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Abstract. Starting with a system satisfying the so-called "bispectral property,"
a method is given to generate other systems with still higher-order recursion
relations. The usefulness of the method is checked for the classical examples.

1. Introduction

For many well-known functions arising as eigenfunctions of ordinary differential
equations, an important and common additional property is the existence of a
recursion relation in the spectral parameter. This will always happen for orthogonal
polynomials, but in practice it is also found for virtually anything with a name,
as examination of books on the subject of classical functions will attest. For the
purpose of practical computation, this property is beyond price.

In [5], Duistermaat and Grunbaum classified all sets of eigenfunctions satisfying
differential operators in two different independent variables, the bispectral property.
The partially discrete version of this, to classify all differential operators whose
eigenfunctions also satisfy recursion relations, is a problem that remains open (see
[7]). In this paper, the question is approached from a slightly different angle:
Starting with a differential operator whose eigenfunctions also satisfy a recursion
relation, a constructive method is given to generate other differential operators
with the same property. This give hope of solving the classification problem in a
different way: by showing that all solutions are generated from a small number
of primitives.

1.1. Notation. We start with a quintuple (L,B,λ, Θ,φ) satisfying

Lφn(x) = λnφn(x) (1)
and N

{Bφ)n = V b\*φn + i(x)=Θ(x)φn(x). (2)
ί = -N

Here d = d/dx-L = d2 + V(x) is a formal differential operator in one variable x,
and B is a difference operator in n. The formula (2) is an example of a recursion
relation, since it provides a way to generate φn + N given the 0's for smaller n. In
this paper, the eigenvalue Θ is assumed to be independent of n, and the bf's
independent of x. n will range over the integers.
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What is sought are transformations of this quintuple into new ones that also
will satisfy these two equations.

The particular form sought here for the difference operator B is based on the
usual one for the three-term relations always satisfied by orthogonal polynomials:

Obviously, many other kinds of recursion relations can exist. The only true practical
requirement is that the coefficients be, in some sense or another, "easier" to calculate
than the eigenfunctions themselves. This rescues the problem from being vacuous.
Seeking functions satisfying more general recursion relations (along with a
differential equation in x) might be a good generalization of the work here.

Duistermaat and Grύnbaum discuss a similar question in [5], where they
replace the difference operator B by a differential operator in λ. Thus, the notation
used throughout will also be similar, and many of the introductory results are
lifted bodily from there.

The reader will notice that many usual features of functional analysis are
missing: boundary conditions, complete sets of eigenfunctions, and so forth. The
reason is that, in its essence, the problem is purely local, and should be so handled:
All that matters is that our desired properties hold near some x0 and for "a lot
of integers" near some n0. Therefore, we never ought to have to give boundary
conditions, but only smoothness requirements on the functions and coefficients
involved.

The notation for a simple transformation will be introduced here, since it is
to be used throughout the paper. We will usually call it "unravelling." Say that a
set of eigenfunctions φn satisfies (1). Then an operator Θ(x,d,λn) depending on n
can often be changed to a new operator Θ(x, d, L) with the rc-dependence removed,
but giving exactly the same result when operating on any of the φn's. This works
properly when Θ is a sum of terms of the form P/(^w)Of(x, d) with the p s polynomials.
Then

fttWx, d)φn(x) = OJtx, d)Pi(λn)φn(x) = Ofr, d)Pi(L)φn(x)

gives the unravelling of one of the terms. Note that the parts dependent on n must
always be moved to the right. This transformation will be called <%, so that

Σ o f(x, d)Pi(L).

If dependence on λn is more complicated, unravelling may be impossible to do
completely, unless pseudo-differential operators are used.

1.2. Morphίsms. There are many obvious transformations of a solution to our
problem that leave it a solution. The following three will be very useful to us in
what follows.

1. The first morphism is simply a change in the independent variable x. Let
x = x(x'). If L' is the new differential operator resulting from the variable change,
we get the new solution

(L'9B,λ9Θ(x(x'))9φ(x(xr))).
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(1) and (2) change in the obvious ways. One example of this often used is the
simple shift x = x' + d.

