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Abstract. We consider Markov processes arising from small random per-
turbations of non-chaotic dynamical systems. Under rather general conditions
we prove that, with large probability, the distance between two arbitrary paths
starting close to a same attractor of the unperturbed system decreases
exponentially fast in time. The case of paths starting in different basins of
attraction is also considered as well as some applications to the analysis of the
invariant measure and to elliptic problems with small parameter in front to
the second derivatives. The proof is based on a multiscale analysis of the typical
trajectories of the Markov process; this analysis is done using techniques
involved in the proof of Anderson localization for disordered quantum systems.

Section 0. Introduction

This paper is concerned with the study of the dependence on the initial condition
of some Markov processes Xε

t which arise from small random perturbations of
dynamical systems. These kind of processes arise more and more frequently in
different areas of natural sciences like theoretical physics, statistical mechanics,
chemistry, ergodic theory and ecology (see e.g. [1-5]) and their mathematical
theory has been developed first by Ventzel and Freidlin in their basic work [6]
and by Kiefer [7]. Following their ideas Gora analyzed the discrete case [8].

More precisely we will treat two different examples:
a) the discrete case, teN in which the Markov chain Xε

t is obtained by randomly
composing two maps T and Tε from a compact differentiate manifold M, with Tε

very close to the identity as ε->0.
b) the continuous case when the process Xε is a diffusion process in Rn, solution

of an ordinary Ito equation:

dXε

t = b(Xε

t)dt + εdwt. (0.1)

The precise hypotheses on T and Tε are stated in Sects. 1 and 2. Basically we
assume that the deterministic dynamical systems x->T(x) or dxt = b(xt)dt have
only a finite number of asymptotically stable fixed points or periodic orbits with
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negative Lyapunov exponent. A typical example is given by b(x) = — V U(x) with
U(x) = x4/4 — x2/2. A critical discussion of our hypotheses is contained in the first
paragraph of Sect. 1 and mainly in Sect. 2.

The general problem we want to address is the analysis of the behaviour of
the random map x-*Xε

t(x) for any large enough f, where Xε

t(x) is the process at
time ί starting at x.

In particular we ask whether with large probability the process loses memory
of the initial condition x path by path at least when x is in a small neighborhood
C of the attractors of the unperturbed system. By this we mean that the map
x-*Xε

t(x) becomes almost constant on the set C as time increases and ε is small
but uniform in ί.

Another alternative way to look at this problem is to ask whether two arbitrary
initial conditions x and y close to the same attractor will eventually glue together
under the same random evolution.

This problem is, to our knowledge, completely new and any answer to the
above question is clearly relevant in all those problems of probability theory in
which the loss of memory of the initial condition plays an important role, e.g. the
proof of the exponential distribution of the exist time of the process from a
completely attracted domain (see [9,10 and especially 11] where an infinite
dimensional case is also discussed), the detailed study of the invariant measure of
the process (see Sect. 1, Theorem 1.2) and the behaviour of the solution of elliptic
boundary value problems with small parameter in front of the highest derivatives
(see Sect. 3). Moreover these kind of questions seem to be relevant also in statistical
mechanics of disordered systems, e.g. in the study of the dynamics of some spin-glass
models and neural-networks (see [12]). However our results do not yet cover these
last examples.

Clearly our problem belongs to the more general context of the study of
stochastic flows; we refer the reader to the book by Kiefer [13]. In particular for
the flows considered in this paper the general theory of the characteristic exponents
(Lyapunov exponent) has been developed in [14,15] (see also [16]) and some
concrete examples were provided with the negative largest Lyapunov exponent.
The questions that we ask are somehow related to the problems discussed in these
last papers but our point of view and the techniques that we adopt are completely
different.

Our main result can be formulated as follows. Let Ct be a sufficiently small
neighborhood of the attractor xf (in the discrete case xt can be replaced by an
attracting periodic orbit). Then there are positive constants m, fc, ί0 such that for
all sufficiently small ε,

Pi sup- v""7 ^e"m' f o r a l l ί > ί 0 > l - e x p ( -~ . (0.2)2

k_
dist(x,y) = V ' " ~'^\ e*

In order to understand which problems are behind a result like the one above
let us first consider a trivial example in one dimension,

dXε = — mXε

tdt + εdwt, (0.3)

where m > 0 and wr is the standard Brownian motion. If we denote by φ(f) = Xε

t(x) —
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Xε

t(y), then we get

dφ(t) = - mφ(t)dt-9 φ(0) = x-y,

that is

Thus in this case the result on the glueing of the paths is trivially true. However
if instead of the simple harmonic oscillator we consider a double well situation e.g.:

b(χ) = - V U(x\ U(x) = x4/4 - x2/2,

then the previous argument does not work anymore. The reason is that in this
new situation, between the two attractors x = + / — 1, we have an unstable fixed
point at x = 0. Around this point the two paths Xε

t(x),Xε

t(y) tend to separate
exponentially fast and in principle the effect can destroy the glueing produced by
the attractors. However it follows from the theory of Ventzel and Freidlin that the
typical time spent by the process X\ around x = 0 during a jump from one attractor
to the other is much smaller than the time spent around the attractors. Therefore
one can conceive that the glueing is still taking place.

In the above example it is also interesting to see whether the glueing of the
paths occur only for initial conditions x and y close to the same attractor or also
for x and y belonging to different basins of attraction. This is what we call "global
glueing", and it is proved in several general situations. It is important however to
observe that global glueing may take place only because of the noise in the system
and that it can be seen only after a time scale exponentially large in ε.

It is important to outline two basic features of our result:

i) the supremum over the initial conditions is inside the probability,
ii) the event considered belongs to the σ-algebra at infinity.

These are the main qualitative differences between our result and the known results
in the theory of small random perturbations of dynamical systems, and are also
the main sources of technical problems.

Taking the supremum over the initial conditions inside the probability may
cause problems as it clearly emerges from the following example. Coming back to
our double well potential let us consider initial conditions close to the top of the
barrier. It follows from the Ventzel and Freidlin theory that

s u p P x ( \ X ε

t \ ^ l / 2 ) - + 0 as ε^O

if ί >cln(l/e).
However, since with large probability the paths starting to the left of the origin

fall in the minimum x = — 1, while those starting to the right fall in x = 1, by the
continuity of Xε

t(x) with respect to x, for any t «cln(l/ε) and most paths of the
brownian motion εws, there exists an initial condition x0(ί), |x0 | < δ, depending on
εw s,s ̂  ί, such that | X l ( x 0 ( t ) ) \ < 1/2. This implies

PI sup IX^ 1/2 ->! as ε-»0
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However the main problems come from considering an infinite time interval. In
fact in our example in an infinite amount of time fast jumps occur as well as
anomalous long jumps.

Overcoming these difficulties has required a rather detailed analysis of the
structure of the typical paths of the process Xε

t. This analysis has been carried out
inductively on a sequence of rapidly increasing time scales. From a probabilistic
point of view we found the problem was very similar to the problem of Anderson
localization at high disorder solved in [17,18]. Therefore we borrowed the whole
strategy and some important geometric constructions directly from the above
papers and we organized the proof in such a way that the main probabilistic
estimate becomes identical to an estimate which can be found in [17,18,20].

It is very interesting that ideas and techniques developed in a completely
different area like statistical mechanics and quantum theory of disordered systems
can be applied successfully to this kind of problem. Our approach to the problem
of loss of memory gives a rather detailed analysis of the typical paths of the process
Xε

t, and the mechanism leading to the glueing emerges rather clearly. We believe
that our results will contribute to simplify and to improve several results in the
theory of small random perturbations of dynamical systems.

The paper is organized into three sections, one for the discrete case, the second
for the continuous case and the third one with some application to elliptic problems.
In turn Sects, one and two are divided into three paragraphs containing respectively
the definition of the model, the statement of the main results and their proof. At
the end of Sects. 1 and 3 there are two appendices A, B with some technical estimates.

Section 1. The Discrete Case

1. The Model

In this first section we examine the long time behaviour of a Markov chain obtained
by randomly composing two maps T and Tε from a connected compact differential
manifold M of dimension n, with a metric d, into itself. Our main assumption is
that the attractors of the map T are only fixed points and (or) periodic orbits and
that Tε is close to the identity for β small enough. More precisely let T, Tε be
differentiable maps from M into itself such that:

hpl i) 0 < d(Tε(x\ x) ̂  ε VxeM,
ii) Tε is "minimal" i.e.

00

(J (Tε)"(x) is dense in M VxeM.
»=ι

In order to state the assumptions on the map T we have to introduce, following
the work of Gora [8], an equivalence relation in M as follows. Let for any path
x^(x 0,x 1,. . .,x n,x l l + 1,. . .); with X EM Vi,

l\xί). (1.1)
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The quantity ION(x) gives a measure of the way of x "against the current" of the
map T. We also set

D(x, y) = inf {/ON W; *o = *,XN = J>}
Nx

It turns out that D(x, y) is a continuous function of both variables. Then one defines
an equivalence relation between two points x and y by

x~yox = y or D(x9y) = D(y,x) = Q. (1.2)

In the sequel an equivalence class with more than one point or a fixed point will
be called a basic set. A basic set K is said to be an attractor i f V x e X , MyφK
D(x, y) > 0. With these notations we can now state:

hp2 Any attractor basic set consists of only a finite number of points and the
number of equivalence classes with more than one point is finite, as well as
the number of fixed points ofT. Furthermore any ω-limit set of the deterministic

flow generated by T is contained in a basic set.

Our next two assumptions will regard the structure of the maps T and Tε in a
neighborhood of the basic sets. In order to state them we first fix some notations.
Let K be a basic set, and let B(x, δ) denote the ball of radius δ around x. Then we set:

hp3 i) There exists a constant a0>0 such that for any ε sufficiently small and
small enough δ > 0 and arbitrary non-attractor K the following holds:
there exists a positive integer n = n(δ) < a0δ/ε such that (Tε)n(x)φKδ for any

ii) For any non-attractor K and ε sufficiently small there exists δ>0 such that
for any δ' <δ the following holds:
if xeKδ then the T-trajectory of the point (Tε)n(x) never visits Kδ. where n is
as in i).

The above assumptions are taken from the work by Gora and are crucial in order
to prove that the invariant measure of the Markov chain that we will construct
is concentrated over the attractors of the map T.

We also remark that it is possible to find examples of maps T such that hp3
is never verified for any choice of the maps Tε. In fact hp3 implies in particular
that for any non-attractor basic set K and any xeK there exists yφK with d(x9y)
arbitrarily small.

