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Abstract. The origin of the classical BRS symmetry is discussed for the case of a
first class constrained system consisting of a 2ft-dimensional phase space S with
free action of a Lie gauge group G of dimension m. The extended phase space
Sext of the Fradkin-Vilkovisky approach is identified with a globally trivial
vector bundle over S with fibre L*(G)@L(G), where L(G) is the Lie algebra of G
and L*(G) its dual. It is shown that the structure group of the frame bundle of
the supermanifold Se x t is the orthosymplectic group OSp(m, m; 2ri), which is the
natural invariance group of the super Poisson bracket structure on the
function space C°°(Sext). The action of the BRS operator Ω is analyzed for the
case S = R2n with constraints given by pure momenta. The breaking of the
osp(m,m;2ft)-invariance down to sp(2n — 2m) occurs via an intermediate
"osp(ra;2rc — m)." Starting from a (2n + 2m)-dimensional system with ortho-
symplectic invariance, different choices for the BRS operator correspond to
choosing different 2rc-dimensional constraint supermanifolds in Sext, which in
general characterize different constrained systems. There is a whole family of
physically equivalent BRS operators which can be used to describe a particular
constrained system.

I. Introduction. Use of BRS Methods and Ghosts

A prominent feature in the use of BRS methods in field theory is the appearance of
so-called ghosts. Ghosts were first introduced in the context of a path integral
approach to gauge field theory. According to Faddeev and Popov [FAD/POP]
the functional measure (after gauge fixing) has to contain a determinantal factor
which accounts for the fact that we have to factor out by the volume of the gauge
group. This way we get rid of the redundancy in the dynamics which is due to the
presence of unphysical gauge degrees of freedom.

Ghost fields appear during the computation of Feynman diagrams when one
rewrites this determinant in exponential form (using Berezin integration for
anticommuting Grassmann fields) to arrive at an effective action. As was first
noticed by Becchi, Rouet, and Stora [B/R/S], this effective action possesses a new
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global symmetry, subsequently called BRS symmetry, which mixes the original
bosonic fields of the theory with the new ghost fields. BRS symmetry provides a
useful tool for constructing physical quantities and deriving field theoretic
identities.

In an attempt to improve the Faddeev-Popov description to allow for a wider
class of gauge fixing terms, including covariant ones, Fradkin and Vilkovisky
[FRA/VIL] set up a superhamiltonian framework to handle constrained systems
within a path integral approach. They succeeded in constructing a unitary
S-matrix (unitary on the physical subspace) for such theories by introducing
additional bosonic and fermionic degrees of freedom, where the number of
anticommuting ghost fields is doubled in comparison with the Faddeev-Popov
approach. The resulting effective action is independent of the gauge fixing and
invariant under BRS transformations.

Translating these statements into an operator-based approach (see, for
example, [KUG/OJI]), one finds the well-known features associated with a BRS
quantum theory, such as the existence of a (pseudo-)hermitian and nilpotent BRS
operator Ω, an indefinite metric "Hubert" space and the annihilation condition
Ωf^O for physical wave functions Ψ.

On the other hand various attempts have been made to develop a classical
( = non-quantum) understanding of the BRS approach, see [HEN, MCM]. One
finds that there is a classical BRS operator Ω associated with every classical
Hamiltonian system with first class constraints. This generator Ω has odd
Grassmann parity, is nilpotent and has ghost number one. It is an element of an
extended phase space which, due to the existence of Grassmannian degrees of
freedom, is not a phase space in the usual sense.

However, so far no closer investigation of the geometric nature of the extended
phase space and the symmetry underlying the BRS construction has been made.

To achieve this aim we will focus on the analysis of finite-dimensional
Hamiltonian gauge systems where the general setting is as follows: we start with a
2π-dimensional phase space S, i.e. a manifold with a symplectic structure and local
coordinates (q\Pi), i=l,...,n, and a set of m first class constraints, Φa(q\Pi) = 0,
α = l , ...,ra, satisfying Poisson bracket relations

{Φa9Φβ} = Caβ*Φy and {Φa,H} = V/Φβ, (1.1)

where H is the Hamiltonian of the system and the C's and F's are in general phase
space dependent.

From the Dirac-Bergmann analysis (see, for example, [SUN] and references
therein) we know that for such a system the motion is constrained to take place in a
submanifold Sc of the phase space S. Furthermore the system exhibits gauge
invariance, arbitrary parameters appear in the equations of motion, and one has to
try and fix them by appropriate gauge choices. Unfortunately, for a generic first
class constrained system, general mathematical theorems tell us that there is no
such global gauge choice, i.e. in general we cannot identify the symplectic space
Sphys = SJG of the true degrees of freedom, the so-called reduced phase space,
explicitly, in terms of, say, (n — m) pairs (gphys, pphys) I n general one therefore has to
keep part or all of the "unphysical" phase space variables on S to describe the
system.
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We will consider the case where the phase space S is of the form of a principal
fibre bundle G-^S-^S/G (i.e. the action of the gauge group G on S is free, which
means nothing other than that we have a neat fibration of S into G-orbits). This
models the case of a typical gauge theory like Yang-Mills theory, where the gauge
group can be made to act freely. The group G is taken to act on S by symplectic
transformations, with a global Hamiltonian vector field corresponding to each of
the constraints. The constraints form a genuine Lie algebra, the structure
constants Caβ

y being those of the Lie group G.
Since we are not interested in relativistic covariance, the Fradkin-Vilkovisky

formalism reduces to the introduction of m ghost/antighost pairs (ηa,Pa),
α=l,. . . ,m, obeying anticommutation relations [fjΛ,Pβ]=O.

