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Abstract. It is shown that calorons, or periodic instantons are the same as
monopoles with the loop group as their structure group. Their twistor
correspondences and spectral data are defined. The spectral data is shown to
determine the general caloron.

Introduction

The motivation for this work was the observation, explained in Sect. 1, that the
self-duality equations for a periodic instanton could be re-interpreted as the
Bogomolny equations for a monopole whose structure group is the loop group if
the degree operator ia adjoined to the loop algebra in the usual way. We shall
follow the example of Nahm 1983 and call these objects calorons. Except for Sect. 7
we shall concentrate on periodic instantons for SU(n).

Because a caloron has these two interpretations there are two twistor
correspondences that can be applied to it. This was first considered for 517(2) by
Hitchin in an unpublished work. In Sect. 2 we follow the idea of Hitchin and apply
the twistor correspondence for instantons as in Atiyah, Hitchin, and Singer (1978).
This shows that the caloron is equivalent to a holomorphic bundle on ̂  the
twistor space of S1 xR*. If instead the caloron is regarded as a loop group
monopole then the twistor correspondence of Hitchin (1982) and Murray (1984)
can be applied to show that it is equivalent to an infinite rank holomorphic bundle
on the minitwistor space TPV. The twistor space & is a Cx fibering over TP1 and
the two holomorphic bundles are related by pushing down these fibres.

A monopole for a compact group has associated to it a collection of algebraic
curves indexed by the Dynkin diagram of the group (see Murray, 1984). When two
nodes are joined on the Dynkin diagram the intersection of the corresponding
curves is split into two pieces. These curves and the splitting are an invariant of the
monopole called the spectral data. When the intersections of the curves are finite
the monopole is called general and is determined by the spectral data, see Hitchin
(1982), Murray (1984), and Hurtubise and Murray (1988b). These spectral curves
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also arise in Nahm's approach to monopoles where the Krichever construction
applied to them produces a solution of Nahm's equations from which a monopole
is constructed, see Hitchin (1983), Hitchin and Murray (1988), and Hurtubise and
Murray (1988a).

The spectral data of a caloron is defined in Sect. 4 and as expected it is a
collection of curves indexed by the nodes of the extended Dynkin diagram of the
group, that is the Dynkin diagram of the affine Kac-Moody Lie algebra associated
to the loop group. In Sect. 6 the spectral data is shown to determine the caloron by
an adaptation of an argument in Hurtubise and Murray (1988a).

In Sect. 7 we consider calorons for other loop groups than the loops in SU(n)
and also the twisted loop groups. Although no details are given, it can be shown
that the spectral data determines the general caloron by adapting the argument in
Hurtubise and Murray (1988b).

Unfortunately there is no existence proof for calorons such as Taubes proved
for monopoles. Some particular examples are discussed in Chakrabarti (1987). In a
later work (Garland, Hurtubise, and Murray) we hope to adapt the results of
Hurtubise and Murray (1988a) and Hurtubise (1988) and show that calorons are
equivalent to rational maps into the flag manifold of the loop group, and thereby
prove their existence.

1. Calorons

Let ΩLSU(n) denote the Lie algebra of all smooth maps from the circle into the Lie
algebra of SU(n), equipped with the pointwise bracket. The Lie algebra ΩLSU(n) is
then the semi-direct product

ΩLSU(n)®iRd (1.1)

with bracket

ix (β)+ixd, γ(θ)+iyd-] = [x(β\ y(θ)] -y^+^ (i -2)

If Ά(x, t) is a connection on R4, periodic under — Z acting in the time direction,

^oit can be expanded in an orthonormal basis of one-forms as

Ά = Φ(x,t)dt + X Afaήdx*. (1.3)
i = l

/

O O 3

— Z ~ S1 = R/2πZ by t + — ̂  tμ0 + 2πZ, then dθ = μ0dt and —
μ0 μ0 oU

= — —. We can now regard Φ and the A{ as maps from R3 into ΩLSU(n), and iΐΆ
μ0 ot

3

satisfies the self duality equations, then A = £ Atdxl and Φ satisfy
/ = i

dA
*FA = dAΦ-μQ—, (1.4)
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where FA is the curvature of A considered as an ΩLSU(ri) valued connection form
and * is the Hodge star operator on R3.

