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Abstract. Presented here is the construction of solvable two-dimensional lattice
models associated with the affine Lie algebra A(

n

X) and an arbitrary pair of
Young diagrams. The models comprise two kinds of fluctuation variables; one
lives on the sites and takes on dominant integral weights of a fixed level, the
other lives on edges and assumes the weights of the representations of sl(n + 1, C)
specified by Young diagrams. The Boltzmann weights are elliptic solutions of
the Yang-Baxter equation. Some conjectures on the one point functions are
put forth.

1. Introduction

Let us begin with a link between solvable lattice models and the representation
theory of A^K It has been found in [1-4] through the computation of the one
point functions P(a) of the former; e.g., in Regime III of the models treated in
[2-4], they were completely determined by the decomposition of characters

XξXη=ΣbξriaXa
a

for the pair A^]@A{1] ^ Aγ} and the branching coefficients bξηa appearing
therein:

XξXη

In this paper we take one more step towards a thorough understanding of this
phenomenon.

The corner transfer matrix method—the trick in the computation—was
originally invented by Baxter [5]. In his study of the hard hexagon model there
emerged a remarkable role of the ^-series identities of the Rogers-Ramanujan
type. A series of models with interactions round a face were then worked out [6]
and their critical exponents were identified with those of the minimal conformal
field theories [7]. Further studies along this line were pursued by several authors
[8-11] until the complete result was obtained in [3,4]. There appeared the affine
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Lie algebra A^] describing the one point functions. A natural question arose:
What if 4 υ replaces A[1]Ί

This was answered in [12-15]—but not to the full extent of the problem. If
n = 1 the case covered there contains only the subclass treated in [6]. The whole
family considered in [2-4,11] had two integer parameters L and N. The parameter
L was introduced in [6] and L — 2 means the level of the representations in the
Regime III picture presented in [2-4]. The parameter N—going back to the paper
by Kulish-Reshetikhin-Sklyanin [16] on vertex models—represents the degree
of the symmetric tensor representation of s/(2,C). If we consider A{^\ there come
into the game the representations of sl(n + 1, C) that are parametrized by general
Young diagrams. The aim of this paper lies, in fact, on this generalization.

Within the category of vertex models this was done by Cherednik [17]. With
some modifications his method works well in our case of face models. The
distinction between these two types of models is—as the names suggest—that
fluctuation variables of vertex models are placed on edges and interact among
four round a vertex, while those of face models are placed on sites and interact
among four round a face. This last statement is yet untrue for the general case we
treat in this paper. The models we consider must have fluctuation variables both
on sites and edges. The interactions take place by eight round a face. This is
explained most elegantly by Pasquier's argument [18]: In the rational limit, the site
variables a,b,... represent the highest weight modules i^a, i^b,... oίsl(n + 1, C) and
the edge variables α,/J,... represent base vectors of Ήomsl(n + ιC)(ir

a®ir

γ,i
r

b),
where yγ is the sl(n + 1,C) module specified by the Young diagram Y. If Y is a
symmetric tensor or an anti-symmetric tensor, the decomposition of Ψ'a®ir

γ is
multiplicity free and the edge variables are irrelevant. The symmetric case was
treated in [13,14].

In this paper we have constructed a family of solvable lattice models with face
interactions parametrized by arbitrary Young diagrams. We call them the A{

n

1]

face models. Although we state our results only on the restricted models in the
sense of [6], a similar treatment is possible for the unrestricted models. For
the symmetric or the antisymmetric case computer experiments have brought
conjectures which relate the one point functions—we call them the local state
probabilities in this paper—with the A^ characters. Their proofs and the
computation of the general case are still to be worked out.

The plan of this paper goes as follows. Section 2 gives the framework of the
model and the solutions to the symmetric case. The general cases are treated in
Sect. 3. The particular case of 7 = ΓΠ is explained in Sect. 4 as an illustration

of our method. We propose some conjectures on the one point functions in Sect. 5.
Appendix A contains some propositions on the symmetric group. Appendix B is
a brief exposition of Pasquier's work.

2. Yang-Baxter Equation and A^ Face Model

In this section we formulate the Yang-Baxter equation for the face models. We
give its solutions corresponding to the vector and the symmetric tensor represent-
ations of sl(n+ 1,C).
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2.1. The Yang-Baxter Equation. Let F, V and V" be vector spaces. The Yang-
Baxter equation for Wvv., Wvv.., WVΎ.,—which belongs to Homc(F(χ) F', V ® F),
etc., respectively—reads as

(1 ® Wyy){Wyy.. ® 1)(1 ® Wy.y.) = (Wy.y.. ® 1)(1 <g> Wyy..)(Wyy. ® 1). (2.1)

F" ® V® V < V® V" ® V

vv 1 <g> Wy.y..

V"®V'®V V®V'®V"

wvv,®\

\®wvv,,
V'®V"®V <—— V'®V® V".

