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Abstract. We consider the Boltzmann equation perturbed by Fokker-Planck
type operator. To overcome the lack of strong a priori estimates and to define a
meaningful collision operator, we introduce a notion of renormalized solution
which enables us to establish stability results for sequences of solutions and
global existence for the Cauchy problem with large data. The proof of stability
and existence combines renormalization with an analysis of a defect measure.
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Introduction

We are concerned with global existence and stability of solutions of the Fokker-
Planck-Boltzmann equation

(FPB) —f + ξ'Vxf -vΔξf = Q(f, /) in (0, oo) x RN x RN,

where NέZ.l,xERN

9ξeRN,v>Q. Except for the additional diffusion or Fokker-
Planck term, — vΔξf, the equation FPB is the Boltzmann equation. The structure
of the collision operator Q is described in Sect. II.

We shall prove that sequences of classical solutions of FPB which satisfy
uniform bounds only on the physical conserved quantities converge to a re-
normalized solution of FPB, a notion that we define below. A straightforward
consequence of this result is global existence of a renormalized solution of FPB
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if the initial data

/(0,x,ξ) = /0(x,<a on RNxRN (1)
satisfy

Og/o, a.e. and JJ /0(1 + |x|2 + \ ξ \ 2 + \logfQ\)dxdξ < oo. (2)
RN*RN

There are several reasons for treating FPB. The present study is part of a series
of papers by the authors devoted to transport equations arising in the kinetic
theory of gases. The primary model is the Boltzmann equation and FPB is a
natural approximation both physically and mathematically. Although the Fokker-
Planck term provides some mild regularizing effects which are absent in the
Boltzman equation, several of the essential difficulties encountered in the study of
the Boltzmann equation are present in FPB. In particular, we mention the lack of a
priori estimates which are sufficiently strong to define the collision operator g(/, /)
in a classical sense. Our renormalization procedure to resolve this difficulty is one of
the key ingredients in our forthcoming paper [5] on the Boltzmann equation which
contains results on sequential stability and global existence for the Cauchy problem
with large data. In the present context of the FPB equation, renormalization is
combined with an analysis of a natural defect measure in order to obtain stability
and existence. Another motivation for the study of FPB stems from the fact that
related equations are of physical interest in the problem of accounting for grazing
collisions (see C. Cercignani [3], p. 90) and in the study of aerosols (see for instance
S. K. Loyalka [13] and the references therein).

As mentioned above the main difficulty in dealing with FPB originates in the
collision term which is defined as follows. If φ(ξ)e@(RN)9 then

Q(φ, φ) = J dξ* J dw{φ(ξ')φ(ξ'J - φ(ξ)φ(ξJ} B(ξ - ξφ, w), (3)
RN S*-1

where ξ' = ξ — (ξ — ξ^ w)w, ξ'^ = ξ + (ξ — ξ^ w)w. The collision kernel B is a given
function satisfying

£ ̂  0, B(z9 w) is a function of |z|, |(z, w)| only. (4)

An additional hypothesis will be imposed on B below. As is well-known, Boltzmann
type equations such as FPB represent a statistical description of a gas of molecules
or particles. The function / represents the density at position x, velocity ξ and
time t. The collision term describes the possible collisions at position x, time t
and ξ, ξj. are the velocities of two molecules before interaction while ξ', ξ'^ are the
velocities after interaction. The precise form of the collision kernel B depends upon
the intermolecular potential. For inverse powers potentials, B takes the form

B(z9 w) = b(θ) I z ~ ? with γ=l-2(N- l)/(s - 1),

where s > 1 is the exponent of the potential, θ is the angle between ξ — ξ^ and w
so that cosθ = (ξ — ξφw)\ξ — ξj"1. In general, b is smooth except at θ= ±f,
where it has a singularity of the form |cos θ\ ~α with α = s + 1/s — 1 when N = 3.
As is customary in the subject, we shall impose a weak assumption of angular
cut-off (see H. Grad [7], C. Cercignani [3], C. Truesdell and R. Muncaster [15])
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namely that B satisfies

This clearly corresponds to a reduction of the strength of the singularity and
physically means that grazing collisions are weakly represented. We note that (5)
holds trivially in the classical case of hard-spheres where

£(z,w) = |(z,w)|.

In connection with the structure of Q we note that even if all difficulties
concerning integrations at infinity are ignored, the only simple bound one can
expect on Q is

Therefore, in order to give a meaningful interpretation of Q one might try
to derive an estimate of the form

Such an estimate is not available in general. Indeed, it is not obvious that L2 is
natural for FPB.

In order to resolve this classical difficulty of defining β, we introduce a new
formulation of the equation which consists of renormalization by a suitable non-
linear transformation of the dependent variable /. As motivation for the transfor-
mation, let us first suppose that / is a smooth nonnegative solution of FPB and
consider the function βδ(t) = (l/<5)log(l + δt). Notice that the composition gό =
βδ(f) solves the following renormalized version of FPB:

~96 + ξ'Vxgδ - vΔξgδ = ̂ j Q(f, f) + vδ\Vξgδ\
2 (RFPB)

in RN x RN x (0, oo). We shall show below that, for each δ > 0, the normalized
interaction (1 +<5/)~1β(/,/) belongs to L^ and Vξgδ belongs to L2. In the
stability and existence results for solutions of FPB mentioned above, the definition
of renormalized solution requires that for all δ > 0, the composite function βδ(f)
is a distributional solution of RFPB. The precise definition of renormalized solution
is stated in Sect. II.

Our renormalization procedure is applicable to a general class of p.d.e. whose
nonlinearities are not well-defined on the basis of the naturally associated a priori
estimates. In this connection, we mention that renormalization is one of the tools
in our analysis of large data Cauchy problem for the Boltzmann equation [5]. A
second application of renormalization to linear divergence-free transport equations
with bad coefficients will be given in our forthcoming paper [6]. In the context
of quasilinear second order elliptic equations in L1, Ph. Benilan suggested to the
second author that ideas related to our motion of renormalization may turn out
to be useful in the analysis of solutions in a spirit vaguely reminiscent of Ph.
Benilan, H. Brezis and M. G. Crandall [1]. Additional applications to discrete-
velocity models are discussed in Sect. V.

