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On the Invariant Mass Conjecture in General Relativity
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Abstract. An asymptotic symmetries theorem is proved under certain
hypotheses on the behaviour of the metric at spatial infinity. This implies that
the Einstein-von Freud-ADM mass can be invariantly assigned to an
asymptotically flat four dimensional end of an asymptotically empty solution
of Einstein equations if the metric is a no-radiation metric or if the end is
defined in terms of a collection of boost-type domains.

1. Introduction

One of the still unsolved classical problems in general relativity is to establish
well-posedness of at least one of the existing definitions of energy-momentum at
spatial infinity of an asymptotically flat space-time. Whatever the framework
used to define energy-momentum [Ei, We, ADM, Ge, AH, Som, AD] the problems
arising are closely related to the one which appears when one tries to define it via
the so-called von Freud superpotential [vF]:

μ y a pκ->oo loπ r(x) = R

x° = const

To make sense of (1.1) one selects some asymptotically Minkowskian coordinates
{xμ} in which the metric g takes the form1

, d/d^} = gμv = ημv + hμv9 VM = OMxΓ*), (1-2)
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1 The signature is + 2, greek indices run from 0 to 4, latin ones from 1 to 3, ημv is the flat Minkowski
metric, dSμv = £μvaίβdxa Λ dxp/2, ε0i23 = l We shall write f=0n(r*\ aeR, if / satisfies |/ |^Cσα,
\Vμf\^CσΛ-1,\Vμι "VllJ\^Cσa~n

> with σ = (l +r2)1/2, for some constant C,0(ra) = ΘQ(r*\ f = o(ra)
if lim r~α/=0, r° is always understood as Inr. B(R) and S(R) denote a coordinate ball and sphere of

radius R respectively (if ambiguities are likely to occur the coordinate sphere in e.g. coordinates y will
be denoted by Sy(R), etc.). Letters C, C", etc. are used throughout to denote strictly positive constants
which may vary from line to line
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with some 1/2 < α ̂  1 (cf. [Ba,Chl,Ch2,OM,Sol]), and the integrals (1.1) are
performed in this coordinate system. If another system of coordinates {yμ} in which
analogous inequalities are satisfied is chosen

= g'μv = ημv + A;V, h'μv(y) =

Φ) = (Σ(/)2}1/2> (1-3)
one will obtain

f δfμη
λpη,ag?P

adSaβ. (1.4)

Is there any relationship between pμ and p^? If there is the slightest physical meaning
in the above prescription p and p' should differ at most by a Lorentz transformation.
It is well known that this will be the case if the coordinates yμ and xμ differ by a
boost together with, eventually, a "supertranslation" ζμ:

yμ = Λμxv + Cμ, Λ-a Lorentz matrix, C - 02(rl ~α) (1.5)

with α > 1/2 (cf. [Ch2, OM], and also e.g. [Tr, We]), if Einstein equations are satisfied
with Tμv = 0(r~3~ε). For more general coordinate transformations there may be
no simple relation between p and p', which is well illustrated by the following
"mass generating coordinate transformations": starting from a Minkowski metric
— dτ2 + Σ(dy1)2 (for which p' = 0) and performing the coordinate transformation

one obtains a non-vanishing p unless a = ± b. The expected legitimacy of the
Einstein-von Freud-Arnowitt-Deser-Misner-Geroch-Ashtekar-Hansen prescrip-
tion for defining energy relies upon the following conjecture, or some variation
thereof:

Asymptotic Symmetries Conjecture. All twice differentiable coordinate transforma-
tions preserving the boundary conditions (1.2) are of the form (1.5).

A slightly different formulation of the mass problem in which various difficulties
become separated is the following: pμ can be defined purely in terms of Cauchy
data on an asymptotically flat three dimensional region N of a spacelike
hypersurface Σ — a "three dimensional end" or, shortly, a "three-end" (a set
diffeomorphic to the complement of a ball in [R3 on which the gravitational Cauchy
data satisfy fall off conditions analogous to (1.2), cf. e.g. [ADM,Ba, Chi]) — and
the invariant mass m(N) = ( — pμpμ)

1/2 can be calculated. The asymptotic symmetries
conjecture, if true, would imply the following:

Invariant Mass Conjecture. Let M be an asymptotically flat end of a Lorentzian
manifold M, with metric g satisfying vacuum Einstein equations, let Λ/Ί and N2

be two asymptotically flat three-ends included in M, with invariant masses m(Nί)
and m(N2). We have

m(N1) = m(N2).

The first obstacle one meets when trying to prove such a statement is our lack
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of knowledge of long time behaviour of solutions of Einstein equations: we want
to speak about a four dimensional asymptotic region — a "four dimensional end",
or, shortly, a "four-end" — which is large enough to include every spacelike
asymptotically flat hypersurface lying in the manifold under consideration2, and
we need to impose some asymptotic conditions on the behaviour of the metric in
this four dimensional region. What should these conditions be to have compatibility
with a large class of solutions of vacuum Einstein equations? There is at least one
class of space-times for which no doubts about sensible boundary conditions
arise — the stationary asymptotically flat metrics. The asymptotic symmetries
theorem we show implies that the invariant mass conjecture holds for these metrics.