The Bogomolny equations for a connection Ά = A(θ) + ad and Higgs field
Φ = Φ(θ] -f φd taking values in ΩLSU(n) are * FA = dAΦ, and using (1 .2) this reduces
to the two equations

dA dA
*FA + ia— ΛA = dAΦ + iφ—, (1.5)

*da = dφ. (1.6)

If we impose finite action boundary conditions then (after a gauge transformation)
the solution of (1.6) is ία = 0 and iφ a constant. If the constant is — μ0, then Eq. 1.5
becomes the same as Eq. 1.4. Notice that (0, zμ0) is a solution of the (7(1)
Bogomolny equations which Hitchin (1982) showed defined a line bundle Lμo

on minitwistor space TP1.
These calculations show that periodic instantons can be regarded also as

Bogomolny monopoles with structure group the semi-direct product ΩSU(n)
= ΩSU(n) x (7(1), where ΩSU(n) is the loop group or group of smooth maps of the
circle into SU(n).

The boundary conditions are, as in the case of finite groups, summarized by
saying that the connection and Higgs field extend to the sphere at infinity and there
satisfy

A00

=0. (1.7)

If we trivialize the bundle on the sphere at infinity to make Φ00 a map Φ00 :S^
-^LΩSU(n), then this equation becomes

dA
0 dθ '

But the right-hand side of this is the infinitesimal twisted action of ΩSU(n) on
LΩSU(n). Hence the image of Φ°° is tangent to the orbits of ΩSU(n) so must
actually lie in an orbit. If we repeat the Bogomolny trick for Kac-Moody
monopoles we have

2

Action(A,Φ)= f f *FA±(dAΦ + μΌ- dθd^x
dθ,

+ 2 ^ J l(tτFAΛdAΦ + μ0FAΛ^\dθd3xl. (1.9)

The second term is topological in nature and by manipulating with the Bianchi
identity and applying Stokes theorem it becomes

θ. (1.10)

To understand the meaning of this second term recall that the central extension
ΩSU(n) has the Lie algebra

ΩLSU(n) = ΩLSU(n)®iRc (1.11)
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with bracket

(1.12)

To lift the monopole (A, Φ) to the central extension would be to find an (α, φ) such
that

(1.13)
CO CO

(See Sect. 5 for an argument why this should be possible.)
The Killing form for ΩLSU(n) is

= f (X9Yydθ + xy' + x'y, (1.14)
s1

and it has c and d as null vectors and <c, d> = 1.
Asymptotically let

(1.15)
μj ' ~

+ {kϋc. (1.16)
^ \v /vny

Then if F = F + fie we obtain

AAdθ (1.17)
dθ

and

dA°°
ί ί -^AA°°d0 = 47ufco. (1.18)

52, 51 CO

So the topological term becomes

4π2£/cίμί-(-2πμ0/c0 = 4π<jF, Φ>. (1.19)

This calculation shows that, just as for the compact groups, the solutions of the
Bogomolny equations minimize the action.

The Kac-Moody group ΩSU(n) behaves in many respects like a compact Lie
group and has a similar representation theory, a complexification, Borel
subgroups, flag varieties, cell decompositions etc. We shall see that these play an
important role just as in the case of finite dimensional monopoles (Murray, 1984).
First, however, let us consider the twistor correspondence for calorons obtained by
regarding them as periodic instantons.

2. Periodic Instantons

Using the methods of Atiyah, Hitchin, and Singer (1978) we can construct a twistor
space ̂  for S1 x R3 and define the usual correspondence between instantons on
S1 x R3 and holomorphic bundles on 2Γ.



ordinate patches (77, C) and ί ~~ 2 > 7 Over these patches we can define sections
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The simplest way of constructing £F is to recall that the twistor space for R4 is
CP3 — CPi and that there is the fibration

CP3-CP1->#4. (2.1)

Now R acts on R4 by time translation and this action lifts and complexifies to an
action of C on CP3 - CPV. If μ0

 e R tnen factoring both sides of the fibering (2.1) by

the subgroup — Z of R gives the fibering
Mo

^^xtf3. (2.2)

The quotient of CP3-CPl by C is minitwistor space TP1 so CP^-CP^ is a C

principal bundle over TPV. If we quotient by — Z we obtain a C x ~ C / ( — Z
bundle over TPt which is F. μ° ' ^μ°

If C is a co-ordinate for P1 — {0} and - a co-ordinate for Pί — { oo }, then X E

can be given co-ordinates (η, Q, where X = η — = — -^ , . . So TPjL has two co-

72 ) > 7

ofCP3-CP1-»TP1 by

φ0(η, 0 = [0, H/, 1, C] , Φifa, 0= [̂ , 0, 1, ll , (2.3)

where [z0, z l 5 z2, z3] is the line in C4 through (z0, z l 5 z2, z3).
The group C acts on CP3 — CPί by /I [z0, z l 5 z2, z3] = [z0 + Az2, z1+λz39 z2, z3],

and so on the overlap of the co-ordinate charts

(2.4)

The transition function of S^^ΎPV is obtained by composing with

C->CX, z M> exp( — /μ0z), so it must be expί -γ~ \ which is the transition function

of the bundle Lμo introduced in Hitchin (1982).

