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Abstract. In this paper we introduce an inductive description of the complete
effective densities including large field domains, and we show that the
renormalization transformations preserve the form of the densities. This
completes the renormalization group analysis for superrenormalizable models
and yields convergent expansions in this case.

0. Introduction

In this paper we continue our study of the renormalization group analysis of the
non-Abelian lattice gauge field theories. In the previous papers, referred to as [I, II],
we have analyzed the renormalization transformations in the small field regions.
The basic goal here is to do such an analysis for the complete model, without any
restrictions on field variables, i.e. including all large field regions. Thus we study the
complete renormalization transformations Γ, without any restrictions on integra-
tion variables. Let us recall that they are of the form

(Tρ)(V) = μUδ(OV-1)ρ(U) , (0.1)

where ρ(U) is a function of the gauge field variables ί / o n a lattice T, 0 is the
averaged field on the lattice Γ(1), and Fis a new gauge field on the lattice Γ(1). The
averaging operation is defined by the formula (0.4), or (0.12) in [I], but we may take
any averaging operation satisfying several general properties, analogous to the
properties (0.5)-(0.9) [I]. We have to apply an additional operation after each
renormalization transformation T. This operation is denoted by R, and it changes
effective densities on large field regions. Thus, we construct a sequence of effective
densities {ρk} by applying successively the operations R71 to the initial density
ρo = exp [ — (l/gl)A —E], where A is the Wilson action, and E is a normalization
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constant. We have

Qk — **--LQk — i—v *--' ) Qo ' \y ^)

and we finish the inductive procedure when we reach the unit lattice. All the details
of the procedure, in particular all geometric definitions, are summarized in the
Introduction in [I], and in previous papers, references to which can be found in [I].
To describe the effective densities ρk, and to understand their properties, we apply a
combination of the methods and the representations of the papers [16], [I]. The
numbers here mean the numbers in the references to [I]. Basic aspects of the
procedure are the same as in the paper [16], i.e., we do the integration, and all the
other operations, in the small field regions only, but there are two fundamental
differences. The first is, that now we are interested not in bounds, but in a precise
description of the effective densities in the form of convergent expansions, so we
apply the whole analysis of the paper [I] to expressions in the small field regions.
The second difference is that we apply the additional operation R, which changes
expressions connected with the large field regions. Let us explain briefly why it
is necessary to make such changes, or why it is necessary to renormalize the large
field expressions, and what is the general structure of the operation R. Consider a
large plaquette variable in the first step. The restrictions on these variables are the
same as in [16], so we have \U(dp) — l\^gopo(go) for a plaquette peTί9 where
p0(g0) = A0(\oggQ2)Po with a positive integer p0. The term in the Wilson action,
corresponding to the plaquette /?, gives the estiomate

exp Γ - 1 [1 - Retr U(dp){\ ̂  exp ( - ^ Pi (do)) ύ ΰo°

For d<4 we have go = gε1/2(4~d\ and the bound above can be estimated by an
arbitrarily large power of ε. This is enough to control expressions arising in the large
field regions surrounding the plaquette/? for all steps of the procedure, i.e., until we
reach the unit lattice. For d=4 the bare coupling constant behaves asymptotically
as (a + blogε'1)'112, for ε->0, with some positive constants a, b, hence the bound
does not give any positive power of ε. It is still small for ε small, and it controls a
large number of steps, but this number is a small fraction of the total number of
steps. Thus, for some large field regions there is a difficulty in continuing the
procedure of [16], the small factor arising from large fields in this region does not
control further steps. In such situations we have to change the procedure in order to
improve the small factor, i.e., we have to be able to renormalize the expression
corresponding to the large field region.

The operation R serves this purpose. We will not describe it here, we will only
assume that it has some properties incorporated in the inductive description of the
effective actions.

Let us explain now what is the basic result of this paper. We give a detailed and
precise description of the effective densities ρk in terms of convergent expansions,
and we show that Tρk satisfy the same assumptions. This description is quite
complicated and technical, and it occupies all of Sect. 2, so here we can formulate
only a theorem, or rather an idea of a theorem, referring to the later description.
Thus we have
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Theorem. Ifρk satisfies the assumptions described in detail in Sect. 2, then Tρk satis-
fies also the corresponding assumptions.

This whole paper gives a proof of this, and related theorems. Let us make few
comments about the proof, and the presentation. We apply the rule that if some
aspect of the procedure is discussed in one situation, this discussion is not repeated
in other situations, only changes and modifications. For example, in paper [I] we
have discussed in detail the renormalization of the effective actions, and the
localization operation for terms of the actions. Here we do not repeat these
discussions although we need the results of the operations in many places, we
describe only in each case necessary changes. Generally, we discuss in this paper new
issues only thus we describe in detail all operations connected with introductions of
characteristic functions for field variables. Many new characteristic functions
appear in connection with large field regions, and they play an important, although
quite technical, role in the procedure.

Thus, the papers [I, II] are an essential part of the whole analysis, and the results
obtained here are based on the results of those papers. In fact, the analysis of
expressions connected with small field regions is the most important part of the
method, and even analyzing the ^-operations in the future we will consider only
small field parts of the corresponding large field regions, and we perform operations
in this part only.

1. The First Renormalization Transformation

We analyze the integral defining the first renormalization transformation (0.1),
mainly to understand some basic features of the inductive assumption which will be
formulated in the next section. Many of the operations described here are common
for all steps of the renormalization procedure, and we will mention them only briefly
in the sequel.

At first we introduce two additional partitions of the lattice Tγ into large cubes.
The first is a partition into cubes of the size MR0, where Ro is the smallest power of
L such that R0^(\oggQ2)r, r ^ 2 , and M=Lm is sufficiently large. The second is a
partition into cubes of the size LM2 Ro, where M2 = Lm2, and Mί < M2 < M. Let us
recall that Mγ is the size of large cubes for which all the theorems of the previous
papers, especially those concerning the variational problem, are valid. We fix M2

not too much larger that Mγ, e.g., we can take M2 = L2M1, and M will be chosen
much larger than M2. The choice will be dictated by many conditions involving this
constant. The above partitions have to be compatible, and compatible with the
partition π 0 as well, and with other partitions introduced later. The cubes of the
second partition are denoted by •• The operation ~ applied to these cubes means
adding one layer of M2 Ro -cubes touching Q Usually this operation applied to other
sets means adding one layer of cubes taken from this family of cubes, in terms of
which the sets are defined.

Now we introduce the decomposition of unity, similar to the decomposition (7)
in [16]:
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1 = Σ Π zfjsup \U(dp)-l\<εo\) Π xfjsup \U(dp)-l\^ε0

where the sum is over sets Po, which are unions of the cubes of the second partition
introduced above, i.e., unions of the LM2R0-cubes. There are two convenient
choices of the positive constant ε0. The first is the same as in [16], i.e., in the first
step we take εo = gopo(go), po(Qo) = AoQ°^do2)P^ A>^5r a n d Λ i s a sufficiently
large constant. The second is obtained by replacing g^1 in the logarithmic factor
P(QO) by its upper bound coming from the inequality (0.33) [I], i.e., we take ε0

= g0A0(\ogyQ2)Po, 7Q"2 = y~2 + jSlogε"1, β,y>0. The first choice is simpler, and
more convenient to study connections with perturbation expansions. The second
choice is more convenient in some nonperturbative aspects of the procedure, but it is
technically more difficult and we assume here that ε0 is given by the first formula. If
a plaquette// is contained in CPQ)(1), then Proposition 1 [12] implies that the new
field Vsatisfies the bound \V{dp')~ 1| <2L2ε0. We introduce stronger restrictions
on Kby a next decomposition of unity. We introduce the next two partitions of the
lattice 7j. The first is into cubes of the size LMRγ, where Rγ is the smallest power of
L such, that R1 Ξ>(logg1~~2)'\ The second is into cubes of the size LLM2Rι. For the
more natural scale L" 1 these are partitions of the lattice TL-ι into MR1 -cubes and
LM2R1 -cubes correspondingly. Denote by PQ the union of the LMRX-cubes
intersecting Po, and take PQ~ (the operation ~ is determined by the LMRX-cubes).
For every L 2 M 2 i? r cube Π' contained in (Pό~)c we construct the function Uί Ώ>{V)
as

j D'~ 4 ),M"(βfK)) , (1.2)

where B1(Π'~4) is the minimal determining set based on Π'~4, and Qf4V was
introduced in (4.5.3) [18]. Let us recall the definition

(Q
V(c) for beB(c) = {b:b.eB(c_),b+eB(c + )} , ceTω .

(1.3)

The function in (1.2) depends on the field V restricted to Π'~4. Now, the next
decomposition of unity is

1 = Σ Π X[< sup
Pi D'CPf \(j>CD'~

• π xffsup \uuπ,(v,dp)-i\^ε1L-2\)=Σχί(Pί)χci(Pi) , (1.4)
G'CP1 \lpCO'~ )) Pi

where the sum is over sets Px CZ(PQ~)C, which are unions of the L2M2R1 -cubes, P{

denotes the complement to (Pό~)c> a n d ̂ i =0iA)(0i)
Denote by P{ the union of the LMRγ -cubes intersecting Pί9 and denote P{

K(ΛΓ) C ^(Λ) ) c) ( 1 ) I n blocks of B(P{) we introduce the axial gauge fixing
expression, the same as in (0.16) [I]. Thus we use the identity
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1= Π Π ί^W-χ({|t/"(>',x)-l|<βo})expΓ—ί[l-Retrt/"(>',x)]l ,
yeP\ xeB(y) Z L #0 J

z*y

(1.5)

where U(y,x) are the variables introduced by (0.11) [I]. We insert it under the
integral, and we apply the Faddeev-Popov procedure. This yields the equality

-expl - \ G(Pl,U)-\ A(U)-(L*-l)\Pl\logz-E\ , (1.6)
L 9o #o J

where

G ( P ί , £ / ) = Σ Σ [1-Retr [/(>•, x)] . (1.7)
yeP\ xeB(y)

x*y

Let us make a remark about the gauge fixing. The main point in introducing it in
the form (1.5) is to preserve the Euclidean invariance, but this can be done also with
the gauge fixing defined by the ̂ -functions of the contour variables U(Γy x), as in
[16] and in the previous papers. For a chosen coordinate system in a block we fix the
gauge introducing the (5-functions, as in (9), (10) [16], and we average over the
Euclidean transformations of the lattice, leaving the center of the block invariant.
This definition has all the properties necessary for the method presented in this
paper, in particular it is localizable in subdomains of the lattice, so it can be an
alternative to the above definition.