2. Let Ψn{x) =f(x)φn(x) for some function f(x) and for all n. Then

is a solution, allowing us to multiply φ by an arbitrary function of x. (2) looks
similar, but with ψ in place of φ, and (1) becomes (fLf'^φJ^x) = λnψn(x).

3. Let φn(x) =fnΦn(χ\ f° r all k and for/n independent of x. This multiplication of
φn by an arbitrary constant depending only on n gives the new solution

Here (1) will be similar, while (2) becomes fn{B{f~ιφ))n = Θ(x)ψn(x).

Both the morphisms mentioned leave the size of the recursion relation
unchanged, and are therefore found in [6]. We cannot make a change of variables
in the eigenvalue parameter n in the same way as we do with x, because the spacing
between the values of n in the terms of recursion relation is fixed to be unity by
definition. This is one of the reasons that the discrete problem is more difficult
than its continuous counterpart.

However, an integer change in scale of the eigenvalue parameter can be made
to work. In fact, this amounts to a way to generate bigger recursion relations,
easier (though less interesting) than the Darboux transformation method given
later in this paper.

Say meZ, and that the recursion relation exists for neZ/m + c. Setting the
parameter n' to be n/m changes the recursion relation from one of 2N + 1st order
to one of 2mN + 1st order. It is the same relation, of course, but now is sparse;
only every mth eigenfunction appears in the relation.

Note that this last morphism requires that the original recursion relation exists,
not only for the eigenvalue parameter πεZ + c, but for all mths of integers: for
neZ/m + c. In practice, this is no restriction, and the reason is very significant.
For all the examples we will find, and all the methods given to extend these to
other examples, if a solution works for a sextuple with a given c, it will work for
all CGC. Therefore, we can shift from the original c by 1/ra, 2/m,... ,(m — l)/m and
get other recursion relations, so that this transformation goes through.

In this transformation, we need to know how the other elements of the sextuple
change. The two cases important in practice will be λn = n and λn = n2. If we
originally had

(d2 + V(x))φn(x) = nφn(x),

as (1), we will now use

(d2 +

Thus, the new n-eigenfunction φn(x) =
On the other hand, if

V(x))φn(x) = n2
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is the original equation, the changed result will be

n/rr,(d2 + m2V(mx))φn/m(mx) = n2φn/m(mx\

which uses the new φn(x) = φnιm{mx).
Finally, it is worth noting that this process can be reversed, if the original

recursion relation happens to be properly sparse. This will actually occur in one
practical example: the Bessel functions.

1.3. The Darboux Transformation and Wronskίans. One of the most important
tools in this line of business was introduced in 1882 by Darboux [4], Livre IV,
Chap. IV, Chap. IX, No. 408. On page 52, he actually attributes it to Moutard,
which may be the earliest known reference to the idea. To introduce the
transformation here we will assume that L = d2 + V(x) is a second-order differential
operator, but the concept generalizes easily to higher orders.

If φ is an eigenfunction of L, eigenvalue λ, i.e.,

Lφ = λφ,

t h e n we c a n factor L — λin t h e fol lowing way:

φ() φ()
If one interchange P and Q, a new operator is obtained:

L = QP + λ = d2 + V(x)
with

giving a new potential. This operation is called the Darboux transformation. The
eigenfunctions of the new operator are given by magic: lϊLφμ = μφμ, then LQφμ =
{QP + λ)Qφμ = QLφμ = μQφμ, so that

Lφu = μφu, with φ = ( d — ^— )φu. (3)

These new eigenfunctions are obtained directly from the old ones, just by applying
Q. Burchnall and Chaundy [3] may have been the first to explain the Darboux
transformation as an exchange of factors of the differential operator, and therefore
called it transference. It is also often known as the Backlund transformation.

One property that we will need later is a well-known Wronskian form for
eigenfunctions obtained through Darboux. To show it, we will first give two old
facts about Wronskians, stated, for example, in Adler and Moser [2]. The second
is an identity by Jacobi.

Let W(fu f2, Jm) b e t n e usual Wronskian. It can have any number of
arguments.

Lemma 1. For any f, g, h functions of x

τ>τ) = T2W(f,g). (4)
h h i h
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Proof. Trivial.

