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Abstract. Presented here is the construction of solvable two-dimensional lattice
models associated with the affine Lie algebra A" and an arbitrary pair of
Young diagrams. The models comprise two kinds of fluctuation variables; one
lives on the sites and takes on dominant integral weights of a fixed level, the
other lives on edges and assumes the weights of the representations of si(n + 1, C)
specified by Young diagrams. The Boltzmann weights are elliptic solutions of
the Yang-Baxter equation. Some conjectures on the one point functions are
put forth.

1. Introduction

Let us begin with a link between solvable lattice models and the representation
theory of A{V. It has been found in [1-4] through the computation of the one
point functions P(a) of the former; e.g., in Regime III of the models treated in
[2-4], they were completely determined by the decomposition of characters

X{Xr] = ;bénaXa

for the pair A{"@®A{" > A" and the branching coefficients b,,, appearing
therein:

P(a) = bevata .
XeXn
In this paper we take one more step towards a thorough understanding of this
phenomenon.

The corner transfer matrix method—the trick in the computation—was
originally invented by Baxter [5]. In his study of the hard hexagon model there
emerged a remarkable role of the g-series identities of the Rogers—Ramanujan
type. A series of models with interactions round a face were then worked out [6]
and their critical exponents were identified with those of the minimal conformal
field theories [7]. Further studies along this line were pursued by several authors
[8-11] until the complete result was obtained in [3,4]. There appeared the affine
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Lie algebra A{" describing the one point functions. A natural question arose:
What if A% replaces 4{1?

This was answered in [12-15]—Dbut not to the full extent of the problem. If
n =1 the case covered there contains only the subclass treated in [6]. The whole
family considered in [2—4, 11] had two integer parameters L and N. The parameter
L was introduced in [6] and L— 2 means the level of the representations in the
Regime 11 picture presented in [2—-4]. The parameter N—going back to the paper
by Kulish—Reshetikhin—-Sklyanin [16] on vertex models—represents the degree
of the symmetric tensor representation of sI(2, C). If we consider 4!, there come
into the game the representations of si(n + 1, C) that are parametrized by general
Young diagrams. The aim of this paper lies, in fact, on this generalization.

Within the category of vertex models this was done by Cherednik [17]. With
some modifications his method works well in our case of face models. The
distinction between these two types of models is—as the names suggest—that
fluctuation variables of vertex models are placed on edges and interact among
four round a vertex, while those of face models are placed on sites and interact
among four round a face. This last statement is yet untrue for the general case we
treat in this paper. The models we consider must have fluctuation variables both
on sites and edges. The interactions take place by eight round a face. This is
explained most elegantly by Pasquier’s argument [18]: In the rational limit, the site
variables a, b, ... represent the highest weight modules ¥, ¥, ... of sl(n + 1, C) and
the edge variables o, f,... represent base vectors of Homg, ., (¥ . @Yy, ¥ "),
where 77y is the sl(n + 1, C) module specified by the Young diagram Y. If Y is a
symmetric tensor or an anti-symmetric tensor, the decomposition of ¥",® ¥y is
multiplicity free and the edge variables are irrelevant. The symmetric case was
treated in [13,14].

In this paper we have constructed a family of solvable lattice models with face
interactions parametrized by arbitrary Young diagrams. We call them the A
face models. Although we state our results only on the restricted models in the
sense of [6], a similar treatment is possible for the unrestricted models. For
the symmetric or the antisymmetric case computer experiments have brought
conjectures which relate the one point functions—we call them the local state
probabilities in this paper—with the A" characters. Their proofs and the
computation of the general case are still to be worked out.

The plan of this paper goes as follows. Section 2 gives the framework of the
model and the solutions to the symmetric case. The general cases are treated in
Sect. 3. The particular case of Y= E]] is explained in Sect. 4 as an illustration

of our method. We propose some conjectures on the one point functions in Sect. 5.
Appendix A contains some propositions on the symmetric group. Appendix B is
a brief exposition of Pasquier’s work.

2. Yang-Baxter Equation and 4" Face Model

In this section we formulate the Yang—Baxter equation for the face models. We
give its solutions corresponding to the vector and the symmetric tensor represent-
ations of sl(n+ 1, C).
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2.1. The Yang—Baxter Equation. Let V,V’ and V" be vector spaces. The Yang—
Baxter equation for Wy,,., Wy,.., Wy,.,,.—which belongs to Hom.(V® V', V' ® V),
etc., respectively—reads as

AWy )Wy @ N @ Wy ) = Wy @ U@ Wy ) (Wi ®1). (2.1)

Wy ®1

V//® V® V/ — V@ V//® V/

j 1@ Wy L@ Wy
V'OV RV Vv eV’
] Wy @1 Wy ®1

1@ Wyy

VRV'QV «——— V'RV V"
For example, the transpositions Py, Pyy., Py (i€, Pyy (X ® y) = y®x for xeV
and yeV’, etc.) satisfy the Yang—Baxter equation. In fact, Eq. (2.1) then becomes
a disguised form of the relation (23)(12)(23) = (12)(23)(12) in the symmetric group
S3 .

In this paper we mainly consider the following more restrictive form of the
Yang-Baxter equation: Wy, = Wy,.(u), etc., depend upon a complex parameter
u and satisfy

(1@ Wy (w)(Wyy . (u+ )@ 1)(1 @ Wypy (v))
=Wy ()@ D1 Q@ Wyy(u + 0))(Wyy (1) @ 1). (22)
For example, let’s consider the case V= V' = V". The choice Wy y.(u) = Wyp..(u) =
Wyy(u) = 1 + uP (where P(x ® y) = y® x as before) solves (2.2). This is explained
by an identity in the group ring CSj,

1 +u@23)(1 + @+ 0)(12))(1 +v(23)) =1 + v(12))(1 + (u + v)(23))(1 + u(12)).