Another well understood description of spatial infinity is obtained within the
Ashtekar-Hansen conform al approach [AH]. While there is certainly some interest
in proving the invariant mass theorem in such a framework, it is well known that
the Ashtekar-Hansen asymptotic conditions are much more restrictive than what
is compatible with Einstein equations (cf. [COM]). One can try to relax some of
the spi conditions, retaining from it the light cone structure at spatial infinity
together with some Hoelder continuity requirements on the rescaled metric at i°.
It is however not known whether even such weakened conditions are generically
compatible with Einstein equations. To avoid this drawback we shall assume only
what is rigorously known from the boost theorem [COM]: in this picture the basic
blocks from which spatial infinity can be constructed are boost-type domains3:

ΩθtRtT = {xμ:r^R9\t\^θr+T} for some 0,Λ, ^0, TeR.

Since the constant T plays little role in our considerations we shall often write
ΩΘ^R instead ofΩθ>RtT. Whenever useful for the clarity of the presentation we shall
write ΩQ R and Ωy

θ R to stress that we are speaking about x or y coordinates
boost-type domains. Given asymptotically flat Cauchy data for vacuum Einstein
equations (cf. [COM] for the appropriate definition of "asymptotically flat" in
terms of weighted Sobolev spaces) for every 0 ̂  θ < 1 there exists R, TeR and a
metric gμv defined in ΩΘRT, solution of vacuum Einstein equations, such that

I dgμj(x)/dxσ\ ^ C(Θ9 R, T, 0μv)cφcΓβ- \ σ = (1 + r2)1/2,

with an α > 0. We shall say that two three-ends N1 and N2 lie in the same four-end
if there exists a boost-type domain ΩΘ>R such that N1 a ΩΘR, N2 a ΩΘR. We show
that if the asymptotically flat three dimensional coordinate systems on Nt are
restrictions to Nt of some regular four dimensional coordinate systems then the
coordinate transformations relating these coordinate systems to the reference
coordinates in ΩΘR are of the form (1.5). In the vacuum case this implies that the

2 More precisely, if many "spatial infinities" are present as in the case of e.g. Reissner-Nordrstroem
solutions, we want the end to include the "large r regions" of all spacelike hypersurfaces which "extend
to the spatial infinity under consideration"
3 Strictly speaking Ωθ R deserves the name of a boost-type domain for θ < 1 only. We shall however
use this name for Ωθ R even if θ ̂  1. It should also be noted that the term "domain" does not have its
familiar mathematical meaning here since our ΩθtR is closed
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invariant mass conjecture holds under some mild supplementary conditions on
the induced metric and extrinsic curvature (cf. [COM]; it is not too difficult to
show from the results of Christodoulou and O'Murchadha that every appropriately
regular coordinate system in a three-end can be extended to a four-dimensional
one in at least a small boost-type domain).

For notational simplicity dim Jt = 4 will always be assumed, although the
asymptotic symmetries theorem holds whatever dim Ji^Ί.

2. Asymptotic Conditions

In this section we shall present in detail the regularity and asymptotic conditions
on the metric and the coordinate systems.

Definition 1. A coordinate system Φx = {xμ} defined on a subset Mx of a Lorentzian
manifold Jt with be called α-admissible or, shortly, admissible, if there exist θx,
jR x eR + , TxεR such that

1) ΦX(MX) ^ Ωθχ,Rχ,Tχ with ΩθχtRχtTχ = {xμ: r*Rx,\t\^θxr+ Γx},
2) in <9X = ΦX(MX) we have, with gμv = Q(d/dxμ,d/dxv)EC2((9x),

0<-#0 0, VA-'eR"-1, (XgtjXW, (2.1)

3) for 0 < Ψ < ΘX9 for xεΩ Ψ,Rχ,Tχ, with σ(x) = {1 + ΣM1/2:

I<U*) - ημv\ ̂  Cx(Ψ)σ(xΓ*, \dgμv(x)/dxσ\ £ Cx(Ψ)σ(xΓ^\ (2.2)

with some function Cx( Ψ) < oo .
Let us note that (2.1)-(2.2) imply the existence of strictly positive functions ax(Ψ),

cx(Ψ) such that, for xeΩΨtRχfTx,

^ -000, ^X^^^c^Ψ^xγ^g^X^. (2.3)

As discussed in the introduction, these conditions are compatible with a large
class of solutions of Einstein equations [COM]. The first condition requires the
coordinate system to cover a large, boost-type region. The second demands that
ί be a regular time coordinate, and that the slices ί = const be riemannian manifolds.
The last condition requires the metric to tend uniformly to the flat one in space-like
directions, allowing however for gravitational radiation: CX(Ψ) may blow up to
oo when Ψ tends to θx, which one expects to occur if θx = 1 and gravitational
radiation is present.

Definition 2. Let xμ and yμ be admissible coordinate systems, with appropriate
constants ΘX9 Rx, Θy9 Ry, etc. The three end NX

R = {xμ:x° = 0, φc) ̂  R}9 R ̂  RX9 will
be said to lie within the asymptotic four end defined by the coordinates yμ and
the three end Ny

Ry = {yμ:y° = 0, r(y) ^ Ry} if Φx \NX

R) c= My (My being the domain
of definition of the coordinates y) and if

Φyoφχ\Nx

R)c:ΩlRy for some θ<θy.

