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Abstract. An asymptotic symmetries theorem is proved under -certain
hypotheses on the behaviour of the metric at spatial infinity. This implies that
the Einstein-von Freud—ADM mass can be invariantly assigned to an
asymptotically flat four dimensional end of an asymptotically empty solution
of Einstein equations if the metric is a no-radiation metric or if the end is
defined in terms of a collection of boost-type domains.

1. Introduction

One of the still unsolved classical problems in general relativity is to establish
well-posedness of at least one of the existing definitions of energy-momentum at
spatial infinity of an asymptotically flat space-time. Whatever the framework
used to define energy-momentum [Ei, We, ADM, Ge, AH, Som, AD] the problems
arising are closely related to the one which appears when one tries to define it via
the so-called von Freud superpotential [VF]:

.3 .
pu = lim —— f 5i€znlp”yag/v;dsaﬁ’r(x) = {Z(xt)2}1/2. (11)
R-> 1677.' r(x)=R

x0=const

To make sense of (1.1) one selects some asymptotically Minkowskian coordinates
{x*} in which the metric g takes the form'

8(0/0x",0/0x") = Gy = Ny F My, %) = O (r(x) %), (1.2)
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with some 1/2<a <1 (cf. [Ba,Chl,Ch2,0OM,Sol]), and the integrals (1.1) are
performed in this coordinate system. If another system of coordinates {y*} in which
analogous inequalities are satisfied is chosen

8(0/0y*,0/0Y") = Gy = Ny + My, M (¥) = O (r(y) ™),

r(y = {305} (1.3)
one will obtain
’ : 3 @, /va
P lim g L O N0 dS . (1.4)
y0 =const

Is there any relationship between p, and p,? If there is the slightest physical meaning
in the above prescription p and p’ should differ at most by a Lorentz transformation.
It is well known that this will be the case if the coordinates y* and x* differ by a
boost together with, eventually, a “supertranslation” {*:

Y= A"+ {* A —a Lorentz matrix, (= 0,(r'"? (1.5)

with a>1/2(cf. [Ch2,0M], and also e.g. [ Tr, We]), if Einstein equations are satisfied
with T,, = O(r~>%). For more general coordinate transformations there may be
no simple relation between p and p’, which is well illustrated by the following
“mass generating coordinate transformations™: starting from a Minkowski metric
—dt? + X (dy")? (for which p’ = 0) and performing the coordinate transformation

t=t+ar(x)'?  y=1+br(x)"?)x', a,beR,

one obtains a non-vanishing p unless a = +b. The expected legitimacy of the
Einstein—von Freud—Arnowitt—Deser—Misner—Geroch—Ashtekar—Hansen prescrip-
tion for defining energy relies upon the following conjecture, or some variation
thereof:

Asymptotic Symmetries Conjecture. All twice differentiable coordinate transforma-
tions preserving the boundary conditions (1.2) are of the form (1.5).

A slightly different formulation of the mass problem in which various difficulties
become separated is the following: p, can be defined purely in terms of Cauchy
data on an asymptotically flat three dimensional region N of a spacelike
hypersurface ¥—a “three dimensional end” or, shortly, a “three-end” (a set
diffeomorphic to the complement of a ball in R*® on which the gravitational Cauchy
data satisfy fall off conditions analogous to (1.2), cf. e.g. [ADM, Ba, Ch1])—and
the invariant mass m(N) = (— p“p,)*/* can be calculated. The asymptotic symmetries
conjecture, if true, would imply the following:

Invariant Mass Conjecture. Let M be an asymptotically flat end of a Lorentzian
manifold .#, with metric g satisfying vacuum Einstein equations, let Ny and N,
be two asymptotically flat three-ends included in M, with invariant masses m(N ;)
and m(N,). We have
m(N ;) =m(N).
The first obstacle one meets when trying to prove such a statement is our lack
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of knowledge of long time behaviour of solutions of Einstein equations: we want
to speak about a four dimensional asymptotic region—a “four dimensional end”,
or, shortly, a “four-end”—which is large enough to include every spacelike
asymptotically flat hypersurface lying in the manifold under consideration?, and
we need to impose some asymptotic conditions on the behaviour of the metric in
this four dimensional region. What should these conditions be to have compatibility
with a large class of solutions of vacuum Einstein equations? There is at least one
class of space-times for which no doubts about sensible boundary conditions
arise—the stationary asymptotically flat metrics. The asymptotic symmetries
theorem we show implies that the invariant mass conjecture holds for these metrics.
Another well understood description of spatial infinity is obtained within the
Ashtekar—Hansen conformal approach [AH]. While there is certainly some interest
in proving the invariant mass theorem in such a framework, it is well known that
the Ashtekar—Hansen asymptotic conditions are much more restrictive than what
is compatible with Einstein equations (cf. [COM]). One can try to relax some of
the spi conditions, retaining from it the light cone structure at spatial infinity
together with some Hoelder continuity requirements on the rescaled metric at i°.
It is however not known whether even such weakened conditions are generically
compatible with Einstein equations. To avoid this drawback we shall assume only
what is rigorously known from the boost theorem [COMYT: in this picture the basic
blocks from which spatial infinity can be constructed are boost-type domains®:

Qorr={x"rZR|t|<0r+ T} forsome 6,R,20, TeR.