For example, the transpositions Pvv,, Pvv», PVΎ,. (i.e., Pvv> (x ® y) = y ® x for x e V
and yeV\ etc.) satisfy the Yang-Baxter equation. In fact, Eq. (2.1) then becomes
a disguised form of the relation (23) (12)(23) = (12)(23)(12) in the symmetric group

In this paper we mainly consider the following more restrictive form of the

Yang-Baxter equation: Wvv> = Wvv>(u)9 etc., depend upon a complex parameter

u and satisfy

(1 ® Wvv,{u)){Wvv,\u + v)® 1)(1 <g> WVΎ..(Ό))

= (WVΎ..(υ)®l)(l ® Wvv,,(u + υ)){Wvv\u)®\). (2.2)

For example, let's consider the case V=V = V". The choice Wvv\u) = Wvv»(u) =
WVΎ"(u) = 1 + uP (where P(x®y) = y®x as before) solves (2.2). This is explained
by an identity in the group ring CS3,

(1 + M(23))(l + (u +

2.2. Face Models. We now consider a direct sum decomposition of the form

An element of £P is called a local state. In this paper we construct a family M of
vector spaces (V= ®aMcs>Vab)VGgi and a family of operators (Wvv,(μ))VtV.eίX

satisfying

(a-1) the Yang-Baxter equation (2.2) for any triplet F, V\ V"e@,

(a-2) the composition Vab ® V'h>c, Λ F® F r - ^ > V ® FΛ F^d, ® Vdc is vanishing
unless a = a',b = b\ c = c\ d = d! (the selection rule).
We set Wvv\

a

d

 b

c) = π°Wvv,oι:

vah®rhc Λv®v'^+ r®vΛ vad®vdc,

and write Wvv, = ®aAc4^Wvv\
a

d

 h

c).
Our solution contains two parameters; the level I and the rank n. We set

01 n = the set of isomorphism classes of

finite dimensional irreducible representations of sl(n + 1,C).
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A Young diagram 7 = ( / l 5 . . . , / m ) consisting of m rows (f1 ^ ••• ̂ / m > 0 ,
m^n) represents an element (pγ,1^γ) of 0tn. In Sect. 3 we will define Vγe& in
one to one correspondence with Ύe0ln—but not Vγ = Ψ"γ. We set L= I + n + 1.
We denote by stf the vector space C" + 1 spanned by e λ = (0,. . . ,0, l ,0, . . . ,0)

λ n- λ

(λ = 0,...,«). Note that J / ^ ^ D , where Π means the Young diagram Y=(l).
We call p = (a(0\...,a(N))e^N+1 an iV-path from a to b if a{0) = a, a{N) = b, and
α ( ί ) — α ( ί " 1 ) = βA i for s o m e λ t (i = 1,...,JV). W e set e™ = β λ l ® •• ® β / / v e j a / ® / v . T h e
local s ta tes a r e given by

(b-1) L + αΛ > α0 > αx > ••• > an,

(b-2) βλ μ = aλ~ aμe7j for any 2,μ = 0,1,...,π.

A vector aeSf represents the level / dominant integral weight (abb. DIW) of A{

n

1}

{L+an-a0- l)Λ0 + ( α 0 - aι - \)Λ1 + ••-+{an_1-an- l)Λn.

We denote by (p α ,^ α ) the irreducible representation of sl(n + 1,C) whose highest
weight is the classical part of this DIW.

We use the following notations:
N

(c-1) a^bothevQ exists an JV-path from a to b staying in £f—we call it an
iV-admissible path. In this case a and b in particular belong to £f.

N N

(c-2) a^boa-+b and any path from a to b is admissible. The pair (a,b) is
called strongly admissible.

(c-3) T h e a c t i o n of τeSN o n <srf®N is x = υι®-~®vNh+τ(x) = υτ-i(1)®- ®
vτ-1{N). We denote by (SN)X the subgroup of SN which fixes x. The symmetrizer

S:JZ?®N->^N is defined by Sx = Σ τ e S Λ v ) / M We set e^ = Se{

p

N) if a^b and p is a

path from α to b. We also set effi — 0 if (̂ , b) is not strongly admissible. We abbreviate

(c-4) σUn\£0 -+£0 is a bijection defined by

It implements a Dynkin diagram automorphism of A^] on

(c-5) For aey^cίe&Ί.^ we set

We have then (j l+Γ)B(flφίi')
(c-6) For «Gj/ we set

Λ Γ

def
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a.

β

d γ C

Fig. 1. A configuration round a face

Let us explain how to relate the operator Wvv\
a

d

 b

c) to statistical weights of
a lattice model. For simplicity we restrict to the case when V= V. We consider
two kinds of fluctuation variables, ls placed on each site s and vk placed on each
bond k. The variable /s runs over the local states ls = a,b,...e£f. We fix a set of
base vectors Bab = {α,/?,...} of the space Vab. If k is a horizontal bond and ls = a
and ls, = b, where s (respectively s') is the site at the left (respectively right) end of
fc, then the variable vk runs over the base vectors vk = α, β,.. .eBab. If k is a vertical
bond the term "left" (respectively "right") is replaced by "upper" (respectively
"lower"). Now consider a configuration a, b, c, d and α, β, γ, δ round a face as in
Fig. 1. We associate to this configuration the (α®/?5<5®y) matrix element of
WVV'(

a

d

 b

c) as the Boltzmann weight representing the interaction round the face.
By this formulation both vertex and interaction-round-face models are treated on
the same footing.

