
Communications in
Commun. Math. Phys. 119, 403-429 (1988) MatnΘITiatlCal

Physics
© Springer-Verlag 1988

Stochastic Schrδdinger Operators and Jacobi
Matrices on the Strip

S. Kotani1 and B. Simon2*
1 Department of Mathematics, University of Tokyo, Tokyo, Japan
2 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA

91125

Abstract. We discuss stochastic Schrδdinger operators and Jacobi matrices
with wave functions, taking values in Cι so there are 21 Lyaponov exponents
7i ^ ••• ̂ 7 i ^ 0 ^ y z + 1 ^ ••• ̂ y 2 ; = — yi Our results include the fact that if
yx = 0 on a set positive measure, then V is deterministic and one that says that
{£|exactly 2j y's are zero} is the essential support of the a.c. spectrum of
multiplicity 2j.

1. Introduction

This paper discusses stochastic Schrδdinger operators (see [4,20,7] for background)
on U, that is

dx2

on L2(U, dx), and its discrete analog:

(hωu)(n) = u(n + 1) + u(n - 1) + Vω(n)u(n) (1.2)

on /2(Z), where Vω is a stochastic process. Several years ago, one of us (SK) [10]
developed a set of ideas relating m-functions, the Lyaponov exponent and absolutely
continuous spectrum for (1.1), and subsequently, the other of us (B.S.) [19] extended
the ideas of [10] to equations of the form (1.2). Among the results were
(y = Lyaponov exponent):

(a0) {E\y(E) = 0} = A is the essential support of dμ™c.
(b0) If A containts an open interval, /, then σ(Hω)\I is purely absolutely

continuous
(c0) If IA\ > 0 (| | = Lebesgue measure), then Vω is deterministic.
Our goal here is to discuss these results for operators on strips. The basic

operator (1.2) on a strip is defined by considering a connected set Scz/ ' ' " 1

Research partially supported by USNSF under grant DMS-8416049



404 S. Kotani and B. Simon

(connected means under the notion of joining nearest neighbors). One then
considers on /2(Z x S):

(hωu){*)= Σ u(β)+Vω(oc)u(oi) (1.3)
|j3-α| = l
βelxS

with αeZ x S c Zv. Here Vω is a process ergodic under the one-dimensional group
of translations.

We will actually consider an extension of this class which is more natural for
the methods we will use, but as we will explain, there is a price paid for generality.
Explicitly, we still study operators of the form (1.1) or (1.2), but now the operators
act on L2(U;Cι) and /2(Z;C'), i.e., vector functions u(x) (respectively u{n)) taking
values in Cι. Vω(x) (respectively Vω(n)) is now an / x / matrix and Vωu means
applying the matrix to the vector. We suppose that V is real and symmetric. For
earlier studies of stochastic Jacobi matrices on the strip, see [22,23].

The operator (1.3) is of this form, where #(S) = I and V has Vω(n9 α±) as diagonal
elements and non-random off-diagonal elements (each 0 or 1).

The generalized Schrodinger operators have a 21 x 21 transfer matrix rather
than the more usual 2 x 2 matrix, and so 2/ Lyaponov exponents which we label

Because of the constancy of the Wronskian, y2l+ x _j = — γj9 so yι g; 0 ^ yι+ x. We
will prove:

(a) Sj= {EI exactly 2j y's are 0} is the essential support of dE^J, the a.c.
spectrum of multiplicity exactly 2j. There is no a.c. spectrum of odd multiplicity.

(b) If St contains an open interval /, the spectrum is purely a.c. on /.
(c) If \St\ > 0 (i.e., if there is a set of measure zero on which yx vanishes), then

V is deterministic.
In some ways, (c) is unsatisfactory. It asserts that if V is non-deterministic, then

yί > 0 , but it does not assert anything about y2> ••>?/• O n e cannot hope to do
better because our hypotheses include

0 ' Kω i ί(i

for which the problem decouples into / separate problems. If / — 1 F's are constant
but the /th is non-deterministic, then V is non-deterministic, but for suitable
E,y2 = '" =7ι = 0 Clearly, to go beyond (c), one needs some kind of hypothesis
that all components of V are coupled together. An indication that under such a
hypothesis non-determinancy implies y1,..., yι > 0 is the fact that, in the case where
the VJs are iid's with a suitable coupling hypothesis (e.g., (1.3) with the V(oc) iid,
see [8]), Furstenberg's theorem implies that all y's are non-zero.

In Sect. 2, we introduce the strip analogs of the Jost solutions and the Weyl
m-functions, and in Sect. 3, we describe the spectral measures. Section 4 discusses
the inverse problem for the strip. In these sections, which mirror well-known theory
for the usual / = 1 case, we present only one of the continuum and discrete cases
in detail, and the other one briefly.

Section 5 extends the Pastur-Ishii [13,9] theorem to the strip. Section 6 presents
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the basic bounds on the m-function, and Sect. 7 proves a, b, c. The three sections
are the main ones of this paper. In an appendix, we prove the Thouless formula
for the strip case of (1.2).

One might reasonably ask why it took five years from [10,19] to extend the
proofs of these results for the strip. Each of us has worked on this problem during
that period, so it appears that the problem must be difficult. In a real sense, the
difficulty is that the m-function becomes a non-commutative m-matrix. Thus, simple
results like (in the discrete case)

m(Tn ~ι ω) m(ω) = exp *Σ lnm(Tjω)
U=o J

' exp(n J In m(ω)dμ(ω))

fail. Of course, the result is true for detm(ω), and in some sense, we have found
the right combinations of det and Tr to push the theory through. In retrospect,
with these appropriate functions, the theory is not so difficult.

To avoid unessential technical difficulties, we suppose throughout that our
potentials are bounded. It should not be hard to extend this to suitable unbounded
potentials with the standard hypotheses. Thus, we suppose that Tx (respectively
Tn) is an ergodic group of operators on a measure space Ω indexed by XEU
(respectively neZ), and that F:ί2->Z x / matrices is bounded and measurable, with
values in the real symmetric matrices, and we let Vω(x) = F(Txω).

2. Jost Solutions and ///-Functions for the Strip

The results of this section are deterministic, i.e., hold for each operator of the form

H=—fϊ+V(x) (2.1)
ax

with V(x) a bounded / x / real symmetric matrix function on R, and H acts on
L2(U; Cι, dx\ /-component L2 functions on U. At the end, we will indicate what can
be similarly proven for the discrete case.

