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Abstract. A phenomenological model for a strongly disordered superconductor
is considered. This is a modification of the Bardeen-Cooper-Schrieffer approach
for a system with random phonon-electron interaction. We show that the
instability of its mean field theory cannot be fitted by a power law with a
positive exponent, in contrast to a recent result based on perturbation theory.

1. Introduction

Theoretical investigations of the effect of disorder in superconducting materials
started soon after the invention of the famous Bardeen-Cooper-Schrieffer (BCS)
theory in 1957 [1]. As expected from experiments, the presence of a weak random
potential in this theory, describing weak disorder, does not alter essentially the
superconducting properties [2]. In particular, the gap of the density of states,
characterizing the superconductor below the transition point, is stable against a
perturbation by the weak random potential [3]. More recent experiments with
strongly disordered superconducting materials, exhibiting unusual properties, have
motivated extending work in this field. In contrast to the earlier results, one is
interested in the description of new properties probably caused by disorder. For
instance, strong fluctuations of the gap width have been observed in experiments
with various alloys. On the other hand, measurements at very low temperature
(T « \K) indicate a linearly increasing specific heat with temperature like in normal
metals. Therefore, it was argued that this type of disordered superconductors is
gapless.

The observation of a strongly fluctuating gap width leads to the construction
of a phenomenological modification of the BCS theory [4]. Suppose that the
Cooper pairs, the central objects of the BCS theory, are also the supercurrent
carrying states of the disordered superconductor. Then it is natural to introduce
an external field φ which couples with the Cooper pairs. As in the BCS theory,
this field can be fixed by its saddle point value which, in turn, results in a
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self-consistent condition. However, due to the presence of randomness, this yields
a complicated random functional equation. Instead of solving the equation, one
chooses the field φ as a local random variable which is statistically independent
on different points and independent of the other random variables of the model
[4]. From the BCS theory it is known that the homogeneous field φ generates a
gap of width \φ\. Therefore, a locally fluctuating φ represents the fluctuating gap
observed in experiments.

This phenomenological model is certainly a very crude caricature of the
disordered superconductor. Nevertheless, we can hope that some qualitative
features of a more subtle description occur in the simple model and vice versa. A
typical example of that might be spontaneous symmetry breaking.

The model under consideration has been studied in a series of articles by
Oppermann [4,5]. He suggested a mean field theory similar to the coherent
potential approximation [6]. Perturbation theory around the homogeneous mean
field solution is singular at the Fermi energy. This reflects an instability of the
mean field theory. It was claimed that the singularity could be related to a power
law for certain quantities like the average density of states. Using the power law
as an ansatz, its exponent can be fitted within the perturbation expansion. For
instance a square root singularity has been found for the average density of states
of a three dimensional system [5].

The aim of this article is to show that the ansatz of a power law with a positive
exponent, as found in the above mentioned work, is wrong. In particular, we find
a positive average density of states at the point of instability (see Theorem 1 at
the end of Sect. 2 for a precise statement).

The investigation of the average density of states turns out to be more
complicated than in similar random tight-binding models like the Anderson model
[7]. This is related to the fact that neither a cluster (or high-temperature or strong
coupling...) expansion nor a soluble model (like the Lloyd model [8]) exist here.
In other words, the density of states has similar properties as the response
function of the electric field in the Anderson model. It shares with the latter that
it is a function which depends on complex energies of both half-planes
p(E + ίε, E - iε).

Our proof of positivity consists of two parts. At first, we derive a lower bound
for the local density of states at a lattice point x. This bound is the derivative of
a "generating function" with respect to a random field at x, see (3.22). Integration
over the random field compensates the derivation and we obtain for the
unnormalized average density of states a bound which is extensive, i.e. it grows
with the lattice size. This is shown in the second part. We separate for this purpose
a subset S of the lattice and estimate the contribution of the interaction with the
remaining lattice. It goes like the surface of S. On the other hand, the isolated part
goes like the volume of S. The normalization with the lattice volume yields therefore
a positive expression.