23. Vector Representation. The A(

n

1} face model introduced in [12] is contained
in our family in the following sense. The vector space Vπe& corresponding to
the Young diagram • = (l)e^ M is given by

VΏ=<B^(Va)Λ, where (VΏU

This is consistent with the definition of the admissibility in [12]. We interpret also

the Boltzmann weights. The operator WΠΘB = WVaVa satisfying (2.2) for the triplet

F D , Vπ, Vu is given as follows: We assume α=>5, £>=>c, a=>d, d^c (otherwise
λ

c) = 0). Let eab = eλ, ebc = ev9ead = eμ, edc = eκ and define a scalar ^ Q ? v by

We abbreviate μd\ΰ}b

cv to μQ v or dΠ
b

c- We define a

dΠ
b

c=® unless a^>b, etc., for
K K

convenience. In terms of the elliptic theta function with nome p

M = 2|p|1/8sin(πιι/L) Π i1 ~ 2pkcos (2πu/L) + p2k){\ -pk\
k=ί

the Boltzmann weights, that satisfy (2.2), are written as
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i 0**/4 2.3
]

Then satisfy the Dynkin diagram symmetry

d'Dc'=a

dDc, where a' = σltΛ(a)> V = σltΛ(b\ c' = σUn(c\ d' = σUn{d)

In the limit L->oo and aλμ\-+co ( λ ^ μ ) the operator t"KD(g)D reduces to 1 + uP

in the sense that (1 + uP)(eλ®ev) = Σ μ ^ Π

2.4. Fusion Procedure. Before going to the construction of Vab and Wvv\u) let us
explain the basic idea of the fusion procedure [17]. We define (VN)ab to be the
subspace of stf®N spanned by e{^] for all iV-admissible paths p from a to b. Note
that Vι = Vπ. We define WNN,(u{N\u^)= ®abcdeyWNN,(a

d

 b

c\u{N\u^)e
Enάc(VN+N) by

ί Π

The notations are as follows. u(iV) = (u1,...,wJV) and u ( Λ Π = ^1, . . . ,^^) are para-
meters attached to VN and VN\ respectively. The argument in the box is
Uij^Ui — u'j. The four DIWs round the box—located clockwise from the
north-west corner—are α*"1-7'"1, ai]~ι, aίj, aι~lj. The sum is over aιje6f
such that the paths p = (aoo,...,aNO) and q = (aN0,...,aNN') are fixed along with
aoo = a, aN0 = b, aNN' = c, a0N'= d. T h e p a t h s r a n d s a r e r - (aoo,...,aON'\
s = (α 0 N ' , . . ., α N N ) . With these definitions the Yang-Baxter equation (2.1) is satisfied
for any triplet VN, VN\ VN".

Suppose that a set of data (V,oιv(u))Ve# is given in such a way that
(d-1) V = @a^ Vab is a subspace of VN satisfying Vab cz (VN)ab,
(d-2) 0Lv(u) is a one parameter family of JV-vectors and

Wvv\u,u') = WNN,(cLv{u)9 av\u'))

satisfies

Wvv\ϊ hc\u,u')(Vah®V'hc)^V'ad®Vdc.

Then Wvv,(μ,u'\ Wvv»(u,u") and WVΎ»(μ\u") satisfy the Yang-Baxter equation
(2.1). We abbreviate WVγVγ)(u,u') to Wγ^r(u — u') (the general definition of which
is given in Sect. 3) since the dependence on u, u' is through the difference u — u'.

2.5. Symmetric Tensors. Let us recapitulate the case of symmetric tensors given
in [13,14]. Consider the Young diagram (N) = QΞD . We denote by Sst?®N

the space of the symmetric tensors of degree N. We set

V(N) = θ f l , 6 e Λ*W β 6 , (V(N))ab = (VN)abnS^®N.

We have in fact dim(V(N))abSl and άim(V(N))ab = 1 if and only if a^>b. The
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particular choice of the N-vector is

αK w(u) = (w,u+l,...,u + JV-l).

Let us prove (d-2) for W{NmM). First we show

Lemma 2.1. Assume that a=>b, b=>c, a^>d, d^c. We set

N 1

0

N- 1
1 Γ

Π
i = 0where the sum is over the paths p = (a{0\...,a{N)) from a to b, and q = (di0\...,d{N))

is a path from d to c. This is independent of the choice of q. In fact, we have

where ead = eμ9 ebc = ev. If(d,c) is not strongly admissible then

nN\d c U) = Ό.

Proof. We use the induction on N. The case N = 1 follows from (2.3). Assume
that the assertion is true for N — 1. We have

β
L (a b\ \ — ,,a[T7]a',,h (a> b\u Λ- ]\ i f z/^1) — A'

n N \ d c \ u ) — μ d ^ d ' μ n N - 1 \ d ' c \ u \ ι ) n u ~ u >
β

where α' = α + eμ, a" = a + eκ, d' = d + eμ, d" = d + eκ and μ Φ K. Applying the
standard addition theorem we obtain (2.5). The last assertion is true since if (d,c)
is not strongly admissible then μ Φ v — 1 and a v_ x — bv = 1 (modL). •

Similarly, we have

Lemma 2.2. Assume that b=>c, a=>b, d^>c, a^d. We set

N-ί , ,

VN(d cl") = Σ Π «W llL±iJb(O '

where the sum is over the paths p = (b{N\...,bi0)) from b to c, and q = (a(N\...,a{0))
is a path from a to d. This is independent of the choice of q. In fact, we have

VNKd c \ U ) \ 1 1 Γ n I

where eab = ev, edc — eμ. If{a,d) is not strongly admissible then

M S cl«) = o.
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The following proposition, which proves (d-2) for W{N)(g){M), is a consequence
of these lemmas and the definition (2.4).