Trying to imitate the procedure in the paper [I] as closely as possible we should
introduce now restrictions on a fluctuation field. This field is not defined yet,
therefore we introduce restrictions on an approximate fluctuation field. A good
approximation on a cube Π ' c 5 ( ? ί ) is given by UU^,, where UUΏ. is taken in
the axial gauge. It is easy to see, by the same reasoning as in the proof of Lemma 1
[14], that | [ / [ / - ^ - l | < 0 ( L 2 ) ε o on Π'~ 2 . A domain of this type, with 0{L2)
replaced by a small constant, is also contained in the domain of integration in (1.6).
These remarks serve as a justification of the following decomposition of unity:

1 = Σ Π x(\ sup
l \ ( j ( D ' ~ 2 ) *

sup \U(b)U1-
1

π,(b)-l\^2δΛ] = Σxo(Qί)Xo(Qi) , (1.8)
Π2* ))

where the sum is over sets Qx d{B(P\)Y~ι =((B(Pl)c)~)c, which are unions of the
L2M2Rί-cubes, and δo = goA1po(go) = (AJA0)ε0. We assume that the constant Ao is
much larger than Aί. The superscript * used in (1.8) means that we take the set of all
bonds with at least one end-point belonging to D'~ 2, except the bonds bo(c) for c,
such that at least one end-point belongs to (D'~ 2 ) ( 1 ) . More generally, for a set X,
which is a union of unit blocks, we define

X* = X\{bo(c):ceX<1)} . (1.9)
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We take Q[ again as the union of LMR1 -cubes which intersect Qί, and we surround

the sets Q[,(B(P\)C)~ by two layers of LMT^-cubes. Denote

Ω^iQr^iBiPDT^^iQr'r^BiPDy-3 , (l.io)

thus Ωx is a union of LMRX -cubes, and a distance between Ωγ and the union of the
large field regions is at least 2LMR1. On the set Ω^ we have only the small field
characteristic functions, and it is easy to see that the functions χ0, χAx localized in
Ωi are equal to 1, if Ao is sufficiently larger than Aγ. We drop these functions from
the integrals in (1.6).

We fix Ω1 and we do the resummation with respect to P0,Pί,Q1, as in (8) [16].
This yields the equality

Qi(V) = Σ ZiΦi) ί

(1.11)

Here the factor ζ(Ω{) is defined by all characteristic functions and gauge fixing
exponential factors localized in Ω[, and resummed over all admissible Po, Pί9 Qγ.

The next step is again the same as in Sect. A of [16], we make the translation U
= U'Uι in the integral in (1.11). Let us denote by Vo the integration variables
localized in Ω[, i. e. Vo = U\Ωc. The configuration Ux, or more precisely U1 (Ω±, V), is
defined as the critical point of the functional

U) for U:U=V0 on Ω{ , Ό=V on

(1.12)

It is equal to the critical point of the action A(U) only, on the subspace of
configurations satisfying the above conditions and the axial gauge conditions
U(y,x) = l for xeB(y), xή=y, yeΩ^K By Theorem 1 [15] there exists exactly one
critical point of (1.12) in the domain of integration in (1.11), for ε0 sufficiently small.
It is a minimum of (1.12), with a strictly positive second order differential. The field
U' is small, because U'= UU[ι =(UUΓ,h )(Ui,π'Ui'1\ a n d b o t h f i e l d s i n t n e

parenthesis on the right-hand side of this equality are small. We denote

A'=-\ogU' , or U' = expiA' , (1.13)

and we call A' a fluctuation field.
Now we expand the expressions in the integral (1.11) with respect to the fields A'.

This expansion was investigated in [15], see Sect. B. The formula (26) there gives an
expansion of the action, see also (1.2.7). An expansion of the gauge fixing terms is
given by (I.I .8). For the expressions under the (5-functions we have (14)—(16) [16], or
(1.1.6), (1.1.7) restricted to Ω[1]. We linearize these expressions by the transfor-
mations analyzed between (16)—(18) [16], or between (1.1.8)—(1.1.9) [I]. These
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operations yield

Γ—i
L #o

•exp

+ Trlog( I-h[ —

(1.14)

Let us recall that the linearizing transformation is different from the identity only on
bonds {bo(c): ceΩ{1}}, hence the characteristic function χά(Ωi), defined in (1.8), is
unchanged under the transformation. The number |Ω*| is the number of bonds
belonging to Ωi minus the number of bonds in the set {bo(c) ceΩ^}. Also, let us
recall that the functions and operators on the right-hand side of (1.14) depend on the
configuration U1. Now we perform the scaling transformation A=g0A' in the
integral with respect to variables A, and we remove the ^-functions under the
integral solving the equations (QA')(c) = 0 on Ω[1]. The equation determines the
variable A'(bo(c)) as a linear function of the remaining variables A'(b),
baB(c_)vB(c + ), b^bo(c). We denote this function by C, and we denote by A the
integration variables restricted to bonds ί21* = ί21\{Z?0(c) ceΩ^}. Hence Af = CA
are solutions of the above equations and we have QCA = 0. After these operations
we obtain

i) ί dVΛafδiVoV-'

-A- V(g0CA)\ ,
βo J

(1.15)

where

(1.16)

and v(A), V{A) have the same meaning as in (27) [16], i.e. v(A)is the sum of the first
two terms under the second exponential in (1.15), and V(A) is the sum of the
remaining terms of the order higher than 2. The factor z(0) is obtained by integrating
the ^-functions with respect to the variables A(bo(c)), c
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Let us remark that it is very important for our method, as it was in [16,1], that we
expand in (1.14) around the critical point, so the potentially dangerous linear term
(l/#o) <̂ > Λ> vanishes on the domain of integration. Another important remark is
connected with gauge invariance. As in all previous papers the ex-
pressions in (1.14)—(1.16), except the characteristic function #o(^iX are invariant
with respect to the simultaneous gauge transformations

where u is a G-valued function defined on sites of the lattice T. The characteristic
function is invariant with respect to gauge transformations of the new field
V: V-* Vυ, v is a G-valued function defined on sites of the new lattice T{1\ Such a
transformation υ determines the gauge transformation u0, u0 (x) = v (y) for x e B(y),
and the field Uo constructed in (1.6) transforms by u0 : U0^>UQ°. This implies that
the characteristic function χ'o {Qx) is invariant if the field variables A are transformed
by the adjoint representation A-^R(uo)A. In the future we will use both invariance
properties: the invariance of all the expressions determining the density with respect
to the gauge transformations of the new field, and the invariance of the effective
action with respect to the gauge transformations (1.17). To get this invariance for
the last integral in (1.16) we have to replace the characteristic function χ ό ^ ) by
functions depending on A only. We introduce a new decomposition of unity in the
domain Ω± ~1 = ((Ω[) ~ )c:

1=Σ Π x(\ sup
R1 D'CRC \ ( j ( D ' ~ 2

sup μ(ό)|^^o-Moj) = Σχ^(^)Z ( O ) c(^i) (1.18)
(D'~2) )) Rl

Here the summation is over sets R1 a Q^ ~1,which are unions of L2M2 Rx -cubes, and
Rl means the complement to Ω^ ~1. Consider a cube •' c R£. For this cube we now
have the product of the two characteristic functions,

sup ^ M ^ K t f o 1 ^

sup |expiflfo^(6)C/1(A)^1-;J].(6)-l|<25oH • ( L 1 9 )

The cube Π'^ 4 is contained in Ωl9 and both configurations t/1? UltΠ, are deter-
mined by the same configuration V on D'~3, hence on D'~2 the difference
between these configurations is very small. More precisely | U1 U[^ — 11 < 0(1)B3

• exp (— δLM2R1)ε1, and the bound can be made much smaller than δ0, if M2Rί is
large enough. Thus the second function in the product (1.19) is equal to 1, and we
can omit it. These functions remain only for Π'^(Ω1\Ω{'~1)uR1, more precisely
they are the only functions for •' c Ω1\Ω1~ ~ ί, and for Π' <= Ri they are multiplied by
the corresponding large field characteristic function in (1.18). We denote again by
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R{ the union of LMT^-cubes intersecting the set R1, and we introduce the sets

2 1 . (1.20)

On the set A± we have only the small fluctuation field characteristic functions from
(1.18). We make an additional small modification of the domain Aγ. The
complement A[ is a union of connected components, and some of them may be
relatively small. We distinguish components which are contained in cubes of sizes
smaller than 100 LMRl9 and we replace such components by the smallest
rectangular parallelepipeds containing them. Such a rectangular parallelepiped is
the smallest convex domain, which is a union of LMRλ -cubes, containing a given
component. This change is insignificant from the point of view of bounds, but it
simplifies some geometric aspects of the large field problem, and the R-opera-
tion. This domain A1 is the final small field domain, and we will perform the con-
ditional integration in the integral (1.15) with respect to the fluctuation field A
restricted to Ax.