C+ will denote {zeC|Imz>0}. For £ e C + , define J + (H,E) = {f functions
00

locally in D( —d2/dx2)\Hf = Ef as a pointwise statement; j \f(x)\2dx < oo}.
o

Theorem 2.1. (a) J+ has dimension I.
(b) /εJ + withfφ0 implies that f(x) φθφ f'(x) for all x.
(c) For each X,/H>/(X) is a bijection of J + and C\ and similarly for f Ή> f (x).

Proof (a) Consider the operator A = H \C™(0, oo) as a symmetric operator
on L2(0, oo). Since H is formally self-adjoint, J+ is precisely Ker(^4* — £),
whose dimension is the deficiency index of A*. Since V is bounded, if Ao =
-d2/dx2\C£(0,oo), then

dim(Kerμ* - £)) = dim(Kerμ* - E)) = /,

since one can easily write down all solutions if —f" — Ef = 0.
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(b) Let u,υ pointwise solve Hu = Eu,Hv = E'v and let (u,v}x denote the Cι

inner product of u(x) and υ(x). Then

or integrating,

(u',υ)y-(u,v')y-[(u\v}x-<u,υ'yj=(E'-E)]<u,v)xdx. (2.2)
JC

There are two cases of particular interest. First, since V is real, if Hv = Ev, then
Hv = Ev, so this yields constancy of the Wronskian:

Hu = Eu, Hv = Ev => < ΰ\ v }x — < ΰ\ v' }x is constant. (2.3)

Secondly, if ueJ+i then u" = (V — E)ueL2 at infinity, so u' is in L2, and thus
[Iw'pJeL 1, so M'-^O at infinity. Similarly, w->0 at infinity, so taking v = u and
y -• oo in (2.2), we obtain:

00

21m(u,u'}x = 2lmE J (u,u}xdx. (2.4)

Equation (2.4) says that if w or ι/ vanishes at x, then M vanishes on (x, oo) and
so on all of U. This is what was to be proven.

(c) By (b), the map is injective. Since, by (a), d i m J + = dimC', it is a
bijection. D

Corollary 2.2. There is a unique I x / matrix valued function, F + (x,£), obeying

f
Proof. Let eί,...9eι be the canonical Kronecker basis for C'. By the theorem,
there are unique solutions fjt + of — / " + Vf = Ef obeying fjt + (0) = ej and
00

J 1/̂ + \2dx < oo. JP + is then determined by the conditions F+ej = fjf + . •

Because of the bijective condition of Thm. 2.1(c), for each x,F(x,E) is an
invertible matrix.

We define the m-functions by

M + (E) = ~F+(0,E).
dx

This is a matrix determined by b = M +(E)a, given a, is the unique vector in Cι so
that there is a solution ueJ+ with w(0) = a,uf(0) = fc.

Similarly, we define J_ at — oo,F_ and

M _ ( £ ) = - — F _ ( 0 , £ ) .
αx
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If we need to make the V dependence of F and M explicit, we will refer to
F+ (x, £, F) and M + (£, F). We also let (Tx V){y) = V(x + y).

Proposition 2.3. (a) (Im E)"1 Im M + (£) - J F + (x, £)*F + (x, £)dx,

(b) F + (x, F, Ty V)F+ (y, F, F) = F + (x + °j/, F, F),
(c) F + (x,F, V) = M+(E9 TxV)F+ (x,F, F),
(d) ± (d/dx)M± (E9 Tx V) = F(x) - E - Mjjβ/Γ, F)2,

(e) M+ is symmetric, i.e., (Jb,M+a} = (M+b,a}.

Proof, (a) The expectation value of this equality of Hermitian matrices in the
vector a is just (2.4) for u = F+a.

(b) F + (x, £, V)a is just the element, u, in J + with u(0) = a. F + (x — y9E, TyV) a is
just the element of J + with u(y) = a. This, with uniqueness, proves (b).

(c) is just translation invariance and the definition of M.
(d) This Ricatti equation is proven just like the ordinary Ricatti equation by

using(c)to write M+(E,TXV) = Ff

+(x)F+ (x)"1 using (F'1)'= -F^F'+F'1 and
FIF+1={V-E).

(e) Fix a,beCι. Let u(x) = F+(x)b,v(x) = F+(x)a. The Wronskian (ΰ\v)x-
<w,ι/>* is constant. As x-> oo, it goes to zero, so it is zero. But at x = 0,

Since F is invertible, (a) implies that I m M + is strictly positive, and so it and
M+ are invertible.

F+,M+ can obviously be defined also for £eC_ = C + . Clearly, since F is real

symmetric, F±(x, E, F) = F±(x, £, F), so we have that

In addition to the solutions F+ regular at + oo, we will need the solutions Φ, Ψ
with boundary conditions at the origin, i.e., Φ(x, £, F) and Ψ(x, E, V) are I x I
matrices obeying, for any E in C.

Hu = Eu (2.6)

with the boundary conditions

Clearly, for £ e C + u C _ ,

F±(x9E)=Φ{x9E)± Ψ(x,E)M±(E). (2.7)

The 2/ x 21 transfer matrix

r(x, E) Φ(x, E)

is a fundamental matrix for (2.6) in that, if u solves (2.6) with u(0) = a, u'(0) = b, then

U)XΛ=U(X,E)(b\ (2.8)
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As usual, U obeys the equation

U' = (° E~V™)U. (2.9)

Introduce the 2/ x 2/ operator

J L-i oj
Then, the constancy of the Wronskian, (2.3), implies that det U =1 and

U(x,E)tJU(x,E) = J, (2.10a)

which is to say that U(x, E) lies in Sp(2l), the symplectic group.
Since J'1 = -J, (2.10a) says that

(-JIΛ/)C/=O,

so since one-sided finite matrix inverses are two-sided,

U(-JUtJ) = l
or

U(x,E)JU(x,E)t = J. (2.10b)

This will be used in the next section. Because of its property (2.8), U clearly obeys

U(x,E; TyV)U(y,E; V) = U(x + y,E; V) (2.11)

* * *

The theory for the discrete case is described in parallel to the above theory.
J + is defined in the same way, but the Wronskian becomes

<ΰ(n+l) ,φ)>-<ΰ(n) ,φ+l)>,

and (2.4) becomes

2Im<φ),u(n+l)> = 2Im£ £ ||u(n)||2.
j = π + l

F+ is defined by a direct analog of Cor. 2.2, and M± by

M±(E,V)=-F±(±ί,E,V).