Since the constant T plays little role in our considerations we shall often write
£, y instead of 2, r . Whenever useful for the clarity of the presentation we shall
write 27z and £} to stress that we are speaking about x or y coordinates
boost-type domains. Given asymptotically flat Cauchy data for vacuum Einstein
equations (cf. [COM] for the appropriate definition of “asymptotically flat” in
terms of weighted Sobolev spaces) for every 0 <0 < 1 there exists R, TeR and a
metric g,, defined in £, ¢ 7, solution of vacuum Einstein equations, such that

lguv(x) - r’uvl é C(Oa Ra ’T’ guv)o-(x)_aa
109,,(x)/0x°| < C(6, R, T,g,,)o(x) """, o =(1+r)"2

with an o > 0. We shall say that two three-ends N, and N, lie in the same four-end
if there exists a boost-type domain £, ; such that Ny < 2, z, N, < 2 . We show
that if the asymptotically flat three dimensional coordinate systems on N; are
restrictions to N; of some regular four dimensional coordinate systems then the
coordinate transformations relating these coordinate systems to the reference
coordinates in €2, ; are of the form (1.5). In the vacuum case this implies that the

2 More precisely, if many “spatial infinities” are present as in the case of e.g. Reissner-Nordrstroem
solutions, we want the end to include the “large r regions” of all spacelike hypersurfaces which “extend
to the spatial infinity under consideration”

3 Strictly speaking €2 p deserves the name of a boost-type domain for § <1 only. We shall however
use this name for Q4 ; even if § = 1. It should also be noted that the term “domain” does not have its
familiar mathematical meaning here since our £, p is closed
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invariant mass conjecture holds under some mild supplementary conditions on
the induced metric and extrinsic curvature (cf. [COM]; it is not too difficult to
show from the results of Christodoulou and O’Murchadha that every appropriately
regular coordinate system in a three-end can be extended to a four-dimensional
one in at least a small boost-type domain).

For notational simplicity dim .# =4 will always be assumed, although the
asymptotic symmetries theorem holds whatever dim .# = 2.

2. Asymptotic Conditions

In this section we shall present in detail the regularity and asymptotic conditions
on the metric and the coordinate systems.

Definition 1. A coordinate system @, = {x*} defined on a subset M, of a Lorentzian
manifold .# with be called a-admissible or, shortly, admissible, if there exist 6.,
R.eR*, T.eR such that

1) @M,)> 2 g1, With Qg g 7. ={x"1r2Z R, [t| SO+ T},

2) in 0, = @ (M,) we have, with g,, = g(9/0x",0/0x")e C,(0,),

0< —goo, VX'eR"!, 0<g;X'X, 2.1
3) for 0< ¥ <0,, for xeQ y p_ 1., With o(x) = {1 + X (x)"/*
19,0(%) = 1| £ C(P)a(x) ™% 109,,(x)/0x°] < CF)a(x) ">, (22)

with some function C(¥) < 0.
Let us note that (2.1)—(2.2) imply the existence of strictly positive functions a, (),
¢(¥) such that, for xeQyr_ 1.,

a(F)S —goo. VX'ER" e (¥)Y(X')? < g, XX (2.3)

As discussed in the introduction, these conditions are compatible with a large
class of solutions of Einstein equations [COM]. The first condition requires the
coordinate system to cover a large, boost-type region. The second demands that
t be a regular time coordinate, and that the slices t = const be riemannian manifolds.
The last condition requires the metric to tend uniformly to the flat one in space-like
directions, allowing however for gravitational radiation: C,(¥) may blow up to
oo when ¥ tends to 0,, which one expects to occur if §, =1 and gravitational
radiation is present.

Definition 2. Let x* and y* be admissible coordinate systems, with appropriate
constants 0., R, 0,, R, etc. The three end N} = {x*:x° =0,r(x) = R}, R 2 R, will
be said to lie within the asymptotic four end defined by the coordinates y* and
the three end N}, = {y*:y° =0,7(y) 2 R,} if @ '(NR) = M, (M, being the domain
of definition of the coordinates y) and if

D,oD (N =2}, forsome 0<0,.