The method of the second part is well-known and has been used for several
problems in statistical physics. It was used by Wegner to give a lower bound for
the average density of states of the Anderson model with random potential [9].
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2. The Model

In a metal, superconductance can occur due to a collective behaviour of the
conduction electrons. An attractive electron-electron interaction, mediated by
phonons, leads to the formation of Cooper pairs. The classical model for such a
system, in absence of an electromagnetic field, is given by the action of a grand
canonical ensemble at inverse temperature β

A== Σ J Σ Wx'τ)( g--μ(x)]ψs(x>τ)- Σ ψs(x,τ)H0(x,x')ψs(x',τ) \dτ

β

0 xeΛ

in a functional integral representation [10]. ψs(x9τ) and ψs(x,τ) are Grassmann
fields depending on the spin se{t, J,}, the lattice site xeΛ and the "time" variable
τ. For simplicity, Λ is chosen as a ^-dimensional hypercubic lattice. This is a
tight-binding description of the electrons in a crystal. It is equivalent to the
introduction of a cut-off in the continuum theory in order to avoid ultraviolet
divergences [10]. The nearest-neighbour matrix H0 is related to the kinetic energy
of the electrons and μ is the chemical potential. It is convenient to define the latter
in a way such that H0 has vanishing diagonal elements:

TJ (γ γ\ _ Γ) (^ Ί]
H Q J^V, Λ,J — U. \^ ^)

In the partition function

Z = J exp( - A) Π dψs(x9 τ)dψs(x, τ), (2.3)
x,s,τ

the quartic interaction can be expressed as an interaction with a real auxiliary field
φ(x9 τ) using the identity

00

— 00

τ)[^T(x, τ)^(x, τ) 4- ι A j ( x , τ ) Φ ϊ ( x > τ ) l}dφ(x, τ). (2.4)

By analogy to the BCS theory, we approximate the auxiliary field by the field φ(x);
i.e., we ignore its τ-dependence. This step enables us to diagonalize the action with
respect to τ by means of a Fourier transformation

\l/s(x9τ)-»\i/s(x9m\ (2.5)
with

ξm = πβ-1m. (2.6)

and m runs over all odd integers [10]. Thus, the partition function reads

Z = J exp( - A') Y[\dφ(x) Π dφ,(x, m)d$s(x, m)l (2.7)
x |_ m,s _]
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with the action

A> = Σ Σ M«*> "»)[ - !'ίm - lM\Φ,(x, m) - Σ «Wx, m)H0(x, x')fc(x

, -m)]
*

(2.8)

which is bilinear in ψs. We notice that the action is not completely diagonalized
by the Fourier transformation; it remains a coupling of fields with m and — m.

This model is supposed to describe a disordered superconductor if the coupling
parameter g is a locally fluctuating random variable. As a second approximation,
we consider

A(x) = ^/2g(x)φ(x) (xGλ) (2.9)

as new random variables which are statistically independent of φ(x). Furthermore,
(H0(x,x')} and (μ(x)} are chosen as statistically independent random variables
except for the symmetry

H0(x,x') = H0(x',x).

This is the model suggested in ref. 4. The (^-integration is now entirely separated
from the others in the partition function or in the Green's function

and can be performed. The brackets here mean

,'«)]. (2-11)

The Green's function reads then after the φ- and (/^-integration as a 2\Λ\ x2\Λ\
matrix (\Λ\ is the number of lattice points)

G(ξm) = [(H0 + M)^3 + Δσ, + z^σ0] -
 1 (2.12)

with Pauli matrices {σ/}. The random field A appears in the off-diagonal elements
of the 2 x 2 Pauli matrix structure. It will be more convenient to have the lattice
non-diagonal matrix H0 4- μ in this position. To achieve this we apply a unitary
transformation to G(ξm):

G->G'=U2GUΪ (2.13)

with

ί/2 = 2-1/2(σ0 + iσ2). (2.14)

The new Green's function reads

G'(ξm) = l-(Hϋ + μ)σ, + Δσ3 + ίξmσ0J ~ '. (2.15)

The density of states at the energy E is given after the analytic continuation
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iξm -» E + iε (sign ε = sign ξm) as

pΛ(E) = -l-τlimImTr/1[G11(-i£-β)]. (2.16)
π|Λ | ε jo

The diagonal blocks of the matrix (2.12)

G11(ξm) = ίH0+μ + iξm + Δ(H0 + μ-iξmΓ1Δr\

G22(ξm) = l-H0-μ + ίξm-Δ(H0 + μ + iξmΓiΔTl (2.17)

satisfy the relation

The second equation of (2.18) holds only for real ξm. This implies for the density
of states at E = 0:

e|0

imTr2A[G/(-ε)]. (2.19)
e|0

The trace operation Tr2 Λ is taken with respect to the lattice sites x and the
Pauli matrix structure, TrΛ with respect to the lattice sites only.