The analog of Proposition 2.3 is

Proposition 2.3'. (a) ( I m £ ) - 1 M + ( £ ) = f F%{n,E)F+{n,E),

(b) F + (n,E, Tm V)F+ (m,E, V) = F+(n + m,E, V),
(c) F + (n+l,E,V) = M+(E, TnV)F + (n,E, V),
(d) M ± (£, TnV) = E- V(ή) -M±{E,TnΐXV)-1.
Φ, Ψ obey the boundary conditions

φ(w = 0)=D, Φ(n=l) = 0; Ψ(n = 0) = 0, Ψ(n=\)=^

so (2.7) then becomes

F + (n, E) = Φ(n, E) - Ψ{n, E)M+ (E), (2.12a)
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F_(n,E)=Φ{n,E)+ Ψ(n,E)[E- V(0) + M_(£)]. (2.12b)

U has the definition
(Ψ(n+\) Φ(n+l)

U{nH Ψ(n) Φin)
and now if u solves (2.6) with u(0) = a, u(\) = b, then

u(ή)

An equation like (2.9) continues to hold.

3. Green's Functions

As a preliminary for this section, we need to rewrite (2.10):

Proposition 3.1. (a) Φ(x) Ψ{xf = Ψ(x) Φ{x)\

(b) Φ(x)' Ψ{xf - Ψ'(x)Φ(xy = - D,

(c)
(d)
(e) F
(f) - F _ ( x ) ( M + + M _ ) " 1 F + (x)ί + F + (x)(M + + M . ) " 1 ^ , ^ = D.

Proof, (a) and (b) are two of the 4/ x / matrix relations made by the 2/ x 21 matrix
relation (2.10b).

Given Proposition 2.3(e), which says that M+ = M ± and (2.7), (c) and (d)
then follow immediately, (e) and (f) follow similarly if one notes that

M_(M++M_)-1M+=(MZ1 + M + 1)~1=M+(M++M_y1M^,

and

+ M _ ) " 1 . D

Let H1 denote the operators on L2(0, oo) (respectively L2( - oo, 0)) with Dirichlet
boundary conditions, and let HQ be the analogous operators with V = 0.

Theorem 3.2. IfFe£+ uC_,(// — E)~ι,(H+ — E)"1 have jointly continuous integral
kernels GE(x, y) and G£ (x, y) given by

G£(x,y)=Ψ(x)F+(y)t O^x^y

= F + {x)Ψ{y)t O^y^x.

GE(x,y)=-F_(x)(M++M^)-1F+(y)t x^y

+M_y1F_(y)t y ̂  x,

Proof. We prove the formula for GE; the proof for GE is similar. Call the putative
formula GE. By Proposition 3.1(e) and (f), GE for y fixed is continuous and C 1

away from x = y with

~GE(xy) -^GE(xy) =-1 (3 1)
OX γ = i, + n ^-^ r = υ — Π
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Moreover, since F+ are L2 at ± oo, for any /eCg\

g(x) = SGE(x,y)f(y)dy

is in L2. By (3.1), g obeys

(H-E)g = f.

Since H — Eis invertible, it follows that GE(x,y) is the required integral kernel. D

Proposition 3.3. For Ee£ + ,let k = ̂ JE, the square root with Im fc > 0. Then (with
|| || the norm in Cι):

(a) | |M + ( £ , F ) -
(b) I m M + ( £ , F )
(c) \\GE{x,y;V)-{2iky1eikiχ-yH\\^a, where a = (4\E\lmky11| F|L[1 +

(ImEΓ^IFlU,
(d) \\G£ (x,y;V) + {liky'le^-^ - eίkix+y)m\ ^ 3α,
(e) | |G £ (x , } ; ;F) | | ^

C2 > 0.

Proof, (a) Let F° be F+ for i/ 0, and let F = F+ - F°+. Then

- F" + F F - £ F = - VF%.
It follows that

F= -(H+-E)-ίVF°+9 (3.2)
i.e.,

F+(x,E, V) = eikxK-$G£(x,y; V) V(y)eikydy.

Using Theorem 3.2, if we differentiate and set x to zero, we get

M + (£, V) = ik0 - J F+ (y, E, VJ V(y)eίkydy,
o

so
\\M+(E9V)--iki\\^\\V\U\eiky\\2\\F+\\29 (3.3)

but
/2. (3.4)

By (3.2) and \\(H+ -E)'1 \\ ^ ( I r n E ) " 1 we have that

||F+||2^(Iml^MlΠoolinil2
WVW^HmkΓ112 (3.5)

by (3.4). Equations (3.3)—(3.5) prove (a).
(b) By interchanging the roles of F + and F°+ we get, for any unit vector ζeCι\

so

Since Im E = 2(Im fc) (Re fc), this implies

\\F+ζ\\2

2ϊ:(ImE+\\V\\J-2(ImE)(Rek).
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(b) follows if one uses Proposition 2.3(a) that

(c) Note that

J \\eιklχ-yl(2iky1\\2dx = i\E\-1(lmky1=b. (3.6)
— oo

Since

(H _ Ey' - (Ho - E)-1 = - (Ho - E)-1 V(H0 - E)~'

+ (Ho - E)-1 V(H -E)-1 V(H0 -E)-1

and || {H - E)~x \\ ^ (ImE)~\ we easily obtain

\GE{x,y)-G%{x,y)\^b{l + \\V\\^lmE)-')\\V\\^ = a.

(d) The proof is just like (c), except we must estimate

J || {liky1 [eik(χ-y) - eikix+y)] \\2dx.

We settle for the crude estimate of

\l/2 /oo \1/2Ί2
2 j +ί j unky'e^-^w2)

v 0

and note that the first term is b, while the second is, at most, \b, and then that

(e) The bound on GE is a standard Combes-Thomas estimate (see e.g. [16]).
It implies the bound on F+ by Theorem 3.2 and the invertibility of F _ . •

Remark. Everywhere that (imE)'1 occurs in upper bounds, it can be replaced by
[ d i s t ^ s p e c ί i ί ) ) ] " 1 which, as Re£-> — oo, goes as I ^ Γ 1 .