We now specify the structure of the maps T and Tε around the attractors.
Let for any continuous map F:M->M,

Tfv ^ r d(F(x),F(y))
L(F,x) = hm sup — - - - — .

r|0 j>eB(x,r) "(X, y)

If F1 and F2 are both differentiable we have

L(F2oFl9x)^L(F29Fί(x))L(Fί9x). (1.3)
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hp4 There exists a neighborhood A of the union of the attractors, denoted by Ka

and a number β < 1 such that

xeA

where n(x) = #{yeK(x)} with K(x) the attractor such that min D(x, y) = 0.
yeK(x)

ii) There exist d>Q and two neighborhoods of KaC0, C with
C0 c= C c A, T(A) c C0

and
min (dist (dC0 , dA\ dist (dC0 , δC)) = d.
iii) sup L(7 - Tε, x) ̂  )8ε wiί/z 0 g j8 < + oo.

.Xeyl

We now introduce the Markov chain {^n

ε}n>0 that will t>e analyzed in the
subsequent paragraphs by specifying its transition probabilities. For any set A c M
and any xeM we set

P(x,Λ) - Prob{X0

ε = x X^A} = PχA(T(x)) + (l-p)χA(Te(x)), (1.4)

where χ^( ) denotes the indicator function of the set A a M and p is a number
between 0 and 1. In other words the story (or "path") of the chain {Xn

ε}n^Q is
obtained by applying successively to its starting point x the map T or Tε with
probability p and l-p respectively.

For notational convenience it is useful to encode the paths of Xε with strings
of O's and Γs. We denote by ωL = {ωL(i)}ί=1...L a string of length L of O's and Γs
and we associate to it the map:

with the convention that T0~T and T1 = Tε. The probability of a string ωL is
denoted by p(ωL) and it is equal to

p(ωL) = p*V>i*ωύ (l-pfl'>™ά. (1.6)

For such a Markov chain Gora studied the existence and uniqueness of the invariant
measure denoted by με, and in particular its behavior as ε goes to zero. Under
conditions more general than ours (in particular he allows for attractors with an
infinite number of points) he showed that, as one would expect, any invariant
measure με is asymptotically concentrated as ε -> 0 on the attractors of T in the
sense that

limμε(F) = 0 (1.7)
ε^O

VF disjoint from the attractors.
Under some extra hypotheses similar to our hp4 but slightly more restrictive

he also proved uniqueness of the invariant measure. In the next paragraph we will
state our main results concerning the "loss of memory" of the process Xε and their
consequence on the regularity of the invariant measure.

From now on we will assume that hpl . . . hp4 holds.
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2. Main Results

Let C be the neighborhood of the union of the attractors and β < 1 be as in hp4.

Theorem 1.1. For any

pln(l/β)
m < m 0 = sup n(x)'

there exists ε0 > 0 and y > 0 such that for any ε < ε0 and for any L> n with n = 0(l/ε)
we have:

a) P T (C) c C and sup L(Γ x) ̂  e'mL } ̂
V «- '

b) P(supL(Tω L,x)g<Γ<
\ xeC /

In b) L » n means L > const n for a sufficiently large constant independent of ε.
In the same notations of Theorem 1.1 we also have:

Corollary 1.1. Let C, be a connected component ofC and let y, n be as in Theorem 1.1.
Then:

P( sup d(T (x),'
\χ,yeCl /

As a direct consequence of Theorem 1.1 we obtain the next result about the
regularity of the invariant measures με of the chain Xε. Let ε0 and m be as in
Theorem 1.1. Then:

Theorem 1.2. For any ε < ε0 there exists a unique invariant measure με of the Markov
chain {^n

ε} Furthermore if2e~m< 1 then με is singular continuous.
Before giving the proof of the above results let us make some comments. The

first theorem may appear at first sight rather simple since it just says that the maps
τωL for most of the trajectories ωL behave like a power proportional to L of the
map T, at least as far as the contracting properties around the attractors is
concerned. In fact by (1.3) we have

Using the fact proved in Lemma 1.5, that the process Xε spends a large fraction
of the time L in the set C it is possible to show that

supP(L(ΓωL,x) ̂  e~mL) ^ 1 - e~cL (1.9)

for some constant C>0 and L large enough. However in Theorem 1.1 the
supremum over xeC is taken inside the probability; in other words the starting
point x is not fixed but it can vary in the set C depending on the given trajectory
ωL. As it is well known, taking the supremum from outside to inside the probability
may affect considerably the probabilistic estimate.
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In particular in the general case we cannot replace in Theorem 1.1. the sup
xεC

with sup. As an example consider a differential map T from S1 onto S1 satisfying
xeM

our hypotheses, and let Tε be the rotation by ε. Then Γω^ will be onto for any ωL,
and thus sup L(TωL, x) _• 1, while estimate (1.9) remains true. This and related topics

xeS1

will be discussed more completely in the next section when we will analyze the
case of stochastic differential equations.

The corollary expresses in a precise way the glueing of two trajectories with
different initial conditions but equal noise. This also gives the loss of memory of
the process Xε at least for initial conditions x, y in the same connected component
of the set C. This means for example that, in order to have the glueing, if both x
and y are in the basin of attraction of the same periodic orbit, then they must also
be "in phase." It should be emphasized that the fact that two trajectories with
suitable initial conditions eventually glue together with large probability is much
more than the simple fact that they spend most of their time close to the same
attractor. In particular they will make rate jumps to visit other attractors but
always staying closer and closer together. It would be rather nice to remove the
restriction on the initial conditions x and y of being in the same C f. This is certainly
possible if one is able to show that two arbitrary points x, y eC visit at some future
time ί the same connected component Ci of C. This is of course not true in general;
just consider the case of a map T on S1 with stable fixed points at θ = π/2, 3π/2,
and unstable fixed points at 0 = 0, π, symmetric under reflection around the
South-North and East- West axes. As usual Tε will denote the rotation by ε. Thus
by construction

d(TωL(π/2), TωL(

for any ωL.
In the discrete case it would be possible to make hypotheses on T and Tε to

avoid situations like the above, but we preferred to discuss this problem in the
continuous case where it can be solve in a more natural way.

3. Proofs of the Results

We start with the proofs of Corollary 1.1 and Theorem 1.2.

Proof of Corollary 1.1. Let x, yeQ and let ωL be fixed. Then by the definition of
L(Tω , x) we easily obtain

d(TωL(x), TωL(y)) ^ sup L(TωL, χ')d(x, y).
x'eCi

The result follows from Theorem 1.1.

Proof of Theorem 1.2. To prove the uniqueness of the invariant measure με we
observe, following Gora, that it is sufficient to show that

lim } \dμε(x)E{logS(ωL,x)} < 0, (1.10)
L->oo L
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where E{ } denotes the expectation value over the trajectories ωL and

S(ωL,x)= l T X j ^ ) (1.11)

with the convention that

Xj=Tω(j)(x). (1.12)

Because of (1.3) one has:

L(T x) < S(cύ x] (\ 13)

and, as we will see in the proof of Theorem 1.1, that

P(supS(ωL,x)^£?-m L }^l-e-y/ε (1.14)

^ n, n = 0(l/ε). Therefore (1.10) follows from (1.14) and the result of Gora:

) = l . (1.15)
ε-»0

The proof of the second part of the theorem will follow very closely the proof
of the analogous result given in [19] for the random composition of two rational
maps on the real line. Let ΩL be the following set of trajectories ωL:

and let

ΩL = 1 ωL; supL(TωL, x) ^ e
xeC

a>LeΩL

— mL

By construction the Lebesgue measure of Σ9 denoted by \Σ\, is estimated by

I Γ I ^ l i m X \€ΩL\. (1.16)
f e - * ° o L ^ / C

By the same argument used in the proof of Corollary 1.1 we get

|CβJ^const|C|e~mL

#{ωLeί3L}^conste"mL2L. (1.17)

Thus if 2e~m < 1 we obtain

In order to estimate the με -measure of Σ we use the equation expressing the
invariance of the measure με,

μe(B) = pμE(T^(B)} + (1 - p) μe((T°Γ * (B)), (1.18)

valid for any measurable set B in M.
We have
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με(B) = lim μA (J CΩ] ^ lim μe(CΩ])
fc^°° \L^k / fc^°°

^ lim £ p(ωk)με(C) ^ με(C)(l — exp( — y)), (1-19)

with 7 as in Theorem 1.1. In the inequalities we have used the result of Theorem
1.1 together with Eq. (1.18) applied to the set CΩ . Thus, again by the result of
Gora, με(Σ) > 0 for ε small enough, and thus με has at least a singular component.
However, by taking

Σ = U U TωL(Σ),
L ωL

one gets immediately, με(Σ) = 1 Vε small enough, while Σ\=Q.

Proof of Theorem 1.1. The proof relies on a rather detailed study of the structure
of the typical path of the Markov chain {Xn

ε}. Using deterministic arguments we
will construct a set of paths ωL such that the corresponding Tω satisfies the
conditions of the theorem, and afterwards we will show that these paths have a
very large probability. The above strategy together with all the technical details
is borrowed rather directly from the rigorous work on the Anderson localization
done by Frohlich, Martinelli, Scoppola and Spencer [17] (see also [18] for a
complete and detailed review). Of course the techniques employed in the proof of
the Anderson localization must be modified and adapted to the present case;
however this requires little work and afterwards the two proofs will be almost
identical. Therefore we decided to omit all those parts of the proof (mainly
probabilistic) which can be found without problems in the reference quoted above.

Before going into the technical details let us explain in simple words the idea
behind the proof. As shown by Gora typical paths of the chain spend a very long
time in the neighborhood C of the attractors and make rare jumps among different
attractors. When two trajectories (with the same noise) stay in the same connected
component Q of C they tend to glue together, because of hp4, while during the
"jumps" they may diverge exponentially fast since L(T9x) can be greater than 1
outside A. However if the "jump" is "fast," i.e. occurs on a time scale shorter than
the typical time spent in C, then the divergence of the two trajectories outside C
is largely compensated by the glueing inside C and, as a result, the two trajectories
will glue together exponentially fast. Of course in a very long time L all kind of
"jumps," fast or slow, occur and one has to classify them according to their time
scale. This simple argument should justify the multiscale analysis of the typical
paths that we will now discuss.

For a > 0, let /(α, ε) = [exp(α/ε)], and let for ωe{0,1}N andyΈΛΓ,

The composition of maps T, Tε associated to ωj will be also denoted by 7} whenever
this will not cause confusion.

We next introduce the set S0 = S0(ω) of singular blocks:

{ f ; ( j - I)/ ̂  ί ̂  jl,ωj(t) = 0} < αpί (1.20)
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or there exists a string of consecutive Γs in ωj of length greater than d/2ε} with α < 1.