Lemma 2 (Jacobί). ///i ,/ 2 , •••,/,,,> 9> n are functions of x, then

W(W(fί9f29... ,/m,g\ W(fl9f29... Jn9 ft)) = W(fl9f2, JmY W(fί9... ,/m,g9 h). (5)

Proof. The easiest way to prove this, as with most Wronskian identities, is by
considering both sides of the equation to be differential operators acting on the
function h. One can see immediately that the two sides have the same null space,
i.e., ft =/ i ,/ 2 , • ,/m, or g. It is easy to see that they are of the same order, and all
that is left is to check that their highest-order coefficients are the same. •

Say that Darboux has been done m times, starting from some original Lo, and
calling the resulting differential operators Lί9 L 2,.. .,Lm . We see from (3) that an
eigenfunction of Lm with eigenvalue λ will be of the form

where φλ is a generalized ^-eigenfunction for Lo. (We may need generalized
eigenfunctions, that is, functions in the null space of (L — λ)k, if Darboux has been
done k — ί times before with the same eigenvalue λ. In the more normal case where
all the eigenvalues used are different, we won't have to worry about them at all.)
Call this new eigenfunction "derived from φλ" Now, t h e / h time that Darboux is
repeated, it must be done with respect to some eigenfunction of L^u say with
eigenvalue α ; . This eigenfunction is also derived from some φaj, an eigenfunction
of Lo. We see that a sequence of Darboux transformations can be characterized
by the sequence of φ 's eigenfunctions of the original Lo. The rather pretty fact
is that

Lemma 3. Let an operator L have eigenfunctions φt. If a sequence of m Darboux
transformations are carried out using eigenfunctions derived from φaι, φa29...,φam,
then an λ-eigenfunction of the resulting operator will be of the form

W{φaι9...9φJ

The proof will proceed by induction. The beginning step is clear if W (no
arguments) = 1. Now, say the lemma is known to be true for the first j — 1 Darboux
steps. Then the eigenfunctions ψλ of the new operator will be of the form (6). To
do Darboux another time, let us pick one of them, say ψaj9 coming from φay

Afterwards, the new nth eigenfunction looks like (d — ψ'aj/ψaj)ψλ, which equals
W(φap Ψλ)/ψaj> By assumption, this equals

/ W ( φ a ι , . . . , φ a . _ i , φ j W(φβι,...,φa._ι,φλ)

\

W{φβl,...,φ,j_ι,φaj)

w(φaι,...,φXji) '
which by (4) is
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By (5), this comes to be precisely the form required for the / h induction step. •

2. Generating Solutions with Darboux

Already, in the section on "Morphisms," we have seen a way of generating layer
recursion relations out of smaller ones, to wit, by shrinking the eigenvalue. This
method is, of course, not useful for producing any solutions that look really
different. Such a procedure, is however, actually available, and can be used to
generate arbitrary numbers of new and interesting solutions, starting only with
the classical functions that have the three-term relations.

2.1 The Wronskian Relation. A simple lemma is necessary to start this process.
Throughout this section, let fl9f2,- Jm

 a n d p be arbitrary functions of x.

Lemma 4. Define

ri r2 ••• rmj

for the rf's nonnegatiυe integers, to be the determinant of the m xm matrix whose
(a,b) entry isf^b). Then

rm-

(7)

The hat over f} in the equation means that the Wronskian includes all the /'s
but that one.

Proof. The left-hand side of the formula is simply the expansion by minors of the
following determinant:

fψ

(r2)

K-i

An equally trivial corollary of this is the following.

Corollary 1.

m - ί 0 i = 0 1 m

V (—l)JfΨw(f ί f) = < A > . . . 5 " »
J=l (Λ L) vv\Jld29- 9Jmh l — rn—l

Using this formula we can prove the following interesting proposition.

Proposition 1. Let p(x) be another arbitrary function.

D

(8)

(9)
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Though there are several ways to prove this fact, the following will help to
clarify its origin. The right-hand side, written as a full determinant, is

/l

f\
fs
f's

Now, the (2,m + 1) entry of this array, which we wrote as ( )', will have two

terms,

).