Any C x bundle such as ̂  has a natural compactification where each fibre has
a zero and infinity added to it. One way to see this is to let C x act on Pί by λ [z0, zj
= [,λzθ9zί] so it fixes 0 = [1,0] and 00 = [0,1]. Then the associated fibration
y = (^ x Pl}/C x defines a Px bundle over TP1 which contains ̂  by the mapping
which sends ze^" to the orbit under C x of (z, [1,1]). This Pί bundle has two
distinguished sections °̂ and ̂ °° defined by the fixed points 0, oo of the C x

action on Pίf Note also that if we realize ̂  as Lμo — {0}, where {0} is the zero
section then 9~ is the project! ve bundle P(Lμ°0C).

The twistor correspondence tells us that a periodic ίnstanton A defines a
holomorphic bundle E over ^. Following Hitchin's results for the S(7(2) case we
shall show in the next section that under appropriate boundary conditions E
extends to all of 9" and has naturally defined filtrations over 5r° and ̂ rco.
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3. Boundary Conditions

Let Ά be a periodic instanton and (A, Φ) the induced Kac-Moody monopole. Then
the boundary conditions we require it to satisfy are firstly that (A(Θ\F(Θ)) satisfy
the Bogomolny-Prasad-Sommerfield boundary conditions (Murray, 1984) uni-
formly in θ and secondly that if y is a line in K3, then on the cylinder y x S1 we have
for large enough ί

** 0

+ C(t,θ), (3.1)

k n 1

\ ' " t .

where |C(ί, θ)|< -^ for ί a linear parameter on the line. Here Vt and Pθ are the

covariant derivatives in the direction of the line and the circle. We shall also place
some constraints on the values of μ0, μ l 5 . . . , μn, and to motivate these let us review
some facts about Kac-Moody algebras (see for instance Macdonald, 1981). The
algebra ΩLSU(n) is defined to be

) = ΩLSU(n)®iRd®iRc (3.2)

with bracket

r\ V rIV / r\ V

[_X + iλd + iμc, X' + ϊλ'd + iμ'c] = \χ,χ']+λ—-X — +i[l\.rX —
0(j uU \ CO

A Cartan subalgebra is given by

h = LT®iRd®iRc, (3.4)

where LT denotes the set of constant loops with diagonal entries. Linear forms on
h are defined by extending linear forms on LT to be zero on Rd and Re and δ and y
defined by

(3.5)

Simple roots for this Cartan subalgebra can be chosen as

where x/diagOT^,..., ίμn)) = μ; for j = 1,..., n.
In the case of finite dimensional monopoles we required that the Higgs field at

infinity is in the positive Weyl chamber, that is the simple roots applied to it are
greater than zero. Motivated by this we require for Kac-Moody monopoles that

μo-(μι-μ«)?μι-μ25 ?^-ι-μn>θ (3.7)
It follows that μ0 > μt — μ7 for any i ̂ j, a fact we shall use later.
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We shall assert below that (Vt — ϊμ0P0)x(t, 0) = 0 on any cylinder has (for large
enough ί) solutions x f(f,0) such that asymptotically for i = l,..., w,

Mί,θ)|~exp(-Λ.ί)ί*', ί-,oo. (3.8)

Moreover if locally C(ί, θ) depends on a parameter weTP l 3 the solutions x t

depend smoothly on w and their derivative with respect to w decays as rapidly as
they do.

Why are these facts useful? Recall from the construction of instanton bundles
that E is just the trivial bundle on ̂  with a d operator defined by pulling back the
connection A. The fibre of $"-* TP1 over y can be identified with the cylinder in R3

x S1 over the line y in R3 and the d operator is just 7t — iμ07θ. The solutions xf

therefore define holomorphic frames {x f(ί,θ)\i= 1, ...,n] in a neighbourhood of
infinity which vary smoothly as the fibre varies. If w is a parameter on TP1 then
applying the d operator in w to xf(ί, 0, w) we obtain

,ιv)x/f,0,w), (3.9)

where B3{t, 0, w) is a holomorphic function because the d operator is integrable.
Because the derivatives of xf(ί, 0, w) decay as fast as xf(ί, 0, w), it follows that
BJ(£,0,w)x7 (ί, 0,w) decays like Qxp( — μίt}t~kj and that £,-(£, 0,w) decays like
exp( — (μf — μj)t)t~~kί+kj for each7 = 1, ...,n.