It is easy to check (see Appendix A) that if jφSQ then

and

= P °g ^
supn(x)

supL(Ti,x)^e~ml with m<αm 0 ,

provided ε is small enough.
As a preliminary but important step we estimate the probability that a given

site jεN belongs to S0:

Lemma 1.1. There exist constants α 0 > ε o and y such that

provided a<a0 and ε<ε0.
The easy proof of the lemma is given in Appendix A. From the lemma it follows
that for a typical trajectory the set S0 will consist mainly of small clusters very
well isolated one from the other. It is also clear that, if A is an interval in N of
length L such that A n 50 = 0, then

TΛ=Tj+L° °Tj+i°Tj

satisfies:

i) TΛ(C)c=C,
ii) supL(TΛ,x)^e~mlL, (1.21)

xeC

with m as in (1.20).
In order to study maps TΛ with A n S0 Φ 0 we introduce a hierarchy of singular

sets Sk + ί c Sfc c ... d S0. Let dk = exp(/ί(5/4)fc), A > 1. We set

where 5/ = l/Cfc

α is the maximal union of clusters of sites in Sk (not necessarily
connected) satisfying:

i) diam Ck

a^dk,
ii) dist(SΛCΛQβ)^2d,+ 1,_

iii) There exists an interval Cfc

α such that:

(n0 - l)dk ^ dist(3Ck

e, Ck

α) ̂  Fi0dk, n0εN,

Ck*^Ck , Tc-,α(C)c=C

Qα is (fe - 1) admissible where: (1.22)

Definition. A set A c AT such that 5Λ n C/ = 0 Vα, V; ̂  fe is said to be fe-admissible.
In the course of the proof the two parameters λ and n0, appearing in the

definition of the times scales and of Ck

Λ respectively, will be chosen in a suitable way.
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Proposition 1.1. Let A be an interval in N of length L such that

fc + 1 = 0,
ii) L^dk+l/5,

iii) A is /c-admissible.

Then

a) TΛ(C)c=C,
b) supL(TL,x)<exp(-m f c + 1L/),

xeC

where mk + 1=mk — const dk/dk + 1 for a suitable constant independent of λ and k.

Proof. The proof is by induction. Let Fk .denote the assertion of the proposition
of step k. We already know that F0 is true. We will show that Fk=>Fk+ί. This is
trivially true if Λ n Sk = 0. Thus let us assume that Λ n Sk

9 Φ 0. This is clearly
the only possibility left since by hypothesis ΛrιSk+ί = 0. It is also clear that we
can restrict ourselves to the case:

Ar\Sk

g = Ck*. (1.23)

In fact if ΛnS/ = C k

α ιuC f c

α 2u uCk

βm, then we can always find m intervals
Λ !,..., Λm satisfying the hypotheses i),ii),iii) of Fk+ί, and such that

Λ=\jΛi9 AtnSk

e = Ck«.
ί = l

If Fk+1 holds for each At then it obviously extends to A because of (1.3). The
existence of the sets Ai is guaranteed by (1.22) and by the following lemma whose
proof can be found in [20]:

Lemma 1.2. // λ is taken large enough then for any k^Q given two intervals AaB
in N such that dist(dA,dB) ^ I0dk there exists a k-admissible set A0 such that

Thus we now examine the case (1.23).
For notational convenience we call 1 the left boundary of Λ9 L its right boundary

and by a (b) the left (right) boundary of Ck

a. Then the set A = [l,a — 1],
B = [b + 1,L] are (k — Inadmissible, and thus by construction are such that

TA(Q^C, (1.24)

and the same for B. In fact, since A and B are (k — Inadmissible, and AnSk = φ,
B n Sk = φ, they contain only intervals not in S0 separated by intervals Ct

 α, i < /c,
and thus, by (1.22), they map C into C.

Furthermore, by hypothesis, 7^ «(C) c C, and thus

C. (1.25)

The quantity L(TΛ,x) is estimated as follows:

x). (1.26)
xeC
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If diam A < dk/5, then diam B > L-(n0 + (ί/5))dk) ^ L(l - 5(n0 + (l/5))(dk/dk + ί)) >
(dk/5) if λ is large enough independent of k. We used here that L > dk + 1/5. Thus,
by applying Fk to B we obtain

ik+l + Vl((dk/5) + nϋdk)}
xeC

£«-"*+'", (1.27)

where V = logsupl supL(T,x),supL(Γε,x) ) and mk+ί = mk - (mk5(«0 + 1/5) +
\ x x J

5V(n0 + l / 5 ) ) d k / d k + ί . The induction step is proved.

Remark. For any given 0 < α < 1 we can find λ so large that mfc > am Vfe.
The next step in our analysis is to compute the probability that a given set Λ

intersects Sk.

Proposition 1.2. There exists £0>Q and for any ε < ε0 there exists η(ε), with η(ε) ΐ + oo
as ε iO such that

where

\Λ\ = #{jeΛ}.

Before discussing the proof of the above result let us complete the proof of
Theorem 1.1.

a) Let us fix m < m0 and let us choose λ so large that m^ > (m + m0)/2. We write
L=/L 0 + L1,L0,L1GNίL1 < 1= [exp(α/ε)].

We distinguish between two cases:

i) L! g d/ε,
ii) L! > d/ε.

In the first case by assumption L0 ̂  1. Let Λ c: N be the set:

Λ = {1,2,...,L0}.

We define k(L) as the smallest integer such that

A)«Wι> (1.28)

and we set

ΩL = {ωL;/lnSfc(L)(ωL) = 0 and Λ is /c(L)-admissible).

From Proposition 1.2 we obtain:

P(βL) ̂  1 - P(lGS0)
1/2[L0]-^ε)(4/5) + 1 - P(Λ is not fc-admissible for some fe).

(1.29)

The third term in the right-hand side of (1.29) is clearly bounded by
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/ G O _ \ OC

2P( l e l j y C/ j^2 X P([l5n0dΛ]nSA^0)

1/2 Σ nodk/dk

η(ε)^ constP(leS0)
1/2 (1-30)

> 1. In conclusion, with probability greater than

the set A satisfies all the hypothes of Fk(L} and thus:

i) TΛ(C) c= C,
ii)

supL(ΓωL,x) ̂

xeC

Therefore we have

for ε sufficiently small.
In order to show that ΓωL

(C)cC we observe that, as shown in the proof of
Lemma 1.1. in the Appendix, dist(TΛ(C), C0) <d/2 and therefore if between /L0

and L there exists no strings of consecutive 1 's of length greater than d/2ε, then
ΓωL

ίC)cC. This last event occurs with probability greater than 1 — exp( — y/ε).
In the second case, that is L! > d/ε, we proceed as above but we impose also

that between L0l and L there are no strings of consecutive Γs of length greater
than d/2ε and that # (ί;L0/^ ί ^L, ω(ί) = 0} ̂  α/?/. This last event occurs with
probability greater than 1 — exp(— y/ε). As observed in Remark 1 of Appendix A
the above condition ensures that the block [/L0, L] has exactly the same properties
i), ii) as the blocks not in S0, thus proving part a) of the theorem also in this case.
b) Using Proposition 1.1 we get:

>P(1 is fc-admissible V / c ^ O and A n Sk(L) _ ΐ =

Pf supL(ΓωL,x)^-m LVL,ΛΓ/^L»n ), (1.31)

where A is as in a) with L0 = [L//] and N is so large that k(L) ̂  1 .

In fact, using Lemma 1 .2, if 1 is ^-admissible for any k ̂  0 and A n Sk(L) _ ί = 0,
then we can always find a site jsA with

such that

A = [1, 2, . . . , j] is (fe(L) - l)-admissible and Λ' n Sfc(L) _ ! = 0.

Thus, by Proposition 1.1,
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supL(T x) g suρL(7V, x)GXp{Vdk(L)-ί\}
xeC xeC

gexp{-m 0 0 L+ F(l + d k ( L )_!)/} ^exp{- m00L + const /L0

4/5}

g β-mL if L0 ^> ΛMs large enough.

The first factor appearing in the right-hand side of (1.31) is estimated as (1.30) and
it is larger than 1 —e~Ύ/ε if ε is sufficiently small. The second factor of (1.31) is
estimated as in the proof of Lemma 1.1. in the Appendix and it is greater than
1 — e~γ'/ε for some / > 0.

This concludes the proof of the theorem.
It remains to discuss the probabilistic estimate given in Proposition 1.2. As the

reader can easily check, the proof of this estimate coincides with the proof of an
analogous result, stated with exactly the same notations, given in [20] (see Sect.
5), provided one could estimate the probability that a given interval A satisfying
the first two geometrical conditions (1.22) on scale k violates the third one. As we
will see, the above event implies that, under the random evolution associated with
A, some point among the attractors spends an unusually long time outside a
neighborhood of the attractors. The probability of this last event will be then
estimated in Appendix A by a rather standard construction in the theory of Markov
processes.

For the reader already familiar with the works on Anderson localization [17, 18]
the above problem is the exact counterpart in our context of the estimate of the
probability of having an energy resonance in the random hamiltonian. We now
define precisely the event which will be analyzed.

Let A be an interval [α,b] in N of length L^dk, and let ΩΛ be the event:

ΩA= {ω;/lnS0 φ 0, A satisfies (1.22),i),ii) on scale k but not iii).} (1.32)

Lemma 1.3.

for some constant q>0 independent of k, ε provided n0 is large enough and ε is
sufficiently small independent of k.

To prove the lemma we show that the event ΩΛ implies another event
Ω' A,Ω' A^ΩA, whose probability is easier to estimate. In order to describe the
new event Ωf

 A we first fix some notations. Let for xeKa (the union of all the
attractors) τ(x, ί, T) be the time spent between times ί, T by the process Xε starting
at x at time t outside the set C, let for any 0 < p < /,

Ω'AtXtt = (ω ΛnSo φ 0;τ(x, lt,(b + dk}ΐ) ^ pdkϊ],

where b is the rightmost site of A and let

Ω'A= U U Ω'Λ,X,, (1.33)
xeKa teN,a-n0dk^t^a-(n0-\)dk

Then there exist λ0 , ή0 , p0 such that if λ > λ0 , n0 > n0 , p < p0 , then

ΩA^Ω'A VL. (1.34)
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To prove (1.34) let us fix ωeΩΛ. Using (1.22) i),ii), this implies that for any
(k — Inadmissible set A c N, A =3 Λ, A = (a', b') with a — nQdk ^ a' ^ a — (nQ — ΐ)dk9

b + (n0 — l)dk ^ b' ^ b + n0dk9 there exists a point xeC such that
TΛ(x)φC.

Actually we have much more. In fact for a fixed a' as above we can find
a— lOdfc.i < a" <a such that [α',α"] is (k — Inadmissible and [a\ a"~] n Sk = 0.
Thus if λ is so large that (n0 — l)dk— I0dk_1>(l/5)dk, then we can apply
Proposition 1.1 to the set [α',α"] to get that

dist(Tκ,αΊ(C), T[α, αΊCO ̂  exp{ - m/(K - l)dk - I0dk^)}. (1.35)

The above distance can only increase by a factor ev(dk+ k ~ l } under the action of
T[α»)fc], and therefore if n0 is large enough we get that

dist(T[α,,&](C), T[a,tb}(Ka)) ^ exp{ - const n0ldk}. (1.36)

Thus, if for a (k - Inadmissible b',b^b'^b + dk, dist(T[β%ft] (Kα), C0) ̂  d/2, then
T[a>,bf](C) c C if ε is small enough and n0 is large enough.