The situation can be depicted as follows:

Just counting variables (as indicated by the superscripts) it seems that the ghost
variables should in some sense count as "negative" degrees of freedom. To make
this statement more meaningful, one needs to know more about the relationship
between these spaces, in particular about the role played by the classical BRS
operator,

V (1.2)

We will identify the ghosts and the extended phase space with well-defined
mathematical objects within a finite-dimensional classical framework in order to
get a coherent mathematical picture and a better understanding of the physical
symmetry that is encoded into the use of BRS methods and in particular ghosts.

In our search for an interpretation of the classical BRS symmetry we make the
following two observations concerning first class constrained systems:

a) the natural invariance group of the kinematics is no longer given by all
symplectic transformations in S; consistency with the constrained nature of the
system requires that they map the constraint surface into itself.

b) We have a new kinematical invariance of the system (as has repeatedly been
emphasized, see, for example, [BRO/MCM], [MCM/PAT]) given by changes of
the set of first class constraints {Φα} to new ones {Φ'a}, where

Φ>a = ΛjΦβ = (δ/ + ε/)Φβ, (1.3)

where A is any non-singular (m x m)-matrix and the ε's are m2 infinitesimal
parameters.

Obviously these new constraints describe the same constraint surface, but this
symmetry is accounted for within the Dirac-Bergmann algorithm only if it can be
realized as a canonical transformation on S.

However, in the BRS approach one finds that even if there is no canonical
transformation that produces this change of constraints, there is still a "super-
canonical" transformation on the extended phase space yielding the desired result.
It is given by a super Poisson bracket with the generator C=\/2ηa&JiPβ.
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From a) we might expect that a purely symplectic framework is no longer
appropriate when dealing with constrained systems, b) suggests a closer investi-
gation of what kind of supersymmetry we encounter in the BRS approach.

II. Classical BRS: Algebraic Description

Some progress has been made over the years in understanding BRS in a geometric
setting, mainly at a field theoretic level in the context of Yang-Mills theory where of
course one has a lot of additional complications due to the infinite dimensionality
of the phase space and gauge group. Also one has to keep in mind that Yang-Mills
theory is special in as far as its phase space is of the form of a cotangent bundle T*Q
of a configuration space Q.

To illustrate how the ghosts come into play we will now go back to our finite-
dimensional models with Hamiltonian G-action. We will first take an algebraic
point of view, in terms of the function spaces associated with the manifolds S, Sc,
and ScfG.

The classical observables of such a constrained system are the functions
C™(SJG), i.e. the C00-functions on the reduced phase space. Since in general we do
not have an explicit description of the reduced phase space, we are interested in a
characterization of this function space in terms of C 0 0 ^) and the gauge group
action. The main points of the following discussion are taken from [KOS/STE], to
which we refer the reader for further details.

The functions C 0 0 ^ ) are given by equivalence classes of functions on S,

CCG(Sc) = C^(S)/C^(S)-{Φa\, (2.1)

where CG0(S) {Φα} denotes the ideal of C^^-functions vanishing on the
constraint surface, which in our case (assuming the necessary regularity con-
ditions) is generated by the m first class constraint functions Φa(q, p). This means
that from the point of view of Sc one cannot distinguish between two functions
f(q, p) and f(q, p) + ga(q, p) Φa(q, p), /, gα e C°°(5). To arrive at functions C°°(SC/G) we
have to restrict C 0 0 ^ ) to the subset of functions which are constant along the
gauge orbits on Sc. At the manifold level this description corresponds to the two-
stage process of restricting to Sc and factoring out by the gauge group action.

One can rephrase these statements in a completely equivalent way, using a
cohomological language. Whenever we have a linear representation of a finite-
dimensional Lie group G and hence of its Lie algebra L(G) on some vector space V,
there is a way of describing elements of V which are invariant under this G-action
as elements of the zeroth cohomology group of the corresponding Lie algebra
cohomology with values in V.

The complex Alt(L(G), V) on which this cohomology is defined consists of the
alternating multilinear functions on L(G) with values in V, which is isomorphic to
the space Λ(L*(G))(χ) V, where Λ(L*(G)) = Σ ΛP{L*(G)) is the exterior algebra of the
dual L*(G) of the Lie algebra L(G). p

All we need to know for our purposes is that we can construct from the
G-representation on V a coboundary operator d: ΛP(L*(G))® V-+ΛP+\L*{G))® V
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in a natural way and that

.A-i(L*(G))(g)J/^Λ°(

: V-+L*(G)®V

= {G-invariant elements of V) . (2.2)

We are interested in the case V= C°°(S) or V= C°°(SC), hence typical elements of the
above complex are of the form f{q,p)^ ... ηp, where the notation anticipates that
the η's will be identified with the ghosts later on; the product between rfs is of
course the exterior product.

Observing that we have an isomorphism between the exterior algebra Λ(L*(G))
and the space Ωfny of left-invariant differential forms on G, one can also see how the
interpretation of the ghosts rf as Maurer-Cartan forms (left-invariant one-forms)
on the gauge group G comes about. Similarly one finds that there is a description of
the functions C (Sc% in terms of the zeroth homology group of the so-called
Koszul complex associated with the momentum map of the Hamiltonian G-action
on S.