The frequency-independent part of the Green's function G'

Δσ3 (2.20)

is invariant under the discrete chiral transformation

H-^-σ2Hσ2, (2.21)

whereas the frequency term ί£mσ0 apparently breaks this symmetry. As a
consequence, for the Green's function the following holds:

Tr2Λ[G'(£m)] = Ίr2Λlσ2G'(ξm)σΛ = -Tr2Λ[G'( -£*)]• (2-22)

The quantity Tr2Λ[G/(^m)] and, therefore, pΛ(E = 0), indicate spontaneous
symmetry breaking if they do not vanish with £m-»0. The instability of the mean
field theory and a possible spontaneous symmetry breaking occur at the energy
£ = 0. Since we are concerned with this special problem here only pΛ(0) will be
considered in what follows. Depending on the choice of the field Δ different
situations with respect to this property can appear. There are two special
realizations of the random variables which allow a direct evaluation of pΛ(E = 0):

a) Δ(x) > 0 (or < 0) for all x:

The trace term in (2.19) can be written

= Tr2 Λ{σ3 [(H0 + μ)σ0 - i(Δσ2 + εσ3)] ~ 1}. (2.23)

The unitary transformation with

ί/ = 2-1/2(σ0-iσ1) (2.24)
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diagonalizes the zl-term while the (H0 + μ) term remains unchanged. The right-hand
side of (2.23) reads then

+ )Γ1}^ (2.25)

The limit εj,0 of this expression exists, since A is positive (or negative):

Tr2Λ{[/σ3ί/+[(H0 + μ)σ0-/Δσ3)]-1}, (2.26)

and it is vanishes because of

1} = 0. (2.27)

Thus the density of states vanishes at E = 0. It reflects the existence of a gap. This
is not surprising, because it is known from the BCS theory that there is a gap of
width 2 \Δ I if Δ is homogeneous.

b) μ is homogeneous, Δ is a staggered field:

Δ(x) = ΔD(x\ A homogeneous, with

-l)Xl+X2 + '"+Xd. (2.28)
The transformation

G( - ε) -> tG( - ε)t = G"( - ε) (2.29)

with

«*>-{"• ΐ 2*!" i (130)
[σ3, if D(x)= — 1

yields

G"( - ε) - [(H0 - iε)σ0 + μσ3 + Δσί ] ~ 1 .

The homogeneous term μσ3 + Δσ1 can be diagonalized by means of a global (i.e.,
x-independent) orthogonal transformation

μσ3 + Δσ^Jμ2 + Δ2σ39 (2.31)

such that we obtain for the trace of the Green's function

Tr2/i[G(- ε)] = Tr2/i[G"(- ε)] = Tr2/1{[(tf0 - iε)σ0 + ̂ μ2 + Z2^]'1}. (2.32)

This expression yields a non-vanishing density of states at £ = 0 if y/μ2 + ̂ 2 or

— ̂ /μ2 + Z2 lies in the spectrum of H0 . Thus certain realizations of the random
variables lead to a positive density of states and, therefore, to spontaneous symmetry
breaking. There remains the question of whether these contribute with non-zero
measure such that the average density of states is positive in the infinite volume
limit. It turns out that the average density of states is indeed positive.

Theorem 1. Let Δ(x\ μ(x) and H0(x, x') be continuously distributed random variables
on the interval [ — c, c'](c, c' > 0) with non-vanishing density. These random variables
are statistically independent on different lattice sites x,x'eΛ. Then there is a positive
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average density of states

SpΛ(E = 0)dP({Δ,μ,H0}),

which is bounded from below uniformly on A c Zd.