The characteristic functions connected with S1 involve the onfiguration C/l5

therefore they depend on the new field Fon the whole small field domain Λί. This is
an undesirable situation for the next renormalization step, and now we will remove
this dependence. Introduce the function U1 (Ωx c\A{, V), which is determined by the
same conditions on the domain (Λ^)c as the function Uί (Ωx, F), and on the domain
A^\A1 it is determined by the set Bx (A{) and the configuration Qf V. This function
depends on V restricted to Ω1nA[. We have

(1.21)

where the function H 1 > A x depends on its argument restricted to a small neighbor-
hood of dAί (in fact one layer of Mγ -cubes touching dΛί and contained in Λ{). The
dependence is analytic, and the function t ^ Ax has the exponential decay property.
It was formulated in (190) Sect. G of [15] for the Landau gauge, but on the unit
lattice it holds for any gauge, for which propagators are exponentially decaying,
hence for the axial gauge too. This implies that the function H1>Ax is very small on
D', for •' cz Sj, because the distance between •' and the support of the argument is
greater than MR1. More precisely, we have \HltAx\<O(\)B3Qxp( — δMR1)ε1, and
the bound is much smaller than δ0, for MR1 large enough. Now we make a change
of variables for each bond variable A(b), beSf. There are two forms of this
change of variables. For be(Rf2nS1)*, we take

A(b)=—logexpig0A'(b)exp(-ig(A'(b))HltΛx(b))
Wo

= A'{b)-—g{A'{b))HlιAx(b)-—Έ{g0A'{b),
9o do

-g(A'(b))HlιAx(b)) . (1.22)
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Here g is a C00-function defined on the Lie algebra g,Q^g(A')^l, g(A') = 0 on
{A'eg .lA'l^Λβg^δo}, g(A') = l on {A'eg: \expig0A'-l\^5/3δ0}. The con-
figuration U1 {Ω-^nAl) ί/i~Q' is very small on Π'~2 in this case, hence g(A ') = ! on a
neighborhood of [A' e g : |exp ig0A'U1 (Ω1 nA{) U^Q> — 11 ^ 2 δ 0 } . The function F is
defined as a sum of terms of orders higher than 1 in the Baker-Campbell-Haussdorf
formula (see (29) in [12]). It is at least linear in g0A'(b), hence the factor g^1 is
cancelled. In the second term on the right-hand side of (1.22) the factor g^1 is
suppressed by the bounds on H l j i 4 x . These changes of variables do not change the
functions χ(0), and they transform the function χ(0)c(D')xά(tΓ) into the function

sup \A

sup

(1.23)

For beS?\(R^2)* we make a simpler change of variables; we take (1.22) with the
function g(A (b)) replaced by 1. These changes of variables transform the function
Xo(Π') into the second factor in the product (1.23). For simplicity we denote the new
characteristic functions in the same way as the old ones, and the new variables A' by
A. After these changes of variables the characteristic functions depend on the new
variables V restricted to the large field domain A[. It is the desired localization
property.

The change of variables produces new terms in the effective action in (1.15).
The Jacobians of the transformations (1.22) can be exponentiated, as in (20) [16],
and they yield the expression

] •«••••>)] • ( 1 2 4 )

Expanding the terms of the effective action in the second exponential in (1.15) with
respect to the last two perturbative terms in (1.22) up to the first order, we obtain a
new expression V{0\Sι,A,ΊΆ1 Ax). Because of the almost local character of the
action in (1.15), it is a sum over bonds beS1 of the expressions which depend on
A,HltAx almost locally. The dependence on Hx Ax is analytic, and the expressions
are small, i.e., they can be bounded by any positive power of gf0.

After the change of variables we obtain an expansion of the form (1.15), but with
the additional sum over Ao, the characteristic function χό(^i) replaced by

Σ Z ( 0 )(^i)z ( 0 )(Λfn/lf)χ ( 0 ) e(i«1)χi(51) , (1.25)

and with the additional term F^CSJ in the effective action. For each term in this
expansion consider the conditional integral with respect to the variables A restricted
to A1. This integral is equal to the corresponding conditional integral in the case
analyzed in [I], i.e. where there are no large field regions, but with a different
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background field. It is given by

+ v(g0CA)~\ V(g0CA)
d

expllogZ{0)(A1)+~(AίA,C*AίCC{0)(A1)C*AίCAc

1A)

(1.26)

The above equalities define the functions V(0) and E ( 1 ). Let us recall that all the
above expressions depend on the configuration U1. Of course the main problem is
how to represent the function E ( 1 ). We use the exponentiated cluster expansion of
[I], but changed properly to yield the more detailed representation we need now, as
it was explained in the introductory section. Especially we separate the clusters with
localization domains close to A{, e. g., within the distance MRγ to Λ[, and we denote
the sum of these terms, and the expanded ^ ( S J , by B ( 1 ) (^i, Λ{A, S J . This is the
boundary term, and it can be bounded by 0(1) l ^ nΛl\; therefore it is controlled by
the large field estimates, and does not need to be renormalized. This will be
discussed thoroughly in the next section.

The final step is renormalization of the effective action. We renormahze it in the
region /L1 subtracting the values at U1 = 1, and the counterterm β1(g0)A(φ1, Uλ),
where β1 (g0) was defined in [I] by the formulas (1.41)-(1.43), φλ e Q 0 (ΛJ, φx = 1
on Λ±~x. The symbol A(φx, U^) means that we multiply the term in the Wilson
action corresponding to a plaquette p by φί(x(p)), x(p) is the initial point of dp
[i.e.,/? =pμv(x) for some μ < v]. Let us write the first renormalization group equation

(1.27)

The difference in comparison with Eq. (1.0.20) is that here we have functions on the
lattice T instead of the constants there, but on Λ^"1 we have the same equation,
which defines the same coupling constant gγ.

To write the final form of the expansion obtained after all these steps, we
introduce some new notations. Notice that the set S1 determines the set Rx, and
denote the product of all the characteristic functions in (1.25) localized in Ω1 nΛ{ by
χ(Ω1nΛ{,S1). Now we can write

βi00= Σ ZiCfii^CίO^^exp^f-i,^) , (1.28)



254 T. Balaban

where Tx is the integral operation defined by the integration

-l-(A,C*ΔγCA}
I

-~ {A,C*Δ1CC(0)(Λ1)C*A1CA} \ , (1.29)

and the effective action Ax has the form

/ \9i

-β1(g0)Λ(φ1,U1)}+Ba)(U1,A,S1)-Eί . (1.30)

Here we have combined the term log Z(0){A^) with the part of the previous function
E ( 1 ) in (1.26), to define the new function E ( 1 ) above. It coincides with the
corresponding function constructed in [I], if the last is suitably restricted to the
domain Λ1. This is the reason why we can renormalize it by the same counterterm as
in [I], only localized properly. The boundary term B ( 1 ) was described before. The
constant Eί is obtained from E by subtraction of all the constants which have
appeared in the procedure, i.e., the constants in the first exponential in (1.15), and
the constant E(1)(^t1,gf0,1). Thus E1 depends on Ωί,Λ1.

The representation (1.28)—(1.30) will be generalized in the next section to an
inductive description of the k-th effective density, with some modifications
connected with new terms obtained by the R-operations.

2. The Inductive Assumption and Formulations of Results

We write the inductive assumption for the density obtained after k renormalization
transformations. It is written explicitly, as in (1.28)—(1.30) for the first step, except
that the operations corresponding to the operation Tx in (1.29) are left undefined,
only their basic general properties are formulated. Their inductive definition will
follow successively from the constructions of the subsequent section and forth-
coming papers.

The fc-th density ρk(Vk) is a function of the new field Vk on the lattice T{k\ It is
represented by an expansion generalizing the expansion (1.28) in the first step.
Terms of this expansion are parametrized by sequences of domains in Γ, of the type
described already several times in previous papers, e.g. in (1.3)—(1.6) [14], or (38),
(39) [16]. Let us start with the description of this geometric setting. We consider
sequences of localization domains {Ωj}, j=l,2,....,k, ΩJEΌJ, such that
Ω 1 D β 2 D . 1 . . D Ω k . For such a sequence we consider sequences of localization
domains {Λj}, ΛJEΌJ, such that

. (2.1)

We consider also a third family of sequences {Sj},j =1,2,. . . . ,/:, where Sj <= ΩjΠΛj,
and Sj is either empty, or it is a union of LM2Rj -cubes in the lattice TLJ. For the
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domains in (2.1) we admit the possibility that Λj = Ωj for some indices/ Such a
situation may arise as a result of an R-operation. If ΩjnΛj is nonempty, then Sj is
nonempty too; in fact it contains ΩjXΩf'1 = Ω7 n(Ωj)~. There is a characteristic
function χ(ΩjΓιΛj,Sj) associated with these domains, which includes a large
fluctuation field characteristic function associated with the set R. = 5 J \(ΩJ n(Ωj)~).
There is also a function ζ(Ωj), which includes summations over other large field
characteristic functions. These functions were defined in the first step, and their
inductive definition will be given in the next section describing the fc + l-st
renormalization step.

For a sequence {Ωj, where Ωj are considered as subsets of Tη, we denote

k , and B = U Γj
j=o

This definition is meant for sets of points, bonds and plaquettes, with the
convention described in Sect. 0 [I]. The set B determines the sequence {Ωj}, and is
called the determining set. The domain Ωι, or rather a small neighborhood of Ωx

including a layer of Mγ-cubes (M^-cubes in the ^-lattice), is called its support. We
denote further

ZJ = Λ'J . (2.3)

These large field regions satisfy the following condition: if a component of Z 7 is
contained in a cube of the size 100 MRj (in the ZΓJ-lattice), then it is a rectangular
parallelepiped.

Now let us define numbers describing sizes of domains and restrictions on fields.
We define

j j y ° = g j p Q ( < g j ) ; (2.4)

Rj is the smallest number of the form U such, that

R^oggj2)1- . (2.5)

The coupling constants g-} satisfy the inequalities

β0)gn , (2.6)

where n>m, and βo>0 can be chosen arbitrarily small, if g is sufficiently small. The
inequalities follow from the renormalization group equations (0.20) [I], and from
the properties of the ^-functions. They imply the following inequalities:

(2.7)
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where p is a positive integer. From the above inequalities we obtain

and

εmfί(l+βo)(ί+g2j'(n-m))l>°εn

^(\+βo)
2{n-mγ°εn , (2.8)

(2.9)

Similar inequalities hold for other constants, which will be introduced later.
The domains Ωj,Λj, which are determined by hey-th renormalization trans-

formation, but not by the R-operation, are unions of MRj-cubes in the lattice TL-3.
They satisfy also other conditions, e.g., the distance between their boundaries is at
least equal to 2MRj, which will be determined inductively by the operations in the
fc + l-st step.