If 6, > 1 we shall say that the metric g is a no-radiation metric.
Let us note that our main theorem will still hold with the condition 0 <6,
replaced by 0 < 0, provided C,(0,) < co.
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It must be emphasized that in this work an asymptotic four-end is defined by
a single reference coordinate system which covers at least some boost-type domain.
Thus Minkowski space-time has one asymptotic four-end while Minkowski
space-time from which one has removed the set of points {t =0,r = R} has none
(unless dim .# =2 in which case it has four asymptotic ends). It is worth realizing
that in R*\{r =0, = R} an asymptotically flat metric for which the invariant mass
conjecture does not hold can be constructed: for t <0 and » > 2R > 4m, let the
metric be the Schwarzschild metric with mass m,, for t >0 and r > 2R > 4m, let
the metric be the Schwarzschild metric with mass m,, and interpolate smoothly
between these metrics in any way; vacuum FEinstein equations are satisfied
everywhere for r > 2R, the metric tends to the flat one as r goes to infinity, a single
coordinate system covering the whole space-time exists; still the slices ¢ = const do
not all have the same mass if m, # m,.

To prove the asymptotic symmetries theorem we have to assume that the
hypersurface x° = 0 lies within the region where the coordinates y* are well behaved
in the sense of Definition 1. On the other hand one would be tempted to expect
that asymptotic flatness of N% forces it in fact to extend to this region, if e.g.
space-time can be covered by a single coordinate chart. That this need not be the
case is shown by the following example, due to R. Geroch: let g,,, be the Minkowski
metric outside the future light cone of the point y, = (— 1,0, 0, 0), let the coordinates
y* be the standard Minkowskian coordinates on R*. Whatever the metric in the
future light cone of y, the asymptotic conditions of Definition 1 will be satisfied
with 6, = 1, because in every £, p with 0 <1 for sufficiently large r one will be in
the region where g, is flat. Let ¢(s) be any smooth function defined on the positive
real axis which tends to minus infinity as s goes to zero and tends to infinity as s
goes to infinity. Let j*=y*—yh. For j*y, <0 let t(y)=x°(y)= o(—y"J,), for
definiteness let x = y*, finally let ¥ be the hypersurface t(x) = — (1 + r(x)?)*/2. Let
the metric be equal to —dt? + 3" (dx’)? for y* such that y° > s(3), where s(¥) is the
height function of & considered as a graph over the hypersurface y° = 0; interpolate
between this metric and the flat one outside the future light cone of y, in any way.
In this example the asymptotic symmetries conjecture fails to be satisfied which is
easy to understand because the four-ends defined by the hypersurfaces x° = 0 and
y°=0 can be considered as physically distinct (in the conformal picture this
space-time has two i%’s). It should be stressed that vacuum Einstein equations are
satisfied in every boost-type domain with 8 < 1 for sufficiently large r(x) or r(y).

3. Asymptotic Symmetries

Throughout this section we shall assume that the coordinate systems x* and y*
are admissible, that the coordinates y* are the defining coordinates for the four-end
under consideration, and that Ny = @0 ® [ '(N3) = 2} x  with 6 <0,.

Lemma 1. Let @ = @@ ', let O(x))={DI(x° =t,x)}, let /= Dy (NF).

4 The actual definition of the coordinates x' is irrelevant in this example
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a) @, is a diffeomorphism between N and N} (in particular N3 = @(N%) is a
graph over {y*:y° =0,y e }}).

b) Shifting the coordinates y* by a constant vector if necessary we may assume
that 0¢ AN"%. Let y(R) = min r(@y(x)). x is strictly monotonous.

xeS(R)
Proof. a) Suppose that the matrix 0y'/ox’/ is degenerate, ie. there exists a
vector A' #0 such that (0y/0x/)4’ = 0. Since dy*/0x* is non-degenerate we have
(0y*/0x?) A7 # 0, which implies that the image by @* of the vector 479/dx’, which
is spacelike by virtue of our hypotheses on g, is the vector (9y°/0x’)A479/0y°, which
is timelike in virtue of our hypotheses on g'—a contradiction.

b) At every point xg for which (R) is attained y(0y’/dr) must be different from
zero, simultaneously positive or simultaneously negative for all such points, because
y'(0y'/0x*) =0 at these points, where x* are the angular variables 0 and ¢. If
y'(0y'/0r) were equal to zero y* would be a zero eigenvalue eigenvector of dy'/ox/,
contradicting point a) above. The sign of (0r(y(x))/dx")x/r(x) is xg-independent
because the image by @, of the outwards pointing vector field d/0r is either
everywhere outwards pointing or everywhere inwards pointing.

Remark. In what follows we shall often identify N} = @(N%) with N.
The “transformation laws” of the metric and of the connection coefficients

Gap(X) = g, (¥(x)) EaEw R (3.1)
oyY (?y 0%y* ] ox*
oxPox | oxPoxt PG

can be considered as a set of differential equations satisfied by the transformation
functions y*(x). With the notation

%Y(X)={ () (3.2)

a=—goo, a=—0goo» bi=goi» bi=goi, 1=)° t=x° (3:3)

(3.1) written out in detail leads to the following set of equations:

a’@—i)z =a+ gij%}:% + b;%?—; (3.4
=g aﬁ ng gij+at,T,;— <T”Zy1 + t,jZ—J;), (3.9)
n?k?t (Gt e ) e
It is also useful to write (3.2) in the form
% =0 raoe 22 (3.7)