2.2. Face Models. We now consider a direct sum decomposition of the form
V= Dabes Vap-

An element of & is called a local state. In this paper we construct a family # of
vector spaces (V=@ ,coVar)yes and a family of operators (Wyy. (1)) ey
satisfying

(a-1) the Yang-Baxter equation (2.2) for any triplet V, V', V"eX,
(a-2) the composition V,, ® Viye = VR V' By ® V5V, ®V, is vanishing
unless a=da', b="b, c=c', d=d' (the selection rule).
We set Wyp (5 2) = e Wyp.ou
1 W ’ n
Va®Vien VOV =V @VSVi® Ve,

and write Wy =@, 40 Wyv (4 2)-
Our solution contains two parameters; the level | and the rank n. We set

R, = the set of isomorphism classes of
finite dimensional irreducible representations of sl(n + 1, C).
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A Young diagram Y=(fy,...,f,) consisting of m rows (f;=--=f,>0,
m < n) represents an element (py, 7"y) of #,. In Sect. 3 we will define VyeZ in
one to one correspondence with Ye#,—but not Vy=7"y. We set L=1+n+ 1.
We denote by ./ the vector space C"*! spanned by e, =(0,...,0,1,0,...,0)
(A=0,...,n). Note that .o/ =¥", where [] means the Young diagram Y=(1).
We call p=(a?,...,a™)e/"*! an N-path from a to b if a'® =a, a™ =b, and
a®? —a"V=e, for some J; (i=1,...,N). Weset ef) =¢;, ® - ®e, e#/*". The
local states are given by

S =, ={a=ay,...,a,)ed|(b-1),(b-2)},
(b-1) L+a,>ay>a, > - >a,,

(b-2) a,mdéra,l —a,eZ for any A,u=0,1,...,n
A vector ae¥ represents the level | dominant integral weight (abb. DIW) of AV
(L+ a, —do— 1)A0 +(a0 —a; — 1)A1 + o +(an—1 —a,— 1)An

We denote by (p,, 7",) the irreducible representation of sl(n + 1, C) whose highest
weight is the classical part of this DIW.
We use the following notations:

(c-1) a5 b<>there exists an N-path from a to b staying in ¥—we call it an
N-admissible path. In this case @ and b in particular belong to .%.

(c-2) a=b<ab and any path from a to b is admissible. The pair (a,b) is
called strongly admissible.

(c-3) The action of teSy on " is x=v, @ -+ Qx> T(X)=v,-11,® - ®
-1y We denote by (Sy), the subgroup of Sy which fixes x. The symmetrizer

S/ ®N - o/®Vis defined by Sx =3, s, 7(x). We set ey’ EseMifa=band pisa

path from ato b. We also set ) = 0if (a, b) is not strongly admissible. We abbreviate

(1)
ey to ey,

(c-4) 0,/ — o/ is a bijection defined by
on@=(a,+1+nay—1,...,a,_,—1).

It implements a Dynkin diagram automorphism of A" on &
(c-5) For ae¥, ,,ad' e} , we set

a®d <a+d —(nn— L., 0% n

We have then 0,,, ,(a®ad) =0, ,(a)® 0o, ,(a@).
(c-6) For ae.o/ we set

def 1 Z 1 Z 2
9 = S D 2\ % T 2% )

2(l+n+1) =6 n+1;
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d Y C
Fig. 1. A configuration round a face

Let us explain how to relate the operator W,,,.(4 ?) to statistical weights of
a lattice model. For simplicity we restrict to the case when V= V". We consider
two kinds of fluctuation variables, [, placed on each site s and v, placed on each
bond k. The variable [ runs over the local states [, =a,b,...€. We fix a set of
base vectors B,, = {a, f,...} of the space V,,. If k is a horizontal bond and I;=a
and [, = b, where s (respectively s') is the site at the left (respectively right) end of
k, then the variable v, runs over the base vectors v, =a, f5,...€B,,. If k is a vertical
bond the term “left” (respectively “right”) is replaced by “upper” (respectively
“lower”). Now consider a configuration a,b,c,d and o, 5,7, round a face as in
Fig. 1. We associate to this configuration the (¢ ® f5,0 ®y) matrix element of
Wy (4 ?) as the Boltzmann weight representing the interaction round the face.
By this formulation both vertex and interaction-round-face models are treated on
the same footing.

2.3. Vector Representation. The AV face model introduced in [12] is contained
in our family in the following sense. The vector space V eZ corresponding to
the Young diagram []=(1)eZ,, is given by
Ce, ifa=b
Vo= @usesrVilur  where (Vo) = {O otherwise}'

This is consistent with the definition of the admissibility in [12]. We interpret also
the Boltzmann weights. The operator W & vov, satisfying (2.2) for the triplet

. . 1 1 1 1 .
V4, Vg, V5 is given as follows: We assume a=b, b=c, a=d, d=c (otherwise

74

A
b _ _ — b,
el ) =0). Let e, =e;, e, = ¢, €, = €,, €5 = e, and define a scalar “ﬁgc‘ by

A
Wg@[\(z lg)(eab ® ebc) = “Z?vead@) €4c-

. 4 4 1
We abbreviate x4’ to «[Jv or 4[1°. We define §[1°=0 unless a=-b, etc., for
K K
convenience. In terms of the elliptic theta function with nome p

[u] = 21p|* sin (/L) [ ] (1 — 2p* cos /L) + p)(1 — )

the Boltzmann weights, that satisfy (2.2), are written as
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Ao M+u] 20 [ag—u]l & [ullay,+1]
D y 2|:] 12#7’ |:| o - i;é,u) (23
P T w0 T fled :
Then satisfy the Dynkin diagram symmetry
Z’,Dg‘ = 2’:’?7 Where a, = O-I,n(a)’ = Jl,n(b)7 C/ = Gl n(c)’ d/ = 0'1 n(d)'

In the limit L— oo and |a,,|— oo (4 # ) the operator W, nen reduces to 1+ uP

in the sense that (1 + uP)(e,®e,) = zmuﬁ]ve”@er

2.4. Fusion Procedure. Before going to the construction of V,, and W, (u) let us
explain the basic idea of the fusion procedure [17]. We define (V'V),, to be the
subspace of M®N spanned by e\ for all N-admissible paths p from a to b. Note
that V'= Vo We deﬁne Wan ™ u™) = @y ger Wan (4 21u™,u™))e
End (VV*Y) by

,,,,,

Wn (@ lu™,u®™) (el @ ef™) = pH (
4

.....