The relevant complex is Λf(L(G))®C°°(<S), with boundary operator
δ:Λp(L(G))®Ca0(S)->Λp-ί(L(G))®C(Xi(S). One can show that

°(S)) =
lmδ:AiiLiG))ΘC^s)^Ao{L(G))ΘC^s)

S). {Φa} = C*{SC). (2.3)

A typical element of Λ(L(G)), PiP2- PP, will be identified with a product of
antighosts later on. One can now extend both d and δ to act on the complex
Λ{L*(G))®Λ(L(G))®CCO{S) in such a way that

H°AH°M(^(G))®Λ(L(G))®C^S))) = CCG(SC/G). (2.4)

Under certain regularity conditions H°d(H°δ( )) can be identified with the zeroth
cohomology group H°D( ) of the complex /ί(L*(G))®yi(L(G))®C00(ίS), with one
single coboundary operator D = d + (— 1)P2(5 (D2 = 0), which we identify as (twice)
the classical BRS operator.

Both Λ(L*(G)) and A(L(G)) are commutative superalgebras, i.e. Z2-graded
vector spaces (we have both odd and even elements and the product is given by the
exterior product). We can identify canonically Λ(L*(G))®Λ(L(G)) with the exterior
algebra of the direct sum, Λ(L*(G)®L(G)\ which is also a superalgebra.

Hence we have arrived at an extended (from C^(S)) function space
^(L*(G)ΘL(G))®CG0(Sr), but we still need a Lie superalgebra structure for the
"ghost functions" to model the fermionic anticommutation relations on the
extended phase space. Kostant and Sternberg achieve this by making L*(G)®L(G)
into a Lie algebra, taking the semi-direct product of the two, where L*(G) is now
viewed as a commutative vector space algebra. They also introduce an invariant
(with respect to this Lie bracket) scalar product which in terms of orthonormal
bases {Pa} and {ηa} for L(G) and L*{G) is of the form

{η\ ηP) = 0, (Pα, Pβ) = 0, (/f, Pβ) = η\Pβ) = δ%. (2.5)
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Since L*(G)@L(G) is now a vector space with scalar product, there is a unique
Clifford algebra C(L*(G)@L(G)) of dimension 22m associated with it. Via some
filtering procedure the supercommutator of the Clifford algebra induces a super
Poisson bracket on Λ(L*(G)®L(G)) (which however has nothing to do with the Lie
algebra bracket defined on L*(G)®L(G)\).

This construction enables them to identify the part d of the BRS operator D
explicitly as an element of A2L*(G)®L(G\ which acts on the extended function
space by means of the super Poisson bracket. In addition they claim that the
Clifford algebra C(L*(G)@L{G)) is the space of quantum observables associated
with the classical space Λ(L*(G)@L(G)) of the ghost and antighost functions.

The super Poisson bracket of two elements of Λι(L*(G)®L{G)) is proportional
to their scalar product, i.e. we have traced back the origin of the classical canonical
relations {ηa,Pβ} = kδaβ between ghosts and antighosts to the natural scalar
product structure on L*(G)®L(G) (here one has made use of the fact that the super
Poisson bracket of two odd elements is, like the scalar product, a symmetric
object). The choice of a particular value (ΦO) for k doesn't play a role in the
classical cohomological considerations. We adopt here k = 2 (in accordance with
[KOS/STE]) which will lead to the usual form for the BRS operator in Ω = ηaΦa

This ends the algebraic discussion in terms of function spaces, where we have
considered an extension of the function space C°°(S) rather than of the phase space
S itself.

We will present now a corresponding differential geometric construction which
is desirable both from a physical point of view (since phase spaces are more
appealing objects to work with than rings of functions) and from a mathematical
one (since it may exhibit global properties of the system which are not readily
amenable in a function space approach). Knowing about the algebra of ghost
functions doesn't yet determine what kind of geometric objects the ghosts
themselves are.

The complex /ί(L*(G)©L(G))(x)C00(5') will be interpreted as the function space
C°°(Sext) over an extension SQXt of the phase space S. We will construct explicitly the
supermanifold Sext and translate statements about cohomology of function spaces
into differential geometric statements. In our global differential geometric picture
there is a natural way to understand the origin of the super Poisson brackets on
v4(L*(G)©L(G)) other than as arising from the supercommutator of the associated
Clifford algebra.

III. Classical BRS: Geometric Description

/. The Vertical Bundle

If we were just interested in the gauge invariance of the system and not in
describing the restriction to the constraint surface, we would have both an
algebraic and a differential geometric picture for what the physical observables are.
The first is in terms of functions invariant along the G-orbits in S, but at the same
time we can describe S as a principal fibre bundle G^S^S/G, and hence physical
functions as elements of C°°(5/G).
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In the BRS construction we so far have only an algebraic picture, given in terms
of function spaces and the operator for BRS cohomology, D. We haven't specified
what kind of geometric object the "extended phase space" really is.

Obviously Sext has to be some supermanifold since it contains both even and
odd variables. There are different types of such supermanifolds; however, many of
them are vector bundles over ordinary manifolds (see, for example, [BAT]). The
reason for considering such a supermanifold in our case also is the following. Take
S to be the base manifold of such a vector bundle, with a finite dimensional vector
space V attached to it in each point,

Fig. 1

If we expand out .a function / on this supermanifold in local coordinates (s, v), we
get an element of ΛV®CCO{S) (where AVis the exterior algebra of V); the fact that
the fibres are fermionic makes the power series truncate in such a way that the
function looks like an element of ΛV®CCO(S).

If the vector bundle is a trivial product bundle of S and V, functions can be
written globally this way; in general however this expansion works only within
individual coordinate patches.

This suggests that our 5 e x t is a vector bundle over S with fibres given by the
vector spaces L(G)@L*(G). Now the question arises whether this bundle is trivial
or whether we also must allow for the possibility of having a twisted vector bundle
over S.