With regard to previous rigorous work on FPB, we are aware only of results
in the small, specifically perturbations of the vacuum state. We refer the reader to
K. Hamdache [8, 9] and to the references cited therein.
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This paper is the first in a series devoted to a systematic study of nonlinear
transport equations. In addition to the Fokker-Planck-Boltzmann equation and
the Boltzmann equation we shall treat the Vlasov-Maxwell system in its classical
and relativistic forms. The latter system arises in theory of collisionless plasmas
for which terms of the type β(/,/) are absent. Basic questions here deal with
global existence with large data and sequential weak stability.

In this general area, several extended systems arise which incorporate both
electrical or electromagnetic effects and collisional effects. In this connection we
mention the Vlasov-Poisson-Boltzmann system which is associated with a medium
of charged and colliding particles. We shall also be concerned in a future publication
with the associated existence and stability problems for VPB for solutions with large
data.

A common aspect for all of these equations is the study of sequences of solutions.
The study of sequences of approximate solutions is relevant to the problem of
existence while the study of sequences of (exact) solutions is relevant to the problem of
stability. In both settings one is presented with a list of physically natural estimates
derived from the associated conservation laws. The laws for energy and entropy are
the prime examples. As usual the basic conservation laws provide information on
the amplitude of the solution but not on its derivatives. Consequently, the problem
of passage to the limit involves further investigation. In this context we are
concerned with the mechanisms of regularization and cancellation which relate to
the limiting behavior of sequences of solutions. Renormalization is one of the tools
which is useful in treating all of the systems above.

I. Basic Formal Conservation Laws and Estimates

In this section we recall a few basic facts concerning Boltzmann type equations and
present some simple applications.

First of all, the symmetries of B such as [4] easily yield that for all
N) (say)

= τ JJ dξdξ* J

ξt9w). (6)

See [3] for details. In particular, if ψ = a + b ξ + c\ξ\2, where a,ceR,beRN, then

RN

This immediately implies that a solution / of FPB formally satisfies the
following identities:

(conservation of mass) JJ /(x, ξ, t)dxdξ is independent of ί, (7)
RNxRN

(conservation of momentum) JJ ζf(x, ζ, t)dxdξ is independent of ί, (8)
RN*RN

(increase of kinetic energy) — JJ \ξ\ 2 f ( x , ξ, ήdxdξ = (2Nv) JJ f ( x , ξ, ήdxdξ.
dtRN*RN RNxRN

(9)
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Observe that by (7) the right-hand side is constant.
Next, we recall another well-known identity which is based upon the remark

that if we take ψ = log φ with φ > 0 in (6) then we obtain

$logφQ(φ9φ)dξ = ± ff dξdξ* f dw{φ(ξ')φ(ξ'J- φ(ξ)φ(ξj}.
RN *RNxRN SN~l

•log ίφ(ξ)φ(ξJ/φ(ξ')φ(ξWB(ξ - £„, w) ̂  0.

Therefore, if we multiply FPB by /log/, recall that / ^ 0 and integrate, we formally
obtain

£ ff f\ogfdxdξ=-v ff \Vξf\
2f-*dxdξ~ ff dξdξ* f

-

00)

It is obvious that (7) and (9) provide some a priori estimates on /. In order
to deduce a bound from (10), we need another estimate. This estimate is obtained
by multiplying FPB by \x 2 and integrating:

^ ff f\x\2dxdξ = 2 ff (x,ξ)fdxdξ.
dtRNxRN RNxRN

Hence by Cauchy-Schwarz inequality

d ί V / 2 / V / 2

- ff f\x\2dxdξ^2( ff f\X\
2dxdξ) ff f \ ξ \ 2 d x d ξ ) . (11)

dtR»xR" \RNxRN / \RNxRN /

As a final remark, observe that if geL^R1* x RN) satisfies

ff g(l + \x2 + \ξ\2)dxdξ^R and ff gloggdxdξ^R (12)
RN*RN RN*RN

for some R ̂  0, then

ff g\logg\dxdξ^CR (13)
RN*RN

for some CR depending only on R. Here we assume gl loggleL 1 so that (12) makes
sense. Indeed, one has obviously

ff g\logg\dxdξί ff glo&gdxdξ + 2 ff l^
RNxRN RNxRN RNxRN

In order to bound the second integral in the right-hand side, we split this integral in
two parts. On the set where log (1/0) ̂  \x\2 + \ξ\2 we bound the corresponding
integral using (12) and obtain

ff g\logg\dxdξ£3R + 2 ff l t o^ e x p_ ( | x |2 + | { |2 ) ) f lflog-dxdξ.
RNxRN RNxRN g

To conclude the verification of (13), we observe that on (0, 1) the function t log (1/ί) is

bounded for example by C0χ/ί for some C0 > 0. Therefore
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Jf g\logg\dxdξ^3R + 2C0 f j exp -i(|.x|2 + \ξ\2)dxdξ ^ 3R + 2C0(2πf.
Λ ^ X Λ " *"x/?"

Throughout the paper we shall use the following notation:

β + (/, /) = fJ dξ*dwfJ'B(ξ - £„, w),
RNxSN~1

Q.(/, /) = Π dξ*dwff*B(ξ - ξ» w) = /•!/,
Λ^xS*- 1

with
J/ = ί/(^M(ς-^)^,A(z)= f B(z,w)dw for zetf",

£* S Λ Γ - 1

where /' = /(ξ'), /„ = /(ξj, /; = /(Q.

II. Sequential Stability and Strategy of the Proof: Normalized
Interactions, Defect Measures and Hypoellipticity

To simplify the presentation, we consider a sequence /" of smooth nonnegative
solutions of FPB. We assume for instance that fnεW2'°°(RN x RN x [0, oo)), /"^O
as (x, ξ)-+ oo uniformly in ίe[0, Γ] for all T < oo and that there exists a constant
Cτ independent of n such that

j] /"(x, ξ, ί)(l + M2 + \ξ\2 + \\ogfn\)dxdξ ^ Cτ, (14)
RN*RN

}dt f j

(15)

for all T < oo. In view of the facts in the preceding section, these bounds are
automatically satisfied provided the basic physical identities (7), (9-11) in Sect. I
are justified and provided (14) holds at t = 0. The justification of these and related
identities becomes necessary only when we address the question of the existence
of a solution of FPB and analyze sequences of approximate solutions. For the
moment we shall assume for simplicity that (14) and (15) hold. Because of (14) we
may assume by passing to a subsequence that/" converges weakly in L^jR^ x RN

x (0, T)) to some / for all T.