The notations are as follows. u™ = (u,,...,uy) and u®™?) =(u},...,uy,) are para-
meters attached to V" and 7V, respectively. The argument in the box is
u; Ac-jiru —uj. The four DIWs round the box—1located clockwise from the
north west corner—are a‘ Lji=1 =1 g4 gi=1 The sum is over aYe¥
such that the paths p=(a°°,...,a NO) and g =(a"°,...,a™") are fixed along with
a®®=a, a"°=b, a"V'=c, a°®¥' =d. The paths r and s are r=(a"’...,a""),
s=(a’',...,a™"). With these definitions the Yang—Baxter equation (2.1) is satisfied
for any triplet VN, VNV, VN,

Suppose that a set of data (V,«,(4)),., is given in such a way that

(d-1) V=@,pcs Va» is a subspace of VN satisfying V,, < (V)5

(d-2) ay(u) is a one parameter family of N-vectors and

Wy (u,u') = Wy (o (), oy (1))
satisfies
Wyy (4 lc’|ua W)V ® Vipe) © Viaa @ Ve

Then Wy (u,u'), Wy (u,u”) and Wy.p.(u',u") satisfy the Yang-Baxter equation
(2.1). We abbreviate Wy, (u,u') to Wy ,(u—u') (the general definition of which
is given in Sect. 3) since the dependence on u,u’ is through the difference u — u'.

2.5. Symmetric Tensors. Let us recapitulate the case of symmetric tensors given
in [13,14]. Consider the Young diagram (N)= [J=[] . We denote by S.o7®¥
——’

the space of the symmetric tensors of degree N. We Set

V(N) = ®n,bey’(V(N))ab’ (V(N))ab = (VN)abnS=M®N~

We have in fact dim(Viy)),, <1 and dim(Vy,),, =1 if and only if a=b. The
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particular choice of the N-vector is
oty W) =Wu+1,.. . u+N-—1)

Let us prove (d-2) for Wy g, First we show

N 1 1
Lemma 2.1. Assume that a=b, b=c, a=d, dSc We set

am att+1)
duy=2. H P R e

p i=0

where the sum is over the paths p=(a'?,...,a™) from a to b, and q = (d'?,...,d"™)
is a path from d to c. This is independent of the choice of q. In fact, we have
N—-1 i b — N —
hN(s ?lu)=< ]“I [u+]]>[u+ v au]nA(%u)[bv a1+1], (25)
=1 [1] IT:[eys+ 6,40

where e,;=e,, e,, = e,. If (d,c) is not strongly admissible then

hy (g ¢lu)=0

Proof. We use the induction on N. The case N =1 follows from (2.3). Assume
that the assertion is true for N — 1. We have

H o, ‘b .
hy(§ 2lu) = wg@s uhy - (G 2lu+1) if dV=d,
m
®o, ,
= k1§ P+ 1)

by Nut 1) i A=,

where a'=a+e, a"=a+e, d=d+e, d'=d+e, and u#x. Applying the

standard addition theorem we obtain (2.5). The last assertion is true since if (d, c)

is not strongly admissible then u#v—1and a,_; —b,=1 (modL). W
Similarly, we have

N 1 1 N
Lemma 2.2. Assume that b=c, a=b, d=c, a—d. We set
a a(l + l) (i+1)
vN(d aw -bm >

where the sum is over the paths p = (b‘N),...,b‘O’)from btoc, and q=(a™,...,a'?)
is a path from a to d. This is independent of the choice of q. In fact, we have

INES (Nl:ll [u+j]>[u+c#_bv]1_[x<#m[%—bv+ 1]

on(a ¢ ,
i =[] [T:[az + 03]
where e, = e,, e;. = e,. If (a,d) is not strongly admissible then

on(g clu) =
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The following proposition, which proves (d-2) for W, 18 a consequence
of these lemmas and the definition (2.4).

Proposition 2.3. Assume that aiw>b, bic, aﬁd, d 5 ¢. Then we have

VV(N)@(M)(Z lu)(ely) ® e) = wyp(§ ?|”)9(M)®e(m>

where

wym(d c|u)—z n d: ?:lvl)’ (2.6)

i=

T ouls £ 2.7)

In (2.6), we choose any admissible path (d©,...,d*)) from a to d, the sum is over
the paths q=(b'?,...,b™) from b to ¢ such that (d®,b") is strongly admissible,
and a' =dP, b'=bY, ¢ =b""V, d'=d"*Y, v =u—i In (2.7), we choose any
admissible path (c™,...,c9) from d to c, the sum is over the paths p = (a™,...,a'?)
from ato b such that (a9, c?) is strongly admissible, and a” = a®*V, b" = a, ¢ = ¢V,
d’=cY v =u+N—M—i.

z
_ O

EM

3. The General Case

This section is devoted to the construction of the operator W, for an arbitrary
pair of Young diagrams (Y, Y’). We retain the notations of the previous section; in
particular L will denote the positive integer [ + n + 1 = 3 (I = the level of DIWs). We
shall deal with the spaces

oA EN > (VN)ab S (Vy)aps

where o/ = C"*!, and (V'"),, is the span of ¢ with p running over N-admissible
paths from a to b. The third one (Vy),, will be defined in Sect. 3.3 below.