This question is relevant when we think of quantizing the theory later on:
suppose we know a quantization for both S and L(G)®L*(G\ then only if Se x t is a
proper product bundle, S x (L(G)@L*(G)), is its quantum theory the product of the
two separate quantum theories, with Hubert space given by the tensor product
H(S)®H{L(G)®L*(G)). We do not know how to relate the quantization of a
twisted bundle to the separate quantizations of its base space and its fibre.

One particular vector bundle with fibres L(G) which is naturally associated
with the G-action on S is the vertical bundle VS over S. It is the subbundle of TS,
the tangent bundle of S, which is spanned by the vector fields tangent to the
G-orbits in S, in our case the Hamiltonian vector fields associated with the
constraints.

Since the G-action on S is free, S fibres nicely into G-orbits, and the vertical
subspaces of TS (in each point s of S) are naturally isomorphic to L(G).
Furthermore VS is always a trivial bundle; the vertical vector fields constitute a
global basis for the "vertical part of TS"

Another way of describing VS is as the pullback of a vector bundle associated
with the principal bundle G-^S-^S/G. We use the fact that G acts on L(G) by the
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adjoint representation to construct the associated bundle L(G)^>S x GL(G)-+S/G
(as usual, elements of S x GL(G) are given by equivalence classes [s, υ] of points (s, υ)
of S xL(G\ where [_s1,vί] = [s2,v2] if s2 = s1g and i;2 = Ad(g~1)?;1 for some geG).
Using the projection map π: S->S/G to pull this bundle back to S we rederive the
vertical bundle.

2. Construction of Sext

It is obvious now how one can construct the extended phase space, which is a
bundle with (L*(G)©L(G))-fϊbres over S. We will define a G-action on these fibres
and then proceed as before. The group G acts on L*(G) by the coadjoint action Ad*
which is defined in terms of the adjoint action Ad:

<Ad*(g)^,P>: = <^,Ad(g)P>, (3.1)

where η e L*(G\ P e L(G\ geG. Identifying the pairing < , > between L*(G) and
L(G) with the scalar product ( , ) on L*(G)@L(G) given earlier, (2.5), we see that it is
invariant under the "combined" G-action AD on L*(G)®L(G) which we define by

(3.2)

since then

(AΌ(g)η, AD(g)P) = <Ad*(g - ι)η, Ad(g)P> = (η, Ad(g " *) Ad(g)P>

= <iί,P>=fa,P). (3.3)

This way G acts on L*(G)@L(G) as a subgroup of the O(m, m)-transformations
which are just those transformations that leave invariant the metric structure

on (L*(G)®L(G)) [in terms of a basis (ηa;Pa); it would be of the more familiar
diagonal form had we chosen a basis which mixes ghosts and antighosts].

In fact one can check that the infinitesimal generators Ha associated with this
G-action can be written as linear combinations of O(m, m)-generators (whose form
will be derived in Sect. 4 below):

tfα(.)=-l/2Cα/Σ{^ }> (3.5)

where the dot stands for an element of L*(G)0L(G) (and remember that {ηa,Pβ}
= 2δa

β), and we have {Ha, Hβ} = Caβ

γHr The AD-invariance of the orthogonal
structure on L*(G)®L(G) is nothing but the in variance of the scalar product on the
Lie algebra L*(G)@L(G). We can now use the G-action defined above to construct
the associated bundle

L*(G)ΘL(G)-+S x G{L*{G)®L(G))^>SIG. (3.6)

Cross sections Γ(S x G(L*(G)@L(G))) of this bundle are in one-to-one corre-
spondence with functions (//eCco(S',L*(G)0L(G)) satisfying the equivariance
condition Ψ{sg) = AD(g~ι)Ψ(s), for all geG. Using the projection map π:S-+S/G
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to pull back this associated bundle we arrive at a bundle over S:

L*(G)φL(G)^π*(S x G(L*(G)®L(G)))-+S. (3.7)

Note that although the associated bundle over S/G in general is a non-trivial
bundle, its pullback to S is always trivial.

Clearly the supermanifold π*(S x G(L*(G)®L(G))) we have constructed this
way has the property we were looking for, i.e. functions over it can be written in
the form of the complex we derived in the algebraic description,
C°°(S)(χ)Λ[(L*(G)θL(G)). Therefore it can serve as a good model for the extended
phase space Sext. Note furthermore that Sext has the structure of a "hermitian"
vector bundle [we have a smooth assignment s->fts of an (indefinite) inner
product to (

3. OSp(m,m; 2ή) as Structure Group of Se x t

To this phase space extension from S to Sext there corresponds an extension of the
structure group of the frame bundle. The existence of a symplectic structure, i.e. a
closed, non-degenerate two-form ω on S allows us to choose the symplectic group
Sp(2n) as structure group of the frame bundle of S. One can always choose a local
basis for TS such that ω assumes the canonical form

The value ω(X, Y) at a point s in S is invariant if we perform any Sp(2n)-
transformation on tangent vectors X, Ye TSS.

The symplectic form can actually be derived from the Poisson bracket
structure for functions CCO(S). In a similar way we can construct a super two-form
ω e x t on Sext from the super Lie algebra structure of C°°(Sext).