If θy > 1 we shall say that the metric g is a no-radiation metric.
Let us note that our main theorem will still hold with the condition θ<θy

replaced by θ ̂  θy provided Cy(θy) < oo.
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It must be emphasized that in this work an asymptotic four-end is defined by
a single reference coordinate system which covers at least some boost-type domain.
Thus Minkowski space-time has one asymptotic four-end while Minkowski
space-time from which one has removed the set of points {ί — 0, r ̂  R} has none
(unless dim Jί = 2 in which case it has four asymptotic ends). It is worth realizing
that in IR4\{ί = 0, r ̂  R} an asymptotically flat metric for which the invariant mass
conjecture does not hold can be constructed: for t < 0 and r>2R> 4m1 let the
metric be the Schwarzschild metric with mass m 1 ? for t > 0 and r>2R> 4m2 let
the metric be the Schwarzschild metric with mass m2, and interpolate smoothly
between these metrics in any way; vacuum Einstein equations are satisfied
everywhere for r > 2R, the metric tends to the flat one as r goes to infinity, a single
coordinate system covering the whole space-time exists; still the slices t = const do
not all have the same mass \imvΦm2.

To prove the asymptotic symmetries theorem we have to assume that the
hypersurface x° = 0 lies within the region where the coordinates yμ are well behaved
in the sense of Definition 1. On the other hand one would be tempted to expect
that asymptotic flatness of NX

R forces it in fact to extend to this region, if e.g.
space-time can be covered by a single coordinate chart. That this need not be the
case is shown by the following example, due to R. Geroch: let gμv be the Minkowski
metric outside the future light cone of the point y0 = (— 1,0,0,0), let the coordinates
yμ be the standard Minkowskian coordinates on ίR4. Whatever the metric in the
future light cone of y0 the asymptotic conditions of Definition 1 will be satisfied
with θy = 1, because in every Ωθ R with θ < 1 for sufficiently large r one will be in
the region where gμv is flat. Let φ(s) be any smooth function defined on the positive
real axis which tends to minus infinity as s goes to zero and tends to infinity as s
goes to infinity. Let yμ = yμ — yμ. For yμyμ<0 let t(y) = x°(y) = φ( — yμyμ), for
definiteness let xl = /4, finally let ίe be the hypersurface t(x) = - (1 + r(x)2)1/2. Let
the metric be equal to — dt2 + Σ (dx1)2 for yμ such that y° > s(jΓ), where s(~y) is the
height function of ̂  considered as a graph over the hypersurface y° = 0; interpolate
between this metric and the flat one outside the future light cone of y0 in any way.
In this example the asymptotic symmetries conjecture fails to be satisfied which is
easy to understand because the four-ends defined by the hypersurfaces x° = 0 and
y° = 0 can be considered as physically distinct (in the conformal picture this
space-time has two i°'s). It should be stressed that vacuum Einstein equations are
satisfied in every boost-type domain with θ < 1 for sufficiently large r(x) or r(y).

3. Asymptotic Symmetries

Throughout this section we shall assume that the coordinate systems xμ and yμ

are admissible, that the coordinates yμ are the defining coordinates for the four-end
under consideration, and that NR = Φy° Φ ~ 1(NR) c Ω%tRytTy with θ < θy.

Lemma 1. Let Φ = Φy°Φ~\ let Φt(xl) = {Φj(x° = f,x'')}, let Jf\ = Φ0 (NX

R).

4 The actual definition of the coordinates xl is irrelevant in this example
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a) Φ0 is a dίffeomorphism between N^ and N\ (in particular N^ = Φ(Nχ) is a
graph over {yμ:y° = 0,ye«yΓJ}).

b) Shifting the coordinates yμ by a constant vector if necessary we may assume
that QφΛ^K. Let χ(R) = min r(Φ0(x)). χ is strictly monotonous.

xeS(R)

Proof, a) Suppose that the matrix dy*/dxj is degenerate, i.e. there exists a
vector A1 Φ 0 such that (dyl/8xj)Aj = 0. Since dyμ/dx" is non-degenerate we have
(dyμ/dxj)Aj / 0, which implies that the image by Φ * of the vector AJd/dxJ, which
is spacelike by virtue of our hypotheses on g, is the vector (dy°/dxj)Ajd/dy°, which
is timelike in virtue of our hypotheses on g' — a contradiction.

b) At every point XR for which χ(R) is attained yl(dyl/dr) must be different from
zero, simultaneously positive or simultaneously negative for all such points, because
yl(dyl/dxA) = 0 at these points, where XA are the angular variables θ and φ. If
yl(dyl/8r) were equal to zero yl would be a zero eigenvalue eigenvector of dyl/δxj,
contradicting point a) above. The sign of (dr(y(x))/dxi)xi/r(x) is x^-independent
because the image by Φ^ of the outwards pointing vector field d/dr is either
everywhere outwards pointing or everywhere inwards pointing.