Next, we need the spectral measures. In the continuum case, we will use the
Herglotz representation theorem, which says that:

Herglotz Representation Theorem. Let F(z) be a matrix valued function on C + with
Im F > 0. Then there is a positive matrix valued measure dH(x) on U and self-adjoint
matrices A, B with B > 0, so that

(b) F(z) = A + Bz +

If moreover,

\F(iy)\ ̂  Cy~θ, 0 < # < l , y > 0 ,
then
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(b') F(z) =

In either case,

{dH[x)

dH(x) = weak-limit — ImF(x + ίε)dx.
εjO 71

For a proof in the scalar case, see [1]. The matrix extension follows by taking
expectation values.

It will be useful to define 21 x 21 matrices M(E) for EeC+ by

M{E) =

V K M ^ ^ M ^ ί M ^ ^ M^E))-1 M (E)(M(E) M(E)ΓιM^E) J

Lemma 3.4. Im M(E) > 0 for EeC +.

Proof Let φeQ? with φ ^ 0 and j*φ(x)ώc = 1, and let φfc(x) = fe"1^^"^). Let

'J GE(x,y)φk(x)φk(y)dxdy $ GE(x,y)φk(x)φk(y)dxdy\

κ] GE(x,y)φk(x)φk(y)dxdy ] GE(x,y)φk{x)φk(y)dxdyJ'

It is obvious that I m M k ( £ ) > 0 since lm(H -E)'1 > 0. But, by Theorem 3.2,
Im Mk(E) -> Im M{E) as k -> 0. D

Lemma 3.5. (a) For x^y, we have that

GE(x, y) = (Φ(x, E), Ψ(x, E))M(E)(Φ(y, E) Ψ(y9 E)f

- \ Φ(x, E) Ψ(y, Ef - \ Φ(x, E) Φ(y, Ef.

(b) For x ^ y ^ 0,

G + (x, 3;) = ψ(χ9 E)M + (E) Ψ(y, Ef + Φ(x, E) Ψ(y, Ef.

Proof. Follows immediately from Theorem 3.2 and (2.7). D

Theorem 3.6. There exist measures dΣ+(x) and dΣ(x) which are respectively I x /
matrix valued, and 21 x 2/ matrix valued so that

, Λ cΨ(x,E)dΣ+(E)Ψ(x,Ef
(a) J < 00,

f (Φ(x,£), Ψ(x,E))dΣ(E)(Φ(x,E), Ψ{x,E)f

J . +\E\a °°'
for CL>\ and all x.

(b) G^(x,y) = l —i- /or x ^ y.

<\c( \ Γ Φ f e £ ) , y(x,£))dX(£)(Φ(y>£)> JP^E)) '
(c) Gz(x,j;) = J — — ^ — /or x ^ y.

(d) dX+(£) = i -
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dΣ(E) = -l im Im M{E)dE.

Proof. By the Herglotz representation theorem and Lemma 3.4, dΣ, dΣ+ as defined
in (d) exist. Since Φ and Ψ are holomorphic, the singularities of G are the same
as those of M. By Lemma 3.5, GE(x,x) (respectively GE (x,x)) have imaginary
boundary values given by the measures in part (d), so by the bounds in
Proposition 3.3, (a) holds and (b), (c) hold for x = y. Each of the four combinations

GE(x, x) + GE(y, y) + ωGE(x, y) -f ώGE(y, x)

is Herglotz for ω = + 1, ± i, so these obey Herglotz representation theorems which
yield the required formula for G, G + . •

One can further analyze dΣ and dΣ+ to develop eigenfunction expansions (see
e.g. [2]); all we need is the following theorem, which holds in any dimension
(see e.g. [18]):

Theorem 3.7. Let E{^(H) be the spectral projections of spectral multiplicity n
(so that Y^E^H) = D and HE^}(H) has uniform multiplicity ή). Let p be any strictly

n

positive trace class operator, and let dpn(λ) = tv(pE{n)(dλ)). Then, for a.e. E with
respect to dpn(λ)

{φ\Hφ = Eφ;\φ(x)\ ^ C(l + | x | ) 1 + ε , \φ'(x)\ ^ C(ί + | x | ) 1 + ε }

has dimension at least n.

Remark. In general dimension with general potential, one only has an L2 bound
on φ\ but since V is bounded, we have L00 bounds on φ and Δφ which yields L00

bounds on Vφ in 1-dimension.

The discrete case can be analyzed in the exact same way; in fact, some significant
shortcuts are available:

(i) The formula for GE has (M+ + M_ + E - 7(0))" x in place of (M + + M _ ) " K
Similarly, a change is needed in the definition of M. Everywhere that M_ appears,
it must be replaced by [M_(£) + £—7(0)] . These changes are due to (2.12)
replacing (2.7). The asymmetry between M± comes from the fact that

) GE(l,\)

with 1 and not — 1.
(ii) The analog of Proposition 3.3 is simpler because boundedness of the matrix

kernel is implied by boundedness of the operator, so we need only expand to
second rather than third order, e.g.

is immediate. Moreover, M+ is the expectation value of (H+ — E)~ι in the
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vector δί and H+ is bounded, so the analog of (a) is easy by (H+ — E ) " 1 =

-E~ι + Σ (-E)n+1(H + )n which implies
n=l

(iii) We need not appeal to the Herglotz representation theorem to define dΣ
and dΣ+. Rather, we can use

^±M (3.7)
+ ( ) ( M ) % ) | ,

W — ΓJ

where μ+ is the measure guaranteed by the spectral theorem, so that

$yfdμ + (w) = (δl9(H + )nδi). (3.8)

Here μ+ is an / x / matrix valued measure and (3.8) is shorthand for

for all a,beCι.

4. The Inverse Problem

In this section, we discuss

Theorem 4.1. In the continuum case, M+(E) determines {V(x)}x>0 in the sense that
if V{1) and V{2) are two bounded potentials and M(

+

1} - Mψ, then V{1){x) = V{2)(x)
for a.e. x ^ 0.

Theorem 4.2. In the discrete case, M + (E) determines {V(n)}n^ι in the sense that if
K(1) and V{2) are two bounded potentials and M(

+

1} = Mψ, then Vω(n) = V(2)(n) for
alln^l.

Actually, we need the fact that V is a measurable function of M + as follows
from the actual proof. We'll give the proof of Theorem 4.2 which is a straightforward
extension of the I = 1 case (see e.g. [19]). In the same way, one can extend either
the Marchenko [11] or GeΓfand-Levitan (e.g. [12]) method to the C*-valued
continuum case.