3. Proof of a Lower Bound on the Average Density of States

3.1. Derivation of a Bounding Function. For any realization of the random
variables the density of states, as given in (2.19), is a sum over all lattice points of
the positive quantities

)-[G'11(-ε)] + };cx. (3.1)

This is indeed positive because the Green's function can be written as

G\1(-ε) = (X-iεYΓ1 (3.2)

with the Hermitian matrix

X = Δ + (HQ + μ)Δ(Δ2 + ε2)"1^ + μ), (3.3)

and the positive Hermitian matrix

Y=l + (H0 + μ)(Δ2 + e2Γl(H0 + μ). (3.4)

Therefore, the difference

1X + B2Y)-1 (3.5)

is a positive matrix.
We may write

1X + ε2Y)-1IΣ'] (3.6)

for a finite subregion Σ of the ^/-dimensional lattice A. IΣ is a projector to Σ given
by a diagonal matrix:

For a sequence of disjoint subsets (£J of A we obtain a lower bound for the
density of state as

^ =

Consider now a finite cube S of the lattice Λ. We restrict the fluctuations of the
random variables on S. For any α, α' > 0 with

\Δ\^OL (3.9a)
and

|H0(x,x% |μ(x)|^α'<*), (3.9b)

there exists a τ(α, α') (1 < τ < oo) with

Y-YS and τYs- Y (3.10)
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are positive for

Y, = l+(H0 + μ)(l-Ia)(Δ2 + ε2Γl(Ho + μ). (3.11)

We notice that Ys does not depend on Δ(x) (xeS). Then there is a lower bound
for (3.6) due to the inequality (A.9) of the appendix:

θs^TτKXY^X + εtYsΓ^s l. (3.12)

The subregion S' of S is given as a set of lattice points which are disconnected
from the lattice outside of S with respect to H0:

(3.13)

It is convenient to introduce now a new random variable μ' with

(3.14)
μx,x

where

The matrix X of (3.3) reads then

X = A + Is.μ'2Δ + (1 - Is.)μ'2Δ~ 1 + HQ&-1H0

+ Is,μ'TH0 + (l-Is,)μ'Δ-lH0 + H0TμΊs, + H0Δ-l

μ'(l-Is,) (3.16)

with

and we obtain by differentiation for fixed μ':

/s [l + (l-ε24-V2] + ί/o(ε2-42)(42 + ε

2)-2/s.//o. (3.17)

Therefore, we find with the function

the identity

ε2^-V2/S'-H0(42-ε2)(42 + 62)-2/s,H0)]}. (3.20)

Since the first term on the right-hand side of (3.17) is positive and the second one
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is negative due to \Δ(x)\ > ε, we have

dF
(3.21)

xeS' OX

or
1 dF

θs. ̂  - inf (1 + μ'(x)2Γl Σ ^7T (3-22)
τ xeS' xeS' 04(X)

from (3.12).
The Jacobian J of the substitution μ -> μ' is

J=Πl^(*)l^[l-<>(β2)] | s Ί (3.23)
jceS'

such that we get from (3.22)

f ®s.dP({4ftflo})£τJ' Σ ^rdP({4μ,H0}) (3.24)

with

TI = - inf (1 + μ'(x)2)~1[l -0(e2)]'5'«, (3.25)
t xeS'

and Jr denotes the integration with respect to the restriction of (3.9a, b). Now we
divide S' into two disjoint subsets S1>2 as

-l)>}9 (3.26)

where D(x) is defined in (2.28). The integration over Δ(x) on S' in (3.24) can be
parametrized for a fixed x/eS,- with

Δj:=Δ(xj) (3.27)
as

Δ(x) = Δj + δ(x) X j ϊ x e S j . (3.28)

The integrand in (3.24) reads then

' =Ϊ SF_
' ^ ' '

and we may separate the integration over Λ}:

J U) *j OZλj Δje[aj,*j] aί

= Σ ί {f(Δj= ^j) ~ F(Δj= αj)l iflf " — ({Δ, μ', #0} )• (3.30)
J U) ΔjeίKjjj ] ^Δj

The integration over Δj is restricted to

α!=α, α!>α, (3.31)

α2 < — α, α2 = — α, (3.32)
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and J dP/dΔj denotes here the integration over the restricted random variables
ϋ)

except for that of Δj = Δ(XJ).

3.2. Useful Properties of the Function F. The generating F({Δ(x)}) of (3.18) can be
generalized to the function

which yields apparently

F(7 = 0) = F. (3.34)

This function has similar properties as the integrated density of states of a
tight-binding model for a particle in a random potential V(x). Wegner used this
quantity to derive a lower bound for the average density of states of the random
potential model [9]. We shall modify his method in order to estimate the right-hand
side of (3.30). The properties of F(F) which are useful for the estimation are the
following:

(i) F(F) is monotonously increasing with V(x) (xeΛ):

= 2εl(X + V) YS 1 (X + V) + ε2 Ys^ ^ 0. (3.35)

(ii) The fluctuations of F with respect to V are bounded:

F(7(x) = t;)-F(F(x) = t/)^2π for υ^v', xeΛ, (3.36)

and in particular

F(F(x) - oo) - F(7(x) = - oo) = 2π.