Lemma 2. There exist positive constants c, ¢’ such that

VxeN% cr(x) — ¢ £ r(D(x)). (3.8)
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Proof. 1t is sufficient to establish (3.8) for sufficiently large r(x). Suppose first that
r(y(x)) goes to infinity as r(x) does; therefore one may choose p(e) such that |b}| <&
on A5 = @y(N3). On A5 parametrized by x' we can define the riemannian metric
a =qa,;dx'dx’ (a;; defined in (3.5)) (this is not the natural metric induced on .45 by
g). Let us show that

VX'eR" le, Y (X)? < a; X XY (3.9)

for some constant ¢; > 0. Contracting (3.5) with g’ —the 3 dimensional inverse of
g;;—and using the inequalities

g'Ya;; = C~1|dy/ox|?,
, 0y

ki | = €ClVel|0y/ox| = eC(|V[? +0y/0x|?)/2,

C '<gYg,;<C,
-1 |VT|2 g a/T/iT/jg/ij é C|VT|2a
which follow from (2.2)—(2.3) one obtains, for ¢ small enough

CH (1 +|Vr) =[oy/ox|* < C(1 +|V1]?), (3.10)

where

|V‘EI = E T,:T,; fay/ﬁxl = g yiA ’
s a J .

9
4, X X0 = g, X'XT + a(1,X7) — 2b’alXJT,ka,

therefore the estimation, which makes use of (3.10),

,0y"
b

together with (2.2)—(2.3) lead indeed to (3.9) for all (x) > p(e,), for some ¢,. Let us

show that (3.9) implies (3.8). Let R= inf #(y), Ry= sup r(y). For
. . ye Po(S(p(e0))) ye @o(S(p(20)))
r(y(p)) > R let o(p) be the geodesic distance with respect to the metric a from p to

S,(R). Parametrizing .45 with the coordinates y' (Lemma 1) we have by definition

J\1/2
o(y) —mfj(gu V'dy ) dt,

X7, X* < eC|VT|(1 + |VT|)V2 Y (XY P2 <eC(1 + |V D (XH)? 12,

dt dt

and inf is taken over piecewise differentiable curves joining y with S,(R). Let
I'y={ty+ (1 —1t)Ry/r(y),te[0,1]}. We have clearly

dy'dy’ '
a(y)_f(g,, r dﬁ) dt < Cr(y) — ) (3.11)
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Let o'(x) be the geodesic distance (still with respect to a) from p = x to S,(p(o)).
Since for x,eS8,(p(eo)) R = r(¥(x,)) = Ry we have, for r(y(x)) > Ry,

a'(p) < a(p). (3.12)
In coordinates x' the metric a is represented by the matrix a;;. By virtue of (3.9)
we have
dxt dxi\1/? dxtdxi\1?
A, > cl/2
;(a” dt dt) diz e, fp<z dt dt> d
for r(x) > p(ey), so that
, dx'dx/\? , dx" dxi\/?
Gl(x)zqul’i‘iI(aijE-E) dt z i I?f1[< E?[) dt = c1(r(x) — p(eo))

(3.13)

(the last equality being the consequence of the well known variational inequality

for the geodesic distance with respect to the flat metric). Equation (3.11) together

with (3.12) and (3.13) give (3.8) if lim y(R)= oo, x being defined in the statement
R—

of Lemma 1.

Suppose that lim y(R)=r, < 0. Let xy be any sequence of points xp, with

R—
R = NeN, for which the infinimum y(N) is attained. By hypothesis the sequence
yy=@(xy) is bounded in space, therefore by @,°®;'(N}) <=, r, it is also
bounded in time so that we may choose a subsequence y; converging to a point y,,.
Let Aj be the matrix which transforms g (y,) to the Minkowski metric:
9u(V) A5 AL = 1,5, and perform the coordinate transformation y*— ALy” — yh,
the new coordinates and the pulled-back metric still being denoted by y* and g,,.
By continuity of g,,, there exists a ball of radius p, such that |b;| < ¢in the hypercube
Clpy) = {1¥'| £ p1,1¥°| £ py}, with ¢ small enough so that the algebraic manipula-
tions leading to (3.9) (with some other constant c,) can be performed. Let NeN
be large enough so that Vi > N y(x;)eC(p,/2). Let Si(e), Bi(¢) denote the coordinate
sphere and ball of radius & around x;. Let y(e) = inf r(y(x) — y(x;)). Since @, is
xeSi(e)

a diffeomorphism the image by @, of Bi(¢) contains the coordinate ball Bi(x(¢))
of radius y,(e) centered at y; = y(x,). Let us fix i and let x(¢) be any point on Si(e)
such that r(y(x(e)) — y(x;)) = xi¢). Let 6; denote the geodesic distance from y(x(e)) to
y; with respect to the metric a. Decreasing p, if necessary one derives, by an
argument very similar to the one presented above, the inequalities