Proof of Theorem 4.2. By (3.7) and the fact that M+ has bounded support for E
near infinity:

M+(E)= f ( - £ ) - ( w +

n = 0

so that, by (3.8), M+(E) determines

It is easy to see inductively that

δn®V{n)a



Stochastic Schrδdinger Operators and Jacobi Matrices 415

where fnJ(V) is a C'-valued function of 7(1),..., V(n - 1) with

(b, V(n)a) = {δ1®b,{H + )2n-ιδ1®a) + function of K(l),..., V(n- 1),

which means that (δί9(H + )nδ1) inductively determine V(j). Π

5. The Pastur-Ishii Theorem for the Strip

Before proceeding with the study of random Schrόdinger operators on strips, we
recall the notion of Lyaponov exponents and the Osceledec multiplicative ergodic
theorem.

Suppose we are given a family oϊmxm invertible (complex) matrices {A(x)9 xeU}.
The numbers

yj = lim -logμj(A(x)l 7 = 1,2,...,m (5.1)
χ-» 00 X

if the limits exist, are called the Lyaponov exponents, where, for a matrix A9μj(A)
denotes the eigenvalues of a non-negative definite matrix (A* A)112, ordered so
μ1(A)^μ2(A)^: ... ^ μ m ( A ) ^ 0 . If all these limits exist, we say that {^1(X):XGK}
has Lyaponov behavior (at +00) . Since μ1(A)μ2(A)...μj(A)= \\ΛjA\\, the limits
(5.1) exist if and only if the following limit exists:

H m - l o g | | y l M ( x ) | | = y 1 + . . .+y J . , ; = l,2,.. .,m, (5.2)
χ-+ 00 X

and the limits are related as indicated.

Lemma 5.1. (Osceledec-Ruelle [17]) Let {A(x):xeU} be a family of m x m
matrices obeying

l im-log] sup \\A{δ + ή)A{n)-1\\ i = l im-log] sup \\A(n)A(n + δ)'11| i (5.3)

= 0.

Suppose {^(x):xelR} has Lyaponov behavior at + oo. Then there exist subspaces
{0} = Vo c V, a ... c F m _ ! c Vm = Cm so that

dim Vj = j , j = 0,ί,2,...,m, (5.4)

-! for some j = ί,2,...,m, then

l i l g | | ( M | = y m + 1 _ , , (5.5)
χ~> oo X

Now we consider random matrices. Let (Ω9^9μ) be a probability space
admitting a μ-preserving one-parameter group of transformations {ΓX:XG(R} on
Ω. We always assume the ergodicity of {Tx:xeM,μ}. If a measurable map
A:U xΩ^Cn®Cn satisfies

y, ω) = >l(x, Γ ω ) i ( j ; , ω)

= 1 ( 5 > 6 )
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then we call it a multiplicative cocycle with respect to {Tx}. It is easy to see that
if A is a multiplicative cocycle, so is A( — x,ω) with respect to {T_x}. Moreover,
A(x,ω) is invertible and A(x,ω)~1 = A( — x, Txω\ and hence {A(x,ω)*}~1 is also
a multiplicative cocycle with respect to {Tx}.

Lemma 5.2. Suppose a multiplicative cocycle A satisfies

E log! sup M(c5,ω)||l + logj sup M ^ ω ) " 1 1 | 11 < oo. (5.7)
L t J l JJ

Then, for a.e. ωeΩwith respect to μ,{A(x, ω)} has Lyaponoυ behavior at ± oo, and
the condition (5.3) holds. Moreover, the Lyaponov exponents are independent of ω.
Let yf (7 = 1,2,..., m) be the Lyaponov exponents at ± oo respectively. Then

7Ϊ = -ym-j+u j=l,29...9m. (5.8)

Proof The proof can be done by applying the subadditive ergodic theorem to
g(x9ω) = log || ΛjA(x,ω) ||. Equation (5.7) assures Έ\g(x,ω)| ^ ex and the condition
(5.3). The independence of the Lyaponov exponents comes from the ergodicity.
The identity (5.8) is shown as

y ί + - + ? / = Mm -

= lim -

= lim
x-* — oo X

— ~Jm ~7m-l~"'~~ 7m -j+ 1

for j = 1,2,..., m, which implies (5.8). The interchange of E and lim is guaranteed
by the subadditive ergodic theorem. D

Now we apply these ideas to a random Schrodinger operator. Let V
be a measurable function from ω to the Z x Z real symmetric matrices. By
Proposition 2.3(b), F+ are multiplicative cocycles with m = l, and by (2.11), U is a
cocycle with m = 21. Therefore, applying Lemma 5.2, U, F+ and F_ have Lyaponov
exponents at + oo which we denote at energy E by:

γ1{E)^γ2(E)^...'Zγ2l(E), - y z

+ (£) =• - y+.^E) ^ ••• ̂  - γ+(E),

a n d

yt are defined for all E yf only for £ with I m £ > 0 . Since F±(',E,ω)eL2(U±;Cι\
we see

yf(E)^09 7 = 1,2,...,/, £ E C \ R . (5.9)

Proposition 3.3(e) shows that yf are strictly positive on
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Lemma 5.3.

yj(E)=-yϊι[J+1(E), j = l + \,.'..,2l ( 5 ' 1 0 )

γj(E)=-y2l.J+1(E) j= 1,2,...,2/

yf(E) = yj{E) ; = 1 , 2 , . . . , / on C\R. l ' '

Proof. To see (5.10), we have only to observe

/ IT"' ι v V Γt~ϊ\ T?r I Y T< fiΛi
~ L . . I Λ. ^. \Λι, J-J, \λjj J. \ ^5 -*-') yfJJ

\F+(x,E,ω) F_(x,E,ω)

also satisfies (2.9) except the initial condition, and Ό(0) is non-singular owing to
the facts that I m M ± ( £ ) > 0 on C\R, and that for all a,b,F+aΦF_a, since
otherwise H would have an L2 solution. Equation (5.11) follows from U~γ =
J-'U'J. D

We are interested in this section in some results where EeU where y± are not
defined. We are heading towards

Theorem 5.4. Let Sj = {EeU\ exactly 2j y's vanish}. Then the multiplicity of the a.c.
spectrum on Sj is at most 2j.