3.1. Elementary Operators. Fix a positive integer N < L. We denote by W;(u)e
End.(VY) (i=1,2,...,N — 1) the operators

u)(eam)u H® - @ e w-num)
aim b a(')
= Z /(i) -,(,H)ea(oam@ ®€a(x uam®e maml)@ ®€ﬂ(\ 1)g(N)5

)
where the box signifies the Boltzmann weight (2.3) for []J® [], and the sum is over
DIWs a'® such that ¢~V =a'®, g% ¢+ 1A basic property of the W,(u) is that
they satisfy the Yang—Baxter equation (Fig. 2)

Wi Wi (u+ 0)Wiv) = Wi ) Wilu + o) Wi 1 (u). (.1

Besides (3.1) we have the inversion rclation

[1—ulll+u]

ik idyx. (3.2)

Wi(— ) Wi(u) =
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Fig. 2. The Yang—Baxter equation

Using the explicit form (2.3) we can verify also that
Ker Wy(—1)=1Im W,(1)
= the subspace of V" spanned by
a0 ® -+ ® el 1104 1 ® - @ g - g (3.3)
In terms of the W,(u) the operator for the symmetric tensors in Sect. 2 can be
written as
VV(N)@(M)(”) =(Wylu—M+1)--- Wy n_i(u—M+N))
N
X (Wi(u)-- Wy(u+ N —1)).
For i < j we set
S, j1=Wi)Wi1(2)-- Wiy (j— D) (WD Wis ((2))Wi(1). (34

By virtue of the Yang—Baxter equation (3.1) the right-hand side can be rearranged
in various other ways. In particular for each k=14, i+ 1,...,j— 1 it can be put in
the form S[i,j]1= W,(1) x (---).

Lemma 3.1. Im S[i,j] consists of all the symmetric tensors on the interval [i, j];
namely it is spanned by

(V]
e,,(mam@ Q@ 6‘,,]“71)0(,)@ ) €4(N=1)(N) -

Proof. From the remark above the image is contained in such a sub space. To
see that the two coincide, we use the induction on j— i. The proof then reduces
to the following statement: if (a,c) is (N + 1)-strongly admissible, then there exists
aDIW b such that hy(4 ©|1) # 0. This can be checked by using the explicit expression
(2.5. =

3.2. The Operator F. Let Y=(f,....f,,) be a Young diagram with N nodes
(fiz2fu>0, N=f,+ -+ f,) A node at the i row and the j'" column is
represented by (i, j). We inscribe on (i, j) the number (i — 1)z+ j — i, where z is an
auxiliary parameter [17]. Denote the resulting sequence by (Fig. 3).
Ul (2)5 cees UN(Z)
=0,1,...fi—1l....m=Dz+1—m,....(m— Dz +f, —m. (3.5)
J
fi
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0 1 2 3 4

z-1 z | z+1 z+2 z+43

2z-2 2z-1| 2z 2z+1 2z+2

3z-3 3z-2 3z-1 3z 3z+1

Fig. 3. The sequence v,(z) for Y=(3,2,2)

Set v;=v(2), v;;=v;—vj, and g; = f; + -+ + f..
We shall introduce an operator F(z) that has the property of reversing the
order of v;’s in the sense

F2) (W (0)W,(v3) - Wylvy)) = (Wi(vy) - Wy 1 (v2) Wy(0,)) F(2).
Explicitly it is given by
F(z) = Wi(03)(Wy(v31) Wi(03,) - (Wy 1 (Uyy) -+ Wyony-2)Wiloyy-1)). (3.6)
Lemma 3.2. We have
F(z)=2z"0(1) as z-0,

where k =#{((iy,]1), (i2,)2))|iy <iy, j; —iy =j, — iy} denotes the number of pairs
on the diagonal lines.

Proof. By the Yang—Baxter equation (3.1), (3.6) can be brought to the form
F(z) = FM(2)F?,
where F® reverses the order of v;’s within each block, while so does FV(z) blockwise
(Fig. 4); more precisely
F(z) = By,(2)(B13(2)B23(2)) - (B1(2) -+ By 2m(2) B~ 1 m(2)),

FP=§,8,---S,. (3.7)
Here S;=S[¢g,,—9:+ 1, g — gi— 11, and B;;(z) denotes the operator

Bij(z) = id@j—n*gi® VV(h)@UJ(U —i)(z— 1))®idN"!lj+9i—1 Iy

considered on the space V”c?%—l‘”i@(f/“@ Vi@ VN9t By id, we
mean the identity operator on V* From Lemma 3.1, Im F® is spanned by
blockwise symmetric tensors

(fm) o) ()
eam)u(w 1) ® ter ® ea{ll)a(on ea(i)a(i— ne V(fx)'
Hence each Bj;(z) in F(z) actually operates on the symmetric tensors. By virtue of

Lemma 2.1 and Proposition 2.3, it is then divisible by
Ii S

Bi@= 1] [1G—d—D+r—sl.

r=2s=1

It is easy to see that 3, ;f,;(z) has exactly k zeros at z=0. W
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Fig. 4a and b. The operator F(z) for Y=(3,2,2) as a composition of W,(u) b Block structure of F(z)

Removing this factor we define F eEndC(f/N) by

F= <F(Z) Hﬂij(z)_1>

i<j

(3.8)

z=0

From the proof above and Proposition 2.3 it is clear that the image of F are
blockwise symmetric:

ImFcV,,® @V, (3.9)

We remark that in the limit L— oo and |a,,| = oc (4 # p), F becomes ¢ x (invertible
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operator), where ¢ is the Young symmetrizer for a standard tableau T on the
diagram Y (see Appendix A).