Remark. In what follows we shall often identify N^ = Φ(ΛΓJ) with JVJ.
The "transformation laws" of the metric and of the connection coefficients

can be considered as a set of differential equations satisfied by the transformation
functions yμ(x). With the notation

a=-gQO, 0'=-0'oo, bi = g0i, bi = g'oi, τ = y°, t = x°, (3.3)

(3.1) written out in detail leads to the following set of equations:

, ,,/ dyk dyk

δϊ = ̂  + a ̂  - τ " + τ' ' ( }

,Sykdyl ,dτ , ,_,

'»£Έ = <Έτ« + b'-v

It is also useful to write (3.2) in the form

d2vμ δyμ dvvdvp

^=^w^-nw)^. (3.7)

Lemma 2. There exist positive constants c, c' such that

VxeJV* cr(x) - c' ^ r(Φ(x)). (3.8)
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Proof. It is sufficient to establish (3.8) for sufficiently large r(x). Suppose first that
r(y(x)) goes to infinity as r(x) does; therefore one may choose p(ε) such that \b'i\^&
on Jf*p = Φ0(Np). On Jf*p parametrized by xl we can define the riemannian metric
a = aijdxldxj (a^ defined in (3.5)) (this is not the natural metric induced on ^Vx

p by
g). Let us show that

^ aijX
iXj (3.9)

for some constant cv > 0. Contracting (3.5) with g'ij — the 3 dimensional inverse of
glj — and using the inequalities

C ~ 1 1 Vτ1 2 ^ a'τ. τ,^' ̂

which follow from (2.2)-(2.3) one obtains, for ε small enough

CT'(I + I Vτ 2) ̂  \dy/dx\2 ^ C(l + | Vτ|2), (3.10)

where

Contracting (3.5) with X'Xj we have

therefore the estimation, which makes use of (3.10),

VXHlkK
k^ εC\ Vτ | ( l + | Vτl2)1/2^^)2}172 ^ εC(l

together with (2.2)-(2.3) lead indeed to (3.9) for all φc) > p(ε0), for some ε0. Let us
show that (3.9) implies (3.8). Let jR = inf r(y\ R0 = sup r(y). For

yeΦ0(S(p(εo))) yeΦo(S(p(ε0)))
r(y(p)) > ̂  let σ(p) be the geodesic distance with respect to the metric a from p to
SyCR). Parametrizing ̂ x

p with the coordinates yi (Lemma 1) we have by definition

and inf is taken over piecewise differentiable curves joining y with Sy(R). Let
Γ0 = {ty + (1 - t)Ry/r(y\ te[0, 1]}. We have clearly

/ dvidvs\112

σ(y) ^ f (dij^-^-) dt g C(r(y) - R). (3.11)
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Let σ'(x) be the geodesic distance (still with respect to a) from p = x to Sx(p(ε0)).
Since for x1eSx(p(ε0)) R ̂  KX^i)) ̂  ̂ o we have, for r(y(x)) > R0,

σ'(p)^σ(p). (3.12)

In coordinates xl the metric a is represented by the matrix atj. By virtue of (3.9)
we have

dϊdxtV'* ^ Il2rf^dxidxί\ll2

jiti— — — dt>c{/2\[y -- — atIJ dt dt J ~ 1 Jr\ at at )

for r(x) > p(ε0), so that

/ Jv^YA 1/ 2 / d\l dxj\112

σ'(X) = iπf f ( βy^ A * cP inf f ( Σ ~^~ dt = cί/'Mx) - pίβo))
/" r' \ at at J rf rr \ at at J

(3.13)

(the last equality being the consequence of the well known variational inequality
for the geodesic distance with respect to the flat metric). Equation (3.11) together
with (3.12) and (3.13) give (3.8) if lim χ(R)= oo, χ being defined in the statement

#->00

of Lemma 1.
Suppose that lim χ(R) = r0 < oo. Let XN be any sequence of points XR, with

R-^ao

R = NeN, for which the inίinimum χ(N) is attained. By hypothesis the sequence
yN=Φ(xN) is bounded in space, therefore by Φy°Φ~1(N^)c:ΩΘRy it is also
bounded in time so that we may choose a subsequence y{ converging to a point y^ .
Let Aβ be the matrix which transforms g^y^) to the Minkowski metric:
g'μv(y^}^Aμ

β = ηaβ, and perform the coordinate transformation yμ -+ A%yv — y1^ ,
the new coordinates and the pulled-back metric still being denoted by yμ and g'μv.
By continuity of g'μv there exists a ball of radius p^ such that | b't \ < ε in the hypercube