Definition. A nonnegative element / of C([0, oo); L1^^ x ,R^)) is a renormalized
solution of FPB if the composite function gδ = βδ(f) satisfies RFPB in the sense
of distributions, where βδ(t) = l/<51og(l + δt).

Theorem 1. Assume that B satisfies the following mild growth condition:

•oo, for all R<oo. (16)
BR®

Then Vp, T < oo, the sequence /" converges in Z/(0, T; L1 (R% x Rς) to a renormalized
solution f which satisfies (14) for a.e. f e(0, T) and (15). Furthermore, for any δ > 0, the
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normalized interaction terms satisfy

olLRxBJ), V£ < αo

)xRN

xxBR\ V K , Γ < o o ( j

and ^6L2((0, T) x R^ H^B^VR, T < oo).

Remarks: i) Many variants of this result are possible. In particular, the smoothness
assumption on /" is not necessary. In this connection we note that /" could be a
solution of an approximate equation. We shall use this fact to prove the global
existence result. Finally, the method we introduce below applies to various
Boltzmann type equations (see Sect. V).

ii) The above result implies that in fact fn converges strongly to /. We shall
see in Sect. V that the particular choice of βδ which enters the definition of
renormalized solution is not fundamental. Indeed, / has the following property: for
all nonnegative functions β in C2[0, oo) such that

0(0) = 0, \β' ^ WΊ=

then g = β(f) solves

Notice that β ' ( f ) Q ( f , f ) e L l c 9 and that (15) implies that β"(f)\V'ξf\
2elϊ. The

choice β=\/δ log (1 + δf) is merely a convenient representative of this general class.

iii) Notice that the uniform bound (15) implies that V//EL2((0, T)
xR^H\R^).

We conclude this section by explaining briefly the strategy of the proof. First, we
observe that gn

δ = βδ(f") solves RFPB and that Q _ (/", /")(! + δ f n ) ~1 is bounded in
L°°(0, T; L1^ x 5Λ))(VJR, T < oo). The latter fact is a consequence of the structure
of g_ and of the bounds (14). Then, integrating RFPB we deduce that the
normalized positive interaction Q + ( f " 9 f n ) ( l + δfn)~1 is bounded in L\(09 T) x

Next, we observe that these bounds mean that Lvgδ is bounded in !/(((), T) x
RX x BR)(VR, T < oo) where Lv is the partial diffusive transport operator

_ d
v = ~dt + X~V ξ'

Using the fact that Lv is hypoelliptic in the sense of L. Hormander [11], we deduce
that gn

δ is compact in ̂ ((0, T) x Rx x R^). The strong convergence of/" to / then
follows by a relaxation argument.

The bounds stated in Theorem 1 are fairly straightforward. It remains to prove
that gδ solves RFPB. From the above compactness argument, we deduce the
existence of a bounded nonnegative measure μ on (0, T) x Rx x R^ for all T < oo
such that
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The measure μ is the "defect measure" due to the weak convergence of Vξg"δ. The
proof that μ vanishes and that gδ is thus a solution of RFPB involves a delicate
argument. Formally, it is not difficult to understand why μ should vanish. Indeed,
the ^-equation means that / should "solve" the equation

The statement of conservation of mass, i.e. if /(x, ξ, t)dxdξ is independent of
XxV

ί, leads one to suspect that for all T < oo that

ff (l+δf)dμ = 0.
N*RN

Hence μ should vanish. A modification of this formal argument using a special
set of multipliers produces the desired result that μ vanishes.

The argument sketched above is relevant to a general class of transport
equations. Here attention is focused on the FPB equation for concreteness. The last
section contains a discussion of extensions of the results above to equations with
more general linear parts and to discrete velocity analogues.

III. Proof of Theorem 1: Sequential Weak Stability

To simplify the presentation, we shall first treat the case where
BEL1nLco(RN;L1(SN~1)). Then we shall discuss the modifications needed to
accommodate the general case where B satisfies (16). We now follow the strategy of
proof sketched at the end of Sect. II.

Stepl. We first remark that β _(/",/")(!+ δfn}~1 is bounded in L°°(0, T;
L1^ x /φ). Indeed, we have

β-(Λ/π)(l +<5/T1 =/"(! +<5/T

The results follow since AeL\RN) and /" is bounded in L°°(0, T L1^ x R%))
by (14).

Next, since gn

δ solves RFPB, we deduce, at least formally by integrating over
R% x R% x (0, T) that

r

= J <
0 R N

X R N

JJ g"ίl(X,ξ,T)-g"d(X,ξ,Q)dxdξ = ldt JJ dκdξ[_(\ + δf"Γ1Q(f",f")

]. (18)

Using (14) and the above bound on Q~(f", /")(! + δfT1, we deduce from (18) that

]dt JJ dxdξt(l+δf»Γ1Q + (fnJn) + vδ\Vξg"d\
2l^Cτ

0 R^R"

for some constant C τ ^0 independent of n. Therefore, provided we justify (18),
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we have proven that β+(/",/")(l + of")'1 and \Vξg
n

δ\
2 are bounded in ^((0, T) x

R* x R*). We mention in passing that the bound on |V^|2 also follows
immediately from (15).

Justifying (18), i.e. the integration over RN x RN, is an easy matter. Take
φe@(RN\ φ = 1 on Bί9 0 ̂  φ <£ 1 on RN and set φε( ) = φ(ε ). Multiply RFPB by
φε(x)φε(ζ) and integrating by parts to obtain

}dt jj

J Λ Π
0 N

T

\dt ίί
We conclude easily letting ε go to 0 since

\ξ Vx<Pe(x)\9e(ξ) ^ C ε \ ξ \ , \φε(x)ΔξφJίξ)\ ^ Cs2

for some constant C ̂  0 independent of ε.
It is worth remarking that the L1 bound on β+(/",/")(l 4- δfn)~l can also be

deduced from the bound (15). Indeed, one just has to observe that for all K>1,

#* ί
SN-1 *

(19)

and the second term in the right-hand side is clearly bounded in L1 in view of (15).