In the first step the integration with respect to the variables U\Ω^ = VQ was left
unchanged. Similarly in the next steps there are integrations with respect to
variables on large field regions left. Iny-th step the region is Ωj, and gauge field
variables Vj_1 are defined on bonds of Ωjj~1)c. Obviously Γj_1dΩi

j

j~1)c, and we
assume that the field Vj__ί is regular on Γj_ι in the sense that \dVj^1—1|
<0{L2)&j^1. The fields Vj determine the field V defined on B:

V=Vj on/} , y = 0,l,....,£ . (2.10)

It is convenient also to introduce the averaging operation M B associated with a
determining set B. It transforms a gauge field U on the lattice Tη into the gauge field
MB(U) defined on the set B by the equalities

MYί(U) = Mj(U) o n Γ J 5 j = O,l,....,A:. (2.11)

A regular configuration Von B determines the minimal orbit, i. e., the set of minima,
of the functional

U-+A\U) on U:U regular and M B ( C / ) = K . (2.12)

For precise definitions and the theory of this variational problem see [15]. A mini-
mal configuration, i.e., an element of the unique minimal orbit, is denoted by
UB(V), or Uk(V), or simply Uk9 if there is no misunderstanding about the determin-
ing set B, or the configuration V. These configurations, and their properties, pro-
vide crucial technical tools in our method, and we will use all the results of [15].

In constructions of this and subsequent sections and papers we will have to
localize gauge field configurations, especially solutions of the variational problems,
so it is convenient to describe some standard constructions, and to introduce some
new notations. Consider a domain Ω such that it is a union of Mγ-cubes in the lattice
Tξ,ξ = L~j. For this domain we build a minimal determining set with a support in β,
or a sequence of maximal domains Ω = Ω O D Ω 1 D . . . . D Ω J such that Ωn is a union of
LnξM1 -cubes, and ά\^ί{Ωn,Ω

c

n_1)^LnξM1, n = l,....,j (the distance is for the

lattice Tξ). It is easy to see that d is t(Ω j ,O c )^2M 1 , or Ω~~2czΩj, where the
operation ~ is taken for Mx-cubes. We denote this determining set by Bj(Ω), and the
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corresponding minimal configurations by

U(Bj(Ω\') = UlΩ( ) . (2.13)

Later we will introduce simplified notations for some special cases. If we are given a
determining set B, and the corresponding function £/B, then it is frequently
necessary to localize them to a domain Ω. Assume that dΩczΩj\Ωj+1 , that Ω is a
union of M1 -cubes in the lattice Tξ, and that the distance between dΩ and this
boundary of Ωj9 Ωj+ί, which is contained in Ω, is greater than, or equal to 2Mγ.
Take the set B }(Ω\ and form a new determining set by

J J ~ 2 ) ) . (2.14)

The corresponding function is denoted by

(2.15)

We can also have a more complicated situation, in which the boundary dΩ is
contained in several different domains Ωj\Ωj+1. Then we construct the correspond-
ing determining sets restricted to the domains, and we define the set BuB(ί2) by
(2.14), with the right-hand side summed up over the domains. The function
determined by this set is denoted again by (2.15).

We consider the partition of the lattice Tη into LM2 /?fc-cubes, compatible with
the other partitions, and for each cube • of this partition we define the function
Uk,π(Vk)by

where QkVk is defined as in (1.3), only 1-blocks are replaced by fc-blocks. The
notation in (2.16) is a slightly different, simplified version of the notation in (2.13).

Let us write now a general form of the expansion of the density ρk. At first we
define

= Π XN sup \UktΠ(Vk9dp)-ί\<skη
2\ , (2.17)

where the cubes D belong to the partition of the lattice Tη into cubes of the size
LM2Rk. This partition is compatible with all other partitions of this lattice. The
density ρk(Vk) can be represented as

(^9 Uk) , (2.18)
/

where the summation is over the admissible sequences of domains. Summation over
the sequences {Sj} is included in the operation Tk, and the effective action Ak

depends on the sequences {ΩJ},{ΛJ},{SJ}. We suppress this dependence in our
notation, so we will write simply Ύk,Ak.

At first we describe in general the operation Tk. It was described in detail in the
first step, and the complete inductive definition will follow from constructions of the
subsequent sections. Basically this operation is a composition of integrations
restricted to large field regions in successive scales, and multiplications by
characteristic functions, (5-functions defining renormalization transformations,
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and gauge fixing expressions. We start the general description with factorization
properties. The last large field region is Z k , and Tk is supported in it, in the sense
that it involves integrations and variables restricted to this region. If Zk is
represented as a union of disjoint regions, e.g. as a union of connected components,
Zfc = Z 1 u. . . .uA r

n J XtnXj = 0 for iφj, then

τ f c(z k)=πτ f c(jr i) . (2.19)
i = l

The operations corresponding to disjoint regions commute, i.e., Ύk(Xi)Ύk(Xj)
= Ύk(Xj)Ύk(Xi). For a given large field region X the operation Ύk(X) can be
factorized into a product of one-step operations, and has the form

Tk(*)= Π Ύ^(ZJ+1nX) . (2.20)
j = k-l

This is an ordered product, the order indicated in the product symbol. The
operation T ( 7 ) involves integration with respect to the gauge field variables Vj on
Ωj+1 nX, and with respect to the fluctuation field variables Aj on Zj+1nΩj+ι nX, if
the last set is nonempty. This operation comes from the renormalization
transformation T in they + 1-st step, and if it is not changed by an R-operation, then
it has the form

R
> ] •

(2.21)

More precisely, the quadratic form in the exponential couples only the fields Aj in
the same component of Z J + 1 nί2 J + 1 . The other terms of this quadratic form are
included into the effective action into B-terms. If the operation T o ) is changed by an
R-operation, then the general form (2.21) is preserved, but the characteristic
functions are changed, and the domain Zj+ιnΩj+1nXmay be empty. We will use
the factorization (2.20) in the form

Ύk(X)= Π T ( ^ ( Z j + 1 n I ) T m ( Z m n I ) , (2.22)

and in the case where the last k—m operations have the form (2.21).
Now we describe the effective actions Ak. This is the most important part of the

inductive assumption. The action Ak is determined by the three sequences of sets,
and it depends on the gauge field variable V, given by (2.10), through the
background field Uk(V). This field is determined by the sequence {Ωj}, or rather its
determining set B. Let us denote the system of the fluctuation fields {^--i} by A.
The effective action Ak has the following general form:

\ , Uk)= -A(\, Uk) + Ek(Uk) + Rk(Uk) + Bk(Uk,A)-Ek . (2.23)
9 \9k J
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All the expressions above depend on the sequences {Ωj}, {Aj}, the expression Bk

depends also on the sequence {Sj}. Before we describe them in detail let us ex-
plain briefly their meaining. The term Ek is the regular part of the action. It has the
same properties as the effective action constructed in [I] for the small field
approximation, but localized properly in different scales to domains determined by
{Aj}. This expression is fully renormalized, i.e. vacuum energy and coupling
constant renormalization counterterms are included into it. The term Rfc arises as
the effect of the R-operations, and has localization properties similar to those of the
term Ek. For this term we perform the vacuum energy renormalization only. The
term Bk includes various expressions localized closely to large field regions. It does
not require any renormalization.

We start the detailed description of the terms in the effective action (2.23) with
the definition of the function g\{x). It is defined by the sequence of the
renormalization group equations generalzing Eqs. (1.0.20) and (1.27):

2 , ^ - T 7 ^ + /?;0?/-iW*) ( 2 2 4 )

Here the coupling constants gj_ί are defined as in (1.0.20), and φ^e C0°°(/ly), φj= 1
on ΛJ ~ι. Thus gj (x) = gj on the last domain.

The term Ek has the representation (1.1.7), but localized properly:

j

(2.25)

Localization properties of E 0 ) are crucial for our analysis. We need a different, more
detailed description than the one in (1.1.27), because now we must obtain more
information about bounds for (2.25), and for localized expressions. Let us denote by
Λ® the set which is obtained by removing one layer of the MRj-cubes from
Ajj) a T[j\ The following representations hold:

Έ,(J)(Λj9Uk,z) , (2.26)

j Σ E U ) W Uk,z) , (2.27)
XBZ

where the last sum is over localization domains Xe Dy contained in A^Xa Λj. The

term E 0 ^ , Uk, z) of the last sum has the following properties: (i) it depends on Uk

restricted to X; (ίi) there exists an analytic function E( j )(X, (U, J), z) of the variables
(U, J) e Uj(X, αo>J , oiίfJ), which is an extension of this term, i.e., the equality (I.I .9) is
satisfied; (iii) the extended function is invariant with respect to the gauge
transformations (1.1.10) (iv) it satisfies the inequality (1.1.18). These properties are
the same as in [I.I]. The numbers α 0 J , 0Lίfj in the symbol of the space are given by

otOJ = gjC0(\ogg;2y° , a^gjC^oggJ2)** , (2.28)

where q0, qx are integers greater than 1, Co, Cx are sufficiently large positive
numbers.
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The last important property is the Euclidean covariance. We have it only for
functions Έij)(Uj, z) defined by the equality (2.27) with the unrestricted summation,
i.e., with the sum over all Xe Όj containing the point z. These functions satisfy the
equality

E^(rUj,rz) = E^(Upz) (2.29)

for arbitrary Euclidean transformations r of the lattice Tij\ and for regular
configurations Uy This implies that the function EiS)(Uj9 z) is invariant with respect
to the Euclidean transformations of Uj leaving the point z invariant.