Proposition 2.3. Assume that a=>b, b=>c, a^d, d^>c. Then we have

VV(N)®(M)\d c\U)\eab {<9ebc ) — WNM\d c U)ead ^ e d c •>

where

M - l

= Σ Π MS'- c' W), (2.6)
q ί = 0

ifi
p i = 0

In (2.6), we choose any admissible path (d{0\...,d{M)) from a to d, the sum is over
the paths q = (b(0\...,b(M)) from b to c such that (d(i\b{i)) is strongly admissible,
and a' = d{i\ V = b{ι\ d = b{i+ι\ d' = d(i+1\ v' = u-i. In (2.7), we choose any
admissible path (ciN\..., c(0)) from d to c, the sum is over the paths p = (aiN\..., a{0))
from atob such that (a{ι\ c{ι)) is strongly admissible, and a" = a{ι + 1\ b" = a{ι\ c" = c(ί),
d" = cii + 1\v" = u + N -M- i.

3. The General Case

This section is devoted to the construction of the operator WY(Ξ)Y> for an arbitrary
pair of Young diagrams (Y, Y'). We retain the notations of the previous section; in
particular L will denote the positive integer / + n + 1 ̂  3 (/ = the level of DIWs). We
shall deal with the spaces

where sd = Cn+1, and (VN)ab is the span of e^] with p running over JV-admissible
paths from a to b. The third one (Vγ)ab will be defined in Sect. 3.3 below.

3.1. Elementary Operators. Fix a positive integer N < L. We denote by Wι(u)e
Enάc(VN) (i = 1,2,..., N - 1) the operators

= Σ a'*1") S α ί ^ i ) £ > ) « ( 1 ) ® ® β

f l(i-iv(o ® eβ'(ofl<« +1) ® ® ea(N-i)a(N),
a'(O

where the box signifies the Boltzmann weight (2.3) for Π ® D, and the sum is over
DIWs a'(i) such that a{i~1]^>a^\ a'{i)^>a{ί+1). A basic property of the Wt(u) is that
they satisfy the Yang-Baxter equation (Fig. 2)

ι(u). (3.1)

Besides (3.1) we have the inversion relation

^ ^ (3.2)
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Fig. 2. The Yang-Baxter equation

Using the explicit form (2.3) we can verify also that

KerW^-1) = 1111^(1)

= the subspace of VN spanned by

ea(0)ad) ® ® effl-υβ(i+1) ® ® ea(N -i ) a ( N ). (3.3)

In terms of the W^u) the operator for the symmetric tensors in Sect. 2 can be
written as

x(Wί(u) 'WN(u + N- I)).

For i < j we set

(3.4)

By virtue of the Yang-Baxter equation (3.1) the right-hand side can be rearranged
in various other ways. In particular for each k = ί, i + 1,...J — 1 it can be put in
the form S[_Uj~\ = Wk{X)x (•••)•

Lemma 3.1. Im S[i,β consists of all the symmetric tensors on the interval [i,j]\
namely it is spanned by

Proof. From the remark above the image is contained in such a sub space. To
see that the two coincide, we use the induction on j — i. The proof then reduces
to the following statement: if (a,c) is (N + l)-strongly admissible, then there exists
a DIW b such that hN(a

d

 b

c\\)Φ0. This can be checked by using the explicit expression
(2.5). •

3.2. The Operator F. Let Y=(f1,...,fm) be a Young diagram with N nodes
(/i ^ ••• ̂ fm > 0, N = f1 + ••• + / J . A node at the ith row and the / h column is
represented by (i,j). We inscribe on (ij) the number (i — l)z + j — i, where z is an
auxiliary parameter [17]. Denote the resulting sequence by (Fig. 3).

= 0,1, . . . ,/ ! - l , . . . , ( m - l ) z + l - m ( m - l ) z + / w - m . (3.5)
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0

z-1

2z-2

3z-3

1

z

2z-l

3z-2

2

z+1

2z

3z-l

3

z+2

2z+l

3z

4

z+3

2z+2

3z+l

Fig. 3. The sequence vt(z) for Y= (3,2,2)

Set vι = Vi(z), Vij = vt- υj9 and gi = f1 + ~ +ft.
We shall introduce an operator F(z) that has the property of reversing the

order of v/s in the sense

..WN(υN)) = (W1(υN)..'WN-

1(υ32))...(W^^ (3.6)

Explicitly it is given by

Lemma 3.2. We have

F(z) = zK0(l) as z->0,

where K = #{((il9j\), (iiJiWh < *2> Ji ~ h —Ji ~ h} denotes the number of pairs
on the diagonal lines.

Proof. By the Yang-Baxter equation (3.1), (3.6) can be brought to the form

F(z) = F ( 1 )(z)F ( 2 ),

where F{2) reverses the order of z /s within each block, while so does F{1\z) blockwise
(Fig. 4); more precisely

(3.7)

considered on the space VN dV9J-^9t®(Vfj(g)Vrι)(g)VN~gJ+9i-κ By idfe we
mean the identity operator on Vk. From Lemma 3.1, Im F ( 2 ) is spanned by
blockwise symmetric tensors

Here St = S[gm - gi + 1, gm - gt_ J , and 5 0 (z) denotes the operator

Hence each B^(z) in F(z) actually operates on the symmetric tensors. By virtue of
Lemma 2.1 and Proposition 2.3, it is then divisible by

UU Π
r=2s=1

It is easy to see that Σi<jft7(
z) has exactly K zeros at z = 0.
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1 2 z-1 z 2z-2 2z-l

Fig. 4a and b. The operator F(z) for 7 = (3,2,2) as a composition of VP^M) b Block structure of F(z)

Removing this factor we define FeEnάc(VN) by

(3.8

From the proof above and Proposition 2.3 it is clear that the image of F are
blockwise symmetric:

I m F c F ( / l ) ( x ) ® F ( / m ) . (3.9)

We remark that in the limit L-> oo and | aμv | -• oc (λ φ μ), F becomes c Γ x (invertible
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operator), where c Γ is the Young symmetrizer for a standard tableau T on the
diagram Y (see Appendix A).