C(Pι) = {I/I = Pi j l^0! = Pi}' with ε small enough so that the algebraic manipula-
tions leading to (3.9) (with some other constant c2) can be performed. Let NεN
be large enough so that Vί > N y(xi)EC(p1/2). Let S^(ε), Bl

x(ε) denote the coordinate
sphere and ball of radius ε around xt. Let χf(ε)= inf r(Xx) — Xxf)). Since Φ0 is

a diffeomorphism the image by Φ0 of ^(ε) contains the coordinate ball
of radius χf(ε) centered at j;f = y(xi). Let us fix i and let x(ε) be any point on Sl

x(ε)
such that r(y(x(ε)) — y(xi)) = χf(ε). Let σ t denote the geodesic distance from y(x(ε)) to
j;f with respect to the metric a. Decreasing p1 if necessary one derives, by an
argument very similar to the one presented above, the inequalities

ci/2r(x - Xi) ^ σi(y(x)) ^ 2(r(y(x) - yt))

which hold for r(y(x)- yt) ^ρJ2. If ^(l/^^p^ then Φ0(Bί(l/4)) contains the
ball Bl

y(Pl/2). If χHl/4) ^ Pl/2 we have

χι.(l/4) = r(Xx(ε = 1/4)) - yt) ^ σ^

so that in any case Φ0(l£(l/4)) contains the ball 8^ = 8^(0^ with c4 =
min (c2/2/8, px/2). Consider now the sequence of space balls Bl

x of radius 1/4 centered
around xt. We have BxΓιBj

x = 0 for ί Φj. Their images Φ0(Bί

x) contain balls Bl

y of
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radius c4, Bl

y c C(p^\ and clearly BJ

y n Bl

y = 0 for i Φj. This leads to a contradiction
since the infinite sequence of disjoint balls of constant radius Bl

y cannot be contained
in the compact cube \yl\^plf

Lemma 3. Suppose that the functions dyμ/dxv are uniformly bounded on NX

R. There
exists a Lorentz matrix A such that, for

ζμ, dζ = (9ί(r~«). (3.14)

Proof. Equation (3.7) with (3.8) show that

2 μ

and an easy argument making use of the lemma of Appendix A establishes (3.14).

Lemma 4. Either one of the quantities A = Y(dx°/dyv)2 or B = £ (dy°/dxv)2 is
bounded, in which case (3.14) holds, or lim A = oo = lim B, and there exists a

r-»oo r-»oo

constant C such that, for r ^max(l,JRx),

A ̂  Cra, B ̂  Crα.

Proof. The hypotheses on gμv and g'μv imply, by a simple algebraic argument which
makes e.g. use of the ADM formulae relating gμv and gμv, that the matrices gμv

and g'μv have uniformly bounded coefficients. The equations

oY_ fσμ dχP_ dxβ _ aβ , dy*

dx«~g g*βdyσ' W'9 9μσfa"

show that ^((8yμ/dxσ))2 < oo is equivalent to ^((dxμ/dyσ))2 < oo. Manipulations
similar to the proof of (3.10) starting from (3.4) imply

Equations (3.10) and (3.15) imply that boundedness of A is equivalent to
boundedness of Σ((dxμ/dyσ))2.

Let D =(Σ(δyμ/δxσ)2)112. Equation (3.15) shows in particular that D is strictly
separated from zero. Let E = D~ί. From (3.7) and (3.8) we have

-1-) (3.16)

and Appendix A shows that E has a finite direction independent limit E^ as r
tends to infinity. If E^ is different from zero D is bounded, therefore all the
derivatives dyμ/dxσ are bounded and (3.14) follows by Lemma 3. If E^ = 0, (3.16)
implies E^Cσ~Λ, and from what has been said the estimate on A and B follows.

Proposition 1. Suppose there exists a spacelike geodesic Γ<^Ω^Rχ, θ<θx,
Γ:[Q,co)3s-+x(s) such that lim r(x(s)) = oo and such that for s>s0 there exists

s-> oo

a family oftimelike differentiate curves Γs: [0, !]9w->ys(w)eί2^>jRy, θ' < θy, xs(u) =
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x(ys(u))eΩlRx, satisfying xs(0) = (0, x(s)), xs(l) = (x°(s),x(s)), r(xs(u))^cr(xs(0)),
r(ys(

u)) = cr(ys(ty) for some constant c. Then (3.14) holds.

Proof. Let F = InD, D = (Σ(dyμ/dxσ)2)ί/2. From (3.7) we have

dF=D~2^^dx"=f«dχa+f'°dya> (3 17)

where

'. (3.18)

Consider the Eq. (3.17) along Γ:

dF/ds =fΛdx*/ds +f'Λdy«/ds. (3.19)

By Proposition Bl (Appendix B) we have for large s xμ(s) = s(Xμ

co + 0(1)), yμ(s) =
5(7^ + o(l)) for some constant vectors ΛΓ£ and Y^9 and also r( φ)) ̂  C~ls - C",
r(y(s)) ^c~ls — c' for some positive constants c, C, c', C, the right-hand side of (3.19)
is therefore integrable in s and F remains bounded along jΓ. The differentiable
timelike curve Γs can be parametrized by t: [0,x°(s)']et^xs(t) = (t^s(t)) =
(x°(ys(u(t))),~x(ys(u(t))))9 timelikeness of xs(t) and our hypotheses on the coordinate
system imply \(dlcs/dt)\ ^ C. Let E be as in Lemma 4. By our hypotheses (3.16)
holds again and we have

j dE/dtdt <

( I x°(s) I ̂  θr(s) + Tx], therefore £„ = Hm £(xμ(s)) φ 0 (Ex as in the proof of Lemma
S-> oo

4) and the result follows by Lemma 4.
As a corollary of Proposition 1 one obtains immediately the asymptotic

symmetries conjecture under a somewhat stronger assumption than NX

R c ί2^Ry:

Corollary 1. Suppose that there exist 0 < ε < θx, R1 ^Rx, such that Ω^Rί c: Ωy

θ Ry,
θ<θy. Then (3. 14) holds.