The term Rk has the renormalization similar to (2.25):

Rk(Uk)= Σ [R{j\Λp Uk) -Ru\Λp 1)] . (2.30)
j = i

Each function Rij)(Λj,Uk) has the localized renormalization of the form (1.1.7),
but with the summation over localization domains Xe Όj contained in
Λf ~1, Xcz Λj~ ~1, which are unions of the MRj-cubQs in the lattice Tξ. Terms of this
representation have the properties (i)-(iii) formulated above, after (2.27). The
property (iv) is different now; we assume that the following stronger inequality
holds:

| R ^ ( Z , ( U , J ) ) | ^ ^ ° e x p ( - ^ . ( X ) ) . (2.31)

Here κ0 can be chosen arbitrarily large, similarly as K, if the other parameters are
fixed properly, as in [I]. The above inequality is connected with the fact that the
terms are defined by integrals including large field domains of integrations. It
explains why coupling constant renormalization counterterms are not needed in
(2.30). After the vacuum energy renormalization we obtain a sum of marginal
terms, i.e., terms with bounds O(l)(Ljη)4g1j°exp( — κdj(X)). The sum over X is
controlled by the exponential factor, and by the factor (Lίηf. The sum over j is
controlled by gψ.

The functions R{j)(X, Uj) have the Euclidean covariance property

RU)(rX, rUj) = Rij)(X, Uj) (2.32)

holding for these Euclidean transformations r, which leave the partition of the
lattice Tξ in M ^ -cubes invariant. The above property will follow immediately from
the construction of the R-terms given in the next paper. If we sum up all these terms
over all the admissible domains X in Tξ, we get a Euclidean invariant function
R{j)(Uj), i.e.,

? where RW(ί/.) = ^R(i)(l,[/.) , (2.33)
x

and the transformations r are as above.
The term Bk is the simplest term from the point of view of the renormalization, it

does not need any renormalization, but it has the most complicated structure and
properties. It is a sum of small, or at least bounded, localized terms, with
localizations close to large field regions.

The terms of Bk are analytic functions of the variables (U, J) introduced in the
same way as in the regular cases before. The analyticity domains are spaces defined
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similarly as in (1.1.11 )-(1.1.16), but now we must take into account the existence of
many different scales. We introduce the following definition.

The space Uj(X, α0, oq) for Xe Ώj is the set of configurations (U, J) defined on X
and satisfying the three conditions below.

(i) U = U'U, U has values in the group G, and the configurations

U, U, UPiX(M p { } l p P t

satisfy the bounds

^ ) 2 2 , (2.34)

-n-2 , (2.35)

, (2.36)

-β(ί -2-^^))(xOinL
n-^^(LnL-η-3 , (2.37)

on Xn(Ωn\Ωn + 1) for n = l,....j — l, or on XnΩj for n=j.

(ii) For each cube Π^Ωn\Ωn+2, Dn£^ + 1 =#0, n = l,....,j — l, of the size
CMLnξ, o r Π c Ωj and of the size CM, there exists a gauge transformation u defined
on ΠnX and such, that

Uu = QxpiξA9L
nξ\A\,(Lnξf\VξA\<BCMoίθ9n (2.38)

on D π l , with an absolute constant B.
(iii) Ur = QxpiξAf, A' has values in the algebra gc,

xUn (2.39)

on Xn(Ωn\Ωn + 1) for « = l,....,y —1, or on XnΩj for n=j.
The number β is a small positive constant, but not too small, e.g., we can take

/? = l/4. The spaces defined above are invariant with respect to G-valued gauge
transformations. This definition gives a more detailed and precise form, suitable for
our inductive constructions, of the regularity conditions for background fields,
introduced in [13-15].

Now we can write the form of Bk. It is given by the sum

Σ BW(Uk9A,{Si}) , (2.40)
J = I

and a term in this sum has the localized representation

(2.41)

where the sum is over domains XeΌj such, that XnΩyφ0, and XnZJ +0. The
localized term in the sum on the right-hand side above has the following properties:
(i) it depends onUk,A restricted to X; (ii) it has an extension to an analytic function
on the space Uj(X, α0, Si); (iii) the extended function is invariant with respect to
(G-valued) gauge transformations of U, J, A (the variables J, A are transformed by
the adjoint representation of the gauge transformations); (iv) it satisfies the bound

\B(j)(X, (υ,JlA,{SinX})\<Boεxp(-κdj(X)) . (2.42)
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The terms have a bit more precise localization property. Denote Ωo = Ω± , and
consider XnΩ0. It is a union of components. If a component does not connect to Ωj9

i.e., if the intersection of this component with Ωj is empty, then the functions does
not depend on the fields (U, J), A restricted to this component.

There are other possible forms of the inductive assumptions for the boundary
terms. For example, we may resum all the terms with localization domains
intersecting a given component of the large field region. This gives sum (2.41), with
the summation over domains Xe Dy such that Neither contains a component of the
large field region Z 7 , or is disjoint with it. Resumming we lose a part of the
exponential factor in (2.42), connected with the region Z ; ; hence for the new terms
we obtain the bound (2.42) with dj(X) replaced by dj(X\Zj). All constructions and
proofs of the procedure can be carried on with these inductive assumptions. We
have chosen the ones above, because they agree with the assumptions for E-terms
and R-terms.

The constant Ek (depending on {Ωj}, {Λj} also) is obtained by subtracting one-
step vacuum energy expressions, generated in small field regions, from the initial
constant E. This initial constant is defined in fact as a sum of all such expressions for
all the lattices T(k) as the small field regions. The constant E1 was defined in Sect. 1,
and a general inductive definition will be given in the next section.

All the inductive assumptions are formulated for the effective density obtained
after the k-i\\ operation RT. It is a composition of the operations 7"and R, applied in
this order, and after the operation T we obtain expressions with better analyticity
and decay properties. More precisely, the expressions with indicesj< k are exactly
as described above, but the newly created expressions E{k\ R(k\ B(/c) are defined on
slightly larger spaces, with the coefficients in their definition bigger by β multiplied
by a corresponding number, and they have better decay properties, with the number
K replaced, for example, by (1 + 4β)κ. Such improved bounds are needed for the
R-operation.

Now we are ready to formulate the basic results of this paper. The first theorem
is a generalization of Theorem 3 [I].

Theorem 1. There exist constants, introduced in the above description, such that if the
sequence of coupling constants {gk}, determined by the recursive renormalization
group (Callan-Symanzik) equations (0.18), (0.20) [I], satisfies the inequalities
(1.0.33), then the sequence of densities {ρk}, generated by successive applications of the
operations RT to the density ρo = exp [— (l/gl)A — E], satisfies all the inductive
assumptions. The constants satisfy numerous restrictions introduced in the proof.

Let us make two remarks connected with the formulation of the above theorem.
At first, some of the restrictions on constants, e.g. on constants TC, M, SJ, α 0 J , α1><; ,
come from the paper [I]. We assume that all of them are satisfied here, and we will
introduce some new restrictions also.

The second remark concerns a possible generalization of this theorem. For a
given index k we introduce the space of all densities satisfying the conditions of the
inductive assumption. The theorem states that the operation RT transforms the
space with the index k into the space with the index k + 1. This generalization does
not seem to be useful, or interesting now.
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Obviously we are interested not only in getting representations of the effective
densities, but also in proving uniform bounds for them. We state now several results
of this type. We formulate bounds for the effectiove actions separately. We start
with localized expressions and bounds. Let Ω be a domain from Όk contained in
Bj(Λ]), and let φ e Q° (Ω~), φ = 1 on Ω. Notice that here Ω~ denotes the union of
the domains (Ωn(Ωn\ΩM + J ) ~ , n =j\....,k, the operation ~ is in the corresponding
scale.

Theorem 2. Under the assumptions of Theorem 1 there exists a constant Ex

independent ofj, k, Ω, {Ωj}, {Λj}, T (but dependent on the other constants occurring
in the formulation of this theorem), such that

zeΛ<>nΩ

Σ {IJ-»y\ΓnnΩ\ , (2.43)

for β< 1, and sufficiently regular configurations Uk= Uk(V), e.g. for V restricted by
the characteristic functions in (2.18). The constant Ex depends on β also, and grows to
oo if β->\. The volumes are taken in the corresponding scales, i.e. \ΓnnΩ\ means the
number of points in the set ΓnnΩ c 7j(π). Similarly, there exists an absolute constant Rx

such, that

k

Σ [R01)(Jsr5ί/k)-R(j)(Jsr,i)] ύRigf Σ l Γ * n β l > (2 4 4 )

for the regular configurations Uk. (In fact the constant i ^ can be taken as equal to 1
for gj sufficiently small.)

The most essential part of this theorem is the inequality (2.43). It is an immediate
consequence of the inequality with the set ΛfnΩ replaced by one point, and with the
function φ replaced by a function, which is localized in a neighborhood of this point,
and which is an element of a special decomposition of unity. The new, more detailed
representation (2.26), (2.27) of this part of the effective action is introduced in order
to prove this inequality. The second inequality (2.44) is more elementary and easier
to prove. It follows from the considerations of Sects. 3, 4 [I]. Let us write now some
consequences of these inequalities. Taking Ω = Bj(Λj), φ = φj in (2.43), and
summing the obtained inequalities over j , we get

k n k

iEk(C4)ig£i Σ \Γn\ Σ (jj-ny<E1(\-L-βy1 Σ ι̂ ,ι (2.45)
n = 1 j = 1 «= 1

Similarly, taking Ω = Bj(Λ( ) in (2.44), and summing over7, we get

|R,(t4)l^i Σ W Σ 9?<*i Σ \rn\gκn°~6< Σ \Γ»\ > (2 46)
n—i J = l n—\ n—\

for κo^7 and g sufficiently small. Bounds for the boundary terms (2.40) are even
more elementary. We use the exponential factor exp(— (K — l)dj(X)) from the
inequality (2.42) to control the sum over X in (2.41). The remaining factor
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exp (— dj(X)) is used to get an additional small factor, e. g. for/ > n it can be bounded
by 2~u~1~n\ Thus we obtain

for j>n, and this inequality with \Γn\Λk\ for j = n. Summing over j from n to k, and
then over n from 1 to k, we get

Σ \Γ«\ (2.48)
i = l

Finally, the vacuum energy counterterm Ek, except the terms logarithmic in
coupling constants, has the same bound as above, only with a different constant.