This inequality shows the role played by the thick left layer (a'9a) which we
assumed has empty intersection with Sk. The layer allows us to replace the dynamics
of an uncountable set of points (the set C) with the dynamics of only a finite number
of points (the set Ka). It is now easy to show that, if T[a, ,&Ί(C) c C for some b' as
above, then the same holds for any (k - Inadmissible b", b' ^ b" ̂  b + n0dk. Thus
we have shown that ωεΩΛ implies that for some (k - l)-admissible a\ with
a - n0dk ^ a' ^ a - (n0 - ΐ)dk9 any (k - l)-admissible b with b ̂  V ̂  b + dk there
exists xeKa such that dist(T[fl%&Ί(x), C0) > d/2. In other words:

X τ(x, α r/, (ft + dk)l) ^ αp/#{br; fc' is (k - l)-admissible, b ̂  b' ^ b + dk}, (1.37)
xeKa

where α is as in (1.20) and p = Prob(ω(l) = 0). The reason for the factor ocpl in the
right-hand side of (1.37) is the following: let V be (k - l)-admissible; since b'φSk in
particular VφSQ9 and therefore if for some ίeN, (b'-l)l^t^b'l the process
Xε happens to be in C and Xε

t+1 = T(Xε

t), then Xε

ί+1eC0, and therefore
distpfV,, C0) ̂  d/2 if ε is small enough. Thus, for the process Xε to have a distance
from C0 greater than d/2 at time £// implies that Xε

tφC for all times t such that

(b'-l)l^t^b'l and Γω ( f )=Γ.

From (1.20) it follows that the cardinality of such set of times is at least ocpl
We next estimate the number appearing in the right-hand side of (1.37):

Lemma 1.4. For any LeN, L^dk,

#{y'eN; j ^ L; 7 is (k — Inadmissible} ^ (1 — const d^/d^L

for a suitable constant independent of λ.
The proof is given in Appendix A.

Using the lemma and (1.37) we get that ωeΩΛ implies that there exists xeKa

such that

-const dQ/d^}dk/N (1.38)
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for some d — n0dk ^ a' ^ a — (n0 — l)dk, where N = #{xeKa}. Thus (1.34) is pro-
ved if p0 = oφ(l — const do/d^/N. It remains to estimate P(Ω' Λ). We have:

Σ Σ p(Φ> '*'. (fo + 4)0 > pw*)
'ga-(n 0 -l)<*fc xeKα

(1.39)

To complete the estimate we need the following last result provided in Appendix A:

Lemma 1.5. For any 0 < p < 1 and a' > 0, there exist K(p) and ε0 such that for any
ε<ε 0 :

sup Px(τ(x,0, T) > pΓ) ̂  exp{ - K(p)Texp(- α'/ε)}.
xeKα

Thus using the Lemma and (1.39) we get

P(ΩΛ) ^ dklNexp{- K(p)dkle\p(-a'/ε)}. (1.40)

On the other hand,

P(ΩΛ)^\Λ\P(lεS0), (1.41)

and thus by taking the geometric mean between (1.40), (1.41) we get

Using Lemma 1.1, if we take a' < a < y/4, we get the result with a q which actually
diverges as ε -> 0.

Appendix A

Proof of Lemma 1.1. By means of standard large deviations estimates for i.i.d. r.v.
we have for α > 1,

P(#{t < l',ωl(f) = 0} < a/?/) < Qxp(-kl)

if ε is sufficiently small. Furthermore

P (there exists a string of consecutive Γs in ωj of length greater than d/2ε}
<l(l-pY/2ε.

Thus if a < — ln(l — p)d/2 we have the result.
We next show that if jφS0 then:

T,.(C)c=C (A.I)
and

supL(Tj9x)^e-ml (A.2)
xeC

for any m < αm0 if ε is small enough. By stationarity we can consider only j = 1.
Let xeC and let 1 ̂  ί g / be the first time such ω^t) = 0. Since dist(Tε(x), εx) g ε
and t<d/(2ε), by assumption, we get that x^^-^^A and therefore x^eCΌ since
T(^4)cιC0. By iterating this argument we get that dist(xε

z,C0) < d/2 i.e. x^eC.
(A.I) is proved.
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To prove (A.2) we observe that because of (A.I) for any xeC the integer n(x)
of hp4 stays constant under the random evolution, i.e.

This is because the point x is not able to leave the basin of attraction of the
attractor K(x). For notational convenience we set n(x) = n. Next we devide the
string ωl into N substrings ω/ of length Lt with the property that the first N — 1
ones contain exactly nO's, where N = [#{0's in ωj/n]. We also denote by J V _ the
number of substrings of length smaller than 1/^/ε. Using the hp4 we have that if
L£<1/^

sup L(Tωz/,x)^
jceC

If lt > 1/^/ε and using the fact that in any case Li < dn/2ε, then

sup L(Tωιί, x) ̂  const.
xeC

Therefore

supL(Tωz, x) ̂  exp{W_ \n(β + 0(~/~ε)) + (N - N_ + 1) const}.
xeC

Since N — N _ < 1^/ε and N > (apl/n) — 1, we obtain (A.2).

Remark 1. It is important to observe that in the above argument we never used
in any essential way the fact that / = exp(α/ε). As the reader can easily check the
only requirement on / is to be larger than c/s for a suitable constant c » d.

Proof of Lemma 1.4. Let A be an interval in N of length L^dk. We have to count
how many sites in A do not intersect C7

 α for some α and some j ^ K — 1. Using
(1.22) we get

fc-l L d

#{xeΛ'9xεCj"ϊoτ some α a n d y ^ K - 1 } ^ £ (2n0 + l)rf - — ̂  const L-p.
J = 0 W j + l «1

The lemma is proved.

Proof of Lemma 1.5. The proof uses a construction which is quite common in this
kind of problems (see e.g. [6] and [8]). Let B = CC and set for xeC:

(A.6)

Clearly we have

τ(x,0,Γ)rS J ff(-T(, (A.7)
t = l

where v = inf {n; σn ^ T}.
Therefore
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i = l

T / ί " ] 1 / 2 \

for any β > 0. Using the strong Markov property the right-hand side of (A.8) can
be estimated by

e~^τ J Px(v = n)1/2fsupE ; eexp{2 jβ(σ1-τ1)}Y / 2. (A.9)
n = 1 \ xeB /

In order to estimate this last expression we need the following results which will
be proved later on.

Lemma A.I. For any n such that n>l+ 4T(1 -/?)d/2ε/(|m(l -p)|[rf/ε]),

sup Px(v = n)^ exp{ — n[d/&] |ln(l — p)|/8}.
xeA

Lemma A.2. For any a > 0 there exist ε0 > 0, β0 > 0 such that for any ε < ε0 and
any β < β0εxp{-a/ε},

xeB

Using the Lemmas we get that the expression (A.9) is bounded by

exp{-/?pΓ/3}, (A.10)

provided β is as in Lemma A.2 and ε is small enough. This concludes the proof
of Lemma 1.5.

It remains to prove Lemma A.I, A.2. The first one follows easily from the trivial
estimate:

pχ(v = n)^Px (3 n-strings of consecutive Γs in ωτ of length greater than [d/ε]),
(A.11)

and from standard estimates on i.i.d. random variables. To prove the second lemma
we estimate:

xeB

where ί0 = exp{α/ε} with a > 0 and fceTV. We will show that for any choice of a > 0
we can find ε so small that the above probability is bounded by (1/2)*. In fact given
a > 0 let δ' « δ be so small that hp3 applies to any Kδ, in the set B and let D = D(δ, δ')
be the set B\UKδ>. Let also tD(x) be the classical exist time from the region D
starting at x and let π0 be the number of basic sets in B. Given xeB we will now
construct a string ω(x) of length of order δ'/ε such that Tω(x}(x) reaches C0. This
will provide an estimate from below of the probability of {σ^ < cδ'/ε} by means
of the probability of this string ω(x).
We have to discuss two cases:
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i) xeD,
ii)

In the first case the string ω(x) will consist of n0 + 1 substrings ω^x) of consecutive
O's of length / ί5 separated one from the other by strings of exactly n consecutive
Γs where n = n(2δ') is as in hp3. The lengths /t are given by the following rule: let
xk be the position of the process Xe at time tk = n(h— 1) + £ / f . Then we set

. , ^
recursively

Ί = ίj>(*)>
l2 = tD((TΛγ(xi)) if jqel/J^nfl and /2 = 0 i fx^eCo,

/^UOΓTfe-i)) if Xi-xet/l^nB and ii = 0 if x^eC^

Since T is a continuous map suptD(x) < tD(δ,δ') and therefore the length of ω(x)
xeB

does not exceed n0tD(δ9δ') + a02δ'/ε< cδ'/ε, if ε is small enough. It remains to
prove that the point x under the action of Tω(JC) reaches the set C0 before time
cδ'/ε. If this is not the case then, using hρ3, we could find at least two basic sets
Kl and Kj in B and a path x of length N < cδ'/ε going from Kδ,

1 to Kδ

j and from
X/ to Kδ,

j were equivalent contrary to our hypotheses. In the second case
xeUKδ,r\B the argument is exactly the same with the only difference that we set
/!=<).

With this construction we have

Px{σi < cδ'/ε} ^ P{ω(x)} ^ exp{ - c'δ'/ε} (A.13)

for a suitable constant c'. Using the Markov property we get for any integer j,

Px{σι > jcδ'/ε} < (1 - exp{ - c'δ'/ε})'. (A. 14)

Thus if we choose j = k[Qxp(a/ε)/(cδ'/ε)'] with keN we get

supPx{σι > kt0} < (1 - exp{ - c'δ7β})[«p(^)/(^/«)]k < (i/2)* (A. 15)
xeβ

if c'δ' < a and ε is small enough. Clearly (A. 15) proves the lemma.