3.3. Wygy for General Young Diagrams. With each Young diagram Y we now
associate the data (Vy, oy (), Vy = @ ,4cs(Vy)a- u€C. Let F be as above, and set

Vo = F(T)u) < (V)
oy(u) =+ 0v.(0),...,u+vy(0)), (3.10)

where v;(z) are given by (3.5).
Let (Y, Y’) be a pair of Young diagrams. As in Sect. 2 we put

Wyey (§ elu—u) =Wy (§ 2oy (u), oy ().
Let ay(u) = (uy,...,uy), oy (u) = (u},...,uy). In terms of W;(u) we can write as

Wyey (u—w)lpvev =wy (u—uw)wy(u—u)w,(u—u),
wiu —u')y=Wiluy —u)) Wiy (uy — ) Wiy y oy (uy — uj).

Proposition 3.3. Wy gy (5 21)(Vy)as ® (Vy)se) © (Vi )aa ® (Vyae-
Proof. From the definition (3.6)—(3.8) it is easy to see that
Wi () - Wy(uy)(F ®id) = (id ® F)W, (uy) -+ Wy(u)eEnd (V¥ V).

(3.11)

Applying this repeatedly to (3.11) we get

Wyer(§ L1)((Vy)aw ® (V) € (M) ® (Vylie-
By a similar argument we have

Wyar(§ (VM) ® (Vi) = (Vy)aa ® (P
Whence follows Proposition 3.3. H

According to the scheme in Sect. 2, Proposition 3.3 guarantees that for any
triplet Y, Y, Y" the operators Wygy |y, g r,» Wrey |y, er,. a0d Wy gy |y, oy, solve
the Yang—Baxter equation.

3.4. The Dimension of (Vy),- Let us study the dimensionality of the space (Vy),,
defined in (3.10). For this purpose we introduce further the following operators:
G=Wi(—1) if i#gq,.. 9gm7
=W, a(OW, Q)W (f) if i=g;
Let
(Vi) = {0€(VM) |G =0 for i=1,...,N—1}.
Proposition 3.4. (Vy),, < (Vy)ap-

Proof. Using the Yang—Baxter equation for the symmetric tensors, we can
rearrange for each j the right hand-side of (3.7) to get F'=B;;.; x (---), where
Bjjﬂ=(ﬁjjﬂ(z)—l)idgﬂ®W,+1 )z — ®id, o . lz=0. Hence it suffices



ALV Face Models 555

to show that G;B;;,, =0 for g;_, <i<g;,,. It is obvious for i # g; by virtue of

(3.9) and (3.3). Suppose i = g;, and write f =f;, /= f;, . By the inversion relation
(3.2) we have

Wi(=z+ 1) Wi(—z4+ )W ez —1)

flz—i+1][—z4+i+1]\ .

=<£I=—[1 [ )(1d® Wi - 1o (2). (3.12)
The first factor in the right-hand side contains one zero for z=0. Noting that
f = f"and using Lemma 2.2 we find that when operated on the symmetric tensors
the second factor is divisible by [z]/ ™. Dividing (3.12) by f;;1(z) = O(z/ ') and
letting z—0 we get G, B;,,;, =0. W

Jit

Proposition 3.5. Fix DIWs a and b. If L is sufficiently large, we have

dim (Vy)ap = dim (Vy)w, = [0a ® py:pp]s
where [p,® py:p,] signifies the multiplicity of " in ¥ ,@ ¥ y.
Proof. First note that if L is large (e.g., L+ a, > N + a,) then the space (VV),, is
independent of L. Fixing a,b, N we regard F, G; as finite dimensional matrices on
(V™),, having L as a parameter. Proposition 3.4 states that Im F < ﬂiKer G, for

all L. Consider the limit L— oo, and put FO=IlimF, G? =1im G;. For L large
enough we have

rank F° < rank F < dim () Ker G, < dim (") Ker G.

On the other hand,
rank F* = dim (| Ker G? = [p,® py:p,]

holds (Proposition B.2). This proves Proposition 3.5. M
3.5. Remarks. It can be shown that

[0.® py:py] < my(b—a),

where my(w) denotes the multiplicity of a weight win 7"y. If w =3, k,e;, >, k; = N,
then my(w) is the number of the ways of assigning N integersO0,...,0,.. ., n,...,n on
ko kn

the nodes of Y so that the integers n(i,j) in the (i,j) position satisfy n(i — 1,j) <
n(i,j) < n(i,j + 1) for all i,j.

Because of the invariance of the Boltzmann weights under any Dynkin diagram
automorphism ¢ of AY, we have (Vy),om) = (Vy)aw- Proposition 3.5 implies that
in general

dim(VY)ab émln [pa'(a)®pY:po'(b):la (313)

hence in particular dim (Vy),, < my(b — a).
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Conjecture. The equality in (3.13) holds for all L> N and p with — 1 <p <1(p = the
elliptic nome).

4. An Example—The Case of ¥ = B:]

Our purpose here is to illustrate the construction of Sect. 3 on the example Y = Bj .
Throughout this section distinct Greek letters A, u,... will represent distinct
numbers.

