this construction inverts that given above is also straightforward.
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