There is a well-defined analogue of tensors and in particular of differential
forms, Ω(Sext), for the case of a graded manifold [KOS]. Ωj(Sext) has the structure of
a bigraded commutative algebra over C°°(Sext), with the usual Z-grading (i) for
differential forms and the Z2-grading (/) coming from C°°(Sext). There is a unique
exterior derivative d of bidegree (1,0). Applying d on a function /eΩ°(Sext)
CC°°(Sext) we get dfeΩ}(Sext) which satisfies df(X) = Xf9 XeTSexV Setting

T(dfs9dgs): = {f9g}(s) (3.9)

defines a two-tensor on Sext; T induces an isomorphism df-+Xf between exact
one-forms in Ω1(Sext) and elements of TSext, where we define —Xfg: = T(df,dg)
(note that assuming homogeneity with respect to the Z2-grading we have \\Xf\\
= \\f\\ = \\df\\)> We have a corresponding non-degenerate two-form in Ωo(Sext),
defined by

( X X ) { f } (3-10)

The fact that ω e x t is closed, dωexi = 0, follows from the generalized Jacobi identity
for functions C°°(Sext) under super Poisson bracket. Hence ω e x t defines a graded
symplectic structure on Sext, with

ωext(X,,X.)= - ( - l F l ' l l ' l l f l U * , . * , - ) - (3-11)
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Obviously ω e x t induces an antisymmetric, symplectic structure on the even
directions (| |Xy||=0) and a symmetric, "Riemannian" structure on the odd
directions (\\Xf\\ = 1) of tangent space. In an appropriate local basis for TsSext this
two-form has the form

(3.12)

and has the orthosymplectic group OSp(m,m; In) as its invariance group, i.e. we
can perform OSp(m,m;2n)-transformations on the tangent vectors in each
(2n + 2m)-dimensional tangent space TsSext without changing this metric structure
(note that we have to choose matching normalizations for the two metric
structures on the odd and the even sector in order to allow also for transformations
which mix ghost and bosonic directions in tangent space).

Hence we have excluded the possibility of global twists in the BRS construc-
tion, but at the same time have arrived at a supersymmetric situation with the
orthosymplectic supergroup Osp(m, m;2ft) acting as structure group.

4. BRS Condition Singles Out Equiυariant Functions

Within our geometric picture there also emerges an interpretation for the BRS
operator Ω which is used to project out physical functions from C (Sext). Observe
that we have a G-action on the 22m-dimensional vector space Λ(L*(G)®L(G)) with
generators Ha which are of exactly the same form as the ones we defined above for
the action of G on L*(G)®L(G). They act again by the super Poisson bracket and
generate orthogonal transformations in the sense that they leave invariant the
indefinite, but non-degenerate scalar product that we can extend naturally from
L*(G)®L(G) to other "sectors" ΛP(L*{G)®L{G)\ for example on Λ2(L*(G)®L{G)):

faV, PγPδ): = faα, Pγ) fa', Pδ) - faα, Pδ) fa', Pγ). (3.13)

Hence we can define an associated vector bundle in the same way as before, but
now with this exterior algebra as fibre:

Λ(L*(G)®L(G))->S x GΛ(L*(G)@L{G))-^S/G. (3.14)

The equivariance condition for cross sections of this bundle is

= AΌ(g-ί)Ψ(s\ for all geG}, (3.15)

using the same notation for the G-action as previously. The left-hand side of the
equivariance equation can be written as Ψ(sg) = : [U(g)Ψ^\(s% where the in-
finitesimal generators Ta corresponding to this (right) G-representation are just
given by the Poisson bracket with the constraints Φα.
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Hence we can rewrite the equivariance condition in infinitesimal form:

= ί/2Caβ'{ηl>P1,Ψ(s)}

ψ 0. (3.16)

Comparing this with the form of the BRS operator Ω we see that the usual BRS
condition on physical functions

Ψ e C^iS^ΛiL^G^LiG)) ~ C°°(S, Λ(L*(G)®L(G)))

can be interpreted as an equivalence condition that singles out functions
compatible with the projection S^S/G plus the statement that these functions
shouldn't depend on the Pα's:

{Ω, Ψ} = {Φaη«-l/2Caβyη«ηβPr Ψ} = η«{Φa-l/2C^ηβPr Ψ]

{iίβ,!P} = 0. (3.17)

5. Algebraic Description of Physical Functions

We only remark here that there is a completely algebraic characterization of the
functions C 0 0 ^ x G(L*(G)@L(G))) on the associated vector bundle, in terms of the
function rings C°°(S) and Cco(L:i:(G)®L(G)). It is given by the tensor product
C°°(iS)® R[G]C

GO(L*(G)0L(G)), where the tensor product however is taken over the
group algebra R [G] of G, and not over the complex numbers. We define the group
algebra R[G~] to be the tensor product Z[G](g)zR9 where the group ring Z\_G~\
consists of all formal linear combinations g = £ ntgt of elements of G with integer
coefficients (for more details see [KIR]). '

C°°(S) (C™{L*{G)®L{G)) has the structure of a right (left) G-space, induced from
the G-action on S (L*(G)®L(G)). Since these G-representations on the function
spaces are linear they can naturally be extended to representations of the group
ring. The following identities characterize elements ΨS®ΨL °f

a)

c) IPS®(WL + XL) = WS®WL + WS®XL- (3.18)

Here a) is equivalent to the old equivariance condition, whereas b) and c) license us
to use a decomposition of our physical functions according to a different ghost
number as:

= I CX(S)®R[G]Λ\L*(G)®L(G)). (3.19)
i

In going to the group OSp we of course have extrapolated even further away
from the physical degrees of freedom. Eventually we will have to restrict the OSp-
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group to the much smaller invariance group of the kinematical structure of the
space of physical degrees of freedom. How this is achieved with the help of the BRS
operator will be explained in the following section.