Proof. By Proposition B2 we can construct a complete spacelike geodesic
7" c= i2£ Rl . The family of differentiable curves Γs is given by 7"s: [0, 1] ̂ u -> xs(w) =

The rest of the proof will consist in showing that there exists a geodesic satisfying
the hypotheses of Proposition 1. Although this will not be necessary for further
considerations, it is of some interest to note that boundedness oϊdτ/dxσ is controlled
by \(dτ/dt)\9 as is the case for a Lorentz transformation. A simple algebra exercise
leads to the following relationships between the components of a Lorentz matrix
Λ*:

Λi

0=±Λf, Σ |Λ? | 2 = (yl8)2-l, Σ | Λ j | 2 = 2 + (Λg)2. (3.20)
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Proposition 2. Either the derivatives dyμ/dxv are uniformly bounded on N^ or there
exist constants r0, cl and c2 such that, for r ̂  r0,

5

Proof. Let ea

μ, e'° be tetrads, defined for sufficiently large r, satisfying

e'μ
a(y) = δa

μ + h'μ"(y), h'μ=0(r(yΓ«\

(existence of such tetrads can be established by methods similar to e.g. the proof
of Proposition 4.1 of [ChK]). Let A a

b = e'μ(dyμ/dxσ)eσ

b, where el is the inverse matrix
to ea

μ. Equation (3.1) shows that A\ is a Lorentz matrix, Proposition 2 follows
from (3.8), (3.10), (3.15), (3.20) and from the fact that both ha

μ and h'° can be both
made sufficiently small for sufficiently large r(x).

By inspection of the slopes of the light cones one shows the following:

Lemma 7. For all 0 < ε<min($x, 1) there exists RX^RX such that for all
xe&*Rit_ER> satisfying x° > 0 (x° < 0) and for every past (future) directed differenti-
able timelike curve [0, Γ\3u^>p(u)eJί satisfying p(0) = x, p(l)eNRχ, for which
p(u)eNRχ=>u= 1, we have Vwe[0, 1] p(u)eMx (the domain of definition of the
coordinates x) and x(u) = x(p(u))GΩ*R' _εR> . Moreover there exists a constant c such
that c ~ Mx(l)) ̂  r(x(u)) ^ cφc(O)).

Theorem 1. (Asymptotic Symmetries at Spatial Infinity). Let the coordinates {xμ}
and {yμ} be a- admissible, 0 < α ̂  1, let y(x) be twice differentiate and suppose that
there exist constants R^RX and θ < θy such that

N*R = {̂  X0 = Oj r(χ) ^R}^ ̂ ^^ = {/. r(y) ^Ry,\y°\^ θr(y) + Ty}.

There exists a Lorentz matrix A and a constant C such that

,

for 0 < α < l , \ζμ\ ^ C(l+ln(l +r)) if α = l.

Proof. Multiplying τ by —1 if necessary we may assume that the local time
orientations of coordinates x and y coincide (cf. (3.15)). Let R2 ^ R be large enough
so that, for an appropriate #3 ̂  Ry, Φ0(NX

R2) c R*\By(R3) c Φ0(NX

R) (cf. Lemma 1,
point a)). Fix some 0 < Θ0 < min (1, θx), let R4 ^ max (R'x, R2\ R'x = R'X(Θ0) given by
Lemma 7. Increasing R4 if necessary we may assume (cf. Proposition B2) that a)
all the geodesies satisfying x(0)eΩθoR4, r(x(0)) = #4, x°(0) = 0, dx/dsls=0 = l>c/R4,
\dt/ds\{sss0 ^ θ0/2 remain in ΩθθtR4 for all s > 0, b) dt/ds]s=0 ^ Θ0/4=>t(s) > 0 for all
s > 0, c) dt/dsi^Q ^ — ^0/4=>ί(5) < 0 for all s > 0. Let r0 = sup r(y(x)). Increasing

R4 if necessary we may assume that all the geodesies satisfying y(0)eΩy

θtro9 r(y) = r0,
\dy°/ds\ls=Q^θ/2, dy*/dsls=Q= jΓ/r0 remain in βgϊΓO for all 5^0. Let xQedNx

R4 be
any of the points satisfying r(y(x0)) = r0. Consider the family of geodesies
ΓE9 εe[ — θ0/2, Θ0/2]9 where Γε is a geodesic starting radially outwards at x0

(d^c/dsls=0 = ~x/R4) with dt/dsls=0 = ε. For ε > θ0/4 Γε lies to the local future of JVJ.
Suppose that j;(x(s))efl£ro, consider the timelike differentiable curve ΓStS: u-+ys(u) =
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(uy°(s),J(s)). Since Φ0(NX

R4) c R\By(R3) c Φ0(NX

R\ there exists MO(S) such that
ys(

uo(s))εΦo(NR). For small s, w0 must be smaller than 1 because Φ is a
diffeomorphism and the local time orientations agree. This must also be true for
all s > 0 such that y(x(s))eΩy