These bounds yield the following bounds for the effective actions

— 9 uk)=-A[-2, Uk\ + (the logarithmic terms) + 0(1) £ |Γ, | .
9 k / \ak J j=l

(2.49)

The first term on the right-hand side yields the small factors for large field
characteristic functions. It also controls the logarithmic terms. Thus we estimate the
integral j dVkρk by a sum of terms similar to the one considered in Sect. 3 [6], e. g., see
(3.42). The procedure is constructed in such a way, that the combinatorics now is the
same, relative to the 77-scale of the lattice Tη, as in [6], hence we have the same result
for this scale.

Corollary 3 (Ultraviolet Stability). Under the assumptions of Theorem 1 there exist
constants E_, E+ independent of η and Γ, but depending on gk, such that

™ . (2.50)

3. The k + 1-st Renormalization Transformation and the Proof of Theorem 2

We apply the next renormalization transformation to the density ρk, and we study
the generation of the new density, and especially the terms E ( k + 1), R ( k + 1 ) , B ( f c + 1 ),
Eik + 1\ The inductive assumptions and Theorem 2 are proved for these terms.
Almost all operations and bounds were studied in the previous papers [16,1], so we
concentrate only on new issues.

Using the inductive assumption we write

(Tρk)(Vk + 1)= X ϊdVkδ(VkVk-+\)χkTkπpAk, (3.1)
{ΩJ},{ΛJ}

and next we consider one term on the right-hand side. Notice that the restrictions
ontroduced by the characteristic function χk imply that the new fields Vk + ί satisfy
the bounds \Vk + 1(dp') — l\<2L2εk forp'eΓJ^K We introduce new restrictions on
these fields. The term has a large field region Zk = Ak, and we denote by Zk the union
of all LMRk + 1 -cubes intersecting the region Zk, and belonging to the partition of
the lattice Tη. This partition, or the corresponding partition of the lattice TL-ιη into
MRk + 1 -cubes, is compatible with all the previous partitions. We surround Zk by
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four layers of the LMRk + 1 -cubes, i.e., we take the domain Zk~
4, and we introduce

the following decomposition of unity for the domain (Z^~4) c:

1= Σ Π x
Pk+ί D ' C P £ + 1

' Π
B'CPk+

= Σ

where the summation is over domains Pk + ί<^(Zk'~*)c, which are unions of
L2M2Rk + ί -cubes. The cubes are from the partition of the lattice Tη into cubes of the
size L2M2 Rk + ι,or the partition of the lattice TL-ίη into cubes of the size LM2 Rk + ί-
The partition is compatible with all the other partitions. We take the set Pk + 1 - the
union of all LMRk + x -cubes intersecting Pk + 1 - and we surround the union
Pk'+1uZk~

4 by a layer of LMRk + ι-cubes. In the complement (Pk"^1uZk^
5)c

we introduce the axial gauge fixing as in (1.5), with Vk, εk, gk instead of U, ε0, g0.
Denote by Pι

k + 1 the subset of T(k+1) such that 5 f c + 1(^fc+i) = ( ^ ΐ i ) c ^ ( ^ Γ 5 ) c

We get an expansion of the form (1.6), with the corresponding changes. Next, we
surround the domain P ^ u Z ^ 5 by a layer of LMRk + 1 -cubes, or we take off
such a layer from Bk + 1(Pl+ί), and in the domain (Pk'Ί\κjZk~

6)c

= (Bk + 1(Pl+1))~~1 we introduce the decomposition of unity restricting the
approximate fluctuation fields,

1 = Σ Π x[\ sup

• Π x(\ sup \Vk(b)(V$(b)Γι-l\^

= Σ xί(QUi)xίe(Qt+i) (3-3)
<2k+i

The summation is over subdomains Qk + 1^(Bk + 1 (Pk

x

+ ί))~~1, which are unions of
L2M2Rk + 1 -cubes, and the complement is relative to the domain (Bk + 1(Pk

ί

+1))~ "1.
The configuration V{$ is defined on (D/~)(/c) by

Kg> = Λ/*(C/k + 1 > D 0 , (3.4)

and δk = gkAί/Aopo(gk). We denote again by Qk+1 the union of LMRk + x-cubes
intersecting Qk + 1, and we surround the domain Qk+ιv((Bk+ί(Pk

1

+ι)
c)~ by two

layers of such cubes. Denote

Ωk+1=(QΓ+

2MBk+\Pi+1γyy, (3.5)

hence (Qk + 1)
c = Qί+ίu(Bk+ί(Pl+1)

c)~. On the domain Ωk

2

x there are only the
small field characteristic functions from the above decompositions of unity. Now
we prove that on Ωk~+ ί the functions χA x and χk are equal to 1. Take χk(Π) for a cube
• <=Ωk~+1. This cube determines a cube •' of the next partition, such that
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• <=π'<=Ωt~+1. For the function UKΏ we have

(3.6)

On almost the whole cube D~ 4, except a boundary layer of the width 2 Mγ, the field
in the argument of the function Hk π is equal to (1 //) log [ Vk (V^) ~1 ], hence it can be
bounded by 4δk. On the boundary layer this field can be bounded by 30d2L2B3(\
+ βo)εk by an application of the inequality (1.65) from [14], or rather by an
application of the reasoning leading to that inequality. By the exponential decay
property (190) [15] we obtain the estimate

,ί + exp(-δ2M2Rk)30d2L2B3(l+β0)εk)

< — εk on D~ , (3.7)

for AγjA0 and y sufficiently small. This estimate and the equalities (3.7), (1.43)
[14] imply

<2(l+βo)L-2εkη
2+~εkη

2<εkη
2 for paΠ~ . (3.8)

Thus χk(Π) = 1 for Π<=Ω^+1. For a function from χAx we have a simpler situation.
Using the axial gauge for VQ), we have

^εk<εk for ye(Ωk + 1Y
k + ί) , xeB(y) , (3.9)

and for A1/Ao sufficiently small. Thus χ\x((Ωk~+iy
k)) = l.

On the domain Ωk + 1 we introduce a fluctuation field as in [16]. Define the field
V{k) on Ω^lγ as the minimum of the functional

for Vk:Vk=Vk+1 on Γ, + 1

= l for j e Γ k + 1 , xeB(y) . (3.10)

This minimum is given by V{k) = Mk(Uk + 1), where the minimal configuration Uk + 1

is determined by the sequence of domains {βk + l 5ί2 f c,....}, and the corresponding
sequence of fields {Vk + 1\Γk + i, Vk\Γk,....}. The fluctuation field Vk is defined now by

y1 on B(Γk + 1) . (3.11)
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Consider a cube D'<=Ωk + 1 . The restrictions on the fields Vk, Vk + 1 on Ωk~+ί, and
Theorem 1 from [16] imply, that Uk + ί satisfies the following regularity condition:

\Uk+1(dp)-l\<2B3L
2(l+βo)h(L'1η)2 for />cπ'~ . (3.12)

On this cube the configuration Uk + ίtΠ> satisfies the regularity condition as above,
only with the coefficient 1 in front of εk + ί . By the definition of these configurations,
and the constraints on Vk, we have Mk + 1(Uk + 1) = Vk + 1 = Mk + 1(Uk+1>π>) on Π'~.
Applying Lemma 1 [14] we obtain

\V™-V§)\<(4dL)2(l+β0)B3εk on π'~ , (3.13)

hence

+ (4dL)2(ί+β0)B3εk = O(l)εk on π'~ . (3.14)

This implies that \Vk —1| <O(l)εk on Ωk + ί, because Π' is an arbitrary cube
contained in Ωk + 1. We define Ak = (\/i)log Vk, hence \Ak\<O(l)εk also.

This way each term in (3.1) has been written as a sum of terms of the same type,
but with the new characteristic functions inserted. We represent this sum as a sum
over admissible domains Ωk + ί, and for a fixed Ωk + 1 we resum over admissible sets
Pk + 1, Qk + i, i e >the sets which satisfy all the conditions of the above constructions,
and which determine the same fixed Ωk + ί . The resummatίon applies only to the
characteristic functions and the gauge fixing terms localized in Ωk\Ωk + 1. Denote the
sum by ζ(Ωk + ί). The other characteristic functions introduced above are localized
in Ωk + U and are equal to χk + 1(Ωk + ί)χ'k(Ωk + ί ) .

The next steps are exactly the same as in Sect. C [16], and in fact the same as in
Sect. 2 [I]. We expand all the expressions with respect to Ak, and we linearize the
expressions in the ^-functions for bonds in Γk+1. Finally we remove the δ-functions
using the operator C, and we perform the scaling transformation Ak = gkAk. All the
applied formulas are the same as in Sect. 2 [I], only the symbols represent different
operators, determined by the sequence {Ωj}. Their properties are essentially the
same as before, because of the localization of the field Ak. Let us write the result of
these operations.