Eventually we will show that Sj is precisely the essential support of the a.c.
spectrum of multiplicity 2j. Theorem 5.4 is the strip analog of the Pastur [13]-Ishii
[9] theorem. It follows from Pastur's argument (see e.g. p. 180 of [7]) and

Lemma 5.5. Suppose that EeU is fixed and in Sj. Let ω be such that Hω has Lyaponov
behavior with the typical Lyaponov exponents (i.e., those that hold for a.e. ω). Then
any subspace of {φ(x)\Hωφ = Eφ,φφL2 and φ polynomially bdd} has dimension at
most 2j.

Proof Clearly, it suffices to prove that

dim P = 2j + dim L, (5.12)

where

P = {φ\Hφ = Eφ,φ polynomially bdd},

L={φ\Hφ = Eφ,φeL2}.

The usual case / = 1 is not typical in that simple dimension counting works
there, but consider the case 1 = 2, j =1. Then there are 3 solutions which might be
bounded at ± oo, one decaying and two with 0 rate of exponential growth. Thus,
a priori there might be a solution decaying at + oo linked to a bounded solution
at — oo, one decaying at — oo linked to a bounded solution at + oo and one
bounded at both ends. In that case, one would have dim P = 3, dim L = 0 and (5.12)
would be violated. It is this possibility that is eliminated by the Lagrangian subspace
argument below.

Since V is real, we will only look at real valued solutions and real dimensions.
Let dim L = d and dim P = p. For φ, φ solving Hφ = Eφ, let
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Since φ is determined by (φ'(0),φ(0)), and

J--[? - ί
is non-singular, ω is a non-degenerate antisymmetric form. In particular, if A, B
are two subspaces with

φsA, ψeB^>ω(φ, ψ) = 0,
then

dim ,4 +dim £ ^ 2 / (5.13)

(since JA is orthogonal to B).
Let

G+ = {φ\φ decays exponentially at ± oo}.

By the Osceledec theorem and the fact that 2j of the 2/ exponents are 0,

dimG+ = l—j.

Clearly G + n G _ c=L, so

dim(G+ + G_) ^ 21 - 2j - d. (5.14)

But if φeP and ψeG±, then ω(φ,φ) = 0by evaluating the Wronskian in the limit
± oo, so, by (5.13),

p + dim(G+ + G_)^2ί . (5.15)

Equations (5.14) and (5.15) prove (5.12). •

6. Bounds on Expectation Values of M

In this section, we will prove various bounds on expectation values of ImM,
especially analogs of the key inequality of [10,19] (actually an equality in the
continuum case):

We will provide proofs in both the continuum and discrete cases, with parallel
theorems indicated by Theorem 6.xC and Theorem 6.xD for the continuum and
discrete cases.

Lemma 6.1. (a) (Craig-Simon [5]) For j= l,...,/,y 1(E)+- +yj(E) is subhar-
monίc on C.

(b) For almost all EoeR,

lim yj(E0 + iε) = γj(E0)9 j = 1,...,/.

Remark. The results are true for j= 1,...,2/, but since y2ι-j+i = — ?j9 there is
nothing new in the results for j = I + 1,..., 2/.

Proof, (a) ΛjU(x,E) is analytic in £, so E(log \\ΛjU\\) = Gj{xfE) subharmonic.
Since x~1Gj(E,x) converges to yγ + ••• +yj9 this function is subharmonic.
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(b) Obviously we need only show

~+yj)(EQ)9 j = l , . . . , / .

But any subharmonic function on C has non-tangential continuity at a.e. points
on U (see e.g. [14], p. 141; any point of [R is a regular point for two-dimensional
Brownian motion). D

For £ E C \ R , define

+ M_)), (6.1c)
and

y(E) = ίyj(E) = tyΐ(E) = ί:
1 1 1

Theorem 6.2C. (a) w(E) = E(tr(M + )) = E(tr(M_)),

(b) w/(£) = E(tr(G£(0,0;ω))),
(c) -
(d) ECtrαimM^^ω)- 1 ))] = 2y(E)/lmE

Remark. We do not usually bother to check integrability explicitly. The bounds
in Proposition 3.3 always suffice to prove integrability of objects like M + or
(IrήM + Γ 1 .

Proof, (a) By Proposition 2.3(d), with M±(x) = M±(£, TXV) and ' = d/dx,

(M++M-)' = M2-.-M2

+=M-(M+ +M_)-{M+ +M_)M+, (6.3)

so

— trln(M+ + M_) = tr(M_) - tr(M+). (6.4)
αx

If g(x) = (d/dx)f(Tx V) with / bounded:

Hg) =\im1-]g(x)dx = lim -[/(TnK) - /(T o F)] = 0,
n-+ oo ^ 0 «-» oo ^

so (6.4) implies (a).

(b) Let ' = d/dE and f = d/dx. Proposition 2.3(d) implies:

Mf

+-M'_ = -2-M+M+-M+M+-M_M_-M_M_.

Straightforward but tedious calculation shows that

[ t r [ ( M + + M _ Γ 1 ( M + - M _ ) ] ] / = - 2 t r ( M + + M _ ) ~ 1 - t r ( M + + M _ ) ,

which, given Theorem 3.2, implies (b).

(c) We have that

so

+ ) = (ln|detF+ |y.
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Since

i ln |detF + 1->-?(£),

by Lemma 5.3, we obtain the desired result,
(d) Write

M+=X + iY (6.5)

with X = X*, Y = Y* > 0. Taking imaginary parts of Proposition 2.3(d):

Y'=-lmE-XY-YX, (6.6C)
so

[tr(log Y)]' = tr(Γ 7" 1 ) = - Im£ t r ^ " 1 ) - 2 tr(X)

which, given (c), yields (d). •

Remark. In terms of the integrated density of states,

Thus (b) and (c) provide a proof of the Thouless formula for the continuum,
multicomponent wave functions (see [3] for a statement of the continuum Thouless
formula which needs a subtraction).

In the discrete case, we define

w(E) = Etr(ln(M + ))= Eln(det(M+)). (

As noted at the end of Sect. 3 (using the remark that (Im E)~ι can be replaced by
dist(£,spec(H)) in bounds), as Re£-> — oo, imE = c>0, ||M+ + E'1 D || ->0, so
det(M + ) - ( - E)~\ and we take the branch of In with Imln(det(M + ))-*0 in this
limit.