Step 2. The preceding bounds show that Lvg
n

δ is bounded in !/(((), T) x RN x RN).
Of course, because of (14), gn

δ is bounded in C([0, T]; L1^ x RN)). At this point,
we use the fact that Lv is an hypoelliptic operator to deduce the compactness of
gn

δ in ^((0, T) x RN x RN). We shall first prove the compactness of gn

δ in Ll((Q, T) x
BR x BR)(MR, T < oo ). Combining this result with (14) easily yields the compactness
of g"δ in L\(09 T) x RN x RN).

In order to establish local compactness of gn

δ we consider any cut-off function
φ(x, ξ) in @(RN x RN), and we observe that Lv(φg§ is bounded in L\(09 T) x RN x
RN) and has compact support in [0, T] x RN x RN uniformly in n. This implies
that φgn

δ is compact in !/(((), T) x RN x RN). We prove this rather technical point
in the Appendix. We mention here that the only fact which is required to obtain
L1 compactness is the existence of a continuous fundamental solution. The
fundamental solution is actually C°° and an explicit formula is available, see for
instance Hόrmander [11].

The compactness of gδ in !/(((), T) x RN x RN) yields, by classical results of
measure theory, the compactness of gn

δ in the topology of convergence in measure.
We recall that φn converges to φ in measure if meas(|φπ — φ\ >(5)->0 for any

n

δ > 0. Since fn = (l/<5) [exp (δgn

δ) — 1], /" is also compact in this topology on every
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set with finite measure. Next, we recall that fn converges weakly in ^((0, T) x
RN x RN) to /. Combining this information with the preceding compactness, we
conclude that /" converges in !/(((), T) x RN x RN) to / using Shur's theorem.
Therefore, using the L°°(0, T;L1(RN x RN)) bound on /" implied by (14) it follows
that /" converges in Lp(0, T; L1(RN x RN)) for all 1 ̂  p < oo and for all T < oo.
Hence, gn

δ also converges in Z/(0, T; U(RN x RN)) to gδ = βδ(f) for all 1 ̂  p < oo,
Γ<oo.

StepS. We shall show that Q ( f n , /")(! + δfn}~1 converges in L1 to β(/,/)
(1 + (5/Γ1 and that β±(/,/)(l + (S/Γ1 belongs to L1. In fact, we shall show that

(/,/)(! +<5/Γ1eL-(0, T L1^ x K^)),

e L 1 ( ( 0 9 T ) x Λ N x K N ) for all Γ<oo,
and that

for all p < oo, T < oo, (20a)

δ + (Λ /")(!+ ̂ /")"1-^6 + (/5/)(l+^/)~ 1 in L1, for all T<oo.π
(20b)

The statement (20a) is easy since

and we assumed that ^GL1^^). Clearly L(/Λ) converges to L(/) in
Lp(Q, T; L1^ x KN))(Vp < oo, VT < oo) and (20a) holds.

Statement (20b) holds if we can show that Γ = Q + (f\ /")(! + δfn)~ 1 converges
in measure to I = Q+(f^ /)(! +^/)-1 on every set with finite fheasure. Indeed,
granting the local convergence in measure, we observe that the sequence Γ is
bounded in L1 and satisfies

as a consequence of (19). Here hn ̂  0 converges in L1 while en ̂  0 remains bounded
in L1. Therefore /" is weakly compact in L1. The strong L1 convergence of /" to /
follows from general measure theory.

Next, to prove the convergence in measure of/" to / we notice that (1 + δfn)~1

converges in measure to (\ + δ f ) ~ l . Thus it suffices to show that β + (/" , f n )
converges in measure on every set with finite measure to β + (/,/). Notice that
for all φ,ψeL\RN) we have

f β + (
RN

and
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Thus, it follows that for almost all (x, ί),

We complete the proof that Γ converges to 7 in measure using the fact that fn

converges to / in !/(((), T) x RN x RN). This fact implies that l\fn-f\dξ and
§fndξ converge in measure on (0, T) x Rξ respectively to zero and f fdξ which
is finite a.e. Thus f |β + (/", fn) — Q + (f, f ) \ d ξ converges locally in measure on
(0, T) x R% to zero yielding the desired result (20b).

Next, we make a preliminary passage to the limit in RFPB. Since Vξg
n

δ

converges weakly in L2 to Vξgδ9 we deduce from general properties of weak limits
that there exists a bounded nonnegative measure μ on (0, T) x RN x RN such that

\Vξg
n

δ

2-^\Vξgδ

2 + μ in ®'((0, T) x RN x RN).

Now we may pass to the limit in RFPB in the sense of distributions and
deduce using the above convergences that gδ = βδ(f) solves

δ\
2 + μ in & . (21)

Of course, / satisfies (14) and (15).
Finally, we want to show that μ = 0. The formal argument in Sect. II indicates

that μ should vanish. We are unable to justify this formal argument. Instead, we
shall use a modified version of this argument which is not based upon the conserva-
tion of mass but rather on the fact that the nonlinear operator [ — vΔξgδ — vδ\Vξgδ\

2^\
originates from a linear operator — vΔξf. To this end, we first multiply the equation
for gδ by exp θ(gn

δ Λ R\ where 0 < θ < δ, R > 0 are fixed. Multiplying by φe^(0, T)
and integrating over [0, T] x RN x RN yields

-}dt ff dXdξφ'(t)ΨetR(gϊ)-]dtφ ff
0 RN*RN ° RNχRN

T

= v$dtφ ff dxdξ{δ\Vξgδ\
2— θ\Vξgδ

 2l(g»δ<R}}Φθ,R(gnδ),
0 RNχRN

t

where ΦθtR(t) = exp θt Λ R, ΨθtR(t) = f Φθ^R(s)ds for ί ̂  0. The integration is easily
o

justified as in Step 1. Next, we observe that the right-hand side of the above equation
is bounded by the quantity

vsup\φ\Uδ-θ)$dt ff dxdξ\Vξg
n

δ\
2Φθ,R(gn

δ)

+ β

 Λ j Λ f j dXdξ\Vξg"δ\\»>R0 R^R" J

Since Φe,R(g"s) ^ (1 + δf)β, we can bound the first integral by

}dt jj dxdξ\Vξf\
2(l+δf"Γ2(l+δfn)θ^\]dt JJ dxdξ\Vξf

n\2(fnΓl,
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and the second integral by