IV. Action of the BRS Operator Ω

1. A Simple Example

To simplify the analysis we will assume from now on that the phase space S is given
by the flat Euclidean space R2n, hence we have global coordinates (ηa, Pa, q\ pt) for
the extended phase space Sext, α = l9...,m, i = l,...,n, which will be denoted
collectively by (zA\ Λ = l,..., 2m-\-2n. The orthosymplectic group OSp(m,m;2rc)
acts globally, leaving the metric (3.12) invariant.

Recall that the function space Λ{Ufi(G)®L(G))®CQO{R2n) over Sexi has the
structure of a super Poisson algebra, being the tensor product of the infinite-
dimensional symplectic algebra of functions Cco(R2n) and the finite-dimensional
super Poisson algebra Λ(L*(G)@L(G)% which (modulo the constants) is isomor-
phic to the (22m— l)-dimensional simple Cartan-type Lie superalgebra in Kac's
classification.

The new and interesting observation is that we have identified the well-known
superalgebra osp(m, m; 2ή) as a finite-dimensional subalgebra of the super Poisson
algebra Λ{L*{G)@L{G))®Cco{R2n) with respect to this super Poisson bracket,
which (modulo constant factors) is given by the quadratic homogeneous
polynomials in the basic variables zΛ. The orthosymplectic algebra osp(m, m; 2ή) is
a simple finite-dimensional Lie superalgebra. We define its generators to be those
real (2m -h 2ή) x (2m + 2w)-matrices M which satisfy MTX + XM = 0, where X is the
metric form (3.12).

Note that (due to the "superstructure") the transpose of a matrix M =

(Aτ -Cτ\
has the unusual form Mτ= τ τ). The algebra osp(m,m; 2ή) has 2n2 + n

\B D )
+ 2m2 — m bosonic and 4mn fermionic generators, i.e. the composition law for two
matrices M l 5 M 2 is the usual commutator, unless both Mγ and M2 are fermionic in
which case it is the anticommutator, M1M2 + M2Mί.

The quadratic polynomials zΛzB act on functions C°°(5ext) via the super Poisson
bracket \zAzB, •}, the GL(2m + 2n, ̂ -matrix M(zAzB) - acting on the (2m + 2rc)-
dimensional vector space Sext - corresponding to such an infinitesimal generator
can easily be computed starting from the canonical commutation and anti-
commutation relations for the basic variables:

{q\ pj} = δ'j = - {Pj, q% {if, Pt} = 2δ% = {Pβ, rf} (4.1)

(and all other super Poisson brackets vanishing). The bosonic generators of
osp(m,m;2rc) correspond to 0(m,m)- or Sp(2rc)-transformations, whereas the
fermionic generators mix the two sectors.

2. How Ω Breaks the Kinematical Invariance of Sext

To analyze further the action of the BRS operator, we turn to the easiest case
possible where the constraints Φα = 0 are the first m momenta pp j = 1,..., m. In this
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Table 1

Generator G

Xβrfrf

\/2PJPβ

XβψPβ
qapb

qaqb

PaPb

l/\/2qaη«

\l\flpaη
a

i/yί2papa

iDfifP*

Space of the BRS

I
Number

m(m—1)/2

m(m—1)/2

m2

n2

φ + l)/2
φ + l)/2
mn
mn
mn
mn

Approach

II
Fulfilling

m(m —1)/2

0
0
φ — m)
(n — m)(n — m + l)/2

φ + l)/2
m(n-m)
mn
0
0

III
Not of form

0
0
0
(n-m)2

(n — m) (n — m +1)/2
(n-m)(n-m+1)/2
0
0
0
0
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case the gauge group is commutative and the BRS operator is of the form
Q = £ j)aη

a. Note that Ω itself now has the form of a homogeneous quadratic
a.

polynomial, also one can easily check that M(£2)2 = 0.
We know that a function F on Sext can only be a classical observable if it

satisfies {Ω,F}=0, and in addition that two such observables are physically
equivalent if they differ by a function of form F' = {Ω, F}.

It is instructive to write down explicitly what this means if we restrict our
attention to the quadratic polynomials (Table 1), which can be viewed both as
phase space functions and as OSp-generators. Column I of Table 1 gives the
number of all generators of the type indicated, column II the number of "physical"
ones, and to arrive at column III we have subtracted the number of generators
which generate transformations within physical equivalence classes. The factors
1/2 and l/|/2 in front of the generators are a consequence of the choice fc = 2 in
{η*9Pβ} = kδ<fi.

If we restrict ourselves to the Sp(2n)-generators, it is easy to show that the
condition {Ω, G}=0 for physical G eliminates all symplectic transfor-
mations whose associated vector fields have components along the directions d/dpa

(i.e. are perpendicular to Sc). In going to column III we factor out by those
generators whose associated vector fields have non-vanishing components along
the d/dqa (these are the directions along gauge orbits).

Hence we end up with functions on the reduced phase space SJG, which for this
simple example we can identify explicitly with the (2n-2m)-dimensional space of
the (q\ Pi), i = m+\,...,n. Equivalently we can characterize them as the generators

Fig. 2

1 d/dPx

s
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of Sp(2n —2m) which is the natural invariance group for the kinematics of the
physical subspace.