However, the second term vanishes by (8). Thus, the (2,m -h 1) entry really only is
the one term £ ( -1)N + 1 +if)\pW{fι,...,/},... JN + ι). Continuing to the (3,m + 1)
entry, we see now that it also will consist of only two terms, and again one will
vanish. Going on thus, the (i,m+1) entry for ί = 1,...,m + 1 simply turns out to be

Wi,m + 1 = Σ ( ~ l ) i V + 1 "

The right-hand-side has now been rewritten as

f'i - f's Σ ( ~

/ 1 '" J N 2JV

f (iv) f(iv) v r
J i " /5v 2-rV'

Fortunately, this is easy to evaluate. Almost all of the right-hand column can be
removed from the determinant by subtracting multiples of the first N columns.
All that remains is

/l

/Ί
»/JJV + I )

ΓN

IJ >//V+l)

from which the proposition follows at once. •

2.2 Using the Wronskian Relation. It is not immediately clear what, if anything,
Corollary 1 has to do with finding recursion relations. However, let us notice
several things. First, since (6) tells us that eigenfunctions after doing Darboux several
times look like Wronskians, the left-hand side of (9) resembles Θ(x)φn, the
multiplication of the eigenfunction by a function independent on n. This should
give us the idea of what Θ will turn out to be.

The right-hand side of (9) is not so transparent. The way to think of it is that
it is the result of applying an operator which is only dependent on the eigenvalue
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to the eigenfunction. Since the Wronskian for the eigenfunctions only has the
eigenvalue appearing in the last term, this operator will pass through most of the
Wronskian and not notice it. Its effect will only be on the last term. Thus, the
right-hand side should correspond to (Bφ)n.

It is important to emphasize that the identification suggested by the last
paragraph certainly cannot always be done. There is no a priori reason to expect
that the B envisioned by such formal considerations will ever turn out to be a
finite difference operator. Only in a few very special cases will we actually be able
to see that this is so.

To work toward putting these reflections into practice: Let us say that
fufn -Jm a r e eigenfunctions of an initial operator L, and that φn is an
eigenfunction for the eigenvalue λn. If we have done Darboux m times using
eigenfunctions coming from/!,... ,/m, (6) tells us that a /ζ-eigenfunction of the final
operator is of the form

, =

w(fu...jm)
As regards our Eq. (2),

it is clear that the denominator of (6), since it depends only on x, can be ignored
completely—the operator B will not notice it, nor will multiplication by Θ.
Henceforth, then, we will just think of the numerator

as representing the eigenfunction. Of course, if the x-equation (1) is being discussed,
it will be essential to bring along the denominator as well.

In our Eq. (9), let/m + 1 be equal to φn. Remember that only/ m + 1 will depend
at all on the eigenvalue n. We see at once that (9) is linear i n / m + 1 = φn9 and that
the left-hand side is precisely Θφn, where Θ = §pW(f1J2,...Jm). What needs to
be done is to represent the right-hand side as a difference operator acting on ψn.

Let us examine the last term of the right-hand side in detail:

» - Jj,-, fm+ί), (10)

where fm+1 = φn. This certainly doesn't look like a recursion operator in n at this
point! In fact, the operator acting here on φn = / m + 1 depends only on x. It consists
of some funny combination of multiplication by functions of x, differentiation, and
integration with respect to x.

First we claim that all the differentiation of/m+1 can be eliminated.

Lemma 5. Equation (10) can be rewritten without any derivatives offm + 1.

Proof. All these derivatives appear inside integrals, and we will get rid of them
by integration by parts. The only place for derivatives of/m+1 to remain is in the
boundary terms, and we will now show that all such vanish.