}dt JJ dxdξ\Vξf
n\\\+δfnΓle-δR^e-δR-}dt JJ

In conclusion, using (15) we deduce

-JA Jί dxdξφ'(t)Ψθ,M)-]dtφ
0 Dtf ΌN O r

for some C ϊ; 0 independent of n, θ, R. Passing to the limit, we obtain

dt JJ dxdξφ'(t)ΨetΛ(gδ)-dtφ JJ
0 N N ° * *

^ Csup \φ\{(δ -θ) + e(θ~δ)R}. (22)

Next, we use Eq. (21) to prove that μ vanishes. Formally, we multiply (21) by
and integrate with respect to (ί, x, ξ) to obtain exactly as above

-]dt Π dxdξφ'Ψβ,R(gδ)-]dtφ JJ

0 ^ " ° ^

^ Csup \φ\{(δ -θ) + «<«-«*} + IφΦ^is^μ. (23)

Since Φ ̂  1, we deduce by taking φ ̂  0 and combining (21) and (23) that

J φdμ ^ C(sup φ){(δ - θ) + ^(θ"^}.

We conclude that μ vanishes letting R-^oo and then θ -> ̂ . Finally the above
nonlinear multiplication by Φθ,R(gδ) and the resulting integration by parts have
to be justified. This can be easily done by convolution regularization. Indeed, if
pε denotes a regularizing kernel p in (x, ξ, t\

ε

we check easily that gε

δ = ρε*gδ satisfies

1

+ μ*pε + rεin(αε, T) x RN x ̂

where αεe(0, T), αε-»0, rε = c^ Vx^^ — (ζ'Vxgδ)^pε. Next, we observe that

rε = Jfa - ^(j, fy, 5) V;cpε(x - y, ξ - y, r - 5) - ^*Xε,

with Kε = (l/(ε2N+1))K('/s), K=- ξ'Vxp(x, ξ, ί). Hence,

= 0 in L1.

Then, taking φ ̂  0, multiplying the above equation by ΦθίR(gε

δ\ observing that
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Φθ R ̂  1, we deduce for ε small enough,

-}φ'dt JJ dxdξΨΘ9R(gl)dxdξ
0 N N

~}φdt JJ
0 N

JJ

Letting ε go to 0, we deduce that the left-hand side of (23) is bounded from below by

\φάμ + } φdt tfdxdξ{δv\ Vξgδ\
2 - θv\ Vξgό\

2 1̂ ,}.

We conclude that μ vanishes provided that the following inequalities hold:

a.e., I V ^ Λ K f φ-^IVί/1'2!2 a.e..

Formally, these bounds are obvious if we recall that gδ = βδ(f). Using a simple
approximation argument, we shall justify these inequalities. (See the next section
for related arguments.) At this stage, we have shown that gδ solves RFPB and that
β(Λ /")/(! + &fn) converges in I}((Q, T) x RN x RN) for all T < oo. Integrating the
equations RFPB over (x, ξ, t) allows us to deduce easily that for all T < oo,

]dt JJ \Vξg
n

δ\
2dxdξ-+]dt JJ \Vξgδ\

2dxdξ.
0 RNxRN " ° RNxRN

By standard results on weak convergence, this implies that Vξg
n

δ converges to
Vξgδ in L2((0, T) x RN x RN). Therefore \V^gn

d

 2 converges to \Vξgδ\
2 in !/(((), T) x

RN x £*). In particular, Lvg
n

δ converges in ^((0, T) x RN x RN) to Lvgδ. Let us
also mention that since Lvgδεl}((0, T) x RN x RN) we have gδeC([0,T];
L}(RN x RN)) for all δ > 0. This standard result follows for example from the argu-
ment given in the Appendix and does not require the hypoellipticity of Lv. From
the fact that ^eC([0, oo); L1^ x RN)) it is straightforward to deduce that /e
C([0, ooJ L1^ x RN)Y one just needs to observe that a.e. ίe[0, T],

JJ dxdξ\f(X,ξ9t)-gΛ(x9ξ9t)\£εΛ JJ d x d ξ f ( x 9 ξ 9 t ) + 2

where R > 0, and εδ = sup 1 1 - βδ(λ}λ~l -> 0 as δ -* 0 + . Because of (14), this implies
[0,R]

that

gδ-+f in L°°(0, T; L\RN x RN)) as δ^0+.

We have completed the proof of the stability result in the particular case when
BeU rιU°(RNm, L1(SN~1)). We now explain how to modify the above arguments in
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the general case when B satisfies (16). First of all, in view of (19), the only modifica-
tions required in Step 1 are due to the fact that the estimates are local in ξ. We
just have to explain why L(f") is bounded in L°°(0, T; L1^ x BR)) for all R,T<ao.
Indeed, we have

j dx f dξ J /»(*, ξ^ t)A(ξ - ξ*)dξ* = JJ dxdξj*(x, ξ» t)CR(ξJ,
RN BR RN RNxR»

where CR(z)= J dξA(ξ-z). Now, (16) shows that CR(z) is a continuous function
BR

over RN which satisfies

CaίzHl + MT1-^ as |z -> oo,

Our claim follows from (14).
To modify Step 2, we consider cut-off functions ψ in @(RN) and we introduce

3 Obviously, gn

δ satisfies

Therefore, Lvg
n

δ is bounded in L1 and gn

δ is compact in ^((0, T) x RN x RN) by
the same argument as before. Since ψ is arbitrary, the sequence gδ is compact in
^((0, T) x RN x BΛXVK, T < oo). Therefore, gn

δ converges in l}((09 T) x RN x RN)
because we already know that fn and thus gn

δ are weakly compact in L1. We may
then argue as before.