¢3"2r(x — x;) < 0(y(x)) < 2r(y(x) — y))
which hold for r(y(x) — y) < p,/2. If x(1/4) = p,/2 then @y(Bi(1/4)) contains the
ball Bi(p,/2). If x{(1/4) < p/2 we have
1A1/4) = r(y(xle = 1/4)) — 3) = o 0(x(1/4))2 = c}?/8,

so that in any case @,(Bi(1/4)) contains the ball Bj=Bi(c,), with c,=
min (c3/2/8, p,/2). Consider now the sequence of space balls B of radius 1/4 centered
around x;. We have B\, B% = (J for i #j. Their images @(B) contain balls B, of
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radius ¢4, B, = C(p,), and clearly B) N B, = @ for i # j. This leads to a contradiction
since the infinite sequence of disjoint balls of constant radius B} cannot be contained
in the compact cube |y'| < p;.

Lemma 3. Suppose that the functions 0y*/0x" are uniformly bounded on N%. There
exists a Lorentz matrix A such that, for xe Ny,

=AM+ 0l =0,07%. (3.14)
Proof. Equation (3.7) with (3.8) show that
aZyll —1-a
axaaxﬂ - O(r(x) )3

and an easy argument making use of the lemma of Appendix A establishes (3.14).

Lemma 4. Either one of the quantities A=Y (0x°/0y")* or B=Y (0y°/0x")* is
bounded, in which case (3.14) holds, or lim A= oo = lim B, and there exists a

r—oo r—-o

constant C such that, for r =2 max (1, R,),
A=Cr, B=Cr

Proof. The hypotheses on g, and g,,, imply, by a simple algebraic argument which
makes e.g. use of the ADM formulae relating g,, and g**, that the matrices g*”
and g'** have uniformly bounded coefficients. The equations

ay* oxP oxP oy*

ropn o - ap ./

6Xa g gaﬂ aya s aya g gua axa
show that Y ((dy*/0x%))* < co is equivalent to ) ((0x*/dy°))* < co. Manipulations
similar to the proof of (3.10) starting from (3.4) imply

_ AN 0t \? 0y \?
C W1+ =) (=] = =
Equations (3.10) and (3.15) imply that boundedness of A4 is equivalent to

boundedness of Y ((0x*/0y°))>.
Let D =(}_ (dy*/0x°)*)/2. Equation (3.15) shows in particular that D is strictly
separated from zero. Let E=D~!. From (3.7) and (3.8) we have

0E oy* o0Fy*
ox* ox* 0x*ox*
and Appendix A shows that E has a finite direction independent limit E_, as r
tends to infinity. If E_ is different from zero D is bounded, therefore all the

derivatives dy*/0x’ are bounded and (3.14) follows by Lemma 3. If E_, =0, (3.16)
implies E < Co ™% and from what has been said the estimate on A and B follows.

/D =0(r(x)~ 7% (3.16)

Proposition 1. Suppose there exists a spacelike geodesic I'cQ%, , 0<0,,
I':]0, 0)3s— x(s) such that lim r(x(s)) = co and such that for s> s, there exists

§— 00

a family of timelike differentiable curves I'y:[0,1]5u— y(u)e2y ¢ , 0’ <0, x(u) =
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X(yw)eQ; g, satisfying x0)=(0,%(s)), x,(1)=(xs),%(s)), r(x,u)) = cr(x,0)),
r(y() = cr(y4(0)) for some constant c. Then (3.14) holds.

Proof. Let F=InD, D =(} (0y*/0x°)*)*/*. From (3.7) we have

ayu @Zyu

dF =Dy = G aa %" =Jadx" +dy", (3.17)
where
‘22 _Co(x) N
ZZay F;‘La ,;—Co(y) 1, (3.18)

Consider the Eq. (3.17) along [:
dF/ds =f,dx*/ds + f . dy*/ds. (3.19)

By Proposition B1 (Appendix B) we have for large s x#(s) = s(X% + o(1)), y*(s) =
s(Y* + o(1)) for some constant vectors X% and Y*, and also r(x(s))= C s —C/,
r(y(s)) = ¢~ s — ¢’ for some positive constants ¢, C, ¢/, C’, the right-hand side of (3.19)
is therefore integrable in s and F remains bounded along I'. The differentiable
timelike curve I', can be parametrized by t: [0,x%(s)]et— x(t) = (t, X)) =
(x°(ys(u(®))), X(y«u(t)))), timelikeness of x,(t) and our hypotheses on the coordinate
system imply |(dX,/dt)| < C. Let E be as in Lemma 4. By our hypotheses (3.16)
holds again and we have

|E(x*(s)) — E(0,X(s)| = X:S) =Cr

(1x9(s)| € Or(s) + T,), therefore E , = lim E(x*(s)) # 0 (E, as in the proof of Lemma
4) and the result follows by Lemma 4.
As a corollary of Proposition 1 one obtains immediately the asymptotic

symmetries conjecture under a somewhat stronger assumption than Nz < Qf  :

Corollary 1. Suppose that there exist 0 <& <0, Ry Z Ry, such that Q7 < Q} g ,
0 <0,. Then (3.14) holds.