θtfo because, if not, continuity would imply the exist-
ence of a point on Γε which belongs to JVJ; this does however not occur for
ε>#0/4. This shows that, for ε > 00/4, either ΓεdΩy

θtro and then also ΓStεd
Ωl >ro, for Me[M0(s), 1], or there exists s0(ε) for which Γε crosses B+ =
{yεΩθίrθtTy,y° = θr(y)+Ty}. Similarly for ε < - Θ0/4 either Γε c Ωy

θtfQ or there
exists 50(ε) for which Γε crosses B~ = {yeΩy

θ9rθίTy, y° = —θr(y)— Ty}. Let η(ε) =
dy°(x(s))/dsls=0. If Γθo/2 crosses B+ then we must have η(θQ/2)^.θ/2, similarly if
Γ_θo/2 crosses B~ then we must have η( — θ0/2)^—θ/2. If Γθo/2cιΩy

θ>ro set
ε0 = 00/2, if Γ_θo/2 ci Ωy

θ>ro set ε0 = — 00/2, if neither of the previous cases occurs,
then by continuity of η(ε) there exists ε0 such that — θ/2 < η(ε0) < 0/2, and so in
all cases Γεo cΩy

θ>ro. The family of curves ΓStεo parametrized by u is included in
Ωy

θ>ro for appropriate ranges of M, we[w1(s,ε0),w2(s,ε0)], by Lemma 7 it is also
included in β£0>Λ4, and the theorem follows by Proposition 1.

For the applications of the asymptotic symmetries theorem it is useful to have
more information about the geometry of the domain of overlap of coordinates x
and y. We have the following:

Corollary 2. Under the hypotheses of Theorem 1:
1) For every 0', θ < θ' < θy there exists R^^^R and ε > 0 such that β*Λl c Ωy

β,tRy .
2) For α// θ^ < ΘX9 Θ2 <θy,R^ Rx, if ΩX

Θ^R c Ωy

θzιRy, then there exists a constant
C such that (3.21) holds for all xεΩ%ltR.

Outline of proof. Point 1) can be established by considering timelike geodesies
orthogonal to NR. Methods of Appendix B show that such geodesies remain both
in Ω*Rί and Ωy

Q>tR for an appropriate range of affine parameter, which can be
used to establish the result. Point 2) is essentially Corollary 1 (cf. also Appendix A).

In some applications one would like to be able to claim that (3.21) holds
throughout the overlap region. This is clealy false in general when the overlap has
disconnected components. The following corollary shows that (3.21) holds indeed
in the "largest x°-connected component" of the overlap:

Corollary 3. Under the hypotheses of Theorem 1, suppose that either
a) θ, < ΘX9 Θ2 < θy, or
b) Θ1 ̂  θx, Θ2 ̂  θy and Cx(θx) < oo, Cy(θy) < oo .

For ~xeNRχ and (s,~x)eΩβίίRχ define

the least positive value of s for which the curve

0ιr(x) + Tx ify(s) is included in Ωy

θ2fRy,

the largest negative value of s for which the curve
s-*y(sϊ=y(χ0=s>χϊ meets day**.Ry>
-θ^x) - Tx ify(s) is included in Ωy

θ2ίRy.

Let Vθlίθ2 = (x:r(x) ^ RX9 1~ ^ x° ^ t+}. There exists a constant C such that (3.21)
holds for all
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Outline of Proof. One considers timelike geodesies starting from N£0 along the x°
axis, for sufficiently large R°. Methods of Appendix B give uniform estimates on
the coordinate components of the velocity vector of the geodesies both in the x
and y charts, arguments similar to the proof of Proposition 2 establish (3.21) for
r larger than some constant and the claim follows.

Let us finally mention that in the case of a stationary metric we can set Θy = oo,
and we can also assume VF Cy(Ψ) < C? < oo, ay(Ψ) > a™ > 0, cy(Ψ) > c? > 0.
Under such hypotheses the asymptotic symmetries theorem remains true (the only
modifications of the proof occur in the proof of Lemma 2 where time-boundedness
of appropriate sequences follows from spacelikeness of N%). As mentioned in
the introduction this implies the invariant mass theorem without having to assume
a priori that the three-end NR lies within a finite boost domain of y-coordinates — it
suffices that N^ lies within the domain of definition and regularity of the y
coordinates.

Conclusions

We have shown that the asymptotic symmetries conjecture holds provided the
hypersurfaces x° = const and y° = const lie within a finite boost of each other
(θy^ 1) or if the metric is a no-radiation metric (θy > 1). The example by R. Geroch
discussed in Sect. 2 shows that our results cannot be improved without some
further hypotheses on the metric. One can write down various supplementary
conditions which will ensure a priori that any two spacelike three-ends will lie
within some finite boost of each other, it seems however that any physically
significant progress will only be made possible after we will have reached a better
understanding of the infinite time behaviour of solutions of vacuum or asymptoti-
cally vacuum Einstein equations.

Appendix A

Lemma. Let a differentίable function f:ΩΘR^>U satisfy

sup |/(0,x)|^C, \dμf\£Cσ~l-Λ

9 α>0.
r(x) = R

Then f has a direction-independent limit f^ as r goes to infinity and

/-/oo = tfι(r~α) in ΩβtR.