If all terms of (10) that have a particular derivatives of/m + 1 inside the integral
are collected, the result will typically be like
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^ 2 " j ^ m

Here the notation for the determinant from the beginning of the section is used.
Now let us integrate by parts i times to rid ourselves of all derivatives of/m + 1.
Each boundary term will look like

[ f f ••• f ••• f Ύi2)

Jl J2 Jj Jm >

0 1 ... i ... m-lj
with iί9 i2, ί3 < i

However, taking i2 derivatives of determinants is something we know how to
do. The result is a sum of determinants. In each term of the sum, i2 rows, counting
multiplicity, have been differentiated. This amounts here to adding a total of i2 to
the original rk's, which were 0,1,... ,£,... ,m — 1. In our case, since we multiply by
(— \yff\ (7) will force any such term to vanish unless 0 is not among the final
rfc's. But in order that two of the r/s should not be the same, at least i derivatives
are needed; for example, to move the original r1 = 0 to r1 = i. Since we have only
i2 < i derivatives with which to work, this is impossible, and every term will vanish.
This demonstrates the lemma. •

It will be easier to see how to use all this to find the recursion relation from
(9), given certain assumptions, if we do two real examples first. Therefore, the
calculations will be done now in detail for m = 1 and m = 2 to demonstrate the
procedures involved.
2.3. Darboux Once. The first case is where Darboux has been done precisely once,
say with respect to some eigenfunction j γ of the original L. The new eigenfunctions

Define Θ = \vϊ\ and divide the equation by fl9 so that the left side becomes Θφn.
Now say that the operation of multiplying by x is some kind of difference (or

pseudo-difference) operator in n. This means that there is some way of writing

with all the ίJJ/s independent of x. Here X is a pseudo-difference operator, since
there is no limit on the number of terms. Then our equation becomes

l9 - Λ \ φn) + (fpf1)(X)W(fι, φn)

Here the notation g(X) means the pseudo-difference operator produced by the
composition of g with X.

If the operation of integration with respect to x can also be represented as a
pseudo-difference operator D ~1 in n-space, we can continue to unravel the equation
into

/ i
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which in turn becomes

ί, φn) + (jpf1)(X)W(fu φn)

and finally results in

(ί Pfi)(x)φn = ( - (X)D-1f1(X) + (j>Λ) (X))φn. (11)

Equation (11) gives us an explicit form for the expected B. The question remain-
ing is, will this object be a finite recursion operator? The simplest situation where
it will, and in truth the only case really known, is where the following conditions
are satisfied:

1. p is polynomial in x,
2. f1 is also polynomial in x,
3. X is a finite recursion operator, and
4. D'1 is also a finite recursion operator, on the space of the φn's.

In that case, it is quite certain that the operator

will be a finite recursion operator. If p and fx are polynomial of orders aγ and a2,
and X and D " 1 are finite recursion operators of orders s1 and s2 respectively, the
operator B can be seen to have order (αx + a2)s1 + s2.

We can see from this calculation of the size of B that it is not too easy to make
very small £'s. Reasonable starting places for both X and D ~1 are both three-term
(although KdV will be a notable exception). If we pick p = 1 and fx to be linear—we
could hardly make them smaller!—we still get a five-term recursion rela-
tion. Anything else will make things bigger and therefore perhaps less useful in
practice.

It is important to discover the effect on (11) of changing the independent
variable, or of multiplying the eigenfunctions by some g(x) independent of n. These
are morphisms 1 and 2 from Sect. 1.2. According to what we found there, B should
come out the same, yet all the parts of (11) seem to change. The key to understanding
these transformations is in observing how they effect the operator D~ι.

First, consider morphism 2, and say we change the independent variable from
x to yM An eigenfunction φn(x) will become a new one φn(x) = φn(x{y)) Then the
new D ~ι will be given by

χ)dx Λ

We can now see that setting the new p = p/(dy/dx) will make both terms of B

come out the same as before.
Now let us look at morphism 2, in which the new eigenfunctions are given by
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φn(x) = g(x)φn(x). Then the new ίf^ is just g(X)D~1g~ \X):

g(X)D " V \X)φn = g(x)g(X)D " V \X)φn

Again, we can choose p = p/g to make the new B the same as the old.
In the classical examples we have been considering, our notation does not

always give the eigenfunctions in polynomial form. As we have seen, however, this
does not matter; the two morphisms given here can be used to put the operator
into a form with polynomial eigenfunctions, satisfying our four sufficient conditions.
The B found there will also be the right one for the original eigenfunctions.