This holds because we can write the difference as an integral

f dV(x) = i \ \_(X + V + iεYs)~l — (X + V' — iεYs)~l~\dV(x). (3.37)
v'dV(x) v'

(X + V± iεYs)^1 as a function of V(x) can be expressed in terms of a scalar
function [11]

(X + v - iεγs)^ = ((Z(X))* + κ(x))-11

(X + 7 + iεYs)-,1 = (z(x) + Ϋ(χ))~1 j l ' j

with

z(x) = [(A- + 7- VI{X} + iεy^1]"1, (3.39)
which implies

0 ̂  2 Imz(x) f [(Re z(x) + F(x))2 + (Imz(x))2] "1 d7(x) ̂  2π (3.40)

for the right-hand side of (3.37).

(iii) For the subset S"

x'eS' with X(x,x')^Q}9 (3.41)
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the limit of an infinite potential on S" is

lim F(F) = FS,(J/7S,) (3.42)

The quantity Fs- (and , respectively) is given by the projection of Λ to S':

Fy(KJy) = ίlogΓ S'' -τ "'*>'*•> (343)s v s; &} A~+ (Ί ίv i T/ , Λ v \ r \ ί ' v j ̂ J;(dets.(Is.(X+V-iεYs)Is,)y

where dets- is the determinant of a |S'| x |S'| matrix. The isolation of F on S" from
the remaining lattice due to the limit in (3.42) can be seen directly by means of the
identity

with
= det{P(X+V+iεYs)P[P(X+V-iεYs)PTί}.

The limit of an infinite potential yields then

lim
F(x)->±oo(xeS")

From the definition of 8" it follows immediately that

and therefore (3.42).

(3.44)

(3.45)

Γ. (3.46)

V± iεYs)(l - 1^), (3.47)

Fig. 1. The subsets S, S' and S":S is horizontally hatched and S" is diagonally hatched. The internal
region, which appears only horizontally hatched, is S'. It consists of 5Ί (points) and S2 (circles)

(iv) Under the assumption that

IS,(X + V)IS, has \Sj\ positive eigenvalues for Δj = dl9

IS.(X + V)IS, has \Sj\ negative eigenvalues for Δj = d2
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independently of ε (i.e., also in the limit ε J,0), we obtain

Fs.(Δj = d,)- Fs,(Δj = d2) = \Sj [2π + o(ε)]. (3.48)

Since IS\X + V)IS. is a Hermitian matrix, there is a unitary transformation which
diagonalizes this matrix and we may write

i (3 49)

with {λx} eigenvalues of IS,(X + V)IS,. The matrix Ys appears here only as
since we have

(3.50)

according to the definitions (3.11) and (3.13).
Then we express the left-hand side of (3.48) as an integral

- Σ [(^-iεΓM^ + ifi
xeSj λx(Δ'=d2) xeSj

(3.51)

where we have used λx(Δ' = d1)>0, λx(Δ' = d2)<Q for xeSj according to the
assumption. It is also clear from this argument that (3.49) is only of order ε if the
eigenvalues do not change the sign on the interval [d1?d2]

Turning back to the inequality (3.30) we consider at first the difference

F(V9Δj = δ ί j ) - F ( V 9 Δ = *j) (3.52)

instead of the integrand on the right-hand side of (3.30). Due to (i)-(iv) we are now
in a position to estimate this expression for arbitrary values of V(x). First of all,
property (i) yields a lower bound if we set V on S" — oo in the first term of (3.52)
and + oo in the second term, respectively:

(3.53)

After a successive application of (ii) for all xeS", the second term on the right-hand
side satisfies the equation

F({V(x)=oo},Δj = aj) = 2π\S"\ + V({V(x)=-oo},Δj = aj). (3.54)

Eventually, we find due to property (iii) that the difference in (3.52) can be expressed
by the function F restricted to S'. Thus we have