Section 2. The Continuous Case

7. The Model

In this section we extend the results of the previous section to the case of an
ordinary Ito stochastic differential equation in R" with small constant diffusion:

dXε

t = b(Xε

t)dt + ε\vt. (2.1)

Here wf denotes the ordinary brownian motion in R", and the drift b is assumed
to be smooth and to satisfy a sequence of assumptions that we state below. For
notational convenience we will denote by Xt,to(x) the solution at time t of the
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equation:

Xlto(x) = x + } dsb(Xltto(x)) + ε(w, - wίo).
ίo

As usual Xε

tto(x) will be denoted by Xε

t(x).
The first assumption on b makes sure that the process X\ solution of (2.1)

admits a unique smooth invariant measure με (see e.g. [22]):

hpl. There exist R0>0 and a>0 such that ifn(x,R) denotes the outward normal
to the surface of the sphere BR, centered at 0 of radius R, at the point x9 then

sup sup b(x)n(x, R)< — a < 0.
R>RoxεdBR

Thus the drift b is confining and the process Xε

t will spend most of its time in
the ball BRo. We also assume that sup | Vb(x)\ < K for some K < 0.

xeR"

The next assumption concerns the long time behaviour of the dynamical system:

Following Ventzel and Freidlin [6] let for any continuous function φ:[Q, Γ] ->R":

I0,τ(Φ) = ]dt\\φt-b(φ,)\\2 (2-3)
0

if the integral exists and I0>τ(φ) = oo if not. Here || || denotes the euclidean norm
in R". For x,yeR" we also let

V(x,y)= inf IQtT(φ). (2.4)

Like in the discrete case we establish an equivalence relation in R",

x « y<-+x = y or V(x, y) = V(y, x) = 0. (2.5)

An equivalence class K is said to be "stable" if

V(x,y)>0 MxεK, VyφK,

and "unstable" if it is not stable.

hp2. There exist finitely many compacta Kl , . . . , KN such that

i) for any two points x,y in Ktx « y,
ii) if xeKt and yφKt then xφy,

iii) every ω — limit set of the system (2.2) is contained in some Kh

iv) only the first I > N compacta are stable and they consist of exactly one point
(fixed points).

It is easy to see that V(x,y) attains the same value Vtj for all xeKi9yeKj. In
terms of the numbers Vtj the stability of a compactum Kt can be also stated as
follows (see [6]):

Kt is stable iff Vtj > 0 V j Φ i. (2.6)
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Let now Ft be a family of smooth map from R" to R" and let

-to SUP u=
hp3. There exist a number m0 and, for each stable compactum Khi=\,...,l, a
neighborhood Ai such that

supL(Xt,x)<e~mot Vί>0,
xeAl

where Xt(x) is the solution of (2.2) starting at x.
This last assumption is clearly satisfied if the Jacobian matrices dbjdxj at the

stable fixed points have eigenvalues with negative real part smaller than — m0. As
we will discuss later, hpl,2, 3 are not the more general ones. Remarks and
generalizations can be found at the end of the next paragraph.

Using only hpl and a weaker form of hp2 Ventzel and Freidlin [6] analyzed
in great detail the long time behaviour of the process X ε

t as ε -» 0. Essentially they
showed that the process Xε

t can be approximate, in some appropriate sense, by a
Markov chain with state space a small neighborhood of the union of the stable
compacta Kh i = 1, . . . , /. They proved that the transition probabilities Ptj from Kt

to KJ are of order

Λ,.χexp(-K0./ε2), (2.8)

where x means: lim — 2ε2 ln(ptj) = V^.
ε^O

Using the Markov chain they were also able to estimate the asymptotic
behaviour of the invariant measure με as ε->0 and to prove that με is exponentially
(in 1/ε2) concentrated on a small neighborhood of a subset M of the stable compacta
Ki9i= 1, . . . , / . The subset M was determined uniquely by an algebraic procedure
involving only the numbers Vij9 (see (2.9)). In the next paragraphs we state and
prove our main results, very similar to the ones proved for the discrete case.

2. Main Results

We assume hp's 1,2,3. Let xf be a stable fixed point and let

>0; sup L(Xt,x) ^ e~mot Vί >0
xeBδ(Xi)

Using hp3 the quantity d = min dt is strictly greater than zero and we will denote
i < ; « ^ /

with Ai the set Bd(xf) and we define

A=\jAi C£ = Bd/2(x£) C=(JCi
i = i i = i

/

Coi = Bd/4\xU ^0 = U Or
i = l

With the above notations our results read as follows:
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Theorem 2.1. For any m<m0 there exist positive constants K9K'9tθ9εθ9 such that
for any ε < ε0 and any t>t0:

a)

b)

P[ Xε(x)eC V x e C and
xεC

P supL(Xε, x) ̂  e"mt Vί
xeC

,-K/ε2

where Xε(x) is the solution of 2.1 starting at x.
Let tfc) = inf (t ^ Q;Xt(x)εAi} and let BiίT = {x; tt(x) < T}9 then

Corollary 2.1. For any m<m0 and T there exist positive constants Tθ9Kί9K2,εθ9

such that for any ε < ε0,

p SUp
\\x-y\\

The above theorem and corollary are exactly the counterpart of Theorem 1.1,
Corollary 1.1 in the discrete case.

The natural question now is the following: Is it possible to extend the result
of Corollary 2.1 to any couple of arbitrary points x,y in (j Bt Γ, removing the

i

restriction x,yeBiτΊ In the continuous case, contrary to the discrete one, we can
answer this question. In fact the main difference in the theory of small random
perturbations of dynamical systems between the continuous and the discrete case
is contained in the following (see also Gora [8]) probabilistic estimate valid in the
continuous case:

sup I I X ε — φt\\ <

for any continuous function φ with φ(0) = x and such that J(l + | |φ s | | )<oo. On

the contrary in the discrete case it is very easy to construct simple examples in
which the above estimate is false.

In order to give the precise result, we have to distinguish between the general
n-dimensional case n > 1, and the one dimensional case. In order to discuss the
general case we need to recall the basic result of [6] about the asymptotics as ε -> 0
of the invariant measure με of the chain Xε. Let L be the set whose elements,
denoted by letters i9j9m9n etc., are the subfix of the stable fixed points xhXj,xm

etc. By assumption the cardinality of L is /. By {ί} — graph g, ieL, we mean a graph
consisting of arrows m->n (mEL\{i}, neL, n^m) such that

1. exactly one arrow comes from any meL\{i}9

2. there are no closed cycles in the graph.

The set of all {i} - graphs is denoted by G {i}. Ventzel and Freidlin proved the
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following: Let

geC{i} (m-+n)

and let M c L be the set of all i for which

Vmn

Then if F is a closed set that does not intersect (J ]£; then
ιeM

Using the above notations we have:

Proposition 2.1. Lei M consist of a single element z 0 . Then for any m<m0 there
exist positive constants ε0, F, c, fe swc/z ί/zαί V ε < ε0, z/ ί(ε) = eκ/fi2

> φ), sup ll*
χ,?ec

In the one dimensional case we do not need the restriction M = {iQ} and we
can take the supremum over x and y in R:

Proposition 2.2. Let n = l and let m<m0. Then there exist positive constants fe, V9 ε0,
suc/i ίftαί Vε < ε0. //ί(ε) = eκ/fi2, ίften

P Vί>ί(e), sup """"' """"<;«;--('-'(«» £ i _
I \ /' A -»» ,. I

Before giving the proofs of the above results let us make some comments about
the two propositions. As already explained in Sect. 1 the intuitive picture of the
stochastic flow for ε small is the following: in a finite time ί0, which depends only
on the dynamical system (2.2), all the points in the set BitRo fall in the set Ai and
there they stay, glueing together, for a time of order (see [6])

T ~ pmmι*JVιjλ i ^

After time Tt they make a common jump to some other stable set A j . If it happens
that the typical time 7} spent by the process Xε

t in the set Aj is much longer than
Ti9 then, with large probability, the paths of Xε

t starting in Ai and those starting
in Aj will meet in Aj if i -> j was the first transition from i. Therefore they will have
a long time, of order 7}— Th to glue together. The condition in Proposition 2.1
assures exactly that among the set Ahi = I , . . . , / there is only one, Aio, with the
largest time Tio. Therefore all the other Ai9 will have time to make a transition
i -> i0 (it may be very well a multistep transition) before the trajectories starting in
Aio are able to leave Aio9 thus producing the glueing of the paths.

In the one dimensional case it is not necessary to assume that the set M consists
of a single point. In fact let x < y and let Kti be the rightmost stable fixed point.
Then when Xf(x) reaches the set Atl by the uniqueness of the solution of (2.1), the
path Xε

t(y) (solution of (2.1) starting at y and subjected to the same brownian
perturbation as Xε

t(x)) will stay to the right of Xε

t(x)9 and therefore they will both
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belong to the basin of attraction of Air At this point they will start to glue together
according to Corollary 2.1.

So far, our results, Corollary 2.1 and Proposition 2.1, show that in dimension
greater than one two arbitrary initial conditions x and y will eventually glue
together provided they start around the same attractor or around different
attractors, provided there exists a unique attractor which is the most "stable" one.
Thus nothing is said about what happens to an initial condition starting e.g. close
to an unstable fixed point. The reason is that in general we do not know that with
large probability two arbitrary initial conditions will be eventually in the basin of
attraction of the same attractor so that Theorem 2.1 could be applied. For example
if b(x) = V U(x) with U(x) a periodic function then the above requirement is certainly
not satisfied if x and y are two different absolute minima of U. However for
"confining" drifts b like these ones considered in this section one expects that in
many cases the requirement is fulfilled.

In order to understand the problem, consider the case of two equivalent
attractors x^x^: to prove the glueing of paths with starting points in different
basins of attraction, we have to exclude that when a large fluctuation producing
tunneling leads the points in Aίo to the neighborhood Ah of xil9 at the same time
the same fluctuation leads the points of Atί to the neighborhood Aio.

It is easy to see that this can be the case when the basin of attraction of one
stable point surrounds the other basin of attraction.

In order to prove the global glueing of paths when M consists of more than
one point it is sufficient to make the assumption that there exists a stable point
whose basin of attraction is so "fat" that it contains the translation of the sphere
BR with R such that any Kt belongs to BR. More precisely:

Proposition 2.3. If for R0 > max dist (7^,0) there is a stable point xi9 and a vector
_ ̂ i

ξ such that

where B2Ro + ξ means the translation of the ball B2Ro by the vector ξ , then^R > 0 and
V m < m 0 there exist positive constants k,εθ9V, such that for any ε<ε0 if
T(ε) = exp V/ ε2, then

vt>T(s)9 sup
*,yeB

The hypotheses of Proposition 2.3 are actually quite general, and thus the
global glueing holds in a large class of cases.

A typical example of the problem in which the glueing cannot be proved by
Proposition 2.3 is the case of two spiral basins of attraction.

It should however be observed that the time T(ε) appearing in the proposition
may be a very bad estimate of the actual time scale of the glueing which sensitively
depends on the detailed structure of b(x). This is the case for example if we apply
Proposition 2.3 to the one dimensional case instead of Proposition 2.2.
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We conclude this section with a critical discussion on the hypotheses behind
our results and with some suggestions for further generalizations.

Remark 1. About the drift b. A close look at the proof of Theorem 2.1 shows that
hpl,2 are not the most general ones. We can also treat the case of a drift term
b(x) with an infinite number of stable and unstable fixed points provided they do
not accumulate and hp2 (iii), hp3 hold. This is the case for example of b(x) = V t/(x),
where U is a periodic function on R with e.g. quadratic absolute minima at the
sites of the lattice Z" or if b(x) is the hierarchical drift introduced in [21].