With the same ideas, one can then modify Step 3. First, we show that L(fn)
converges to L(/) in L^O, T; 1}(RN x J5Λ))(V T, R < oo). Indeed, we just observe that

T T

and conclude easily since /" converges in L1 to /, (J | fn \\ ξ \ 2 + | /1| ξ \2) is bounded
and CaίzXl + lzl2)'1-^ as |z |->oo. Next, we show that β+(/n,/")(! + δfn)~l

converges in L\(09 T) x RN x BR) to β+(/, /)(! + δ f ) ~ 1 for all R, T < oo. To this
end, we consider for any K^l the following collision kernels: Bχ = B\B^κ,
Bχ = BlB>κ, and we denote by βL 6l'' the associated collision operators
for i ̂  1,2. It is of course enough to show that, for each K, QκΛ(f\ /")(! + <5/")~1

converges in ^((0, T) x RN x BR) to β^CΛ/Hl + V)"1 and that by taking K
large βχ'2(/",/")(l + (S/T1 can be made arbitrary small in !/(((), T) x RN x BR)
uniformly in n. The second fact will be proved in view of (19) and its derivation
provided we show that βχ'2(/",/")(l +δfn)~l can be made arbitrary small in
!/(((), T) x RN x BR) uniformly in n. But this is not difficult to achieve observing
that for all M^ 1,

τ 1Γ

J d t J dx J dζQz'2(/",/")(! + δ f n ) — 7J dt j ^ J "(=*^κ(ζ*)^:(!ι>M

0 R

N

 BR ° ^N ^N

'fn(x,ξ^9t) + - '
BR BM

where
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T T
hn(ξ^) = f at f dxfn(x, ξ+91) -> h(ξ*) = f it f dx/(x, £*, f)

o κ» » o Λ*

in I}(RN). Then, given ε > 0, we can choose M large enough independent of n, K
such that the first term in the right-hand side is less than ε/2. With such an M,
we can make for K large enough the second term less than ε/2 recalling that

BeL}oc(RN xS*"1). Hence measβ κ X β M X sN-ι(B > K)^0 as K-+σo. Since

QΪ'1(fn,fn)^Q + ( f n , f n ) and by (19) the sequence Q + ( f n , f n ) ( l + δ/T1 is
weakly compact in ^((0, T) x RN x BR), it remains only to show that QκΛ(fn>/")
converges in measure to Q κ Λ ( f , f ) in order to complete the proof of the conver-
gence of Q+(/",/"). But since Bl

κ is bounded the proof given in Step 3 above
now applies.

We may now adapt the argument given in Step 3 and we see that (21) still
holds. The fact that μ vanishes is proved exactly as in Step 3 replacing only the
integration with respect to ξ over RN by a multiplication by ψ(ξ)e@(RN) for an
arbitrary cut-off function ψ and then integrating with respect to ξ. Similarly, we
observe that gδeC([Q, Γ]; I}(RN x BR))(VR, T < oo), and we deduce from this the
fact that /eC([0, oo); L\RN x RN)). Indeed, for almost all ί, se(0, T),

ff \f(x,ξ,t)-f(x,ξ,s)\dxdξ^ ff f ( x , ξ , t ) + f(x,ξ,s)dxdξ
RN xRN RN x BC

R

+ 2 sup || f(t) - gδ(t) || tι(R. x ̂  + f J | gt(t) - gό(s) \ dxdξ
(0,Γ) RN RK XΰR

for all ,R < oo. The first term, because of (14), may be bounded by C/R2 for some
C independent of ί, s. We already showed above that the second term goes to 0
as δ goes to 0.

Remark. The preceding proof also shows that if /" f = 0 converges in L1 then /"
converges in C([0, T]; L1^^ x jRN))(VT < oo).

IV. Application to Global Existence Results

Theorem 2. Assume that B satisfies (16) and let fQ satisfy (2). Then, there exists
/eC([0, oo); L1^ x RN)) satisfying f\t = 0 = /0, (14), (15), (17) and such that, for
all δ>0,gδ = βδ(f) satisfies RFPB in the sense of distributions and gδ<=L2((Q, T) x R^;
H1(BR))(^R, T < oo). In particular f is a renormalized solution o/FPB.

Proof. Truncating /0 and regularizing the truncated function by convolution, we
introduce a sequence fn

0ε@(RN x RN) such that fn

0 ^ 0 and

ff Jx^|/o-7"0|(l + |x|2 + K|2)-0, (24)
NXRN

ff dxdξf"0\logf"0\dxdξ^C (25)

for some C ̂  0 independent of n. Let

~ 1
0 n
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and we notice that (24), (25) still hold with /g replaced by /£.
Next, we approximate FPB by truncating conveniently the collision kernel as

follows:

n RN * RN. (26)

Here and below, Qn is given by

Qn =

and

Qn(φ, φ) = J dξ+ J

where BneLconL1(RN x S*"1), £π(z,w) is supported in (|z| ̂  n} x SN~\Bn is
smooth with respect to z, uniformly in w and (16) holds uniformly if we replace A by
AH= J B(z,w)ώv.

S AΓ-1

We claim there exists a unique nonnegative solution /" of (26) which satisfies

JJ \D«f"\(l + \x\k + \ξ\k)dxdξ^C(T,m,k) if ίe[0, Γ], (27)

and
DafneLco(RN x RN x (0, T)) (28)

for all T, m, /c, where Da denotes any derivative up to order m. Existence and uni-
queness can be achieved by a simple contraction type fixed point argument
observing that for all φ,\l/EL1(RN)r^LX)(RN) we have

and

Qn(φ,φ)

-J \9\
RN\ nR"

1 \- !

where Cn denote various constants independent of φ, ψ. These bounds also imply an
L1 nL00^ x RN) estimate uniform in t on [0, T]. Next, we show that

sup Jj7"(l + \x\k + \ξ\k)dxdξ < oo for all k ̂  1.
[0,Γ]
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In fact, for k = 0 or k = 2, we just have to observe that the identities proven in
Sect. I still apply here. For fc^3, we multiply the equation by |£ | k + |x | k and
integrate by parts over RN x RN to obtain

— ff f n ( \ x k + \ξ\k)dxdξ< C ff f n ( \ x \ k ~ 1 \ ξ \ + \ξ\k~2)dxdξ
J : J J c / \ l l ^ l / ^ J J L/ \ I I I -< I I -* I /

+ ff \ Q n ( f n , f n ) \ \ ξ \ k d ξ .
RNxRN

Since Bn has compact support in z, one can bound easily the second term by

C Γ Γ fnfΛ , i t\k\ J £
n ff / ( l + l^l)^.