3.3. WY(Ξ)Y, for General Young Diagrams. With each Young diagram Y we now
associate the data (VY9aιγ(u))9 VY = ®aMy{Vγ)ah, UGC. Let F be as above, and set

(Vγ)ab = F((VN)Jc:(VN)ab9

aγ(u) = (u + υ1(0)9...,u + υN(0)),

where vt(z) are given by (3.5).
Let (Y, Y') be a pair of Young diagrams. As in Sect. 2 we put

Let oίy(u) = (u1,...,uN\ aγ>(ur) = (uf

ί9...,u'N). In terms of W^u) we can write as

WYΘΓ(u - u')\yN+w = wN,(u -ur)" w2(u- u/)w1 (u - u'\
( ' ]

Proposition 3.3. WYΘΓ(
a

d

 b

c\u){{Vγ)ah®{Vγ)hc) c= (VΓ)ad®(Vγ)dc.

Proof. From the definition (3.6)—(3.8) it is easy to see that

HΊ("i) WN(uN)(F®id) = (i

Applying this repeatedly to (3.11) we get

By a similar argument we have

H W « b

c\u)((VN)ab®(VΓ)bc)^(VΓ)ad®(VN)dc.

Whence follows Proposition 3.3. •

According to the scheme in Sect. 2, Proposition 3.3 guarantees that for any
triplet 7, Γ, Y" the operators Wγ®Γ\Vγ<s>Vγl9 WW»| K y ®κ y ,, a n d WY'®Y"\VΓ®VΓ,

SO1^
the Yang-Baxter equation.

3.4. The Dimension of (Vγ)ab. Let us study the dimensionality of the space (Vγ)ab

defined in (3.10). For this purpose we introduce further the following operators:

G - ^ ( - l ) if iφgl9...,gm,

+2(2)'''Wβj(fj) if i = 9j.

Let

(VΎ)ab = {ve(VN)ab\Giv = 0 for i = l , . . . , Λ Γ - l } .

Proposition 3.4. (Vγ)ab a (V'γ)ab.

Proof. Using the Yang-Baxter equation for the symmetric tensors, we can

rearrange for each j the right hand-side of (3.7) to get F = Bjj+1 x (•••), where

= (βjj+i(zy1)iά

dj-ί®
W(fJ+OWi)(z-1ϊ®idN-9jΛJz = o- Hence it suffices
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to show that GtBjj+1 = 0 for #,•_ x < i < gj+1. It is obvious for i φ g} by virtue of
(3.9) and (3.3). Suppose i = #,-, and write / = / , - , / ' =/,•+1 By the inversion relation
(3.2) we have

-Co ί'-
The first factor in the right-hand side contains one zero for z = 0. Noting that
f^f and using Lemma 2.2 we find that when operated on the symmetric tensors
the second factor is divisible by \_z]f'~ x. Dividing (3.12) by βjj+1(z) = O(zf'~1) and
letting z-^0we get GgjBn +1=0. •

Proposition 3.5. Fix DIWs a and b. If L is sufficiently large, we have

dim(Fy)αfc = dim(V'γ)ab = [

where [_pa®Pγ' Pb~] signifies the multiplicity ofir

h in

Proof. First note that if L is large (e.g., L + an> N + a0) then the space {VN)ab is
independent of L. Fixing α, b, N we regard F, Gt as finite dimensional matrices on
(VN)ab having L as a parameter. Proposition 3.4 states that I m F c Q^KerGj for
all L. Consider the limit L->oo, and put F° = limF, Gf^l imGί. For L large
enough we have

rank F° g rank F ̂  dim Q Ker Gf ̂  dim Q Ker G?.

On the other hand,

rankF 0 = dim Q Ker G? = lρa®ργ'.ρb\
i

holds (Proposition B.2). This proves Proposition 3.5. •

3.5. Remarks. It can be shown that

'-Pb\ύmγ(b - a\

where mγ(w) denotes the multiplicity of a weight w in i^γ. If w = Σλkλeλ, Σλkλ = N,
then mγ(w) is the number of the ways of assigning N integers 0,..., 0,..., n,..., n on

ko kn

t h e n o d e s of Y s o t h a t t h e i n t e g e r s n(i,j) i n t h e (ij) p o s i t i o n satisfy n(i— 1 J ) <

n(ij)^n(ij+l) for all ij.
Because of the invariance of the Boltzmann weights under any Dynkin diagram

automorphism σ of A^\ we have {Vγ)σ{a)σ{b) = (Vγ)ab. Proposition 3.5 implies that
in general

dim(Vγ)ab^min[pσ(a)® pγ\pσ{b)l (3.13)
σ

hence in particular dim (Vγ)ab ^ mγ(b — a).