From (3.7) μ0 > μf — μ7 for any, ι ̂ j. Hence B/ί, 0, w) decays strictly faster than

/

>»
— Z = ̂  in a neigh-
Mo

bourhood of infinity, so admits a Laurent expansion as

X d»exp(p(μ0f-i0)). (3.10)
<2^p^<2'

It follows that £y(ί, θ, w) must extend across infinity.
If we do this for each i = 1,..., n we obtain a matrix of functions B^t, θ, w), and

similar considerations show that at ί = oo it is upper triangular. Moreover if we
consider different frames on overlapping sets of fibres the induced transition
matrix is also upper triangular. This means that when the bundle is extended
across °̂° it has a filtration.

To summarize the bundle E extends holomorphically across ^ro°. Its
restriction £°° to ZΓ^ has a filtration

Q = E^CE^...E^ = EC0. (3.11)

A similar argument shows that E extends across 5""°, and the bundle E
extended to all of £~ we shall denote by E. The restriction E° of E to ^r°, has a

flltratiθn 0 = E8cE?...EΪ = E°. (3.12)

The same kind of arguments used in Hitchin (1982) show that the quotients of
these filtrations are

E? = L^(-k1),...,E?/E^l=L»»(-kn) (3.13)

and

E? = ZΛ(U ...,E°JE°n_ l = L"'(fc,). (3.14)
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The real structure on CP3 — CPl factors to give a real structure σ\?Γ-*?Γ
which interchanges ^r° and ^~°°. This lifts to the bundle E to give

σ:E-*E*, (3.15)

and σ(Ei) = (En,i)
 L

9 where if W is a subspace of a vector space V then WL

= {ι;*eF*|t;*(w)==0}. It remains now to assert the following

Lemma 3.16. The partial differential equation

+ C(t,θ) x(f,θ) = 0 (3.17)

defined on S1 x [t0,θ) with
x [ίl5 oo) with

-̂  as ί-»ao has solutions Xj{t,θ) on some S1

lim sup \exp(-μtt)Γkiej-xj(t,β)\ = 0, (3.18)

e7 is £/ιe basis vector of Cn with a 1 in the fh entry and zeroes elsewhere.

Moreover if C(f) depends smoothly on some parameter y with the bound \C(f)\ < -y

maintained uniformly, then the solutions Xj depend smoothly on y and their derivatives
with respect to y decay at least as fast as they do.

The proof of this proceeds as for the case without a θ parameter by letting the

functions take their values in Sobolev spaces on the circle. The operator i — is then
dσ

absorbed into the definition of the Higgs field. The same sort of estimates that yield
a proof in the finite dimensional case (Coppel, 1965) work here also.

4. The Spectral Curves of the Caloron

The proof of the previous lemma shows that as in Hitchin (1982) outside of a
compact set in TP1 solutions of (3.17) that look like eλjt as f->oo look like eλjt as
t-> — oo. This means in particular that the bundle E restricted to the fibres of π : 2Γ
-+TP1 is generically trivial and is non- trivial on fibres above a compact analytic
curve in TPl. Because the curve is compact it must in fact be algebraic and
therefore defined by a section of some (9(p) for p > 0. Let us denote this curve by S0

and calculate the number p by intersecting S0 with a generic line in TPlf

Let &(p, q) denote the line bundle on ̂  with chern class p in the fibre direction
and q in the base and E(p, q) the tensor product of this with the vector bundle E.
Then if L is a fibre we have the exact sequence of sheaves

(4.1)

and taking cohomology

H1(L9E(-l,Q))9
(4.2)
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where Q in SΓ is the pre-image of the generic line P1 in TPίt If L is not a jumping
line α(L) is an isomorphism and the lines where £ jumps are given by the equation
detα(L) = 0. Hence the number of lines is h1(Q,E(— 1,0)) the dimension of
Hl(Q,E(-\,ϋ)\ From the Riemann-Roch theorem (Hartshorne, 1977)

(4.3)

but /2°(ρ,£(-l,0)) = /z2(ρ,£(-l,0))-0 so S0 is defined by a section of 0(c2(E)).
Moreover if Lis a jumping line so is σ(L) so c2(E) is even and letting fc0 = %c2(E) we
see that 50 is defined by a section of 0(2/c0).