4.1. The space ( EP)‘”’ First let us examine the space (VBj ) fOr a and b satisfying
a>b. We distinguish the three cases

(e-1) b—a=3e,,
(e-2) b—a=2e;,+e,
(e-3) b—a=e;+e, +e,.
By the remarks in Sect. 3.5 we have dim (VEP Yan =0, 1,2, respectively. Hereafter

the trivial case (e-1) will be omitted from the consideration. First consider the case
(e-2). The action of F on (V?3),, is as follows:

Fe,®@e:®@¢, =0 E”l:‘]l] fetsisw
Fe 6, ®e; = [ 1
Fe,®e¢,®e,= —%. YR
where
= [aE“M] 1, 0,®e,Qe,+e,®¢,0¢;) — %Cl—ffi%]el@“@ew

Therefore we have
(e-2) (VEP)ab = Cfg,ﬂz,wu-
A similar calculation shows
(e-3) (VEP)ab =Cf i FC s + Cf sy
Here the notations are
[ieuny=Aun (A5 (0;Qe,®¢, +e,0¢;,®¢,)
—Aj(e;®e,Qe,+¢,Q¢,R¢,)),

T Las, + 1[a;, + 1]
* [alu] [alv:]
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Table. The Boltzmann weights for an ® 0. In the Table, W= W o 4G ®|u) and 24 + p signifies
2e; +e,, etc

At [2+u]la,,+1]
2 F Wik, ®e = e @fM
— 24+u A [1][[]1“] A d,22+p
24+p [ +ulfa,, — 117
o T e | Tl e
- L2+ i [1][611”]2 w fd,21+u
244p [ulla,;, — 11[a,,— 1]
v ]:] v ngft21+u®ev: ’ - ev®f§,"u+u
FFEm [11la;, + 11la,.]
244p [a,,+11[a;,— 1 —u]
4 D “ Wfﬁ,"zu,t@eu: - u2 ez®.f§f2u+z
25+ [au]
2418 [a;, — 1la;]la,, —u]
“ N Wfﬁu ®ev: ’ v. v e ®fiv ’
E;l e laydlap+ 100a,] %"
2ty (a;,—ul( [a;, + 11°[a,, +2]
A v Wik eu®e, = < i E e ®f it per
D P a2\ (@) M, +1] T
[2][as, + 11las + 1] >
¢, ®f Pury
[lala,]
A+tutyv
v 2 Wfdisurv®e; =0
2i+u
[a,, —11la;, — 1][a;, + 1 +ul
Wiilsurr®e;= [a,][a;])? O s
ituty [1"‘“][“/1/3_1][”111‘*'1]2[“1 +1]
2 A Wi Qe = i e, ®f% v
e [110a;51°[a.] WO
({0 B} = {1, v})
Aruty [u]llay,+11lag, + 4. + 1]
K K Wf:?)+u+v®elc= . . ex®f§le+u+v
ATy [11lax1lac]laa]
(&, B=14,1,v)
Atuty [asp + 11las5 — 1[as, + 1lagdlan —u
: x WID s @, — 2 S Y e
e [a;51%[az.][ag + 1]1[az]

({o B} = {wv})
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These vectors obey the linear relation
VT +f2 Atpty +fi,”,1+,‘+v =0.
To sum up, we have
e-2) dim (V) =1,
e- im b =
(e-3) dim( EP) b S

In the latter case the equality fails if A%,A435,4%, =0. If, eg, A%, =0 and

lu uv
Aiu 760 then fa Atut+yv — O Cfa l+u+v_Cfa Atp+v and dlm( B])abzl'
We have ( Hj)ab =0 if two of A%, A},, A}, are zero.

4.2. The Boltzmann Weights for Bj@D. We give in Table the whole list of
non-zero Boltzmann weights W o (4 lu) with the common factor [u+ 1]

g
[u—1]/[1]? dropped.

4.3. A Boltzmann Weights for EFJ ® B:] The Boltzmann weights for ED ® Hj
can be obtained by composing those for Bj ® [ given in Table. Here we write
only one case as an example. This time the factor [u]?[u+ 17[u— 1][u+ 2]
[u—27/[1]7[3] will be dropped.

24+
24+ Atu+v
Atut+v

[a;, +2—u][1+u][3+u]
[a;, +2]

[a;, +21%[a;, + 31%a,, + 112[ul (1 + u][a,, — 1 —
B [a;, + 112[a, + 11%[a,,1%[a;, + 2]
Wfi,u21+u®fl'}ftz+u+v
[a;, + 11%[a,](a,, + 21 [ul[3 + ulla,, + 1 —u]
- (a3, (a5, + 21[a,, + 112 [a;, + 3]
[112[a,][a,, + 21[a;, — ulla;, + 1 — ulla, + 3 +u]
( Laydla;, + Ulas, + 11[a,, +2][a,,]

 [0,000, + 3100, — 101 +ul[2 + ) a, + 1 uJ> ®f
[alu"*' 1][a;, + 1][01‘,-{-2][611”] a2itu dA+u+vy

a,2},+u®f:1t,v}(+u+v

Wfﬁ,”zmu ®f’bi,vl+u+v =

fa 21+u®f§,ﬂl+u+v

a,2i+tp ®ffit‘v/1+u+v

5. Conjectures on Local State Probabilities

The local state probability (abb. LSP) is the probability that a lattice site assumes
a given state ae ¥ ,. We denote it by P(a). Let us state our conjectures on the
LSPs of the models corresponding to the Young diagram Y= (N) or Y= (1%).
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Hereafter we deal exclusively with the case 0 <p <1, —(n+1)/2 <u <0, which
corresponds to Regime III in [6]. We use the notations (c-4) ~ (c-6) in Sect. 2.