Let us turn now to the bosonic generators containing ghosts [they generate
0(m, m)-transformations]. Transformations generated by polynomials of the form
lβηιηj and \βPtP) mix up ghosts and antighosts, whereas transformations
generated by the Iβηψj do not. The crucial observation is that the m2 polynomials
ηψj generate the changes of first class constraints, the supercanonical transfor-
mation corresponding to (1.3) is given by the super Poisson bracket with the linear
combination lβεi

iηψj of these quadratic polynomials.
This can be understood by looking at the form of the BRS operator, Ω = paη

<x,
which is the key for the description of the constraint surface. Redefining the
constraints amounts here to a linear transformation among the m momenta pa.
This may not in every case be realizable as a canonical transformation on S, but is
always equivalent to performing a pseudo-symplectic ( = orthogonal) transfor-
mation on the η's and P's. The polynomials lβηΨj are in one-to-one corre-
spondence with GL(m,R) generators since their corresponding matrices (with
respect to a basis (ηa; Pα) of the vector space L*(G)@L(G)) are of the form

G 0

0̂ -Gτ

where G runs through all m2 generators of GL(m, R).
Hence we see that in the BRS description this symmetry of the dynamics is

explicitly built into the theory; it can't be incorporated if we stick to a strictly
symplectic language. The ηψj are unphysical functions and as such the condition
|β 5 . } = 0 not only breaks the Sp(2rc)-symmetry, but also fixes a choice of first class
constraints.

Note furthermore that for our example the final set of functions (column III)
doesn't contain any ghosts and hence we do not need a condition "ghost
number = 0." The polynomials in columns I, II, and III form a series of subalgebras

osp(m, m; 2n) D"osp(m; 2n — m)" J sp(2n — 2m), (4.3)

where we have defined "osp(m;2n —m)" to be the subalgebra of polynomials in
column II. Of course (2n — m) can be an odd number and there is no way of defining
this algebra by a matrix condition as in the case of osp(m,m;2n) or sp(2w).
[However, if we use the formula for the number of bosonic and fermionic
generators for the osp-algebra, we get the correct numbers for "osρ(m; 2n — m)".]

This analysis shows explicitly how the breaking of the kinematical invariance
occurs in two steps, by applying the BRS operator Ω, which itself is a generator of
fermionic orthosymplectic transformations. Another interesting point is that we
do not get a cross product o(m, m) x sp(2π) as an intermediate step in this symmetry
breaking (not all fermionic generators are eliminated by requiring BRS invariance,
{Ω, }=0).

3. Extension to General Elements of C°°(Sext)

Clearly the quadratic polynomials as generators of the OSp-action play a central
role in the set of all functions on the extended phase space, but in general one would
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like to extend the preceding discussion to other elements of C°°(Sext). We will be
interested for example in elements of higher order in the ghosts (the BRS operator
for a non-abelian group action contains a term cubic in ghosts) and in expressions
containing general functions C°°(S) [one needs phase space dependent generators
\/2εί

J(q,p)ηιPj if one wants to allow for local redefinitions of the first class
constraints]. Table 1 can readily be extended to general elements F of C°°(Sext):

a) if {Ω, F}=0 then F has the form F = f(q,p)ηh ...η l j, where / i s a G-invariant
function of C°%S), {Φα, /} = 0 ;

b) from this subset the following can be written as F = {Ω, F') for some

FeC°°(S e x t):

where g is G-invariant or

where

(Note the prominent role played by the rfs, the P's have completely disappeared
from our description.)

However, we cannot interpret the super Poisson bracket by an arbitrary
C°°(Sext)-function as an orthosymplectic transformation on Sext. In order to
understand this, compare the present situation with the case of a symplectic 2n-
dimensional manifold S. Here the algebra of inhomogeneous quadratic poly-
nomials is a maximal subalgebra of the space of all polynomials under the Poisson
bracket (a fact that would be expected to be of importance in any quantization), i.e.
if we add a single cubic polynomial to this subalgebra, we generate the whole
algebra of polynomials.

Nevertheless any function can be regarded as a generator of symplectic
transformations on S, since we can use the symplectic form on S to associate a
Hamiltonian vector field with any element of CCO(S).

Similarly, the inhomogeneous quadratic polynomials on L*(G)®L(G) form a
maximal subalgebra of Λ(L*(G)®L(G)\ but because of the superalgebra character
of Λ(L*(G)®L(G)) (this is not simply an orthogonal algebra!) it is not clear how to
give a similar geometric meaning to the action by the super Poisson bracket of a
general element of C°°(Sext), in general this will definitely not be an orthosymplectic
transformation.

4. Geometric Interpretation of the Action of Ω

We have seen how Ω operates on functions, but we would like to give its action a
more explicit geometric meaning. Suppose we start from a (2n + 2m)-dimensional
extended flat phase space Se x t of the form described above, i.e. one which is the
trivial product of R2n with a 2m-dimensional Grassmannian vector space V. We
now observe that the choice of an (abelian) BRS operator corresponds to selecting
a 2ft-dimensional sub-supermanifold Sext>c of <Sext: take for example Ω = paη

a, then
Sext c defined by pa = 0, ηa = 0, α = l,...,m, is associated with it as a constraint
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manifold in the sense that the condition {Ω, G}=0 eliminates all orthosymplectic
generators whose associated vector fields have components along the directions
d/dη", d/dpa perpendicular to SexUc:

/

d/dηa, d/dpa

5ex( c /

S e x tFig. 3

All other generators (forming an "osp(m;2rc-m)"-algebra) generate transfor-
mations of SexUC into itself and hence correspond to observables (modulo gauge
transformations) of the constrained system (R2n, {pα})

Another observation is that ghosts and antighosts enter the mathematical
description of Sext completely symmetrically. The situation becomes asymmetric
only when we start operating with the BRS generator Ω = η*pa. In fact we could
have chosen as the BRS generator for the constrained system (R2n, {pa}) any
function of the form Ω = paχa, where {χα}, α = l,...,m, denotes a subset of m
mutually anticommuting elements of {ί/α,Pα}, {χa>χβ}=09

 e g something like an
anti-BRS operator Ωf = paP(X.