Now we shall assume that when £ jumps it splits as 0( — 1)0 0(1) 000...© 0.
In the next section we shall show that this is a reasonable condition to expect
analogous to those imposed in Murray (1984) for general monopoles. Because
dimπ^E is constant it follows from Grauert's theorem (Hartshorne, 1977) that π^E
is locally free and therefore a vector bundle. This enables us to define a map

(4.4)

by

Here υ e E°(y) for some y e TP1 and φί9 . . ., φn is a basis of #°(π ^y), £).
Notice that the determinant of the evaluation map π^.E^E° defines the curve

50 so that because det£°~0 we have detπ4lE^G)(-2k0).
The remaining spectral curves S1? . . ., Sn_ l can be defined as the divisors of the

maps
(4.6)

defined in a similar manner to (4.5). Hence we have Sf defined by φ/e//°(TP1,
$(2/c0 + . . . + 2/Cj)). The spectral curve St is defined to be the fibres where there is a
section φ of E over the fibre with φ(co)eE^ and (/>(0)e££_t for i = 0, ...,n — 1. In
this manner we could also define Sn but it would just be S0. This reflects the fact
that the Dynkin diagram of the Kac-Moody algebra ΩSU(N) is Fig. 1, below.

The analogue of the fundamental weights for this Kac-Moody algebra are
λ0 = y, λ1=y-\-xl9 ...,λn-ί=y + xί + ...+xn-ί. As in Murray (1984) we define the
magnetic charges of the monopole to be m0 = k0, mί = fc0 + fe1? . . ., mn- ί = fc0 + k1

+ . . . -f kn_ j. The fact that the St are compact means that φ cannot vanish on all of
ΓP1? so we must have

m.^0 γ/ = 0,l,...,n-l. (4.7)

For SU(n) monopoles the spectral curves have the property that their intersections
StnSj, when i and j were joined on the Dynkin diagram, have a natural splitting St

πSj = SijuSji, and for each i the union Si+lti\jSt-lti is the divisor class of the line
bundle

L"<-"<- 1(m ί_ 1+m ί + 1) (4.8)

restricted to the curve S;.

Fig. 1
n-1
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For calorons exactly the same thing occurs except that we have to take into
account the Dynkin diagram of the Kac-Moody algebra and we find that we have

S0nS1 = S 0 f l uS l ϊ 0 . .Sn-ιnSo = Sιι-ι,ouSo,ιι--ι (4.9)

If [D] denotes the line bundle defined by a divisor D then

restricted to S0,

restricted to S l5

and

(4.10)

restricted to £„_!.
If F and PF are subspaces of E°°(y) and E°(y), then let \Vr\W\ denote the

dimension of the space of holomorphic sections φ of £ on π~~ ί(y) with <p(oo) e F and
φ(0)e W Then the sets StJ are defined as follows

s»-i.o^l£n%(y)n^^ (4.H)
For the curves S l5 . . ., Sn_ 1 the construction of the divisors is done in the same

way as in Murray (1984). Consider then the curve S0. Over S0 there are two line
bundles M0(M00), the bundle of all sections of E over a fibre vanishing at 0(oo).
Because 9~ = Lμo, then for each 7 e TP1L~μo(7) is the space of linear functions from
the fibre of $~ over 7 into C which are 0 at 0 and oo at infinity and hence there is a
natural identification

M^ΦL-^MO. (4.12)
The set Sn_ 1>0 is the divisor of the map M0^> £*/£*_ ί=Lfln(kn), and so we have

[Sn-ι,0] = Mξ®Lμn(kn). Similarly for S0> ί we deduce that 0(2m0) = [5 ,̂̂  = [S0 i
' ] l a n d hence that

^^^
(4.13)

If (4.9) and (4.10) are the only constraints on the spectral curves, then using the
same calculation as in Murray (1984) the dimension of the moduli space of
calorons can be conjectured to be

4 nii-n + N, (4.14)
ί = l

where N is the number of vanishing mt.
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Notice that if m0 = 0 the bundle E is trivial on the fibres of ^~-> TP1 and can be
pushed down to TP^ and used to construct an SU(n) monopole. The spectral data

also reduces to the spectral data of an SU(ri) monopole.

5. Kac-Moody Monopoles and the Twistor Correspondence

We shall use the results of the previous section to show that the twistor
correspondence of Murray (1984) applies to Kac-Moody monopoles.

Recall from Murray (1984) that a monopole for a compact group K with
reduction at infinity to a maximal torus Γ is determined by a holomorphic
principal bundle Q on TP±. This bundle has structure group G, the complexifica-
tion of K, and two reductions to Borel sub-bundles. These reductions determine a
section of the fibration Q x GG/B and a cell decomposition of each fibre. The
manner in which the section intersects the cells defines the spectral curves
5 l5 ...,SΠ and the decomposition Sίr^Sj = Sij^jSji when i and; are joined on the
Dynkin diagram.