Σ Xk+i(Ωk+1) μvk\Ω

+ logσ0\B(Γk + 1)*\

l f c > ί dAk\Ωk+iχ'k(Ωk+1)
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ϊ + B^(Uk(Gxpi[gkCAk-hΰ(gkCAO]V^))

~\> Uk(cxpi[gkCAk-hD(gkCAk)]
Ok

(3.15)

In the above integral the characteristic functions χ'k depend now on the field V(k\
hence on the new field variables Vk + 1 on the whole set Γk + ί . We want to have
characteristic functions depending on the fluctuation field only, hence we introduce
another decomposition of unity. Consider the domain Ω^^1, i.e., the domain
obtained by taking off one layer of LMRk+1 -cubes from Ωk + 1. On this domain
introduce the decomposition of unity

1=Σ Σ χ ( L ( D % , ) J
Λ ( Z ? ) l < ( 5 f c } ) D , c

I ] χ{{beia%^Akib)l-δk}
= Σ x{k)(Rl+i)χ{k)c(Rk+i) , ( 3 1 6 )

where the summation is over the subdomains of Ωk\γ, which are unions of
L2M2Rk + 1 -cubes of the partition of unity, and the complement Rk + 1 means the
complement of Rk + ί to the domain Ωk+\ι. For a cube Ώ'^Rc

k+ι there are now two
small field characteristic functions in the integral, one from the decomposition (3.3),
and another from the decomposition (3.16). The first is equal to 1, because of the
bound on Ak introduced by the second, and the fact that the configuration
j / ^ j / g ) ) - 1 _ 1 i s small, much smaller than δk. This follows from the identity
analogous to (3.6),

"(GΓ+i ^-hi))" 1]) C^ + i.π'I

(3.17)

The field Uk + ι satisfies the regularity condition \dUk + ί — l\<2B3εk + 1(L~1η)2 on
Ωk+ι, hence the argument of the function H k + 1 > π is bounded by 44d2B?)εk+ι, and
has a support in a boundary layer of the width 2LMγ at the boundary of D'~ 4.
Thus, the function H k + 1 j D , is bounded by i?3exp( — δLM2Rk+ί)44d2B3εk+i

<,44d2B2(ί+β0)exp(-Rk)εk on D^ 2 , and

^ (3.18)

These facts, and the bounds (106)-(108), (159)-(163) in [12], imply

= O(l)44d2B2(l+β0)^exp(-Rk)δk<δk (3.19)
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for gk, or 7 sufficiently small, and Z?e(D'~2)(k)*. Thus for cubes D'c:i?£+ 1 there are
only the small field characteristic functions from the decomposition (3.16) in the
integral. The domain Rk + 1 is defined, as usual, as a union of the LMRk + 1 -cubes
intersecting Rk + ί . We surround the domain (Ωk + 1)~uRk + ί by a layer ofLMRk + 1-
cubes, and we denote the complement of the so-obtained domain by Λk + ί, hence

(3 2 0 )

In fact we modify the domain Λk + ί in the same way as in Sect. 1; we consider
components of Ak + 1, and if a component is contained in a cube of the size
100LΛfjRk + 1 , then we replace it by the smallest rectangular parallelepiped
containing it. On the domain Λk+1, in fact on Ak + x also, there are only the small field
characteristic functions from (3.16) in the integral, their product is χik)(Λk+1).
On the domain Ωk + ίnAk + ι there is the function

1nΛc

k + 1,Sk + 1) = /k\Rc

k + ίnΛc

k + 1)χ^(Rk + 1)χi(Sk + ^ . (3.21)

The last function above depends nonlocally on Vk + 1, through the function V{k\ We
remove this dependence by an operation similar to the one in Sect. 1, formulas
(1.21)—(1.23). We take the determining set B(Ac

k+1nAk)vBk+ί defined in (2.14),

which in this case is simply equal to the union Bk + 1(Ak + 1)\Ωk + ιuBk(Ak)\Ω

c

k+^

and the corresponding function

We want to replace V{k) by the k-th average of the above function. We use again the
formula (3.17), but with Uk+lf0, replaced by the above function. It yields the
representation (3.18) with the corresponding changes, e.g., V§) is replaced by
V{k) . , and with similar bounds. Denoting

we obtain that H ( k ) is an analytic function of the background field Uk + 1 restricted to
Λk + ιnΛk, bounded on the set Sk + 1 by 0( l)ε k exp( — Rk), hence by any positive
power of gk. Now we make a change of variables for each bond variable
Ak(b), b e S^. For bonds in C R ^ nSk+ί)

ik)* we take the change of variables given
by the formula (1.22), with H(k)(b) instead oΐHίAx(b). For the remaining bonds we
take the simpler change of variables with the function g(Ak(b)) replaced by 1. These
changes of variables transform the function χ'k(Sk + ί) into the same function, but
with V{k) replaced by V$ nΛk. We use the same notation for the new function. The
other characteristic functions are unchanged. The action is changed by terms
corresponding to (1.24), and by terms obtained by the first order expansion of the
action with respect to the perturbative parts of the changes of variables. We denote
this new part of the action by Vik)(Sk + ί,Ak,H

ik)). All terms of the previous action
contribute to it, but the differentiation with respect to the perturbation gives an
additional localization in Sk + 1. The above operations render each term of the sum
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in (3.15) as a sum of terms. We write this sum as a sum over domains Λk + 1, and for a
fixed domain Λk + 1, as a sum over the admissible sets Sk+ί.

For each term of the obtained sum we consider the conditional integral with
respect to Ak restricted to Λk + ί . The remaining integration with respect to Ak

restricted to Ωk + ίnAk + 1 is included into the operation T(k + 1\ Thus we define

Γ-i•expΓ {Ak,CΔCAk)+

(3.23)

Here z(/c) denotes the product of factors corresponding to bonds in Γk + 1nΛk + 1.
Denoting the sum of constants in the first exponential in (3.15) by E^k), and defining

, (3.24)
we get

Σ χk + 1 ( k + i ) k + i p U f ^
{ΩJ},{VJ} L \9k

(3.25)

Here Ak denotes the fluctuation field on Ωk + 1nΛk + 1, and A denotes this field

onΛ fc + i
Now the fundamental problem is to represent the logarithm of the last

fluctuation field integral in the form described by the inductive assumption, i.e. as
the sum of three terms E ( k + 1 ) + R(k + 1 ) + B(k + 1 ) satisfying the inductive assumption.
Let us remark that these terms correspond to the particular sequences
{Ωj}, {Λj}, {Sj} obtained after the Λ: -h 1-st renormalization transformation, and
they will be changed properly after the R-operation. Therefore we need the
improved statements and bounds for these terms, discussed before the formulation
of Theorem 1, but we obtain such improvements quite naturally.

At first we decompose the logarithm of the fluctuation field integral into a sum
of three expressions, which contribute mainly to the three terms. This decom-
position is rather naturally connected with the form of the fluctuation field effective
action in (3.15), but we divide the expression determined by Rk into two parts, and
we treat them differently. Let us recall that the Euclidean co variance property (2.32)
holds for Euclidean transformations leaving invariant the partition of the lattice Tη

into L~{k~j)MRj-cubes. For k —jlarge enough, more precisely forj <Lkx, where k1 is
the largest integer satisfying L'{k~kl)MRj^L, the cubes of the partition are
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contained in L-cubes corresponding to the L-blocks. Therefore the expression

determined by the sum Rk = £ R (^ is Euclidean covariant with respect to the
i = i

Euclidean transformations leaving invariant the lattice T(k + 1\ It has the same
covariance property as the expression determined by Ek, and we include it into Ek.
The sum of the two expressions, Rk and Ek 5 is denoted also by Ek. The sum of the

k

remaining terms R k = £ R 0 ) *s treated separately. Introduce now auxiliary

parameters s,t, the parameter t multiplying the expressions Bk, A((l/gl( ))
-(\IQI\....\ V{k\ s multiplying Rk We have

l o g \ z { k ) f Λ 4 χ ( k ) e x p -\- {A, C*A{k)CA>-....

+ logΓz ( t ) jA4χ ( i ) exp ~<A,C*Δ(*)CAy-....(s = 0,t = 0).... .

Here ( > M denotes the expectation value with respect to the probabilistic measure

(3.27)

where the introduction of the parameters s, t was described above, and Zs>f is the
normalization factor.

On the right-hand side of (3.6) we have the sum of three expressions. The first is
the integral over t of the expectation value of the boundary terms, and it contributes
to B(/c + 1 ) only. The second is the integral over s of the expectation value of the
i?-terms, and it contributes to R(/c + 1 ) and B (/c+1). The third expression is the
logarithm of the fluctuation field integral involving the regular terms of the effective
action only, and it contributes to E(/c + 1 ) and B(/c + 1). This expression has to be
transformed further, because we need the particular representation (2.26), (2.27) for
the regular terms. At first we separate obvious boundary terms connected with the
external fluctuation field Ak, by expanding in this field. We introduce the parameter
/ multiplying Ak in the expressions in the logarithm. We have

log \z{k) j dAχik)εxp\ -X- (A, C*A{k)CA) - . . . . ( ^ = 0, / = 0)....
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+ (^-Ek(Uk(....)),Ak// 2

Γ Γ l ΊΊ
+ log\z i k ) f dAχ(k)exp\ — {A, C*A{k)CA} - . . . . ( ^ = 0, ί = 0,^ k = 0)....

L L 2 JJ

~

+ log z((ί) I βL4χ(/ί)exp -\- (A,C*Δ(k)CA}+Pιk)(gk,A)

+ {Ek(Uk(cxpi[gkCA-hD(gkCA)]V*>))-Ek(Uk + 1)}T\ . (3.28)

Here < ) f denotes the expectation value with respect to the probabilistic measure

{Uk(...(tAk,A)...))-Ek(Uk + i)}} . (3.29)

The first expression on the right-hand side of (3.28) is the expectation value of the
sum of terms with at least one localization in the domain Ωk + ί\Λk + ί, hence this
expression contributes to B ( f e + 1 ) only.