Proof. By Proposition B2 we can construct a complete spacelike geodesic
I' c Q3 ,. The family of differentiable curves I'; is given by I [0, 1]3u — x(u) =
(x°(s), %(9)) €% p, < D 1,

The rest of the proof will consist in showing that there exists a geodesic satisfying
the hypotheses of Proposition 1. Although this will not be necessary for further
considerations, it is of some interest to note that boundedness of d7/0x? is controlled
by |(0t/0t)|, as is the case for a Lorentz transformation. A simple algebra exercise
leads to the following relationships between the components of a Lorentz matrix
Al

Ab=A?, YIAP=(AP -1, TIAP=2+A%  (320)
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Proposition 2. Either the derivatives 0y*/0x” are uniformly bounded on N} or there
exist constants rq, ¢, and c, such that, for r 2 r,,

T ot
Zcﬂ'a, Z

ot ox'

= c,rh.

Proof. Let e, € be tetrads, defined for sufficiently large r, satisfying
€u(x) =0y + hy(x),  hy=0(r(x)™"),

u
e/ (y) =0, + hi(y), hl=00()""),

(existence of such tetrads can be established by methods similar to e.g. the proof
of Proposition 4.1 of [ChK]). Let A j = e, (0y"/0x°)ef, where ef is the inverse matrix
to e,. Equation (3.1) shows that Aj is a Lorentz matrix, Proposition 2 follows
from (3.8), (3.10), (3.15), (3.20) and from the fact that both hj and h;? can be both
made sufficiently small for sufficiently large r(x).

By inspection of the slopes of the light cones one shows the following:

Lemma 7. For all 0<e<min(f,,1) there exists R,=R, such that for all
x€Q7y _p. satisfying x%> 0 (x° < 0) and for every past (future) directed differenti-
able timelike curve [0,1]3u— p(u)e # satisfying p(0)=x, p(1)eN%_, for which
pweNg . =u=1, we have Yue[0,1] p(u)eM, (the domain of definition of the
coordinates x) and x(u) = x(p(u))€ 2y, _.x - Moreover there exists a constant c such
that ¢~ r(x(1)) < r(x(w)) < cr(x(0)).

Theorem 1. (Asymptotic Symmetries at Spatial Infinity). Let the coordinates {x"}
and {y*} be a-admissible, 0 <o <1, let y(x) be twice differentiable and suppose that
there exist constants R 2 R, and 0 < 0, such that

Ni={x"x"=0,r(x) 2 R} © Q} g, 7, = {y":7(0)) Z R,, [y’ £ Or(y) + T}
There exists a Lorentz matrix A and a constant C such that YxeN%,
=AY s C+nTY (UGl SCU 4T
[ <CAl+r)P for O<a<l, [*|SCA+In(1+7) if a=1

Proof. Multiplying t by —1 if necessary we may assume that the local time
orientations of coordinates x and y coincide (cf. (3.15)). Let R, = R be large enough
so that, for an appropriate R; 2 R,, @¢(N%,) = R*\B¥(R;) = @((N%) (cf. Lemma 1,
point a)). Fix some 0 < 6, <min(1,0,), let R, = max (R}, R,), R} = R/(0,) given by
Lemma 7. Increasing R, if necessary we may assume (cf. Proposition B2) that a)
all the geodesics satisfying x(0)e2y, x,, r(x(0)) = Ry, x%(0) =0, dX/ds,_, = X/R4,
|dt/ds|,_, < 0,/2 remain in £, g, for all s >0, b) dt/ds,_, = 0,/4=>t(s) > 0 for all
s>0,c)dt/ds,_, < —0o/4=1t(s)<Oforalls>0.Letro= sup  r(y(x)). Increasing

r(x)=R4,x0=0
R, if necessary we may assume that all the geodesics satisfying y(0)e 23 ,,, r(y) = 7o,
|dy°/ds|ls=0§ 0/2, dy/ds,_,= y/r, remain in £, for all s=0. Let x,€dN%, be
any of the points satisfying r(y(xo)) =r,. Consider the family of geodesics
I, ¢e[—0,/2,0,/2], where I', is a geodesic starting radially outwards at x,

(dX/ds,_,=X/R,) with dt/ds,_, = ¢. For ¢ > 0,/4 I, lies to the local future of N%.
Suppose that y(x(s))e£2} ., consider the timelike differentiable curve I'; ;:u— yy(u) =