If we regard ΩSU(n) as an analogue of K we wish to define its complexification.
Think of C" x C x as a trivial Cn bundle over Cx and consider the group ^ of all
determinant one holomorphic bundle isomorphisms C " x C x - > C n x C x whose
induced action on C x ->CX extends to 0 and oo and fixes them, so must therefore
be multiplication by a non-zero complex number. The group ^ is the semidirect
product ofΩcSL(n, C\ the group of all holomorphic maps from Cx to SL(n, C) and
the group C x . If (/,z), (g,w) are two elements of ̂  the product is

(g,w)(/,z) = (g(z-)/(-),wz). (5.1)

Now for any 7 e TP, define Ά(y) to be all holomorphic bundle isomorphisms Cn

xCx -+E\π~l(y) whose induced action π~1(y)->Cx extends to zero and infinity
and stabilizes them. Notice we do not require that the isomorphism extends across
zero and infinity. The bundle Ά is then a ̂  bundle on TPί where ^ acts by pre-
multiplication.

If B is the group of upper triangular matrices and B~ the lower, then the
analogue of these Borels for ^ are & the subgroup of maps Cx->SL(rc, C)
extending to oo and taking values in B there, and &~ the subgroup of maps
extending to 0 and taking values in B~ there. The reduction ̂  is the set of all
isomorphisms Cn x Cx -+E\π-ί(y) which extend to oo and send the flag in Cn

stabilized by B to the flag in E°°. A similar definition at 0 defines 9t~ a J>~
reduction.

These bundles then provide the analogues of the bundles in the finite
dimensional case. Constructing the spectral curves becomes a question of
comparing the Bruhat cells in the fibres of Ά x </$!^ which have finite dimension
with the Birkhoff cells which have finite co-dimension.

At this point we can make clear our assertion that requiring the bundle to split
like 0(1)®0(—1)®0...©0 is a reasonable assumption. From Pressley and Segal
(1987) we see that the cell in ^/^ which contains the bundles splitting like
Θ(al)Q)...®(9(an} for av ̂  ... ̂ an has complex codimension

Σ \ai-aj\-n(i,j)9 (5.2)
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where n(ij) is zero if \a{ — a 3 = 0 and 1 otherwise. It is not hard to see that the cells
containing bundles that do not split like 00. ..00 or 0(1)00. ..000(-l) have
codimension > 2, so a generic section of Ά x v^/ϋS shouldn't intersect them. Of
course the sections we are considering are very special and may intersect these
cells, but at least this makes the assumption reasonable.

In constructing the spectral curves for general monopoles it was very
convenient to define them by looking at highest weight modules. To do this for ̂
we need to lift the bundle to the central extension Φ of the loop group. This should
be possible for the following reason. We have

0-»Cx^-+^->0 (5.3)

and a bundle Ά trivial on real sections. We would like to lift to a bundle J trivial on
real sections. Because (5.3) is a central extension the obstruction to lifting is in
H2(TPly(9x) = Q, so a lift can be defined. If we restrict to P1 a real section the
obstruction to triviality will be the chern class in /ί1(P1,0x) and this is
independent of the real section. If we twist J by the correct line bundle we can
remove this obstruction.

Proving that in R* a solution of the Bogomolny equations lifts to ΩSU(n)
means finding (a, φ] a one form and function satisfying

f j λ f l * A
(5.4)

CO CO

The argument above indicates that such an (α, θ) should exist but doesn't serve
as a proof as we do not have a rigorous proof of the twistor correspondence for ̂
bundles.

6. Constructing the Caloron from the Spectral Data

In this section we indicate how the method used in Hurtubise and Murray
(1988a) can be adapted to the case of calorons to show that they are determined by
their spectral data.

We define an infinite dimensional bundle 3F over minitwistor space which is
the push down of the bundle E restricted to ^, except that we allow only those
sections along the fibre that have finite poles or zeros at ̂ ° and ^~°°. The fibre of
this bundle then looks like C\_z,z~^~\®Cn.

This bundle has two natural filtrations. Let z be a linear co-ordinate along
some fibre which approaches zero at zero and infinity at infinity. We define ̂ ^q to
be the sub-bundle of sections φ of E along the fibre for which (l/zp)φ is finite at
infinity and takes its value in E™. Similarly define J^°.p > π _ ί to be the sub-bundle of
sections φ of F along the fibre for which (\/zp)φ is finite at zero and takes its value
in E®_q. Less precisely

(6.1)

and

.... (6.2)
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From the definition of the spectral curves we see that J**€ and ^Q-pίtl-p have
non-zero intersection only on the pih spectral curve. We shall restrict ourselves to
the case of general calorons, that is, those whose spectral curves intersect finitely.
This implies the genericity assumption we have already made on the splitting type
of the bundle E. With this assumption these two sub-bundles intersect in a one
dimensional space over the spectral curve Sp.