556 M. Jimbo, A. Kuniba, T. Miwa and M. Okado

C o n j e c t u r e . The equality in (3.13) holds for all L > N and p with — I <p <l(p = the
elliptic nome).

4. An Example—The Case of Y =

Our purpose here is to illustrate the construction of Sect. 3 on the example Y = ΓΠ .

Throughout this section distinct Greek letters A,μ,... will represent distinct
numbers.

4.1. The space ( F m ) a b . First let us examine the space (K-^ ) a b for a and b satisfying
3 ° LT

<z->6. We distinguish the three cases

(e-1) b-a = 3eλ9

(e-2) b-a = 2eλ + eμ,
(e-3) b-a = eλ + eμ + ev.

By the remarks in Sect. 3.5 we have άim(Vm)ab ^0,1,2, respectively. Hereafter

the trivial case (e-1) will be omitted from the consideration. First consider the case
(e-2). The action of F on (V3)ab is as follows:

^
laλμ ' 1 J

where

Therefore we have

(e-2) (Vφ)ab = Cf

A similar calculation shows

( e - 3 ) (V^-τjJab = ^ J a,λ + μ + v + ^ J a,λ + μ + v + *^J a,λ
U

Here the notations are

- Λμ

vλ(eλ®eμ®ev + eμ®eλ®ey)\
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Table. The Boltzmann weights for p ® D In the Table, W= ^ m ® D ( j b

c\u) and 2λ + μ signifies

2eλ + eμ, etc °

2λ+μ

2A + μ

ΓΊ
2λ + μ

2λ + μ

fλμ
d,2λ +

\_aλu - 1] [α A v ] [ΛWV - M]

K V + 2]

Λ + μ + v
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These vectors obey the linear relation

fμv . fvλ i fλμ _ r\
J a,λ + μ + v ιJ a,λ + μ + v~τ~J a,λ + μ + v — U

To sum up, we have

(e-2) ώ

(e-3) di

In the latter case the equality fails if AfiλA
v

λμA
λ

μv = 0. If, e.g., Λ^λ = 0 and
A\μA

λ

μvΦ0 then / £ + μ + v = 0, Cf^λ + μ + v = Cfλ

a^λ + μ + v and dim(F ) α & = l .
We have (Vm)ab = 0 if two of A^ A\μ^ Aλ

μv are zero. ^

4.2. The Boltzmann Weights for Γ Π O D We give in Table the whole list of

non-zero Boltzmann weights W^@u(
a

d

 b

c\u) with the common factor [u + 1]

| > - 1 ] / [ 1 ] 2 dropped.

4.3. A Boltzmann Weights for ΓΠ <g) ΓΠ. The Boltzmann weights for ΓΠ (x) ΓΠ

can be obtained by composing those for ΓΠ ® • given in Table. Here we write

only one case as an example. This time the factor [u]2[u + Y\[u - Y][u + 2]
O - 2 ] / [ l ] 7 [ 3 ] will be dropped.

2λ + μ
2λ + μ I λ + μ +

λ + μ+v

- M ] [ l + M ] [ 3 + M]
Γ Λ-| J a,2λ + μ^J d,λ + μ + v
Laλv + AJ

2] 2 [α A t + 3]2Ca,v + 1]2[«] [1 + ύ] ίaλv - 1 - u]
λμ

Wfλμ fib fλμ

b,λ + μ + v

aχμ + l ] 2 K v ] K v + 2] M [3 + ύ] [αΛv + 1 - ύ]

[^]C«Λί l + 2 ] [ α / l v + l ] 2 [ α λ v + 3] ^

^ΛV] K v + 2] [αΛμ - u] [_aλv + 1 - u] [aλμ + 3 + u]

ίaλμ] ίaλμ + 1] [αAv + 1] [αAv + 2] [α μ ϊ ]

[«ΛV + 3] K v - ! ] [ ! + u] [2 + »] [αAv + 1 - u]

5. Conjectures on Local State Probabilities

The local state probability (abb. LSP) is the probability that a lattice site assumes
a given state aeSfhn. We denote it by P(a). Let us state our conjectures on the
LSPs of the models corresponding to the Young diagram Y=(N) or Y=(1N).
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Hereafter we deal exclusively with the case 0 < p < 1, — (n + l)/2 < u < 0, which
corresponds to Regime III in [6]. We use the notations (c-4)~(c-6) in Sect. 2.

Let S£a denote the irreducible A(

n

1} module with the highest weight a and χa

its character. Consider the character identity describing the irreducible decom-
position of the tensor module J

χξ(q9zl9...9zn)χη(q9zl9...9zn)= Σ bξηa(q)χa(q9zl9...9zn). (5.1)

The branching coefficients bξηa(q) are power series in q (with some overall fractional
power) and their linear span is stable under the change q = e2πιτH>q = e~

2πιl\ They
are the characters of the GKO-Virasoro algebra [19] (not necessarily irreducible
ones) arising from the affine Lie algebra pair A^QA^ => A(

n

1}.
The identity (5.1) with the choice M = N or M = 1 is related with our models

corresponding to the iV-symmetric (Y=(N)) or the iV-antisymmetric (Y=(lN))
tensors, respectively. We have the following conjectured form of the LSP expression:

P(a)= lim Pm{a,b{m + 1\b{m + 2)\ (5.2a)
m-> oo

Σ uaXm(a,b,c;xn+1l (5.2b)

ua = x~ ^ljE(xa^xL\ (5.2c)

E(z,q)= ft (1 -zik~l)(l "*~ W " Λ (5.2d)

Xm(a,b,c;q) = ΣqΣj~~UH{a '* '* \ (5.2e)

for 7 = (JV), (5.2f)

Ui ̂  vτ(ί)} for y = (1^), (5.2g)

where

iV iV

α' = α + J] eμι, α" = <3r + Σ ev,
i = l ϊ = l

Here the parameter x is defined by p = e~\ x = e~~4π2/Lε and the sum in (5.2e) is
over α ( 2 ) , . . . , α ( m ) e ^ ? Π ( α ( 1 ) = α, a(m+1) = b, a{m + 2) = c) under the condition that
(Ky)βo)flo+D / 0 for 1 ^7 ^ m. In (5.2a) we choose (bU))jLί to be

b ω = ξΘσ^7Λ

1)ί:(f/)s (5.3)

where (K9M) = (1, JV) or (TV, 1) according to whether Y= (N) or 7 = (1").
We conjecture the large m limit of the combinatorial ^-polynomial (5.2e) as

follows.

\imq^^)-H"Xm{aMm + 1\b{m + 2\q) = bξηa(q\
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where

y(a9ξ,η) = \ξ\ι-Mtn + \η\Mtn-\a\hn-\(n9n-l9...90)\Oίn,
m

Hm= £
This has been proved for n = 1, Y= (N) in [3,4] and for n: general, Y = (1) in [15].
We also examined several cases by computer experiments. Admitting the conjec-
tures we obtain the LSP expression

We note that the identity (5.1) assures the correct normalization

1= Σ p(a).
ae<fln

The LSPs are not known for the models corresponding to general Young
diagrams. We hope to settle this question in a future publication.

Appendix A

In this appendix, we give a characterization of the minimal right ideals of CSN

following [17]. Fix a Young diagram Y= (/i,/ 2, ,/m) with N nodes. For a
standard tableau T on Y [20] the Young symmetrίzer cτ is defined to be

c Γ = s Γ a Γ , s Γ = Σ τ, aT = Σ (sgnτ)τ.

Here HT (respectively Vτ) denotes the horizontal (respectively vertical) group, i.e.,
the subgroup of SN whose elements permute the letters on each row (respectively
column) of T among themselves. We use the symbols S(j1- jk), s(j1 -jk) and
a 0 i * * 'Jk)t0 denote the permutation group on the letters {jί,... Jk} and the (anti-)
symmetrizer on them

s(ii Λ)= Σ τ ' a(Λ Λ)= Σ (sgnτ)τ. (A.I)
τeSOΊ jk) τeSiji' 'Jk)

Define the element 3F(z) of CSN to be

x(l+(υN-ί(z)-vi(z))sN-i-1)...(l+(vi + 1(z)-υi(z))sά (A.2)

Here vfc) (i = 1,2,..., N) are defined in (3.5), and st = (ί i + 1) (i = 1,2,..., N - 1)
are the generators of CSN. As in Lemma 3.2 one can show

Lemma A.I. There exists an element ^ in CSN which satisfies

where K is defined in Lemma 3.2.
Next we define the elements ^ ( ΐ = 1,2,..., N — 1) as follows:
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£ = 1 — «£ i f i

where g} =fγ +f2 + +/,. ( = 1,2,...,m).
From now on, we fix T to be the standard tableau

i f ί = (A.3)

1

•••

«.-, + •

2

•

•

02

01

The following proposition characterizes the minimal right ideal cτCSN.

Proposition A.2.

c τ C S N = ̂ CSN = K,

K = {xeCSN\($ix = 0 for all i = 1 ,2 , . . . ,N- 1}.

We divide the proof into two steps:

where

(f-2) K =

Proof of (ϊ-l) Let us first prove that

^ c Γ = 0 for all i = 1,2,...,ΛΓ- 1. (A.4)

In the case iφg1,g2,...,9m, (A.4) is clear. Consider the case / = #/. For simplicity,
we assume ί = g1. (The clear cases are similar). From the definition (A.I) and (A.3),

gί + 1). So we can express ^gιcτ as

where

This proves ^ 0 1 c Γ = 0.
Next we prove that if ^oc = 0 for all i, then xec Γ C5 N . We use the induction

on N. From the assumption of the induction

where Y is the Young tableau obtained by removing the node N from T. The
following is a known fact about the induced representation of the symmetric group

! + 2)-*(f2g2)y,

! + l ^ X y^CSN. N o t e t h a t for all weS(g1 + l gf2)

•••a(/2gf2)

+ 1)) -a(/ 2 w(0 2 ))w = 0.
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[20]:

cΓCSN=@csCSN,
τ'<s

where S runs over the standard tableaux obtained by adjoining one more node
to T. Since each csCSN is irreducible, the proof finishes if we show

gN_lCsφ0 for SφT.

Case 1. fm > 1. In this case <gN_ 1 = 1 - sN_ 1. If S φ T, then

^ i V - 1 C S = C S " " CSSN- 1 J

where S is the standard tableau obtained by interchanging the letters N — 1 and
N in S. Noting that

CSN = © cSίCSN (A.5)
S x -standard tableaux

as a right GS^-module [20], we find (gN_ιcsφ0.

Case 2. fm = l.