Offhand^ it might seem quite possible that a particular case could arise in which
this Darboux procedure can be done, but only a few times. For example, perhaps
our four conditions would be satisfied, but with only a few eigenfunctions being
polynomials. However, a heuristic argument suggests that this is unlikely. If eigen-
functions φi-ι and φι are polynomial, condition 4 requires that §φb also a poly-
nomial, must be a linear combination of φ{-u φ{ and φi+1. Thus, φi+ί would be
a polynomial also. Repeating this argument shows that there are then an infinite
number of polynomial eigenfunctions, so that Darboux could be done arbitrarily
many times. This is in fact the case in all the examples found here.

2.4. Multiple Darboux. This section should make clear how to do all higher-order
examples in practice. By working out the example of doing two Darboux transfor-
mations we will see the use of the additional refinement from Lemma 5, necessary
here, of getting rid of the derivatives.

Say that Darboux has been done twice, using fλ and f2. We get new eigen-
functions φn = (W(fu f2, φn)/W{fl9 / 2 )), and (9) takes the form

W(fuf2*Φn)\pW(fl9f2)

= W(fί9 f29 Λ [pW{f29 φn) - f2$pW(fl9 φn) + φn\pW{fιJ2)). (12)

Let us examine the last term of the right-hand-side Wronskian in order to integrate it
by parts and to unravel it:

lΦn- ΓlΦn) + ΦnSpW(fl9f2)

ί (P'fl + 2pf'l)Φn + Φn\pW(fl9 f2)

+ (ΪpW(fί9f2))(X)φn.

This can be reinserted to the right-hand-side Wronskian of (12). If the equation
is then divided by W(fu f2) and the difference operators pulled to the outside, the
result is

(\pW{fu f2))(x)φn = ( - {p'fi + 2pff

2)(X)D-1f1(X) + (p'f, + 2pf\){X)D-ιf2{X)

+ {lpW{fl9f2)){X))ψn9 (13)

the required form for (2).
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Sufficient conditions for this B to be a difference operator are similar to those
for (11). If X and D~ι are both difference operators, and p,fl9 and f2 are all
polynomials, everything must work out. It is clear that such conditions will be the
proper ones for Darboux done any number of times, and this will now be stated
as a proposition:

Proposition 2. Assume that L and its eίgenfunctίons φn satisfy (1) and (2). Assume
also that integration of the eigenfunctions with respect to x can be expressed also
as a finite difference operator on the space of the φn's. Then if the Darboux transforma-
tion is done m times from L using polynomial eigenfunctions fuf2, ,fm> t n e n e w

differential operator derived will also satisfy (1) and (2). Furthermore, for every
polynomial p(x) chosen, there will be a Bp and Θp that can be used in (2). These are
explicitly derived from (9).

If one insists on an L of the particular form d2 + V(x\ very likely none of its
eigenfunctions will actually be polynomials. However, this doesn't really matter,
as we said above. It is enough that a change of variables with morphism 1 and
conjugation with a function of x by morphism 2 brings things into the conditions
of this proposition.

For the sake of competeness, the Θ and B for triple Darboux are included
here. With the obvious notation, let

Π ~ W2Γ3 - Wfifl

- P V2/3 + 2p/573 + 3p7S/3 + pV'2/3,

= 2pfJ'S + 3pf\n + 3p'/i/S - 3p/ί/'3

+ P'ΎJ'3 ~ Ipfΐh - Ip'fifs - P V1/3,

= - Ipfj'ϊ ~ 3P/Ί/2 - 3p'/i/'ί + 3p/'ί/'2

- pVi/i + 2p/r/2 + 3pYϊ/2 + p V1/2,
and

AA = pW{fuf2,f3).

Then for the triple-Darboux case,

and

B = A^D-'f^X) + A2(X)D-1f2(X)

The thorough reader who wishes to know the explicit form for quadruple-Darboux
can jolly well figure it out for himself.

2.5. The Classical Examples. A complete classification of all functions satisfying
three-term relations has already been published by the author [6], yielding only
the classical functions. Can they be made to satisfy our requirements in order to
be able to do this repeatable Darboux process? Happily, most of them can, in one
way or another, giving us a large zoo of objects with recursion relations.