(3.21)
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(uy®(s), ¥(s)). Since @y(Nj,) = R}N\B’(R3) = @y(N%), there exists uy(s) such that
Vs(uo(s))ePy(NR). For small s, u, must be smaller than 1 because @ is a
difffomorphism and the local time orientations agree. This must also be true for
all s > 0 such that y(x(s))e£2},, because, if not, continuity would imply the exist-
ence of a point on I, which belongs to N¥%; this does however not occur for
&> 0y/4. This shows that, for &> 0,/4, either ', £}, and then also I, c
23,,, for ueluy(s),1], or there exists so(e) for which I', crosses B =
{yeQy,0,1,,¥° =0r(y)+ T,}. Similarly for ¢ < —0,/4 either I, 2}, or there
exists so(g) for which I', crosses B~ = { ey ,or, Vo= —0r(y)— T,}. Let n(e) =
dyo(x(s))/ds|s=0. If Iy, crosses B™ then we must have #(0,/2) = 6/2, similarly if
I' 4, crosses B~ then we must have n(—00/2)< —0/2. If I'y,,, <3, set
go=00/2,1f I'_y, = Q3 ,, set e = — 0/2, if neither of the previous cases occurs,
then by continuity of #(¢) there exists ¢, such that —8/2 < #y(e,) < /2, and so in
all cases I',) = 22} .. The family of curves I';, parametrized by u is included in
2}, for appropriate ranges of u, uel[u,(s,&g), u5(s,&0)], by Lemma 7 it is also
included in 27 r,, and the theorem follows by Proposition 1.

For the applications of the asymptotic symmetries theorem it is useful to have
more information about the geometry of the domain of overlap of coordinates x
and y. We have the following:

Corollary 2. Under the hypotheses of Theorem I:
1) Forevery',0 <0 <0, there exists Ry Z R and ¢ > 0 such that Q7 g, = 2} ¢ .
2) Forall0, <0,,0,<0,, RZR,,if QF r < Q}_ g, then there exists a constant
C such that (3.21) holds for all xe3, &.

Outline of proof. Point 1) can be established by considering timelike geodesics
orthogonal to N. Methods of Appendix B show that such geodesics remain both
in Q7g, and 2} p for an appropriate range of affine parameter, which can be
used to establish the result. Point 2) is essentially Corollary 1 (cf. also Appendix A).

In some applications one would like to be able to claim that (3.21) holds
throughout the overlap region. This is clealy false in general when the overlap has
disconnected components. The following corollary shows that (3.21) holds indeed
in the “largest x°-connected component” of the overlap:

Corollary 3. Under the hypotheses of Theorem 1, suppose that either
a) 0,<0,,0,<0,or
b) 0, <0,,0,<0,and C(0,) < o0, C,(0,) < 0.

For XeNyg_ and (s, X)ef23, &, define

the least positive value of s for which the curve
(3) = s — y(s) = y(x° = 5,X) meets 02}, ¢,
0,r(x) + T if y(s) is included in £2}, g,

the largest negative value of s for which the curve
(%) = 5= y(s) = y(x° = 5, X) meets 0824, r,»
—0,1(x) — T, if y(s) is included in 2}, ¢ .

Let Vg, o, = (x:r(x) 2 R,,t~ < x° < t*}. There exists a constant C such that (3.21)
holds for all xeVy, 4,.
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Outline of Proof. One considers timelike geodesics starting from N%o along the x°
axis, for sufficiently large R°. Methods of Appendix B give uniform estimates on
the coordinate components of the velocity vector of the geodesics both in the x
and y charts, arguments similar to the proof of Proposition 2 establish (3.21) for
r larger than some constant and the claim follows.

Let us finally mention that in the case of a stationary metric we can set 6, = oo,
and we can also assume V¥ C(¥)<Cy < o0, a(¥)>a; >0, ¢(¥)>cy >0.
Under such hypotheses the asymptotic symmetries theorem remains true (the only
modifications of the proof occur in the proof of Lemma 2 where time-boundedness
of appropriate sequences follows from spacelikeness of N%). As mentioned in
the introduction this implies the invariant mass theorem without having to assume
a priori that the three-end N7 lies within a finite boost domain of y-coordinates—it
suffices that N% lies within the domain of definition and regularity of the y
coordinates.

Conclusions

We have shown that the asymptotic symmetries conjecture holds provided the
hypersurfaces x° = const and y° = const lie within a finite boost of each other
(0, = 1) or if the metric is a no-radiation metric (0, > 1). The example by R. Geroch
discussed in Sect. 2 shows that our results cannot be improved without some
further hypotheses on the metric. One can write down various supplementary
conditions which will ensure a priori that any two spacelike three-ends will lie
within some finite boost of each other, it seems however that any physically
significant progress will only be made possible after we will have reached a better
understanding of the infinite time behaviour of solutions of vacuum or asymptoti-
cally vacuum Einstein equations.