In this case ^ ^ = (1 + sβm_2 + 1){l + 2sβm_2+2)-(l + / m - i % - i ) Note that

J m— 1

(ί/w_2 + 1 N_1 }. (A.6)

If S is the Young tableau obtained by adding a node in the (m — l)-th row in T ,
^;v-i c s = (fm-i + l) c s ^ 0 I n t n e other cases, we can write from (A.6) < ^ Λ Γ _ 1 c s in
the following manner:

Jm-l' j=l

For each , (N - ; W ) c s = (N-1N)-- (N-j + IN)(N -jN)cs belongs to the ideal
cSjCSN, where S7 denotes the standard tableau τj(S)9 τj = (N—jN—j+l~ N).
Here for τeSN, τ(S) signifies the tableau obtained by replacing each letter i on S
by τ(i). Since S = S0, Sl9...,Sf _ are distinct, we again get ^N_xcsφQ by
(A.5). •

Proof of (f-2). In the same way as in Proposition 3.4, we can show K
Since K is irreducible by (f-1), it suffices to show that J^ Φ 0. By expanding (A.2),
we get the expression

^ = βw0 + (linear combination of the elements of length < N(N — l)/2),

where β = (z~κY\i<j(υj(z) — vi(z)))\z==0 is a non-zero scalar and w0 is the longest
element in SN. •
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Appendix B

Let (pD, i^π) be the vector representation of gl(n -f 1, C). For 1 ̂  i ̂  JV — 1 we put

where Pii+1 denotes the transposition of the ίth and the (i + l) t h components. For
a = (aθ9...9an)eZn + 1 with a0 > ••• > an9 we mean by ya the irreducible gl(n + 1,C)-
module generated by a highest weight vector v:

where Eλμ denotes the standard generators of gl(n+ 1,C). The purpose of this
appendix is to describe the action of id®i^^u) on the module Ψ'a®Y®]

N

following [18].
Recall that ir

a has a distinguished orthonormal basis {\am}} (the Gelfand-
Zetlin basis [21]) labeled by an array of integers

mOn, mίn9 m2 n, , mnn

m00

such that

fs-1) ϊϊi -̂  yγι ^.YHΊ for all X u
(g-2) tnl=aλ

μ-n + λ (Ogλgn).

The highest weight vector corresponds to the pattern m = m(a):m(a)λμ = aλ — n + λ
for all λ,μ. In the tensor module ir

a®i/~π any irreducible component appears
with multiplicity 1. The corresponding Gelfand-Zetlin basis {\(ab)m}}, belonging
to a component of highest weight b, is given in the form

I(ab)m> = £ C(m, m\ λ)\am'}®eλ. (B.2)
m',λ

Here the C(m, m\ λ) are the "Wigner coefficients," whose explicit expressions can

be found in [18,21].
We consider now the decomposition of the module i^a®i^®f. Let

(bλ-n+λ)v (VA), Eλμυ = 0 (λ<μ)}

be the space of highest weight vectors of highest weight b, so that we have
ra® r®N ^ ΣbΩab® ^b Let p = (α ( 0 ) , . . . , a{N)) be a path from a to fc. We define
the vectors \(a{O\...,a{ί))m}e'ra®i/"®ι(ί = 0,l...,N) inductively by

(a{0\...,a{i))m)= ^ C(m,m',λ)\(ai0\...9a
ii-ί))mfy®eλ.

m',λ
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Setting i = N and m = m(b) we get a family of vectors

| |α(°), . . . ,α ( i V ) » = |(fl ( 0 ),...,fl ( J VXfl ( J V ))>

labeled by the paths p; they provide an orthonormal basis of Ωab.
Since the IV-Jμ) (B.I) lies in the commutant of gl(n+ 1,C) one may regard

id® if i{u) as acting on Ωab. We define Wf(u) on ®OtbΩab by

Proposition B.I. [18] With respect to the above basis we have

Wf(u)||α<°>,...,α™» = X %"D^UIIα(0>,...,α'<",.
α'(')

w/zere (m ί/ze notation of Sect. 2)

^ T ^ - B 3 a/ T

Changing the vector |(αfe)m> (see (B.2)) by its scalar multiple s(a,b)\(ab)m) has
the effect of multiplying a

dU
b

c by s(a,b)s(b9c)/s(a,d)s{d9c). With the choice

- i / 2

s(a,a l Π

the last expression of (B.3a) is changed to

ΛΠA = t Λ μ + 1 . (B.3b)

In this form the operators Wf(u) are precisely the rational limit of W^ύ) in Sect. 3:

L^oo ab

Let π:CSN-^Endglin + hC){i^<^N) be the natural map sending sf to Pii + 1.
We put

F° = (id®π(#r))\Ωab, Gf = {id®π(^i))\Ωab.

These are the rational limits of F and Gt in Sect. 3.

Proposition B.2. We have

N

Im F° = Im (id ® π(c τ))| Ωab = f] Ker Gf. (B.4)
ί = l

T/zβ/r dimension is [pa®Pγ'-Pb]-

Proof. Proposition A.2 states that (B.4) is true for π = the regular representation.

Since any irreducible representation of SN is a subrepresentation of the regular

representation, it must be true for all finite dimensional representations by the

complete reducibility. Noting that Yγ ^ π(cτ)(VN) we have dim (id ® π(cτ))(Ωab) =

lpa®Pγ' Pb] •
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