Let %, denote the irreducible 4" module with the highest weight a and y,
its character. Consider the character identity describing the irreducible decom-
position of the tensor module Z:® £, (€S s NESL 0. 0)

Xé(q’ Z1seees Zn)Xn(q’ Zyseens Zn) = z b{na(q)Xa(q9 Zyseees Zn)' (51)
aes|

The branching coefficients by,,(q) are power series in g (with some overall fractional
power) and their linear span is stable under the change g = ¢*™ > § = ¢~ 2™/*. They
are the characters of the GKO-Virasoro algebra [19] (not necessarily irreducible

ones) arising from the affine Lie algebra pair AV @ AM = AN,
The identity (5.1) with the choice M = N or M =1 is related with our models
corresponding to the N-symmetric (Y =(N)) or the N-antisymmetric (Y= (1V))
tensors, respectively. We have the following conjectured form of the LSP expression:

P(a) = lim P, (a,b™* V) ptm+2)) (5.2a)
P,(a,b,c)=u,X,,(a,b, c;x"“)/ Y u, X, (a,b,e;x", (5.2b)
acs|
Yh=olu—n/2)a,
U, =Xx [T E(x, x"), (5.2¢)
u<v
E(z,q) = I_[ (1—z¢* (1 =z g1 =g, (5.2d)
Zm le(a”) QD U2
Xn(a,b,c;q)=3 q , (5.2¢)
H(a,a',a") = min#{i|p; 2 v} for Y =(N), (5.2)
€Sy
= max# {i|; = vy} for Y= (17), (5.2g)
€Sy

where
N

= ZNL a+ Y e,.

i=1

Here the parameter x is defined by p=e %, x =e **/L and the sum in (5.2¢) is

over a?,....ame¥, (aV=a, a™*V=b, a™*? =) under the condition that
(Vy)goau+n #0 for 1 <j<m. In (5.2a) we choose (b)) ; to be
b =@ al X (), (5.3)

where (K, M) = (1, N) or (N, 1) according to whether Y= (N) or Y= (1").
We conjecture the large m limit of the combinatorial g-polynomial (5.2¢) as
follows.
lim qy(a.é,n)—Hme(a, pm+ 1)’ pim+ 2); q) - béna(q)’

m— o0



560 M. Jimbo, A. Kuniba, T. Miwa and M. Okado
where
y(aa 57’1) = lé'l—M,n + |;7|M,n - |ai1,n - |(n,n— 17""0)|O,n’
H, = in(b‘f’, putL pli+2)y
i=1
This has been proved for n =1, Y=(N) in [3,4] and for n: general, Y= (1) in [15].

We also examined several cases by computer experiments. Admitting the conjec-
tures we obtain the LSP expression

béﬂa(xn+ I)Xa(xn+ la Xyenns X)

P(a)=

2" X LX), (X X, x)
We note that the identity (5.1) assures the correct normalization
1= ) P(a)

aed|

The LSPs are not known for the models corresponding to general Young
diagrams. We hope to settle this question in a future publication.

Appendix A

In this appendix, we give a characterization of the minimal right ideals of CS,
following [17]. Fix a Young diagram Y=(f1, f5,...,f,) With N nodes. For a
standard tableau T on Y [20] the Young symmetrizer ¢ is defined to be

Cp=Spar, S;p= ) T, ar= ) (sgni)t.
teHp w€Vy

Here H (respectively V) denotes the horizontal (respectively vertical) group, i.e.,
the subgroup of Sy whose elements permute the letters on each row (respectively
column) of T among themselves. We use the symbols S(j;---j.), s(j;---jx) and
a(j, ---j,) to denote the permutation group on the letters {j,,...,j,} and the (anti-)
symmetrizer on them

s(ji- i) = Z T, a(j, )= Z (sgn1)r. (A.1)

€S> jk) €S> k)
Define the element % (z) of CSy to be
F@)=F - 1(DF y_2(2)F 1(2),
Fi(z) =1+ (vy(2) — vi(2))sy 1)
X (14 (oy-1(2) = v;(2))sy— i~ 1) (1 + (0341 (2) — v;(2))s;)- (A.2)

Here v,(z) (i=1,2,...,N) are defined in (3.5), and s;=(ii+1) (i=1,2,...,N—1)
are the generators of CSy. As in Lemma 3.2 one can show

Lemma A.1. There exists an element & in CSy which satisfies
F(2)=z"F +0(z") (z—0),

where k is defined in Lemma 3.2.
Next we define the elements %,(i=1,2,...,N — 1) as follows:
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G=1—s; if i#7g1,92, - >9m>
=(I+s, ) +2s, o) (L+fs,) if i=g; (A.3)

where g;=f1+f,+-+f;(j=12,...,m)
From now on, we fix T to be the standard tableau

g1 t+1 g2

~
Il
.

gm—l—’_1 oo Im

The following proposition characterizes the minimal right ideal ¢, CSy.
Proposition A.2.

¢;CSy = FCSy =K,
where
K ={xeCSy|9x=0 foral i=1,2,...,N—1}.

We divide the proof into two steps:

(f-1) K =c,CSy
(2) K=ZCSy

Proof of (f-1) Let us first prove that
Gecr=0 forall i=12,...,N—1. (A4)

In the case i # g1,95,--->9m» (A4) is clear. Consider the case i = g;. For simplicity,
we assume i = g, . (The clear cases are similar). From the definition (A.1) and (A.3),
G, 8(1---g;)=g;!s(l---g; +1). So we can express ¥, cr as

s(1---g; + Dxa(lg, + 1)a(2g, +2)---a(f,4,),
where xeCS(g, + 1---g,), yeCSy. Note that for all weS(g, +1---g,)
s(1---g, + Dwa(lg; + 1)---a(f,9,)
=s(1---g; + Da(lw(g, + 1)) ---a(f,w(g,))w =0.

This proves 4, ¢, =0.
Next we prove that if 4,x =0 for all i, then xec,;CSy. We use the induction
on N. From the assumption of the induction

xecr CSy,

where T’ is the Young tableau obtained by removing the node N from T. The
following is a known fact about the induced representation of the symmetric group
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[20]:
chCSN = @ CSCSN,

T'<S
where S runs over the standard tableaux obtained by adjoining one more node
to T". Since each ¢gCSy is irreducible, the proof finishes if we show

Gy_1€s#0 for S#T.
Case 1. f,,> 1. In this case ¥y _;=1—sy_,. If S # T, then
Gn-16s=Cs—C58y 1,

where § is the standard tableau obtained by interchanging the letters N — 1 and
N in S. Noting that

CSy= @  ¢5,CSy (A.5)

S standard tableaux

as a right CSy-module [20], we find %y _,cg #0.