(3.55)

as a lower bound of (3.52). The FΛχ(S'uS"} of (3.42) do not appear, because they are
independent of Δ(x) (xeS) and, therefore, independent of Δj. Consequently, they
are canceled by the difference in (3.55). Inserting this bound into (3.30), we may
perform the (unrestricted) integration over the random variables on Λ\S which are
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statistically independent from those of Fs, :

J[F(7,4 = άj)-F(^ = αj)] inf -̂  J [-2π|S"| + Fs,(l//s,,zlJ. = α j)
0') ^eO;,^] flZ17 (7)

- FS,(F/S', 4/ = α)] inf — - (random variables on 5). (3.56)
4ye [«,•,«,.] "^j

All manipulations hold for any value of V in (3.52). In particular, we can set V = 0
which yields an estimation of (3.30):

α,)] inf - ( {4μ ' ,# 0 } )^Σ j [-2τt|S"|
(7) Λ eOj.ά,] aZλJ J 0')

dP
+ FS'(4; = a,-) — Fs,(Δj = a,-)] inf — — (random variables on S), (3.57)

Our proof of pΛ(0) > 0 is accomplished when we show that the right-hand side
of (3.57) is positive. Using property (iv) this means in turn that we must investigate
the matrix

(3.58)

with the parametrization

(3.59)

According to the previous discussion in Sect. 2 about a non-vanishing density of
states for a staggered field Δ, we suppose that Δ(x) is positive (negative) on SΊ (S2)
Furthermore, it is convenient for the following to choose the cube S such that

|S1| = |S2|. (3.60)

The determinants of Fs,(Δj) in (3.18) can then be rewritten as

dets.(/s.A7s. ± iels.) = detSj[/SjΛΓ/Sj ± iεIS] - ISjXISk(ISkXISk ± ieI5k)^ISlcXISi1

deίSk(ISkXISk±iεISk) ( k ^ j ) , (3.61)

where (•• )s^1 is the inverse with respect to S. In particular, we have

Is,XIS] = ISj(A + μ'2Δ) + IsβoΛ'1 H0lSj, (3.62)

and due to the fact that H0 is a nearest-neighbour matrix we find

/^jM-'ίίo/s^/^/fo/^^Ho/s, (3.63)

with k^je{ί,2}.
Moreover, the off-diagonal blocks of X read

H0Tμ')ISk (k * j). (3.64)
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The latter do not depend on A explicitly. The matrix ISjH0Δ~1H0ISj can be
estimated by means of the lattice Laplace operator: For j=l one has

-ISίH0A-*H0ISί= -ISίHQIS2Δ^H0ISί^ inf \Δ(x)\^ISlH
2ISl, (3.65)

xe$2

and analogous for j = 2(A^B means here A — B is non-negative). Then we notice
that HQ separates with Sί and S2 as

H2 = ISίH
2ISί+IS2H

2IS2. (3.66)

This means that HQ can be diagonalized separately by two unitary transformations

Vj:
UjISjH

2ISjU+ (3.67)

is diagonal for an appropriate Uj. The eigenvalues correspond to those of the
lattice Laplace operator if we consider constant matrix elements on S:

H0(x,x') = h (x,x'eS). (3.68)

Then we may write

Is,HlIs. = (IS>H0IS,)
2 = h2{Is.(ΔD + 2d)/s,]

2, (3.69)

where —IS.ADIS, is the Dirichlet Laplace operator on S". It is positive and
the eigenvalues of [IS>(ΔD + 2d)/sJ

2 have a lower bound of the order of \S'\~lld

(cf. ref. 12). Thus, Is,Hlls, is also positive if we allow small fluctuations for the
elements of H0 around h:

H0(x9 x') = h + δH0(x, xf) (x, x'eS'). (3.70)

Now we can study the Zl-dependence of the Hermitian part of the matrix in (3.61)
for ; = 1:

ISίXISί - ISlXIS2XIS2l(IS2XIS2)
2 + e2/S2]sV V* (3.71)

with
Δ(x)>0 (xeSJ, Δ(x)<0 (xeS2). (3.72)

We suppose that the fluctuations δ(x) of Δ(x) are small compared to Δjf Then we
notice that IS2XIS2 decreases unbounded with μ'(x) (xeS2). Thus, we may always
choose this quantity such that

IS2XIS2<0. (3.73)

On the other hand, the second term of (3.71) is bounded for arbitrary large values
of (μ'(x))2 (xeS2) while ISίXISl is independent of that. Moreover, we find that
ISίXISί decreases unbounded with Δ(x)^ΰ (xeS2)9 since ISlHlls^ is positive.
Therefore, for a given α t >0 there is an interval for Δ(x) (xeS2) such that for
Δί w «! the matrix of (3.71) is negative.