Proof. We have

$df/drdr

so that

\ for p<r, (A.1)

^ max |/(0,;y)| + CR~*

which shows that /(O, x) is uniformly bounded. Let r t be any sequence of numbers
tending to oo — (A.I) implies that the sequence /(0,η7ι) is a Cauchy sequence and
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therefore /00("n)= lim /(0,/γi?) exists, (A.I) also implies that f^(n] is sequence-
rj-*oo

independent. Consider two unit vectors nv and n2. We have

/oo(^) -/oo(wι) - ϊ 3f/dr(Q9 rnjdr - ] df/dr(09 rn2)dr + J df, (A.2)
p p Γ

where 7" is an arc lying on the sphere S(p) joining pn± with pn2. Equation (A.2)

implies |/oo(π2) — /α>(wι)| ^ Cp~a for any p, therefore /^ is direction independent.
From (A.I) one finds that |/(0,x) -/J ^ Cr~α. Finally

which yields

which proves our assertion because \t\^θr -i- T in ΩΘ>R.

Appendix B

Proposition Bl. Let g be a C2 metric in Ωθ RT satisfying

For every complete non-timelike geodesic Γ c ΩθtRjT such that lim r(x(s)) = oo, where
S~* OO

s is an affine parameter, there exists a vector η^ such that

x"(s) = ̂ s + C" + x"(0),

ζμ satisfying for s ̂  0, with r0 = r(x(Q)\

\dζ»(s)/ds\ ^ C(r0 + sΓ«, \d2ζ»(s)/ds2\ ^ C(r0 + sΓ*'1,

for 0 < α < 1, \ζ»(s)\ ^ Cln(l +s/r0) if α = l .

Proof. Since lim r(x(s)) = oo, for every s t there exists 50 > sx such that dr/ds\s=s ^ 0.
s-»oo

Let us parametrize the geodesic by an affine parameter such that s0 = 0,
(dxl/ds)(dxl/ds)ls==0 = ί. For r0 > r1? r1 sufficiently large and for all s such that
3/4 < (dxl/ds)(dx /ds) < 5/4 non-timelikeness of dx/ds implies \dt/ds\ < 2. A simple
calculation gives

2 2d2r
^ I -i Ί -̂  -* I J V ι 1

ds2 \ ds ds μv ds ds

which again for 3/4 < (dxi/ds)(dxi/ds) < 5/4 and for r(s) > r1 gives, increasing rλ if
necessary,

d2r2 „ „ 0

ds2

since dr/ds]s=Q ^ 0. Let s2 be such that for all 0^s<s 2 , (3/4)1/2 ^\dxl/ds ^
(5/4)1/2 (s2 > 0 because (dxi/ds)(dxi/ds)\s=Q = 1 and rfx/Js depends continuously on



Invariant Mass Conjecture in General Relativity 247

s). For s < s2 we have | Γ^vp(dxμ/ds)(dxv/ds)\ ^ C(r0 + 5)"1 ~α so that

dxμ, x dxμ, ,
(s)--HO)

ds" ds Ό

therefore for sufficiently large r0 we have s2 = oo and the propostion follows.

Proposition B2. Under the hypotheses of Proposition Bl, for every p>rl there exist
Θ+(p) satisfying — 0 ̂  0_ < 0 < 0 + 5^0 such that every geodesic satisfying

= xi/r, 0-^-τη ^0+ (B.I)

remains in Ωθtf)ίT for all s>0, and satisfies r(x(s)) ^ (r0 + s)/2 (in particular the
estimates of Bl hold). We have lim — 0_(p)= lim 0+(p) = 0. There also exist

ε±(p) satisfying 0_(p) < ε_(p) ̂  0 ̂  ε + (p) < 0 + (p) swc/z ί/iαί z/,/or ί/ϊβ αfooi β geodesies,
t(0) ^ 0, dt/dsls=Q > ε+(p), then for all s t(s) ^ 0 (ί/ί(0) ̂  0, dt/dsls=Q < ε_(p), then for
all s t(s) ̂  0). FKe /zαi β lim ε_(p) = lim ε+(p) = 0.

/ Let p(ε) be large enough so that for any curve x(s)eί3θjp(e)jΓ satisfying

| ̂  2 and φ) ̂  (r0 + s)/2 we have J |Γίp(dxμ/ds)(dxv/ώ)| ̂  ε. By methods
o

similar to the proof of Proposition Bl one shows that every radially outgoing
geodesic with x(0)eββ>p(ε)>Γ will satisfy

(1 - δ)s + r0 g φ) ̂  (1 + δ)s + r0,

(̂  - δ)s + ί0 ̂  ί(5) ίS fo + ̂ )5 + ίo» where η = dt/ds{s=Q,

with some δ(ε), 5(ε)->0 as ε->0, provided x(s) remains in ί2θp(ε) Γ, and the result
readily follows.
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Note added in proof. It should be stressed that throughout this paper the addition of a sub- or superscript
x or y to a constant, e.g. cx, Cy, ax(ψ) etc., does not indicate a pointwise dependence of the constants c, C,
a(ψ\ but is meant to stress that the constant in question depends upon the coordinate system (xμ) or {yμ}.