In the periodic case, however, it is clear that the result of Propositions 2.1, 2.2, 2.3
cannot hold. Also the requirement of the absence of attracting limit cycles can be
relaxed provided there is still one stable fixed point xt around which the process
Xε

t spends a finite (as ε -» 0) fraction of its time.
A much more crucial assumption was hp3 on the structure of the drift b(x)

around the stable fixed points. We now examine what happens when this hypothesis
is replaced by a weaker one.

Let us suppose that the origin is a stable equilibrium point for the dynamical
system (2.2) and let us denote by B(x) the matrix:

Byte) = dbjdxj.

We assume that there exist constants c> 0, (S > 0, /? > 0, oo > π > 0 such that for
any |x| < 2δ:

<7,β(x)?>^-cz2M". (2.9)

A simple example of a drift b(x) satisfying the above condition is the following:

b(χ)= -VU(x)

with

where V is a n x n positive definite matrix. In this case β = 2. It is clear that (2.9)
violates hp3. Nevertheless we will show that for the stochastic differential equation
(2.1) we can find an ε-dependent "mass" m(ε) such that

\X\<δ

with large probability.

Proposition 2.4. There exist £ 0 ,ε 0 ,/c>0,α>0 and for any ε<ε 0 there exists
m(ε) ̂  ε3/? such that

\x\<δ

The reader may wonder at this point whether the fact of having a very small
"mass" m(ε) does not cause a problem to the rest of our analysis and in particular
to the inductive procedure discussed in detail in Sect. 1. As the reader can check
the total loss of "mass" at the end of the inductive procedure was of order (see
(1.27)) l/dJ/4 Thus in order for the whole scheme to be meaningful it is necessary
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that I/do14«m(ε), i e d0»ε~8β. However it is also clear that we have to take d0

much smaller than the typical distance between blocks in S0 since otherwise most
of the blocks in S0 will fail to satisfy the geometric conditions (1.22) and the
argument will not work again.

Fortunately in our case there is no contradiction between the two requirements
on d0 because of the exponential bound in 1/ε2 given in the proposition. In fact a
choice of the initial scale d0 of order ε~

(12β+1) will work perfectly.

Remark 2. About the brownian motion εwr. An important assumption we made
about the random perturbation εwt was to assume its covariance matrix to be
constant. Although this case already covers many interesting problems arising in
theoretical physics and other areas of natural sciences it is interesting to see what
happens when one considers the more general case. We do this for a one dimensional
equation:

dXε

t = b(Xε

t)dt + εσ(Xε

t)dwt Xε

0 = x, (2.10)

where b is as before and σeC2(R) with l/γ >σ(x) >y, \(d/dx)σ < Cl9\(d2/dx2)σ < C2,
for suitable constants y > 0, C1 > 0, C2 > 0.

We just prove Lemma 2.1 (see below) for the above case, since, once this is
done, the rest of the discussion is the same.

Let us assume for simplicity that the origin is a stable fixed point fe(0) = 0 with
ft'(O) = — m0 and let δ > 0 be so small that sup \b'(x) + m0 | rg η, where η > 0, η « m0.

\x\<δ

Proposition 2.5. For any T> 0, m < m0, there exist ε0 > 0, K > 0 such that

sup
|x|«5/2

X*t(x)

V ε < ε 0 .

3. Proofs of the Results

We first prove Corollary 2.1 and Propositions 2.1,2.2,2.3,2.4,2.5 and then
Theorem 2.1.

Proof of Corollary 2.1. Let Tf

0 = mi{t^Q;Xt(x)eC0ji VxeBiίT}. By assumption
T"0<oo. We now want to estimate the probability that X&

τ> (x)eCf Vx6jB ί ? Γ.
To do this we compare the path of Xε

t with the solution of (2.2) with the same
initial condition:

X°t(x) - Xt(x) = εw, + [b(Xl(x)) - b(Xs(x))]ds. (2.11)
o

If we set
φt = \ X ° t ( x ) - X t ( x ) \ ί^T'0,

then
t

φt^ sup |εw r +λ$φsds (2.12)
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for a suitable constant λ\ thus by the Gronwall inequality

φfo^ sup\εwt\eλτ'°. (2.13)

Using (2.13) we get

(2.14)

for ε sufficiently small (see e.g. [22]).
Let finally ί ̂  T0 + ί0 = T0, where ί0 is the constant appearing in Theorem 2.1.

Using Theorem 2.1 and (2.14), the random flow

is such that

, ,χ) ̂  ίr
m<ί-7o) ̂  £rm(i-To) Vί > T0 (2.15)

and ^(x)eCf Vxetf^ with probability bigger than 1 -exp(- K"/ε2).
By elementary estimates (2.15) shows that

\\X-y\\

with probability larger than 1 — exp(— K 1 / ε 2 ) for a suitable constant K! > 0.

Proof of Proposition 2.1. The proof is based on the following two probabilistic
estimates which will be proved in Appendix B and in the course of the proof of
Theorem 2.1 respectively.

Let

and

S2(Γ,α,m) = j f ^ T ;

with α> 1.
Then for any m ̂  m0 there exist positive constants Vθ9Vl9Kί9K2 such that for

any F0 ̂  V ̂  V1 and any ε small enough,

P inf |^(T,x, j ;) |^2r/3,VT^f(ε)^l-exp - , (2.16)

/ k \
P(5 2(Γ,α,m)^2T/3,VT^f(ε))^l-exp — | , (2.17)

V ε /

where f(ε) = ep/ε2. Let us assume (2.16) and (2.17); it follows that

X,yεC
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(2.18)

where λ = supL(Xε

t,x\ and provided α is so large that
X

mα -f λ

In fact let t Ξ> f (ε) be given; if

t

then there exists ί0 = t0(x,y) ^ ί/α such that

for some i and

Thus

\\X t(x)-X t(y)\\

\\χ-y\\
ίo - (met + λ/a ~ l)(ί - ίo) < ~ mt

if α is large enough and ε is sufficiently small.
In the last inequality we used the Gronwall inequality to bound \\Xε

to(x) —

Using the estimates (2.16) (2.17), the probability appearing in (2.18) is bounded
from below by

l-exp( ~
\ b

for a suitable constant C provided ί(ε)/α ̂  f(ε).
This last condition is clearly true if we choose V ̂  V and ε is small enough.

Proof of Proposition 2.2. We first observe that if — #0 < x < y < RQ then, as a
consequence of the uniqueness of the solution of the stochastic differential
equation (2.1),

X*t( - RO) £ Xε

t(x) ^ X*t(y) £ X't(R0), (2.19)

and therefore it is sufficient to study the probability of the event:

ί20 = {\X°t(R0) - X£

t(-R0)\ ^ 2Λ0e-w(ί- f (β»Vί ^ ί(ε)}. (2.20)

Let i0 be the index of the rightmost fixed point such that i0eM and let

τ = inf{ί^O;Xί(R0)eC ίo,^(-Λ0)eC ίo}. (2.21)

If Ωt denotes the event
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Ωt = \ sup L(X*t. t, x) ^ e-
m(t'-* V f > ί + ί0 k (2.22)

Ucίo ' J

ί0 as in Theorem 2.1, then using the strong Markov property we can clearly estimate
the probability of Ω0 from below by

t(εt° (2.23)

provided ε is small enough. Using Theorem 2.1 the above expression is bounded
from below by:

- exp - (* ̂  t(ε) - ί0)). (2.24)
\ ε / /

In order to study P(τ ̂  ί(ε)) we need to introduce new stopping times τίo, σίo, £ίo

as follows:

σίo - inf {ί > τίo; Xf(R0)6C i o} - τίo,

or some ι>i0}. (2.25)

Using the Ventzel and Freidlin theory and the definition of f 0 we have that

E(τ/0)^'"2,

E(σίo)^e^2 (2.26)

k 1 - exp - ~
ε

for any ε small enough, some positive Vlt V2, V3, k' with V2 < V3.
Furthermore

i n f p f dίχc (X ( x ) ) ^ P ^ 3 / β a ^ l - e x p - (2-27)

for any 0 < p < 1 and some constant k" = k"(p). Here χc. (x) is the indicator function
of the set C f o.

Let now ί(e) = ̂ κ/ε2 with V> max(F1? 72, K3) and let ί2 be the intersection of
the events:

F3/ε2

(2.28)
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Using (2.27), (2.28) together with the strong Markov property we get that

P(β)>l-exp -4 (2-29)

for some k> 0.
Furthermore it is easy to see that the event Ω implies τ < ί(ε) if ε is small enough.

In fact by construction each path Xε

t( — R0),Xε

t(R0) in the interval (τίo + σίo,
τio + <?F3/ε2) spends in the set Cio a time bigger than:

^2 - 2σio > (l/2)(ev^2 - σio) (2.30)

for ε small enough. Thus τ < τίo + eV3/ε2 < t(ε) again for ε small enough.
The proof is finished.

Proof of Proposition 2.3. Let B2Ro and ξ be as in Proposition 2.3 and let φ™' be
the function with

±Φ?= and '̂ = 0, Φ > = ξ.

For notational convenience we set δt = t' — t. We will also denote by / the value
of the action integral /M> over φ. Let finally T = T(R0) be the smallest integer time
such that after time T any point in the sphere B2Ro + ξ has reached under the
classical flow a ^-neighborhood of the stable fixed point xίo and let T(R,R0\
R > R0, be the smallest integer time such that any point in the ball BR has reached
the ball BRo/2.

If we set by Tg = exp(//ε2), then we will show that

δ VxeB Λ o ) ̂  1 - exp( ~ } (2.31)

for a suitable constant k> 0.
Clearly the above estimate together with Corollary 2.1 is sufficient to prove

the proposition. In order to prove (2.31) let us construct the following set of paths:

oίsίT,', SUP I >Φ) - w(n - T(R,RQ))\ < -
n-T(R,R0)^s^n £

δ'
sup |w(s) — w(n)| ^—

n + δt^s^n + δt+T £

sup \X Λι,(0)-φ(S)\£δ'\. (2.32)
n^s^n + δt }

Then we have that the probability in (2.31) can be estimated from below for any

P U ^ n s u p s u p l ^ W I ^ K (2.33)
T-2T ) (X^BR0

 l^τ

q J /

provided δt is small enough and δ' « δ.
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Let in fact {ws}og,sτ be in Ωnr\< sup|Jfj(x)| =R (- Then at time t — n
(t*τq }

Xε

t(x)εBRo for any x in BRo since at time n — T(R, R0\ Xε

t(x)eBR and between times
n— T(R,R0) and n the process has followed the classical path within a distance
exp(KT(R,R0))δ' <RQ/2 if δ' is small enough. Here K is as usual the Lipschitz
constant for the drift b(x). At time ί' = ί + δt, Xε

t(x) is in B2Ro + ξ for any x in £Ro

since dist(X^t(x)9X
ε

t^t(0))^exp(Kδt)\x\^2R0 if <5ί is small enough. A similar
argument shows that at time ί" = n 4- T(r, jR0) the process is in a ^-neighborhood
of xίo.