^x/?N

Our claim follows from GronwalΓs lemma.
Next, we establish an a priori estimate on derivatives of /" in L°°(0, T ^n

LCO(RN x RN)\ We begin with Vxf
n and we differentiate (26) with respect to x. We

deduce from the resulting equation that

— ff I V x f n I d x d ξ fg ff dxdξ{Q^(\Vxf
n\,fn) + Q ~ ( \ V x f n \ , f n )

RNxRN RNxRN

-1

f f d x d ξ \ Q n ( f n

9 f n ) \ ί + - ί f n d ξ
N*RN

ff \Vxf"\dxdξ.
v x K ί V

One argues similarly for the other derivatives and for the weighted L1 estimates.
Next, to prove Theorem 2, we observe that even though /" is not a solution

of FPB, Theorem 1 and its proof still apply to this sequence of solutions of an
approximate equation and yield convergence in C([0, T]; L1^^ x RN))(VT < oo)
to some / (up to the extraction of a subsequence) satisfying all the properties
listed in Theorem 2, provided /" satisfies (14) and (15), where B is replaced by
Bn(ί +(l/n)$fndξ)~1. In turn, these estimates follow at once provided (7), (9-11)
are justified. In view of the regularity and the decay of /", there is no difficulty in
checking (7), (9), (11). However, (10) relies upon multiplying the equation by log/"
and integrating over [0, T] x RN x RN. Since fn is bounded, this integration will
be justified by the following lower bound on /"; for each T < oo, there exists C
such that

/^iexp{-Cί-i|x-ξί|2-i|ξ|2}, V(x, ξ, t)eRN x RN x [0, T]. (29)

Let us denote by gn the right-hand side of (29). In view of the choice of /£, we
have fn\t = Q ^ gn\t = Q- Next, we observe that

^-(/"./Ό^Co/- on RNxRNxίO,Tl
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and we choose C = C0 + Nv(l + T2). Now, in order to verify (29) we remark
that /" satisfies

LV/Π + C0/"^0 in RNxRNx[09T].

Finally, we observe that

Lvg
n + CQgn ^ 0 in RN x RN x [0, T],

since a straightforward computation yields

Lvg
n + C0g

n = gn{-C + Nv(l + t2)- |(1 + t2)ξ + tx\2} ̂ 0.

This concludes the proof of Theorem 2.

V. Extensions of the Results: Mixtures, Discrete Velocity Models

We begin this section with a few observations on the results and the proofs given
in the preceding section. First of all, the stability result is still valid if /" is a
sequence of solutions of FPB in the sense of Theorem 2, i.e. βδ(fn) solves RFPB
provided of course we still assume (14) and (15). Indeed, we never really used the
smoothness of /" in our proof. Second, we mention that it is possible to show
that the limit / satisfies the entropy inequality and therefore yields an entropy
bound.

Next, it is worth explaining the role of the entropy bounds. Suppose /" is a
sequence of nonnegative smooth solutions of FPB satisfying only

JJ f " ( x , ξ , t ) ( l + x\2 + \ξ\2)dxdξ^Cτ, a.e. ίε(0, Γ), for all Γ<oo.
RN *RN

(30)

Then, Steps 1 and 2 of our proof still apply and yield the convergence in
LP(Q, T; Ll(RN x RN)) (Vp < oo, VT < oo) of/" to / satisfying (30). However, we are
no longer able to conclude that gδ = βδ(f) solves RFPB. Instead, we obtain the
following information. The sequence (1/1 + δfn)Q"(/",/") converges in
^((0, Γ) x RN x BR) to (1/1 + <5/)β-(/,/)eL°°(0, T;L1(RN x BR)) for all #, T< oo
while

β+(Λ/π) β+(
1 + δfn

- + μ1 in the sense of distributions,

where μ1 is nonnegative measure on R+ x RN x RN which is bounded on each
(0, T) x RN x BR for all #, T < oo, From weak convergence, one also obtains

\Vξgnδ\2^\Vξ9δ\2 + ̂ 2 in tne sense of distributions,

where μ2 has the same properties as μ±. Therefore, denoting by μ = μ 1+μ 2,
we see that gδ solves

) + μ in (̂(0, oo) x R* x RN).

The formal argument given in Sect. II still applies. Since it is not clear that this
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formal argument can be justified, we do not even know if it is reasonable to expect
that μ vanishes if we merely assume (30).

Our next observation concerns the formulation of RFPB. In the preceding
sections we introduce a notion of solution of FPB consisting of writing down the
equations satisfied by the family of transformed functions βδ, δ > 0. The choice of
βδ = ̂ log(l + δt) may seem somewhat arbitrary. Indeed we could employ general
nonlinear transformations β with the following properties:

βGC2(R)9\βf(t)\^-^-9\β"(t)\^- -y on (0,oo) (31)

for some C ̂  0. Then, one expects that /?(/) solves

Lvβ(f) = ~ vβ"(f)\Vξf\
2 + β'(f)Q(f,f).

In order to make sense of the term β"(f)\Vξf\
2 we write it in the following

convenient form:

One can easily check that if β = βδ this quantity reduces to —δ\Vξβδ(f)\2 by
standard Sobolev spaces manipulations. Therefore, the above equation becomes

Lvβ(f)= - v0"(/)(l +/)2|V^1(/)|2 + ̂ /(/)β(/,/). (32)

Next, we show that if RFPB holds for one δ > 0, say (5 = 1, then (32) holds for
all nonlinearities β satisfying (31). To prove this claim, we introduce γ(s) = β(es — 1)
and we observe that yEC2([0, oo)), y' and y" are bounded. In view of the regularity of
β\(f\ we deduce that g = y(β1(f)) solves

Lvg = v/G

We conclude easily by remarking that, for all t _• 0, we have

/(AW) = β'®> /WO) - yWO) = β"

Finally, we conclude this section with a few examples of other equations which
can be treated by our method. First, one can replace — vΔξ by more general
operators: for instance, we can add first-order terms in Vx or Vξ and fixed external
forces. We can also consider general elliptic operators in ξ or in (x, ξ) such as
- εΔx - vΔξ.