We also define

Theorem 6.2D. (a) w{E) = E(trln(M_)),
(b) w'(£) = E(tr(G£(0,0;ω))),
(c) -Rew(£) = y(£),
(d) E([tr(JV±(£,ω))Γ*)^

Proof, (a, b, c) We begin with (c), which follows from

In[det F+(n)~] = nΣ In det M+(T jή).
j=o

Using the Thouless formula (Theorem A.I in the appendix), we see that

Re w(£) = - J In | E - E'\ dk(E') = Re [ - J ln(F - E)dk{E')l
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It follows that

w(£)= -[ln(E'-E)dk + ia

for some real number a. As R e £ - > — oo, Imw(£)->0 while I m [ — In •••]—• — in.
It follows that

w(£) = in - J ln(F - E)dk(E'),
and so

proving (b). Since the same argument holds if we start with M_, (a) holds.
(e) Taking imaginary parts of M + (Tn ω) = V(n) - E _ M + (Tn ~1 ω) ~x, we obtain

l n d e t (
V " lmM+(Tnω)y

where αf = ln|det(jSj)| and

j S ^ M + ίΓ"-1©)*, β2 = M+(Tnω\ j83 =

Since E(α3) = E(α4), and by (c), E ^ ) = E(α2) = - y(£), (e) holds,
(d) follows from (e) as in [19] using

lndet(l + Q = tr(ln(l + C)),
and

x/(l+ix). D

Corollary 6.3. Let

N±=ImM±,

β = (M++M_),

in the continuum case, and

N±=lmM±+^ImE

in the discrete case. Then

Proof. By Theorem 6.2(b) and (c) and formulae in Sect. 3 for G:

(6.6D)
Thus

ImE

Since EttrN; 1 ) ^ 2y(E)/lm E by Theorem 6.3(d), we have the desired result. •
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In the / = 1 case, we used

While this is false in the present case due to non-commutativity, the following
lemma suffices for our proof in the next section.

Lemma 6.4. Let Y+ and Y_ > 0 and X = X* be I x I matrices. Then

and it equals zero if and only if X = 0 and 7+ = 7_

Proof. By straightforward calculations:

and, for 7 = Y+ + 7_ > 0,

Each of these terms is non-negative and the first is zero if and only if 7 +1 = 7 1 ι ,
and the second is zero if and only if X = 0. •

The inequalities so far suffice to handle the results at energies where all jj are
zero. To get the results when only some of the y's are zero, we need

Theorem 6.5. Let ImE>0. Let μf(E,ω) denote the eigenvalue of lmM±(E,ω)
ordered by μf(E9ω)^ ••• ^ μr(£,ω) > 0. Then, on C + forj=l,...J:

k=ιμ(hω)J

m ί/ie continuum case, and

m ί/zβ discrete case.

Proof. We begin with the discrete case:
Write, for £ fixed,

and

By multiplying the analog of (6.6D) for M_ by F _(ή) on the right and
on the right, and using

F _ ( n + 1 ) = - M _ ( n + l ) ~ 1 F _ ( n ) ,
we obtain

+ 1)* G(n -f 1) = G*(n)G*(rc) + Im EF_{n)*F_(n)

= G*(n)
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Using Λι~j of this equation, we obtain

Aι~j(G*G(n + 1)) ̂  A1

But

423

Λι~J I m £

W)
π

Λι-j(G*G(n)).

imE

It follows that

1 ,_• 1
— In ||yi J(G*G(n+1))|| g - ln
n n

Since F_ = 7 " 1 / 2 G , we have

ί 1 "
In

ImE

μΓ+i-ΛE,Tmω)J'

F_(rc+l) | | 2 . (6.7)

Since Y is bounded above and below, we obtain, by taking n-> oo:

2(71 + + 7 ί - , ) ^ ί Σ E ( l n ( l
* = i \ \

Since Theorem 6.2D(e) can be rewritten

2(y1 + . . . + y I ) = J] E( In

we obtain

since

-k(E9ω)JJ9

x , / ImϋΛ ImE
j - , In 1 + U

yielding the result for the discrete case.
The continuum case is similar. From (6.6C), we obtain

(Ft YF_)'=F*_( t Y(-X-iY)F_

Define, for ,4:CZ->C', a map

dΛι-J(A):Λι'j(Cι)^Λι'j(Cι)

by

(so dA(A) = (d/dt)A(etA)\t=0). Then with G - ^ΫF_, we find

^ImE\\dΛι-j(γ-1)\\Λι-j(G*G)9
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SO

ImE || dλι~j(Y~x(y)) \\ dy )Λj(G*G(0)).

/

Thus, taking logs, dividing by x and taking x to infinity, and using (6.7),

2 ( y i ( E ) + . » + % _ , ( £ ) ) ^E{

Theorem 6.2C(d) says that

k=l

yielding the required result. D

We will need another version of Theorem 6.5 which is not strictly weaker but
is often weaker as yk(E0 + iε) is normally monotone decreasing in ε.

Theorem 6.6. Fix Eo real with l i m y ^ o + iε) = yk(E0) for all k. The inequalities in

j

Theorem 6.5 remain true if E = Eo + iε and £ yi + i-iAF) *s replaced by
fe=l

j i

fc=l k=j+l

Proof We describe the continuum case. Since

+ fe)f dΣ(E')

we see that Y(E0 + iε)/ε is monotone decreasing as ε increases. Thus, μk(E0 + ίε)/ε
is monotone decreasing, and so for ε > δ > 0,

μk(E0 + iε) μk(E0 + ίδ)'

Thus

\lΊ}(E ί)) {Ά^^ΪE^J^)) ~

By Theorem 6.2C(d),

and the proof of Theorem 6.5 shows that

E
iSn \
10, ω)

Σ u+(F+iSn\) Σ
k=j+i μkK&o + 10, ω) J k=j+i
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SO

Σ +ίw \

2S-1 Σ

Now take δ to zero. D

7. The Main Theorems and Their Proofs

Given the inequalities in the last section, the main theorems have proofs which
are, in essence, the same as the proofs in [10].

Lemma 7.1. Let

fl dy
y(E) = lim y(E + iε); \ - [y(E + iε) - y (£)] - f- (E + iε)

goes to 0 as εJ,0;lim — (£ + iε) exists.

Then | R \ β | = 0.