Start with eigenfunctions that already have three-term recursion relations. The
conditions of Proposition 2 still needed are the polynomial eigenfunctions, with
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respect to which Darboux is done, and the finite difference relation for integration.
To put the results into their simplest form, we will use the operators and
eigenfunctions in their standard form, rather than the one we have been using. In
the standard form, some of the eigenfunctions are actually polynomials, and the
integral needs no extra Jacobian. These recursion relations for integration, where
they exist, are included in Appendix A along with the usual recursion relations
for these orthogonal polynomials. For some reason, these relations are not listed
in usual tables, though they are generally not difficult to derive from listed formulas.

A final point of great importance: It is noted in Appendix A that for each of
the classical examples, the difference operators X and D " 1 actually have a full
two-dimensional solution space. It is immediate that this property will be carried
through all the manipulations of this chapter. The new eigenfunctions created by
doing Darboux m times are of the form

W(fl9f2,...Jn+1)

If we are only careful to pick/w + 1 to fall in the full solution space of X and D " 1 ,
the derived B for our new eigenfunctions will work perfectly. The only case known
to have solution spaces that are only one-dimensional is the N-soliton solution
to KdV, which will be considered in a separate article [8].

Appendix A. The Classical Recursions

Since it may be useful to have the recursion relations available in one place, in
this section we give X and, where it exists, D " 1 , for solutions to our problem with
three-term recursion relations. Many formulas will just be copied from Abramowitz
and Stegun [1].

While the recursion relation for X in most cases is generally well-known, the
one for D~ι is normally much harder to locate. It is perhaps worth noting the
following: There is a well-known classical argument showing that, for orthogonal
polynomials, the operator X will always be a three-term difference operator.
However, the same argument, using integration by parts, shows that D " 1 will also
be a three-term operator for any set of orthogonal polynomials.

A.I. Hermite. The eigenfunctions here are solutions to the Hermite equation

y" — 2xy' + 2ny = 0.

There is no problem in this case to find X and D~x. The former is given in [1],

22.7.13, by

X = ±S + nS~\
and

is given in [1] as 22.13.16.

A.2. Laguerre. Use standard Generalized Laguerre polynomials, φn = I4m)(x).
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These solve

xy" + (m + 1 - x)y' + ny = 0.

We have

X = - (n + 1)S + (2n + m + 1) - (n + w)S" \

from [1], 22.7.12. Since

by [1], 22.8.6, one recognizes easily that

X = (_ s

so that

which is [1], 22.13.14.

A3. Bessel. The Bessel equation in its usual form,

has a good three-term recursion relation for the eigenfunctions. We need also,
though, to find eigenfunctions that are polynomial. This is not quite so simple,
since the Bessel functions that everyone uses are not polynomial at all. However,
polynomials can be found; these come from the Hankel functions at half-integral
eigenvalues, which are also solutions to the Bessel equation. From [1], 10.1.1,
10.1.16, and 10.1.17, we see that

t"+ V * Σ (n + 1Ak)(-2ίzy\

[2
rin + 1)~iz Σ (n+l/2,k)(2izΓk.

V πZ

Here

(n+l/2,k) = (n + k)l/(k\(n-k)\).

We can get polynomials by letting x = 1/z, and dropping all the ̂ -independent

stuff in front of the sums, giving

Since the Bessel functions all satisfy [1], 9.1.27,

these new eigenfunctions will satisfy
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as we've shifted n by 1/2. Thus

X = S + e-i

2ft + 1 2ft + 1

Now according to [1], 9.1.27,

d
Tj l_ττ X rr

dzHn~2Hn-1 l H n + u

so
1

Now let x = 1/z, so that d/dz = — x2(d/dx). The equation simplifies to

One sees that here

Now, multiplication on the left by D1 yields

2n +

Squaring our equation for X gives

γ 2 _ c2 j I

(2 + l ) ( 2 + 3) ( 2 l ) ( 2 + 3) ((2ft-l)(2ft + 3) (2ft-l)(2ft+l) ' v ;

Factoring the last equation gives us our desired

D = (ft + l)(2ft + 1) S T ft(ft + 1) ~ ft(2ft + 1)S '

where the + depends on whether we're using φ* or φ~.