These different BRS operators correspond to different choices of submanifold
Sextf c in Sext, but they lead to exactly the same results for the physical subspace, only
the intermediate step ("osp(m;2rc-m)") looks different.

Hence we have a whole family F of BRS charges that can be used for the
description of a particular constrained system. However, elements of F do not in
general commute, and to get a closing algebra we have to add bosonic generators
(in our case the m generators pα

2, α = l5 ...,m).
Of course there are also choices for Ω which correspond to physically different

situations, for example Ω = q<xηa describes a constrained system (R2n, {q*}\ where
Sext>c is defined by qa = 0, ηa = 0. The transformations mediating between different
choices of SexUa and hence of BRS generators, are given by bosonic orthosymplec-
tic transformations. However, none of these O(m,m)-transformations (which
include the ones generating changes of the first class constraints) changes physical
results, although they may not map SexUc into itself. Only Sp(2n)-transformations
perpendicular to Sext>c can lead to different physical situations.

The picture we find here is really that of an extended constrained system (R2n

x F 2 m , {pa; χa})9 where we have replaced the original phase space R2n by the
cartesian product R2n x V2m with a 2m-dimensional (Grassmannian) vector space
V, and at the same time doubled the number of first-class constraints by adding m
(Grassmannian) constraints χa = 0.

V. Conclusions

We have learned that when dealing with a first class constrained system (S, {Φa}\ it
is neither profitable to think of it in purely symplectic terms (emphasis on Sp(2w)),
nor to look just at its principal bundle structure G^S^S/G (emphasis on G). The
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BRS description combines these two structures in an elegant way by introducing a
set of odd ghost variables.

There is a well-known way of describing the classical observables of such a
theory - usually characterized as being the weakly invariant functions on S - in a
cohomological language, as zeroth cohomology group H°D of the BRS complex.

We have shown that in a global geometric setting one could view them as a
particular subalgebra of the functions C™(Sext), where Sext is a supermanifold, a
vector bundle over S with fibres L*(G)@L(G). The super Poisson bracket for odd
functions from C°°(Sext) has its origin in the duality between L(G) and L*(G). Since
the bundle Sext has no global twists, the algebraic description in terms of rings of
functions is valid globally; however, the idea of considering the orthosymplectic
group as a natural invariance group suggested itself when we were looking at the
description of the system in terms of fibre bundles. In turn we were able to identify
osp(m, m; 2ή) as a subalgebra of the super Poisson algebra C°°(Sext) under the super
Poisson bracket.

The final picture is as follows: operating with a single BRS operator is
mathematically equivalent to starting with a system that is invariant under the
action of the orthosymplectic group. We have seen explicitly how the reduction of
the extended (2n + 2m)-dimensional phase space 5 e x t to the physical phase space of
dimension (2n — 2m) takes place, and hence in what sense the ghosts constitute
negative degrees of freedom (unfortunately it is not as easy as putting a minus
instead of a plus sign somewhere in the equations!). Attaching two types of fibres,
L*(G) and L(G\ to S accounts for the symmetry of changing the first class
constraints and staying at the same time within a formalism that still looks
symplectic.

This introduces additional unphysical degrees of freedom into the theory,
which is reflected in the fact that also the new kinematical invariance group,
OSp(m,m; 2n\ is bigger than before, in fact, going back to the table of quadratic
polynomials, all terms that do not appear in the last column correspond either to
unphysical or to gauge symmetries of the system. We can choose a BRS operator Ω
from a whole family of physically equivalent BRS charges to reduce the system
back to the physical degrees of freedom, where different choices of Ω correspond to
different choices of constraint supermanifolds SextfCCSeχt

For the general, non-abelian case, {Ω,F}=0 can be interpreted as an
equivariance condition for cross sections of an associated bundle, and here also
orthogonal transformations among the ghosts and antighosts will obviously lead
to physically equivalent theories.

For our simple example Sext = R2n x(L*(G)(&L(G)), of course the ghosts
decouple completely, and we could do the whole analysis without ever mentioning
odd variables, just substituting the conditions

a) {Ω, } = 0 by {pα, } = 0 (Poisson brackets on S), α = l , . . . , m , and
b) /={Ω,/ ' } by / = p α x (function on S),

and hence recover Dirac's description in terms of weakly invariant functions.
The advantage of the BRS description here is that we have built the symmetry

of changing constraints into the theory and thus have a richer symmetry structure.
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This ends the analysis of our model with a flat phase space S and abelian
constraints pa. Although this is a special example of a constrained system, we
expect that a similar picture will emerge for more complicated cases. Usually one
works in a local framework anyway, that is a sort of tangent space approximation
(effectively ignoring the fact that the phase space may be non-flat), where one can
make use of the possibility of transforming the first class constraints locally into
pure momenta (hence our results would apply). For the general issue of
abelianization of gauge theory the reader is referred to [VIL].

Of course major problems remain to be solved, the most interesting being the
extension of the discussion to a non-abelian group G (the case for which the
method was originally invented), where the usefulness of the BRS formalism
should become apparent. Finite-dimensional models for this case typically have
non-flat phase spaces, and as a consequence functions describing the constraint
surface are only defined locally. What is the significance of the orthosymplectic
group for this more general case? It will be interesting to see whether the BRS
approach allows us to describe a larger class of constrained systems, including
cases which cannot be tackled by standard methods. This will also have
consequences for the quantization of such systems.
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