We want to define now the sequence used in Hurtubise and Murray 1988a to
recover a monopole from its spectral data. Throughout we shall be using the same
symbol for a vector bundle and its sheaf of sections and stress that what follows is a
sequence of sheaves. :

.
' ^ -p,n-q-l

(6.3)

-p,n-q-ί

The first map here is just a collection of projections into the various pieces of
the direct sum. We note that because the sections in 2F have only finite poles and
zeroes at zero and infinity only a finite number of these projections are non-zero for
any particular element. The second map is more complicated and is obtained by
using the two projections

W )

-p,n-q-l p,q + 1

with alternating signs so that the composition of the two maps in (6.3) is zero.
Because the spectral curves are never the whole of minitwistor space the first

map is an injection of sheaves. To prove that this sequence is exact then we need
only to prove that something killed by the second map comes from an element of
3F. Consider then an Q\QmQnty={ypίq + ̂ ^q + ̂ '0_pίn_q_ί} which is killed by the
second map.

This means that there exist elements x™qE3?™q and x^>qE^pίq which satisfy

i; -I- v = Y°° — Y°
jp,q+ 1 ' Jp,<l P,q •Λ'p,n — q—ί'>

where the labels identify where the x's live. If we define new y's by

then these are in the same cosets as the yp tq because of the way the filtrations are
nested. Moreover because the elements of the direct sum are only finitely
supported, this sum is finite and so these j)'s are well defined and a straightforward
calculation shows that

yp,q = yp,q+l '

so that they define a unique y whose image is the element y.
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To show that the caloron is determined by its spectral data we only need show
that the spectral data determines the last two columns of the exact sequence and
the map between them. The caloron is then recovered as the kernel of this
sequence. First let us identify the quotients of the filtration by observing that
because ^ is the line bundle Lμo with the zero section removed, the linear
coordinates z used above are elements of the dual bundle L~μo and we can define
an isomorphism

^TCO y^00 ~ L/~
pμ°6ϊ)Eco IE®2 = L~~pfί° + fJ'<ι( fc )

(6.6)
(p\-+(zp)®(z pφ).

Similarly

Notice also that the map

^ ̂  r χ °f ' (6 8)

sends ̂ ^q to ̂ ^+rΛ and ̂  9 to ̂ ®+t.tq. So it suffices to identify the pieces of the
sequence and the maps when p = 0.

The sheaf ^

— ^o (6 9)
0, q ' ΐs 0, n — q

is, by our genericity assumptions, a line bundle on the curve S9, and the natural
projection of JΓ^^+1 onto this line bundle factors to give a map

0,n-q

which vanishes precisely at the points Sq+l^q from (4.11). Hence we have

(6.11)

using (4.10).
To identify the middle terms consider the map

«)• (6-12)
^ 0 , q ^0,π-g-l

Because of the genericity assumption π^E is a vector bundle and we can evaluate
at infinity and zero to identify this map as

^E^~®-l~, (6.13)
--

a map of vector bundles. This map of vector bundles is injective as a map of
sheaves, in fact the image of the fibre (π^E)(y) is always n dimensional except if
yεSqίq+ί. Again, because of the genericity assumption on the caloron ̂  = ̂ ^n

+ ̂ o,n, and the sheaf quotient of this map is

(6-14)
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It follows that we have a map of sheaves
00 E°

o > (6.15)

and because (6.13) is an injective bundle map away from Sqtq+ί, Ά is locally free
away from S9fq+l and (6.15) is an isomorphism away from Sqtq+ί. The map in (6.15)
is therefore an injection of sheaves. We want to show that

1700 170
.„•*-' A n _ 1 -«-'

q-1 EΌ

>0 (6.16)

is an exact sequence of sheaves so that

Sqtq+l)9 (6.17)

where </( — Sβ>β+1) is the ideal sheaf of functions vanishing on Sqtq+ί.
We have seen that the sequence is exact o f f S q t q + ί and that the first and second

maps are injective and surjective. Moreover it is straightforward to check that the
image of Ά restricted to Sqtq + ί vanishes. lϊxeSqίq + ί then in a neighbourhood of x
we can choose a local section oϊ^Qtq + l not in ̂ ^φ and the image of the element
of Ά this produces is a local section vanishing onSq+l. Similarly using ^.n-g we
obtain a local section in the image of J vanishing on Sq. Hence the image of Ά
contains elements vanishing on Sq and Sq+ί, but these intersect in x so the image
contains the whole ideal sheaf of x, and it follows that the sequence (6.16) is exact.