Next, our analysis is easily adapted to the case of mixtures, or molecules with
different masses, or to the case of a dense gas and we refer to C. Cercignani [3],
S. Chapman and T. G. Cowlings [4], C. Truesdell and R. Muncaster [15] for more
details on these related equations. We conclude with an application to the so-called
discrete velocities model. We look for nonnegative solutions /', 1 _^ i ̂  m of

d f l

-- + ci'Vfi-&ίΛfi = Qi(f} in RNx(Q, oo), V l ^ i g m , (33)
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where st > 0, CιeRN and Ql is the operator given by

m

β'(/)= Σ ^(/"/'-m V l ^ r g m , (34)
j,k,l=l

and AjjeL00^) (Vί, j, fc, /) satisfy

A% = A& = Ay Vy,/c,/MU^O a.e. in K*. (35)

This system of equations is nothing but a viscous approximation to a general
discrete velocities model of gas dynamics. We refer the reader to H. Cabannes [2]
for a presentation of these models and to L. Tartar [14], R. Illner [12], K. Hamdache
[10] and the references therein for some existence results. Formally, the following
identities hold:

Σ ί fl(χ> Odx is independent of ί, (36)
i RN

+ βiΣ ί IV(/') 1 / 2 l 2<fr + i Σ ί ^{/"/'
i RN 4ijίktιRN

-o,
(37)

for any smooth test function ψ(x).
The analogies of Theorem 1 and Theorem 2 hold for this class of discrete-

velocity systems with straightforward adaptations and in fact simplifications of the
proofs. The only technical modification is the following weighted L1 bound on the
initial data:

Σ (foφdx^Cr.

Here ψ ̂  0, φeC2(RN) satisfies the following conditions:

C^O, V l ^ i ^ m , ctfψ + BiΔψ^C^ on RN

-̂  + 00 as |x |->oo

3C0>0, expί-Co^eL1^). (40)

Assumption (39) provides the uniform integrability at infinity while (40) allows us
to obtain L1 bounds on fl |log fl\ by a similar argument to the one made in Sect. I.
Of course, the renormalized formulation of (33) is

ι QW + ε
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Appendix: Compactness in L 1 for Hypoelliptic Operators

Let £ be a second-order, elliptic, possibly degenerate operator on Rm with smooth
coefficients. We assume that d/dt + E has a continuous fundamental solution
p(t, x, y) satisfying

sup \p(t,x,y}dx^C(Tl V T < o o , (A.I)

) if fe[λ, T]9x9yeRm, V O < / z < T < o o , (A.2)

sup J p(ί,x,j;)dx->0 as #->oo, VM<oo, V O < / z < T < o o . (A.3)

In view of the explicit fundamental solution of Lv these assumptions are met in the
case considered in Sect. Ill (see L. Hormander [11] for more details). Let hn be a
bounded sequence in !)(((), Γ) x Rm) satisfying

supj j \hn\dxdt^0 as tf^oo, (A.4)
n 0 \X\^R

and let gn

0 be a bounded sequence in Ll(Rm] satisfying

sup J |0S|dx->0 as #-»oo. (A.5)
« | x |£Λ

We denote by #" the solution of

^gn + Egn = hnm(09T)xRm

9g
n\t^ = gn

0 in Λ", (A.6)

i.e. gn is given by

0"(ί, x) = J J Λ"(s, }/)p(ί - 5, x, j;)^rfs + J g"0(y)p(t, x, y)dy for ίe(0, T), xeRm.
OR™ Rm

(A.I)

Proposition. The sequenece gn is compact in !/(((), T) x Rm).

Proof. We first show that if A is a Borel set in (0, T) x Rm, then

sup J I g"(t, x) I -> 0 as meas (X) -̂  0. (A. 8)
n A

To prove this uniform continuity, we argue as follows. We first write

j V l ^ J J lA(t,x)dtdx] J \hn\(s,y)p(t-s9x9y)dydx
A 0 RM 0 R

m

+ } J lA(t9x)dtdx$ \gl(y)\p(t,χ,y)dy,
0 Rm Rm

and thus (A.8) holds as soon as we have

sup qA(s, y) -> 0, as meas | A \ -+ 0, (A. 9)

where ^(s, y) = J dί J dxl^(ί, x)p(t - 5, x, 3;). But, clearly for all <5e(0, T),
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(s + δ ) Λ T / \ Γ

qA(s,y)^ J it J p(t-s,x,y)dx + l ( s < Γ_ a ) J J dίdxlΛ(x,ί)p(ί-s,x,jO
S \Rm J S + δR™

g C(T)δ + C(<5, T) meas(A),

and (A.9) is proved.
Next, we prove that

supj J dίdx|0"(ί,x)|->0 as tf^oo. (A.10)

By arguments similar to the one above, we obtain for all (5e(0, T), M < oo,

r r
sup J p(ί, x, y)dx + C f j" dίdy|/z"[

\y\ ^ M,te(δ,T) \x\ZR ° \y\ ̂  M

105 id),,

where C denotes various nonnegative constants independent of δ, M, #. Then (A. 10)
follows from (A.3), (A.4) and (A.5).

Therefore, to prove the Proposition, we just have to show that there exists a
subsequence of gn which converges a.e. on (0, T) x Rm. Without loss of generality,
we may assume that hn converges tightly to some bounded measure μ on [0, Γ] x Rm

and that gn

Q converges tightly to some bounded measure λ on Rm. Then, we have
immediately

f 0oG>)P(ί> x, y}dy -> ί P(ί, x, y)i%), Vί > 0, VxeK w .
^m « Λm

Therefore, we can assume gj = 0 without loss of generality.
Next, let <5 > 0 and let φaeC°°(R), 0 ̂  φa g 1, φa = 0 if s ̂  δ, φa = 1 if s ̂  2δ.

We then set

T
gn

δ(t, x) - j j dsd3>hn(s, ̂ φ ί̂ - s)p(t - s, x, y).
OR™

Observe that

gn

δ(t, x) ̂  JJ φδ(t - s)p(t - 5, x, y)dμ(s, y).

Hence, our claim will be proved if we show

s u p f d i f dx|03-0"|->0 as δ^Q+. (AM)
n 0 R

m

But this is not difficult since we have

}dt$dx\ \ $dsdy\hn(s,y)\p(t-s,x,y)
0 R

m ((t-2δ)+ Rm

^2CT(5{ I \hn(s,y)\dxdy^Cδ
0R™

for some C independent of n.
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