Furthermore, ISίXISl increases unbounded with Δl9 whereas the second
term of (3.71) decreases (becomes more and more negative) in this case, since
IS2H0ISίΔ~1HQlS2 is positive and we keep IS2XIS2 negative by an appropriate
choice of μ'(x) on S2. Thus, there is a sufficiently large δίί > α t such that for Δi « δίί

(3.71) is positive. This already would yield a positive average density of states on
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Si. However, we can give an analogous argumentation for the contribution on S2.
We find then that

/S2X/52-/S2Z/SlZ/sJ(/SlZ/sJ
2 + ε2/Sl]s-//SlX/S2 (3.74)

is negative for Δ2 α α2 and positive for Δ2 ~ α2 f°
r an appropriate choice of α2

(<ά2), Δ(x)(xeS1) and μ'(x) (xeSJ. In both cases the appropriate choice of the
variables is always possible within the conditions of Theorem 1, since the density
of states obeys the scaling relation

pΛ({4μ,H0}) = ίpΛ({ί4,^ίH0}); (3.75)

i.e., the support of the distributions of Δ, μ, and H0 can be extended to any finite
value by a scaling transformation.

Property (iv) implies now that

(3.76)

since the second determinant det(/Sk(Jf + iε)/Sk) in (3.61) contributes only a term
of order ε. This is due to the fact that the eigenvalues of ISkXISk do not change
the sign for Δje[u,j,ΰj~] (see (3.73)). Thus we conclude from (3.30) a positive lower
bound for the average density of states on S":

J inf
Λj eOjMXj] d/

2π[|SΊ-2|S"| + o(ε)], (3.77)

with the finite, non-vanishing perfactors defined before. S" is the d — 1 dimensional
"surface" of thickness 2 of the d-dimensional set S' c Λ, since S" is only given by
the next nearest lattice points with respect to S'. Therefore, we find always a
sufficiently large, finite set S' such that the last factor on the right-hand side of
(3.71) is positive. This implies that the average density of states p A(E = 0), defined
in (2.19), is bounded from below by a positive constant uniformly in Λ.

Remark. This proof can be extended to more general matrices H0 with finite range.

4. Conclusion

We have shown that the average density of states for the phenomenological model
of strongly disordered superconductors is positive at E = 0. This result has the
following consequences and interpretations:

a) The particle-hole symmetry, as given in (2.21), is spontaneously broken.
b) The instability of the mean field solution cannot be fitted — in contrast to the
result of a perturbation theory — by a power law with positive exponent.
c) While weak randomness does not affect the gap of the pure BCS theory, strong
randomness can destroy the gap entirely.

It has been argued in ref. 4 that the model under consideration can describe a
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glass-like behaviour. In this context, a field theory, based on the replica trick similar
to models of spin glasses, is considered. It would be interesting to see whether the
instability of the mean field theory can be cured in terms of a perturbation theory
using a "replica symmetry broken" mean field solution as suggested in the spin
glass theory [13].

Appendix

For two Hermitian matrices M l 5M 2 the order relation

Ml>M2 (A.I)

means that M1 — M2 is a positive matrix. This relation of order can be used as
the order relation of real numbers. For instance, we have for M1 , M2 > 0, M1 > M2 :

M^<M2\ (A.2)
since

(M2

1-M^ίΓ1=M2(M1-M2Γ
1Mi=M2(Mi-M2Γ

1(M1-M2 + M2)

= M2 + M2(Ml - M2}~1 M2 > 0,

and due to
Af-^0 <=> M>0. (A.3)

Suppose that
B,B'>0

and
sB'<B< tB', (A.4)

with 0 < s ̂  1 ̂  t. Then we have

- - - - B. (A.5)
s s s

Furthermore

(A.6)

and

-B'-B = (-- t)B' + tB'-B>0, (A.7)
s \s J

according to the assumption (A.4). Thus the expression of (A.5) is positive, which
implies

(AB~1A + BΓ1 >-(AB'~lA + F)" 1 (A.8)

due to (A.2). Finally, a positive matrix possesses positive diagonal elements such that

A + BT^^O. (A.9)
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