We have now identified all the spaces in the summands in (6.3) in terms of
known line bundles and the spectral data. But what of the maps in (6.4, 6.5)? Under
these identifications they become

[-Sβ_ l iJ, (6.18)

Sg + 1[-^g+1]. (6.19)

The second map (6.19) is just restriction and the first (6.18) is restriction and
multiplication by a meromorphic section of Lμq~μq + 1(mq_1 — mq+1) over Sq with
divisor Sq^q+i— Sq-ι,q This meromorphic section is unique up to scalars from
(4.10). We have shown now that the summands and the maps between them are
determined by the spectral data (the scalar changes don't matter) and hence we can
recover the bundle 2? as the kernel of this map. The general caloron is therefore
determined by its spectral data.

The proof in Hurtubise and Murray (1988b) which uses the cell structure of the
flag manifold could also be used to show that the spectral data determines the
caloron. However the structures we have elaborated here are more useful for
solving Nahm's equations, see Hurtubise and Murray (1988a) and Garland,
Hurtubise, and Murray (to appear).

7. Kac-Moody Monopoles for Other Loop Groups
and Twisted Loop Groups

The instanton methods by which a bundle is constructed over 2Γ extend to the case
where SU(n) is replaced by any simple, compact Lie group K. In this case a
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holomorphic principal bundle with structure group G, the complexification of K, is
constructed. By considering the adjoint bundle we can show as in Sect. 3 that this
holomorphic bundle Q extends to y and has a Borel reductions over SΓ^ and ̂ ~°.

The various spectral curves S1? . . ., Sn can now be constructed by looking at the
fundamental representations of G as in Murray (1984). However there are some
difficulties with the jumping curve S0.

The curve 50 will be the set of fibres over which Q is not trivial. To see its
structure as an algebraic variety it seems necessary to consider the loop group as
an algebraic variety and work essentially with infinite dimensional bundles over
TP{. If instead we choose a representation of G we get an associated bundle E
and it has a jumping curve of degree c2(E) which may be greater than the number
of points at which Q jumps over a generic P1. This would mean we were
considering a multiple of S0.

For groups other than Sl/(n) then, it is better to treat the caloron as a Kac-
Moody monopole and use the methods of Murray (1984) and Hurtubise and
Murray (1988b) to define the spectral data and show that it determines the general
caloron. This can be done, but we have not bothered presenting the details here
because of the lack of an existence proof for calorons. The SC/(n) case and the
methods we have adopted have the advantage that they should allow a proof of
existence by relating calorons to rational maps of Pί into the flag manifold of the
loop group as in Hurtubise and Murray (1988a) and Hurtubise (1988).

The theory of Kac-Moody monopoles extends also to the twisted Kac-Moody
algebras. Certain Lie algebras LK admit automorphisms χ such that χd= 1, where
d = 2 or 3. They can be determined by seeing which Dynkin diagrams admit such
automorphisms. We can then consider equivariant maps /:S1->LX such that
f(eίθ

9 ei2π/d) = χ(f(eiθ)\ and these with the appropriate extension form the Kac-
Moody algebra. A twisted Kac-Moody monopole is therefore a periodic instanton
invariant under this additional symmetry. The automorphism therefore acts on
the holomorphic bundle and the spectral curves should become identified in
exactly the same way that the Dynkin diagram of LK becomes identified to form
the Dynkin diagram of the twisted Kac-Moody monopole.

8. Nahm's ADHM Construction for Kac-Moody Monopoles

We give a brief discussion of how Nahm's ADHM construction applies to calorons
to strengthen the analogy with the case of finite dimensional monopoles.

Starting with a periodic instanton Nahm (1983) considers the Dirac equations

—
OV

where DA is the covariant Dirac operator.
Let Wz be the L2 kernel of Dz

+. Then observe that multiplication by e~m, neZ
defines a map

Wz^Wz+μoΠ. (8.2)
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Taking the quotient defines a "bundle" on .R/μoZ^S1. We use quotes because the
rank of the bundle may jump at the points

μ7 modμ0Z (8.3)
for j= 1, ...,m.

The connection Vθ and Higgs fields Tb i = 1,2,3 can be defined as for the finite
dimensional monopoles as

rz =
 πo-JΘ (8>4)

and
T = π°x (85)11 JL *Ί •> \Ό J)

where π is the orthogonal projection from L2(R3 xS1, C"(χ)C2)->fK These are
covariant under the action of μ0Z as above and descend to a connection and Higgs
fields on W-+S1 which satisfy Nahm's equations.

The inverse construction proceeds in a similar fashion.
Notice that this construction agrees with the conjecture of Atiyah that we

should view Nahm's equations as being solved on the dual of the Dynkin diagram.
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