A.4. Double Bessel. The eigenfunctions for the Bessel equation also satisfy a
different three-term recursion relation of the proper form. Since the previous X
had no S° term, its square in (14) is missing the terms for S and 5" 1 . Therefore,
redefining the eigenvalue parameter as n' = 2ft, we get a new difference operator,
of the following form:

• - 2 + . • -
(2n + l)(2n + 3) (2n - l)(2n + 3) {In - l)(2n + 1)
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here with the old S2 replaced by S. In this example, we would work with x = 1/z2

in the Hankel functions. However, this is the first case where there seems to be
nowwhere to go, for there are no polynomial eigenfunctions associated with this
variable. The ones used for the previous example were not functions of 1/z2, but
of 1/z, but of 1/z, and so they will have y/x terms here. Thus, we cannot make
any Darboux steps from this starting point.

A.5. Special Laguerre. Another three-term relation exists for the Generalized
Laguerre equation. Though this case works out very nicely, it is not so easy to
calculate the required recursion relations by hand. The author found it much
simpler to derive them from the formal series definition of the functions than by
manipulating the known relationships of the Laguerre functions. Therefore, only
results will be given, which can be readily checked after the fact against the formal
series.

The necessary polynomial eigenfunctions are found to be in the form

Thus, they are not solutions to the Laguerre equation itself, but of the result of
several of the morphisms from Sec. 1.2. These functions are obtained from normal
Laguerre functions by letting x become 1/x, n become — n — (m + l)/2, and by
dropping an n-independent function from in front of the eigenfunctions. Our φn's
are certainly polynomials for n any non-negative integer, since La

n(\/x) is only an
nth-degree polynomial in 1/x. The formal expression for the φn's is

k\X

from [1], 22.3.9. It is not too hard to check now that

{2n-m){2n-m+ 1)

m+l 1 ί
+ (2n - m - l)(2n - m + 1) + (2n - m - l)(2n - m)

and that

_ , n - m

1

(2n-m- l ) ( 2 n - m + l ) (n-m- l ) ( 2 n - m - l)(2n-m)

A<5. Jacobi. This is the largest class of functions with three-term relations. Its
working out nicely provides very many ways to do Darboux steps. The polynomials
to be used are P(*tβ)(x), defined in [1], 22.3.1. They are solutions to

(\ — χ2\(PaMY + (β — a — (a -\- β 4- 2)x)(P<x'β)' 4- nict 4-β + w+ \)Pa'P — 0
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By [1], 22.7.1,

X = "in + «"+ β +l)(2n + α + j? + 2) S

S" 1 .
(2π + α + β)(2n + α + jS + 2) (2w + α + jff)(2n + α + β + 1)

Now

from its explicit formula [1], 22.3.1. Use [1], 22.7.18,

p(α -1,« _ n + g + P p(β,p) _ n + P

and [1], 22.7.19,

to put the (α, ̂ ) back to where they started from. The result is

2(n + a + β+ί) σ ι %a-β)

{In + α + )8 + l)(2n + α + β + 2) (2n + α + j8)(2n + α + j8 + 2)

(n + α + j8)(2n + α 4- )8)(2n + α + j8 + 1)

It is clear that, although forms such as this one are pretty, it will be difficult to
get explicit recursion relations for this case, having done Darboux seveal times.

A.7. Note on Solution Spaces. The following fact will be stated without proof: In
all of these examples, including both of the families of polynomials for Bessel, the
relevant difference equations have a full two-dimension solution space. That is, if a
given difference operator X or D " 1 is the correct one for the eigenfunctions φn,
we can also find independent eigenfunctions φn such that (Xφ)n = xφn and
{D~1φ)n = \φn. Since the usual books of tables don't give many properties of the
full solution spaces, this has to be checked by hand. The easiest way to derive it
is just to find the power series expansion for an independent eigenfunction φn, and
see that it can be made to satisfy the same difference equations. In each case, it
is likely to be necessary to multiply φn by the proper function of n alone, giving
tnφn(x% say. Otherwise, instead of having difference equations involving the same
X and D ~x as for the other solution, its difference operators will likely be these,
but conjugated by morphism 3.
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