Appendix A
Lemma. Let a differentiable function f:824 p — R satisfy
sup [f(0,x)|=C, [0,fI£Ca™7% a>0.

r(x)=R

Then f has a direction-independent limit f , as r goes to infinity and
f=fo=0:r"" in Qg
Proof. We have

| £(0,x") = £(0, px'/r(x))| = £Cp7s, for p<r, (A1)

[ofjordr

so that
VxeR"""\B(R) | f(0,x)| £ max | f(0,y)| + CR™*

yeS(R)

which shows that f(0, x) is uniformly bounded. Let r; be any sequence of numbers
tending to co—(A.1) implies that the sequence f(0,r;#) is a Cauchy sequence and
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therefore f (%)= lim f(0,r;7) exists, (A.1) also implies that f_(7) is sequence-

independent. Consider two unit vectors n; and n,. We have
feolna) = fao(ny) = | 0f/0r(0,rny)dr — | 0f/0r(0,rny)dr + Irdf ; (A2)
p P

where I is an arc lying on the sphere S(p) joining pn, with pn,. Equation (A.2)
implies | f,(n,) — f(n;)| £ Cp~* for any p, therefore f, is direction independent.
From (A.1) one finds that | f(0,x) — f,| < Cr™* Finally

f(t,x) =£(0,x) + j afjotdt,
0

which yields
Lf(t,%)—fol SCr e+ Cltlr™*7,

which proves our assertion because [t| < 0r+ T in 2 ;.

Appendix B
Proposition Bl. Let g be a C, metric in §2, g 1 satisfying
Iguv(x) - nuvl é Co.(x)—a’ |agpv(x)/axa| é Co.(x)—a— 1’ O<a é 1.

For every complete non-timelike geodesic I c Qg p r such that lim r(x(s)) = co, where

s> 0

s is an affine parameter, there exists a vector n*, such that
xH(s) = s + ¥ + x#(0),
{# satisfying for s = 0, with ry = r(x(0)),
|dC¥(s)/ds| < Clro +5)7%  |d*(M(s)/ds*| < Clro +5)* 71,
[CHMs)| £ Cs(rg+s)™* for O<a<l, |(Ms)|=Cln(l+s/ry) if a=1.
Proof. Since lim r(x(s)) = oo, for every s, there exists s, > s, such that dr/ds,,_, 2 0.

§— 00

Let us parametrize the geodesic by an affine parameter such that s,=0,
(dx'/ds)(dx'/ds),_y=1. For ro>ry,r, sufficiently large and for all s such that
3/4 < (dx'/ds)(dx"/ds) < 5/4 non-timelikeness of dx/ds implies |dt/ds| < 2. A simple
calculation gives

d’r* _(dx'dx' LT dx*dx”
ds> "\ ds ds Wds ds )
which again for 3/4 < (dx'/ds)(dx'/ds) < 5/4 and for r(s) > r, gives, increasing r, if
necessary,
d2r2
ds?

since dr/ds;,_y=0. Let s, be such that for all 0<s<s,, (3/4)"* <|dx'/ds| <
(5/4)"/% (s, > 0 because (dx'/ds)(dx'/ds),_, =1 and dx/ds depends continuously on

> 1=r25) 2 +5%/2,
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s). For s <s, we have | I"% (dx"/ds)(dx*/ds)| < C(r, + )~ ' % so that

dx*

dxll s
et _ < —1-a < —a
O~ g O =] Cro+ 07 *du< Cry o,

therefore for sufficiently large r, we have s, = co and the propostion follows.

Proposition B2. Under the hypotheses of Proposition B1, for every p > r, there exist
0, (p) satisfying —0 <0_ <0< 0, <0 such that every geodesic satisfying
dx’ . dt
Q — =x'Yr, 0_<—
X(O)E 6,p,T> dS |S:0 x/r —dS 's:O
remains in Qg ,r for all s>0, and satisfies r(x(s)) 2 (ro +5)/2 (in particular the
estimates of Bl hold). We have lim —6_(p)= lim 0 ,(p)=0. There also exist

p— o p—©
e, (p) satisfying 0 _(p) < e_(p) £ 0 < e, (p) < 0., (p) such that if, for the above geodesics,
t(0) 2 0, dt/ds,_o > € (p), then for all s t(s) 2 0 (if t(0) = 0, dt/ds,,_, < e_(p), then for
all s t(s) £0). We have lim ¢_(p) = lim ¢, (p) =0.

p—> p— o

=6, (B.1)

Proof. Let p(e) be large enough so that for any curve x(s)ef2y ) r satisfying
[(dx*/ds)| <2 and r(s) = (ro + 5)/2 we have [ |I"% (dx*/ds)(dx’/ds)| < e. By methods
(4]

similar to the proof of Proposition Bl one shows that every radially outgoing
geodesic with x(0)e 2, , ., r will satisfy

(1—8)s+ro <Hs) < (1 +0)s +ro,
(n—90)s+to=ts)<(n+9d)s+ty, where n=dt/ds_,,

with some d(e), 6(e)—0 as e~ 0, provided x(s) remains in €2, ,,, r, and the result
readily follows.
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Note added in proof. It should be stressed that throughout this paper the addition of a sub- or superscript
X or y to a constant, e.g. ¢,, C,, a,(¥) etc., does not indicate a pointwise dependence of the constants c, C,
a(y), but is meant to stress that the constant in question depends upon the coordinate system {x*} or {y*}.