Case 2. f,,=1.
In this case 9y =(1+s, )1 +2s, )--(1+f, sy ;). Note that
1
N gN—1S(gm,2+1l-»N71)
= Sign_p+1W)
=1 +N—=IN)+ -+ (Gm-2 T IN)S, 1 nv_y (A.6)

If S is the Young tableau obtained by adding a node in the (m — 1)-th row in T,
Gn-1€s=(fi—1 + D)!lcg #0. In the other cases, we can write from (A.6) ¥y _, ¢ in
the following manner:

1 Jm-1 )
7 ,gN—lcszcs'f‘ Z (N —jN)es.
m—1- Jj=1

For each j, (N —jN)es=(N —IN)---(N —j+ IN)(N — jN)cg belongs to the ideal
¢cs,CSy, where S; denotes the standard tableau t,(S), 7;=(N —jN —j+1---N).
Here for 1Sy, 1(S) signifies the tableau obtained by replacing each letter i on S
by t(i). Since S=S,, S;,...,S, = are distinct, we again get ¥y_,;cs#0 by
(A.5). H

Proof of (f-2). In the same way as in Proposition 3.4, we can show K > #CSy.
Since K is irreducible by (f-1), it suffices to show that # # 0. By expanding (A.2),
we get the expression

F = fw, + (linear combination of the elements of length < N(N — 1)/2),

where f=(z"*[1;<;(vj(z) = vi(2)))|.=o is @ non-zero scalar and w, is the longest
element in Sy. MW
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Appendix B
Let (p, 7" ;) be the vector representation of gl(n + 1,C). For 1 i< N — 1 we put
Wiw) =1+ uP;, €End ., ¢, (7EY), (B.1)

where P, denotes the transposition of the i and the (i + 1) components. For
a=(ag,...,a,)€Z"" ! with a, > --- > a,, we mean by ¥", the irreducible gl(n + 1, C)-
module generated by a highest weight vector v:

Egyv=(a,—n+Av (VA), Ev=0 (A<up),

where E;, denotes the standard generators of gl(n+ 1,C). The purpose of this
appendix is to describe the action of id® # ;(u) on the module ¥ ,® ¥ "
following [18].

Recall that ¥”, has a distinguished orthonormal basis {|am )} (the Gelfand—
Zetlin basis [21]) labeled by an array of integers

Moy, My

Moo

such that

(g-1) my,zmy,_, =2m;,,, forall ipu,
(82) my,=a;,—n+i (0=i=n)

The highest weight vector corresponds to the pattern m = m(a):m(a);, =a;, —n+ 4
for all 4, u. In the tensor module ¥",® ¥" any irreducible component appears
with multiplicity 1. The corresponding Gelfand—Zetlin basis {|(ab)m ) }, belonging
to a component of highest weight b, is given in the form

[(ab)m) = Zl Cm,m',2)|am') Qe,;. (B.2)

Here the C(m,n?, 2) are the “Wigner coefficients,” whose explicit expressions can
be found in [18,21].
We consider now the decomposition of the module ¥*,® ¥"E". Let

Q,={ve?V @V ENE w=(b,—n+ip (VA), E,v=0 (A<p)}

be the space of highest weight vectors of highest weight b, so that we have
V@V EN>23,0,®7,. Let p=(a?,...,a™) be a path from a to b. We define
the vectors |(a?,...,a")mYe¥ , @ ¥ E'(i=0,1,...,N) inductively by
[(@®)m) =|am},
1(@®,...,a"my =Y C(m,m, 2)|(a®,...,a" ym'>Re,.
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Setting i = N and m = m(b) we get a family of vectors
def
10, a™y 1@, a®)m@™))

labeled by the paths p; they provide an orthonormal basis of Q.
Since the #;(u) (B.1) lies in the commutant of g/(n+ 1,C) one may regard
id® # ;(u) as acting on €,,. We define W) (u) on @, ,£2,, by

WP W)l g, =(d @7 (1) a,,
Proposition B.1. [18] With respect to the above basis we have
Wow)[a®,....a™y = ¥ % ' Oend,....a",..a®y,
a’ ()
where (in the notation of Sect. 2)

(az, + D(ay, — 1) .

2 (B.3a)

A u
/Z[:I/lzl—{—u, /Dp_l——’ }.D/‘.:
A u

(M [

Changing the vector |(ab)m) (see (B.2)) by its scalar multiple s(a,b)|(ab)m) has
the effect of multiplying §1% by s(a, b)s(b, ¢)/s(a, d)s(d, ¢). With the choice

-1/2
S(a7 a+ e/l) = < H avl(avi - 1))

0<v<i
the last expression of (B.3a) is changed to

# a;,+1
ADA:u—lf‘—.
u alu

(B.3b)

In this form the operators W?(u) are precisely the rational limit of W;(u) in Sect. 3:
WO, = lim Wiwlp
Let n:CSN—>Endg,(n+l,C)(VSN) be the natural map sending s; to Py, ;.
We put
=([{[d®n(F))l g, G =1d®n(%))lq,,
These are the rational limits of F and G; in Sect. 3.

Proposition B.2. We have
Im F° =Im(id®7(cq))| g, = ﬂ KerG?. (B.4)

Their dimension is [p, & py:pp]-

Proof. Proposition A.2 states that (B.4) is true for = = the regular representation.
Since any irreducible representation of Sy is a subrepresentation of the regular
representation, it must be true for all finite dimensional representations by the
complete reducibility. Noting that ¥, = n(c;)(V") we have dim (id ® 71(c,))(2,,) =
[pa®py:pp]. W
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