Proof, w' is Herglotz, so by the standard theory of such functions, dy/dε(E0 + iε)
has a limit for almost all £oelR. Moreover, since w is Herglotz and y is subharmonic,
y(E0 + iε)-»y(£0) for almost all Eo. For £ 0 in both sets, the desired results are
valid. D

Theorem 7.2. For a stochastic Schrδdinger operator or Jacobi matrix with Cι-valued
wave functions, let

Sj = {EeU\exactly 2j y's are 0}.
Then

(a) Sj is the essential support of a.c. spectrum of multiplicity 2j.
(b) There is no odd multiplicity a.c. spectrum.

Proof. Since y2i-j+i = ~Ίp the S/s cover U so (a) implies (b). By Theorem 5.4,
the a.c. spectral multiplicity on Sj is at most 2y, so if we show it is at least 2j\ we
have the result if we note again that the S/s cover U.

By the general theory of the Stieltjes transform,

dΣ+c{E) = - I m M±(E + iO)dE,

where M+(E + iO) exists for a.e. E and ω. For such an E and ω,μ^(£ + iε,ω)->
μ^(£ + iθ~ω). By Fubini's theorem, Qx = {£|a.e. ω,M ± (£ + iε)-^M±(£ + ΐθ)} has
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full measure. If Eo is also in the set Q of Lemma 7.1, and in Sj, then

Σ
k=l

has a finite limit. Thus, by Theorem 6.6 and Fatou's lemma:

It follows that a.e. EeQnQ1nSj and a.e. ω,μς(E + zΌ,ω) > 0, and thus that
I m M ± ( £ + zΌ) has rank at least j . Thus, dΣ^c\QnQ1nSj has multiplicity at
least j . Since H -(H+ ®H~) has finite rank, H has a.e. multiplicity at least 2]
(since B — C finite rank implies Bac is unitarily equivalent to Ca c by the Kato-
Rosenbljum theorem, see e.g. [15]). •

Theorem 7.3. For a.e. E in St and ω,

M_(E + zO,ω) = - M + (£ + zΌ,ω)*

in ίfte continuum case, and

M_(E + zO,ω) = - (M + (£ + zΌ,ω) + E - 7(0))*

in f/ie discrete case.

Proof. By the argument in the last theorem for a.e. EeSt, I m M + are strictly
positive. If EeQl9 Fatou's lemma, Corollary 6.3 and Lemma 6.4 imply that

where B = M++ M_ (respectively M + + M _ + £ — F(0)) in the continuum
(respectively discrete) case. By Lemma 6.4, it follows that

I m M + = I m M _ ; Re 5 = 0,

which is the required result. D

Theorem 7.4. IfSt contains an open interval, /, then H has purely a.e. spectrum on I.

Proof. By Theorem 7.3, ReB(E + i0) = 0 on /. By the reflection principle for
Herglotz functions, B is analytic through /. Moreover, Im B(E + zΌ) ̂  0 in a complex
neighborhood of /, so by the open mapping theorem, Im B(E + zΌ) > 0 on /. It
follows that — B~ι is analytic on J, and so the Green's function has an analytic
continuation through /, which implies that there is no singular spectrum. •

Theorem 7.5. // | Sι | > 0, then V is deterministic.

Proof. V on {x ^ 0} (respectively {n < 0}) in the continuum (respectively discrete)
case determines M_. By Theorem 7.3, this determines M+ on St (with V(0) in the
discrete case). Since | S z | > 0 , this determines M+ on all of C + by analytic
continuation for Herglotz functions. By Theorem 4.1 (respectively Theorem 4.2),
V is determined on {x = 0} (respectively {n > 0}). •
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Appendix. The Thouless Formula in the Discrete Case

In this appendix, we will prove the Thouless formula for the discrete operator (1.2),
with V matrix-valued. Such a formula for the strip was first proven by Craig-Simon
[6]. We give a proof here for two reasons. First, their statement and proof is not
for the general class of V we consider in this paper. Second, by using the techniques
from this paper, we can give a more transparent proof than [6].

We need the following from the paper itself:
(1) The basic definition of F±, Φ from Sect. 2.
(2) The relation between the Lyaponov exponents for H and the decay

(respectively growth) of F + (Lemma 5.3), in particular, that for imE > 0:

lim n~ίln\detF-{n,E)\=Σ 7j(£)> (A 1 )

lim - In || F + (n, E) || = lim - In || F _ (n, E) || = - y,(E). (A.2)
π-» oo ft n-* — oo ft

(3) For ImE > 0, yt(E) > 0 (Proposition 3.3 and (A.2) above).

Theorem A.I. Let Vω be an I x I real-symmetric matrix-valued bounded ergodic
process, and let hω be given by (1.2). Let y1,...,yιbe the first I Lyaponov exponents,
and let k(E) be the integrated density of states. Then, (the integral is for E'eU):

for all EeC.

Proof By the subharmonicity argument of Craig-Simon [5], we need only prove
the result for Im E Φ 0 and thus only for Im E > 0, so fix Eo with Im Eo > 0.

Since H does not have Eo as eigenvalue, {F+(x)a\aeC1} and {F^(x)a\aeC1}
are disjoint, and so their sum is the entire 21 dimensional family of solutions. Thus,
for I x / matrices A, B:

If Aa = 0 for some a, then Ψa = F + (x)Ba would lie in 12(O, oo), so if + would have
E as eigenvalue, which is impossible. Thus, Ker(yl) = 0, so A is invertible. Writing

and using (A.2), we conclude

lim - l n | d e t i P | = l i m - l n | d e t F _ |
«-• + oo ft «-> oo ft

y 1 yt

by (A.I).

Next, consider Ψ(n, E) as a function of E. Since

Ψ(n + 1, E) = (E ~ V(n)) Ψ(n, E) - Ψ(n - 1, E)

and Ψ(1,E)= ΰ, we see inductively that Ψ(n+ \,E) is a monic Ixl matrix
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polynomial of degree n so dQt(Ψ(n + 1,£)) is a monic (scalar) polynomial of degree
nl. On the other hand, Ψ(n + \)a = 0 for some a if and only if the Hamiltonian
with boundary conditions ^(0) = Ψ(n + 1) = 0 has eigenvalue E. Thus, the zeros
of det Ψ(n + 1) are exactly those eigenvalues. It is easy to see that the multiplicities
even agree. One can now use the argument of Thouless [21] (see [3,7]). •
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