Using now the first of the Ventzel and Freidlin estimates we get that for a fixed
n the probability of Ωn is greater than exp( - (/ + h)/2ε2) with h small if ε is small.
Therefore using the definition of Tg we get that the right-hand side of (2.31) is
bounded from below by:

for some positive constant k. We are left with the estimate of the last term in (2.34).
Let xεBRo be such that for some time t < Tg the process starting at x is not in BR.
Let tί and t2 be respectively the last time for which the process is still in BRo and
the first time for which the process is not in BR. Then using hpl on the drift b(x)
we have that:

ε|(w(ί2) - w(ίj| ^ a(t2 -t^ + R- R0.

Using standard estimates on the brownian motion it is very easy to see that if
R is chosen large enough (depending only on / and therefore on δt) the probability
of this last event is of order exp ( — /c'/ε2 ) for some positive k'. The proof is completed.

Proof of Proposition 2.4. Let (Z(ί, x))t = dXε

t(t, x)/Sxio9 where I^i0^n will be kept
fixed in the sequel. Then from Eq. (2.1) we obtain:

~Z(t,x)
at

Z(0,x) = (<5Uo). (2.35)

If we assume that \Xe

s(x)\ < 2δ Vs g ί, V | x | < δ, then (2.35) implies, together with
(2.9) that

i.e.

(2.36)

Thus, in order to prove the proposition with m(ε) = c3β it is enough to show that
for a suitable choice of ί0 and a,

- ) ; sup (t,x)> t/2^e-κ/ε (2.37)
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for some K > 0, where

0

3 ( 1 / / ? )with B = {x; \x\ ̂  ε3(l/C)(1//?)}, since

(2.38)

(see (2.7), (2.14) if a is small enough).
The probability in (2.37) is estimated by

exp(-α/ε 2 )+l

Σ P sup (j,x)>jβ (2.39)
|x|«Sτε

if f > 6. Since

because of the Gronwall inequality, the generic term in the sum (2.39) can be
estimated from above by

X P ( τ ' t ( j , x t ) > j / 3 l (2.40)
\xi\<δ,xieZn(ε)

where Z"(ε) = ε3e~kjZn, and Tg(i,x f) is defined as τ but with the ball B replaced by

the ball of radius rε = ε3(l/c)1/β + (^/n/2)ε3. So let us estimate one term of (2.40),

supP«(ί,x) > ί/2) ̂  β~α ί / 2 ε 2sup£exp V α > 0. (2.41)
x * L ε J

Using the Markov property we get

Γα<(ί,x)Ί / Γα<(ε2,x)Ί\1+ί/ε2

supEexp £γ ; U supEexp g V

2

? ; . (2.42)
x L ε J \ ^ L ε J /

Thus, since τ'ε(ε2,x) ^ ε2, the right-hand side of (2.42) can be estimate for α small by

expΓ(l + ί/ε2)^fsup£<(ε2,x)) + (ί/ε2)0(α2)]. (2.43)
L ε \ x J J

Now

^Eτ'ε(ε2,x) = ̂ ds J P^x^s)^, (2.44)

where Pe(x,^s) = PJC(Arϊ = 3;).
On the probability density Pε(x,y,s) we have the bound (see Ventzel-Freidlin

[6], p. 391):

const

which gives as one would expect, that the right-hand side of (2.44) is 0(ε2"). In
conclusion, if ε is small enough and α « 1 independent of ε, the right-hand side of
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(2.41) is estimated from above by

e αj ε ,
uniformly in x.

The proof is complete by plugging the above bound in (2.40) and in (2.39).

Proof of Proposition 2.5. Let

xε

t γ
fi=]dx-—. (2.45)

o σ(x)

Then, by the Ito's formula, we have

which implies for zt = dyε

t/dx:

dzt = (bf(Xί)zt-^^σf(Xί)zt - ε 2 σ σ " ( X I ) z t }dt, (2.46)

i.e.

zt = z0 expA (b'(X^-l^fσ'(X^ - ε2σσ"(^) \dtf. (2.47)

Thus, if sup sup | Xε

t(x) | < <5, then the expression appearing in the integral in (2.47) is
t^T \χ\<δ/2

bounded from above by

-m0 + η + (m0 + η)δC^- + ε2(^2-< -m (2.48)
y y

if m < m0 and η, δ, ε are small enough.
Formula (2.45), (2.47) and (2.48) imply that:

sup—t^L^-e~mt V ί^T, (2.49)
x dx y

provided
sup sup\Xε

t(x)\<δ. (2.50)
|x|«5/2 t^T

The Ventzel and Freidlin estimates give that the probability of the above event is
greater than 1 -e~κ/ε2 for any T>0 and ε small enough for some K = K(T,δ).

Proof of Theorem 2.1. The proof is almost identical to the proof of Theorem 1.1
and therefore it will be very sketchy. Let us fix a brownian path {wr}^0 and let
for α>0 l = l(a,ε) = ea/ε2; let also Tj = [ ( j - l ) l , j ΐ ] jeN. We introduce the set
So = So({wf}ί>o) °f singular blocks Tj by

(2.51)

Lemma 2.1. For any m < m0 there exist positive constants α0,^C,ε0 such that for
any a <α 0 ,ε<ε 0 ,
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PO'eSo)<exp( —^ }.

The proof is given in Appendix B.
For the rest of the discussion the parameter a appearing in the scale l(a, ε) will

be fixed smaller than α0. Given the set S0 one constructs, exactly as in Sect. 1 the
net of sets 50 =3 S1 => S2 ••• ^> Sk and proves the analogous of Proposition 1.1, 1.2,
Lemma 1.2, (1.23), Lemma 1.3 provided that part a) of the next lemma holds
(see Lemma 1.5).

Lemma 2.2. For any pe(0,1) any α'>0 and any V>0 there exist constants k,kf

such that for any ε small enough,

a) supP(τ(x,0,Γ)>pΓ)^exp -/cTexpf ~] ,
xeC L \ ε / J

b) P( supτ(x,0,T)>pT/or some Γ>T0 Wexpί --y ),
\xec J \

vv/zere τ(x, 0, T) is the time spent up to T by the process Xε

t starting at x, outside the

set C and T0 - ev/ε\

The proof is given in Appendix B.

Remark. The analogue of Proposition 1.1 also proves (2.17). Let in fact T>t(ε)

(2.52)

and let dk(T] be such that

Clearly we can always choose the parameter a in /(α,ε) such that Id0 < αΓ.
Using the analogous of Proposition 1.1 we have

for some constant K > 0.
From Lemma 1.4 we also know that

#{ttEJV;0 ̂  n ̂  L9n is (j - 1) - admissible} ̂  ( 1 - const/ )L
\ " i/

with probability one.
Thus using (2.26), (2.27),

P(|S 2(T,α,m)|>2Γ/3VT>f(ε))

provided (1 — const d0/d1)> 2/3.
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Section 3. Some Applications

We discuss some applications of our results to elliptic partial differential equations
with a small parameter in front of the highest derivative.

Let ~fo:R"-»R" be as in Sect. 2 and let D c=R" be a bounded domain with a
smooth boundary 3D such that D contains in its interior exactly fc, 1 ̂  k ̂  / stable
fixed points of b. Let φ:dD-*R be a smooth function and let w:D->R be the
solution of the Dirichlet problem:

Lu = ε-Δu + T}'Vu = 0 VxeD, u\dD = φ. (3.1)
2

Let now x f l , . . . , xik be the stable fixed points contained inside D and for T > 0, δ > 0
let

£. = {χe£; \Xt(χ) - χ..| < δ for some t g T}. (3.2)

Then we have:

Theorem 3.1. There exist δQ > 0 and for any δ < <50, T > 0, ί/zere exist ε0, K such ί/iαί

/ £\
sup sup |M(X) — u(y)\ ^expl —^ ) V ε < ε 0 .

Proo/. It is well known [22] that M has the probabilistic representation

u(x) = Exφ(X*J xeD, (3.3)

where τx = inf {t ^ 0; ̂ f

ε(x
Let us compute u(x) — u(y) for x,yeBi},

u(x) - u(y) = Eίφ(X*τχ(x)) - φ(Xly(ym (3.4)

Using the Ventzel and Freidlin theory, we have that:

sup P(τx < 1/ε2) £ expf - ζ- ) (3.5)
χeβ£. \ ε /

for some K'>Q and using Corollary 3.1 that

\Xl(x)-Xl(y)\^e-^\x-y\ (3.6)

with probability greater than 1 — exp( — K"/s2) K" > 0.
Suppose now that τy ^ τx, the case τx ^ τy being identical. Then, if τx > 1/ε2

and (3.6) holds then

-y\. (3.7)

Note that the length scale appearing in the right-hand side of (3.7) is much smaller
than the typical fluctuations of the brownian motion εw, if ί »0(exp(— 2m/ε2)).
On this time scale the drift term in the stochastic differential equation 2.1 is
negligible compared to εwr This, together with standard arguments on BM, leads
to the following easy estimate whose proof is omitted:
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s u p p\X'r,-x > e x p - x p - (3.8)

for any m' < m, ε small enough and a suitable constant K'"(m'} > 0.
By combining together (3.6), (3.7), (3.8) we get that

sup p | ^ - * y ^ e x p - ~ > l - e x p - ζ (3.9)

for any ε small enough and suitable constant m' > 0, K > 0. The above estimate
together with the assumed smoothness of φ and (3.4) clearly gives the result.

Our result can be applied as well to the study of the distribution as ε -> 0 of
the exit time τε from an attracted domain D.

The exponential low for τε has been already proved by Day [9], however, by
means of our result on the exponential glueing of trajectories the exponential low
can be proved in more general situations.

In [11] we will treat this problem and we will also consider the infinite
dimensional case.

Appendix B

We first prove the bound (2.35) in the hypothesis of Proposition 2.1. Let iQ be, as
in Proposition 2.1, the index of the "most stable" fixed point. Let ττ(x) be the time
spent by the process Xε

t(x) up to time T in the set C[l'°3 = \J Ct. Finally let:

V0 = V{i0} (see (2.9)), V^mmVioJ. (B.I)

By assumption Vί>V0.
The proof is based on the following estimate:
For any V9 V0 < V < Vl and any α, αe(0, 1) there exists K > 0 such that

P( sup τΓ(x)^αT for some T^ Γ0 ) ^exp( -^ ) (B.2)

for any ε sufficiently small, provided T0 = ev/2ε2.
In fact if B.2 holds, then we have

P( inf \Sl(T,x9y)\<2Tβ for some Γ^ T0
\χ,yeC

^ P\ sup ττ(x) ^ T12 for some T ̂  Γ0 ]
\XeC )

+ P(supτ(x,0,T)^T/12for some T^T 0 ), (B.3)
V*eC /

where τ(x, 0, T) is the time spent up to T by the process Xε

t starting at x outside
the set C (see Lemma 2.2). In fact if we denote by τίo(x, T) the time spent by the
process Xε

t(x) up to time T in the set Cio c= Aio, if τ(x, 0, T) < T/12 and if τr(x) < T/12,
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then

τίo = T - τ(x, 0, T) - ττ(x) > Γ(l - £ - A) = T5/6.

Thus if the same bound holds also for τio(y, T\ then we get

T5/3 - IS^TUy)! < τίo(x, T) + τio(y, T)- IS^Γ,*, j;)| ^ T,

By using the estimate (B.2) and Lemma 2.2 we bound (B.3) by exp(
for some suitable constant K1 and for ε sufficiently small.

Let us now prove B.2:

Eχ supτΓ(x)>αT for some T^ T0
xeC

^ E χ{ sup ττ(x) > αT for some T ;> T0

χ sup sup
\ ί xeCi

Λl
0

/ J

~~2\ε /

For the last inequality to hold it is understood that ττ(xi) is evaluated for a
^-neighborhood C£o] of the original set C[ίo] = [j Ct. This of course has little

i^io

influence on the subsequent estimates if δ « 1.
To estimate P(τr(xt ) > αΓ for some T^ T0) we introduce the random times τ7

given by the time spent by the process in the set C^lo] between ((j — 1)T0 jΓ0].
The event ττ > (xNT0,N ^ 1, implies that for at least (α/2 — α)A/" intervals

((;- 1)TOJT0], τ^αTo/2. Therefore

^ sup PXJ there exist at least ~~N intervals ((; - 1)Γ0 J9 T0]; τj > αT0/2 ).
ί l \ 2 — α ' /

/"D

Using the Markov property, we estimate (B.5) by:

(B.6)

k>N<x'

ΛΓ(α/2-α)

We now estimate sup Px(τ1 > αΓ0/2).

Let "^
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Then

sup pχ(Tl > αT0/2) ̂  sup 2^ ̂  -?r( sup Exσ0 + sup £,TI ). (B.7)
xeCi101 xeBr <^0 OClO\xeC^] *eC'o /

Using the Ventzel and Freidlin theory, together with hpl, one gets:

Iim2ε2log sup Exσ0 = V{i0}. (B.8)
ε^° *ecyo1

The second term in the right-hand side of (B.7) is bounded as follows:

sup Exτγ ^ sup P(σ < T0) sup £ xτ l 5 (B.9)
xeC lo xeC lo xecj01

and therefore, using (B.7), we get

sup Exσ0

Again by the Ventzel and Freidlin theory we get that for any ε sufficiently small,

supP(σ<T 0 )<l/2.
*ecίo

In conclusion for any h > 0 there exists ε0 > 0 such that for any ε < ε0,

that is

and (B.2) is proved.

Proof of Lemma 2.1. Let ί0 = I sup{ί; Jίf(x)EC0} I + 1 and let us first prove that
0 = sup{ί;AΓ f(x)GC0}

[_XeA J

x)<e mίo I > 1 — expl —

for a suitable constant K = K(d) depending only on the distance between the sets
C0, C, A. It is clear that (B.14) proves the lemma provided the constant a0 is taken
sufficiently small, e.g. α0 = K.

In fact

p(xϊ(Q d C and supLpf?,x) < e~

* ! - .Σ (l - ^(^kϋ-i)ίo(C) ci C and supL(^0,x) < e-"*°)



64 F. Martinelli and E. Scoppola

^ l-ea/ε2Qxp( -^ )^ 1 -exp( -^

if a < α0.
In (B.I5) we have used the obvious fact that

Z/ίo

L(Xε x] < Γί L(Xε Xε ίx}}

Using estimate 2.14,

(B.16)

for a suitable constant K' > 0.
In order to estimate supL(Xε

to,x) we assume that
xeC

with δ« 1.
For notational convenience we denote by

Zε -(x t\ = (Xε(χ}} (B 18)

and by Zkti(x,t) the analogue for the classical path Xt. Then:

Let us write

= sup|Z| f i(x,ί)-Z fc t ί(x,ί)|.
k,ί

Then by subtracting Eq. (2.2) from (2.1) we get

φ(f) ^dsCιφ(s) + C2tδ, φ(0) = 0, (B.20)
o

where
dbk(x)

C1 =sup sup
xeA k,i

and C2 depends on the supremum over xeA of the second derivatives of the drift b.
By the Gronwall inequality we obtain:

By hypothesis hp3,

and therefore for any m < m0 if δ is sufficiently small,

xeC
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Using again estimate (2.14) the probability of (B.17) is bounded from below by

1-expf-ζ) (B.22)
V ε /

for some constant k" > 0.
Estimates (B.22) together with (B.I 6) conclude the proof.

Proof of Lemma 2.2. a) Let τR be the time spent up to time T outside the sphere
BR and let σR be the time spent up to time T in the set BR\C. Then we have

P(τ(x, 0, T) > αT) < P(τR(x, 0, T) > αT/2) + P(σΛ(x, 0, T) > αT/2). (B.23)

We estimate the two terms in (B.23) separately. We start with the first one. Let

τί=MS(t>0',Xε

t(x)φBR)9

Then we have (see (A. 9) for the derivation)

P(τ^(x,0,T)>αT/2)<exp(-^αT)Xsup(P : c(v-π))1 / 2 sup Ex(e2βσι)n/2 (B.24)
n xeBR \xecBR

for any β > 0 where v is the smallest integer such that σv > T.

Lemma B.I. For any α' < 1 and any n> ot'T and ε sufficiently small,

ί kn

P(v = n) <exp -- ^

for some constant k > 0.

Lemma B.2. There exist β0>0 such that Vβ < β0,

sup Ex(e2βσί)^2.
xedBR

Clearly the two Lemmas show that there exists a constant k = k(R) such that

P(τR(x,Q, T) > αT/2) < e~kT. (B.25)

Proof of Lemma B.L lϊv = n then we have that dist(Xε

t, Φn}> δ for some small δ,
where

Φn = (φ;Io,τ(Φ)>nV(R)/2)
with

V(R)= inf I0tT(φ).
φ(0)eBR,ψ(T)φB2R

The probability of the above event is estimated by the second of the Ventzel and
Freidlin estimates by

exp
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for any a' < 1 and ε sufficiently small.

Proof of Lemma B.2. We estimate

sup Px(σl > t).
xedBR

Let
/= inf I0tt(φ).

Clearly the event

{σ, > t}
implies that

dist(Xε

t(x)9 {φ\ I0tt(φ) < I; φ(0) = x}) > R/6 VxedBR.

We will show that I^.ct for a suitable constant c> 0. The second of the Ventzel
and Freidlin estimates then implies that:

sup Px(σ1 > t) ̂  exp -^
xedB2R \ 6

for some k> 0. This clearly proves the lemma. Thus let us compute /. For a given
φ satisfying the above conditions we write

]ds\dφ(s)/ds - b(φ(s)\2 = £ J ds\dφ(s)/ds ~ b(φ(s)\2 + } ds\dφ(s)/ds - b(φ(s)\2,

° ° V l 5v

where

50 = 0; st = min(s > si-1'9

where ni_l is such that φ(si^1)edBn__ R9 and v i s such that s v + 1 > ί > sv. Letί0 = R/a
with a as in hpl. If now v > ί/2ί0 then this implies that ni>ni^1 for at least ί/4ί0

times since | φ(s)\ > R/3 Vs < ί; thus in this case I > ct for a suitable constant c> 0.
If v < ί/2ί0 then, following Ventzel and Freidlin, we estimate each term in the sum
by c'[_(st — Si-ι)/fo] f°r some constant c7 > 0. Thus in this case we get:

/ > sv/t0 - v + (t - sv)/t0 - 1 = ί/2ί0 - 1.

The proof is finished.
We turn to the estimate of the second term in (B.23). Following the proof of

Lemma 1.5, we start by showing that for any a > 0 and any β > e~a/ε2,

β«l^2 (B.26)
xeBR

for ε sufficiently small where α x is the exist time from BR\C.
Let ί0 = exp(α/ε2); Then, by the strong Markov property and the Chebyshev

inequality we have

sup E^αJ/ίo . (B.27)
xeBR J

The results of Ventzel and Freidlin show that for any a' > 0 there exists ε0 such
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that for any ε < ε0

Thus for ε small enough,

P(αι > fcί0) < exp - . (B.28)

The second and final ingredient is to estimate the probability Px(vt = n) where
vt counts the number of transitions between the sets B = Cc and C0 (see (A.6)). For

any a > 0 let [0, ί] = (J [tί-1 , ίj, where N = [t/ealε2~\ + 1. Here t{ = ίea/ε2ifί <N-1
ί<N

and tN — ί.
Then we have

Px(v, = n)< £ P(nι,...,nN), (B.29)
nίt...,nN

where nt is the number of transitions in the ith interval of time with the restriction
Σni~n and P(nl9...9nN) denotes the probability of having nv transitions in
I

[0,ί1],n2 in the second interval and so on. By the strong Markov property we
can bound P(nl9.. . nN) by /7(π1)/?(n2 )../?(%), where p(j) = supPx(v t l = j). Again by

xeCo

the strong Markov property we get

(B.30)

It remains to estimate p(l). As in the first part of the proof of Lemma 2.1 it is
sufficient to estimate p(\) for a time interval Γ0 independent of ε. This last estimate
is provided by the standard large deviation estimates of Ventzel and Freidlin; the
final result is

for some k> 0 and any a small enough.
Using now (B.31),(B.30) in (B.29) we get that

P,(vf = n) g exp( - ̂  )encN, (B.32)
V ε /

where c = Σe~" Since N < ί exp(- α/ε2) + 1, (B.32) represents the analogue of the
n

result of Lemma A.I.
By proceeding now exactly as in the discrete case we get that (B.26) together

with (B.32) leads to the estimate

P(σΛ(x,0, Γ) > αT/2) ̂  exp( - Jc(α
V

for some constant fc(α), any a sufficiently small and ε small enough.
The above estimate, together with (B.25), proves Lemma 2.2a).
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b)
P(3t > T0;supφ,0, ί) > pf) ^ supPx(3t> T0;τ'(x,0, ί) > pt)

xeC xeC

+ P( sup dist(*f(x), A?00) > e~mτ\ (B.29)

where τ'(x, 0, ί) is defined as τ(x, 0, ί) but computed for a slightly smaller set C a C
with e.g. dist(dC, C) ^ exp( — 1/ε2). The result now follows from Corollary 2.1 and
part a) of the lemma.
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