The remaining expression in (3.28), the last logarithm, is formally given by the
same formula as the term E(/c + x } in [I] [see (2.12), (2.13)], but the integral is restricted
to Λk + ί, and operators are determined by the sequence {Ωj}. To get the
representation (2.26), (2.27) we expand this expression with respect to gk up to the
first order. The idea is that this expansion is obtained by expanding the
underintegral expression in gkCA, because of the special structure of these
expressions. The field gkCA has the desired dependence on space variables (the
bond variables in this case), which can be used to construct (2.26). Multiplying gk by
the parameter t we have

[the logarithm on the right-hand side of (3.28)]

= logΓz<*> j ^ e x p Γ - * <Λ, C*J<*>CΛ>T| + log

dt (Jt- P«\tgk,A) + J^ Έk(Uk(...tgkCA...))} , (3.30)

where the expectation value is with respect to the probabilistic measure defined by
the function χ(k) exp [...tgk...]in the logarithm, but with the constant gk replaced by
tgk. Let us now analyze successively the terms in the above expansion. Consider the
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derivatives in the last term, in the expectation value. They can be expressed as inner
products of functional derivatives of some functions of tgkCA, with the field CA.
This is obvious for all terms in the effective action, as displayed in the formula
(2.12) [I], maybe with the exception of the terms divided by (tgk)

2. These we expand
up to the second order with respect to tgkCA. We use the fact that the lower-order
terms vanish, and we represent the remainders by quadratic forms in A, as in
(6.42) [I]. The coefficients are functions of tgkCA, and the differentiation with
respect to tgk yields such an inner product. Thus the derivatives in the expectation
value can be written as

<\'k(tgk,A),CA>= Σ trVk(tgk,A,b)(CA)(b) , (3.31)
beΛίkU

where V^ is the sum of all the functional derivatives. Consider the second logarithm
on the right-hand side of (3.30). Denote the characteristic function with the
parameter t multiplying the variables A by χ{k). Thus there is the function χ{k) in this
expression, and χ^)==l. We have

l o g ί Φ c ^ ^ o ^ H dt j dμcίkHΛk^} I ^ '( ίΦc,),,, , ,)^)" 1 > (3-32)
0 O l

and (d/dt)x{

t

k) can be written as a sum of terms, for which only one characteristic
function in the product is differentiated. Consider now the first logarithm on the
right-hand side of (3.30). The factor z(k) comes from elimination of the ^-functions,
and is equal to the product of the factors z{k)(c) for ceΛ^+^K We have

z( fc>Jά4exp -log z

(3.33)

The last term is a number, which contributes to the vacuum energy renormalization,
so we include it into the definition of E£\ The first term has already the localized
form, so we consider the second term. We have

- - logdet(C*zl ( k )C)= -X- Trlog(C*zl ( k )C)
z. z*

= — f dz\ogzΎr(C*Δ{k)C-ziyι , (3.34)

y

where the contour γ surrounds the spectrum of C*zl(/c)C, e.g. we take γ composed
of a segment of the circle \z\ =R for 7? large enough, and of an interval on the line
Re z = r, r positive and small. We take λ0 > r, but small enough, and we expand the
resolvent in (3.34) as follows:

(3.35)
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The integral of the first term on the right-hand side is equal to —1/2 log/ί0/. The
second term is O(\z\~2) as |z|->oo, hence we can replace the contour of integra-
tion by the contour {z : Imz= — r, Rez^0}u{z: Rez = 0, | Imz |^r}u{z : Imz = r,
Rez gO}, and next take the limit as r-»0. This yields

-l- l o g d e t ( C * Δ ^ C ) = -~ \ o j ?

2 o

ιτr(C*A(k)C-λoI)(C*Δik)C + λiyι .

(3.36)

Let us introduce the following definiton:

•tri(C*Δ*)C-λ0I)(C*Δik)C + λΓ1

+ [dt )
b'eΛW*,b'Φb O l

+ gk \dt(ti\'k(tgk,A,b)(CA)(b)}t . (3.37)
0

The identities (3.30)—(3.33), (3.36), together with the above definition, imply the
equality

[the logarithm on the right-hand side of (3.28)]

(3.38)

The constant above is the constant in (3.33), included into the vacuum renor-
malization E$].

The terms in (3.38) are gauge invariant. If they are constructed assuming that
Λj+1 is the whole space, i.e. assuming Ωj = Λj= Tη for j=l,....,k +1, then they are
also Euclidean covariant, and we have

E i k + 1\rUk + 1 , r - 1 b ) = E i k + 1)(Uk + ι , b ) . (3.39)

Here r is an arbitrary Euclidean transformation of the continuous space Γ,
transforming the lattice T{k + 1) into itself. We have dropped the subscript 0 because
in this case the expressions (3.37) coincide with the expressions in the inductive
assumption, e.g. in (2.26), (2.27). The Euclidean covariance (3.39) follows from the
transformation laws (2.29), (2.32), and from the definitions of the expressions in
(3.37).
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N e x t we i n t r o d u c e f u n c t i o n s hz o n t h e la t t ice Γ/ k ) , for zeT^ + 1)\

d

λ z ( x ) = Π h^μ-zμ) , A(0 = max{l-L-1 | ί |,0} . (3.40)
μ = l

They form a decomposition of unity: ^ hz = 1. With the help of these functions

we define z

Ί
)\ ,

(3.41)

This function has the same properties as the function (3.37), namely it is gauge
invariant, and, when defined on the whole lattice, it is Euclidean covariant, i.e. it
satisfies the inductive assumption (2.29) forj = k + l. The equality (3.38) implies

[the logarithm on the right-hand side of (3.28)]= £ E£k + 1)(Λk + 1 ,z) + const .

(3.42)

The functions E^ + 1)(z) are not equal yet to the functions E(fc + 1)(z) in the inductive
assumptions. These are obtained by constructing localized expansions of the
expressions in (3.41), and summing up terms with localizations in Λk + 1. The
localized expansions are cluster expansions for the expectation values, and the
generalized random walk expansions for the operators in the second term on the
right-hand side of (3.37).

Let us consider now the expectation values in the formulas (3.26), (3.28),
(3.37). To construct their cluster expansions we repeat all the considerations of
Sect. 3.7 [I], with minor changes connected with the boundary layers {Ωj\Ωj + 1},
and additions connected with the new terms in the effective action. We describe here
briefly these changes and additions only. Let us start with the last expectation value
in (3.37), and more exactly with the analysis of the effective action given by the
expression in the last exponential in (3.28). Formally it is equal to the effective
action in (2.12), (2.13) [I], but the fluctuation field A is localized in ΛjQf, and,
what is more important, all the operators and the background field configuration
Uk + 1 are determined by the sequence of domains {Ωj}. The difference in the analysis
is connected with the fact that on the domain Ωj\Ωj+ί the configuration
Uk + ί coincides with a ί/y-type configuration, it has the same regularity properties
and bounds. Therefore we have to change properly the scales on this domain. In [I]
we have constructed the family of cubes {•} covering the space T, and the
corresponding partition of unity {Cπ}. Now we take the family of these cubes
covering the domain Ωk, and for each layer Ωj\Ωj+ί we construct its cover by cubes
Π, which are unions of 2d neighboring cubes from Uj, i.e. cubes of the size 2MLjη
(measured in ^-scale). For the union of these families, which is a cover of Ωί, we
construct the corresponding partition of unity. Such covers and partitions were
constructed and used in [11, 13], in connection with the generalized random walk
expansions.
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We repeat the analysis of Sect. 3 [I] using the above cover {D}, and the partition
of unity {CQ} For the term E ( J ) it is in fact restricted to the domain Ay If a cube • in
the expansion (1.3.4) is a union of 2d cubes from πnj'^n^k, then the operation ~ is
also defined using cubes from πn. Thus the conditions (1.3.5) have a different
meaning now, the difference shows up in bounds only. In all bounds connected with
such a cube we have to replace η = L~k by L~n. For bounds involving distances
it is obvious, e.g. if a localization domain I G D ; is disjoint with Π~, then
dist (X, D) > MLnη, hence in the £-scale dist{ξ) (X, Πϊ) > M(LjL~nyK Other bounds
involve regularity properties of the configuration Uk + ί on a neighborhood of
Ωn\Ωn + 1, and these are the same as for ^-configurations, i.e. they are characterized
by the scale L~". Thus, for terms connected with such a cube D, we obtain all the
formulas and bounds of Sects. 3, 4 [I] with η replaced by L~". In fact we have better
bounds, because the fluctuation field is localized in Ωk + 1, and the exponential decay
of propagators and minimizing functions yields additional small factors. They
contribute to the bound (2.38), because such terms will be included into boundary
terms.

After the completion of the operations of Sects. 3-5 [I] we localize the obtained
expressions. We repeat again the analysis of Sect. 6 [I], with the only change that the
random walk expansions we use now are constructed for the sequence {Ωj}, so we
apply Theorems 3.7-3.10 [13] in their full generality. The expansions (6.9) [I] are
constructed for families σ0 = {A} of cubes in proper scales, i.e. if A<=Ωj\Ωj+1, then
the size of A is equal to MUη. Then we resum them in localization domains F o eD f c ,
and we obtain the expansions (1.6.10) with these domains. The remaining
considerations and bounds are the same as in [I]. The same remarks apply to the
expression P(/c), and we obtain Lemmas 5, 6 [I] with the corresponding changes.
More precisely, the terms of the expansion (1.6.41), with localization domains Y
contained in Ak + x , satisfy exactly all the conditions of those lemmas. The remaining
terms satisfy such conditions also, but with analyticity space (1.6.34) replaced by the
space

{
(3.43)

Notice also that the localization domains occurring in this expansion have
nonempty intersections with Λk + ί . These remaining terms will contribute to the
boundary terms B(/c + 1 ) in the final expansion.

Let us discuss briefly the above operations for the actions defining the measures
(3.27), (3.29). The action in (3.29) differs only by the additional dependence on the
field tAk, but this was already taken into acount in the above considerations. The
action in (3.27) contains more expressions. The expression determined by Rk is
treated in exactly the same way as Έk, except the second renormalization connected
with the coupling constant renormalization counterterm, which is not needed here.
In fact the analylsis presented in [16] for three-dimensional models is enough here.
The expression determined by the boundary terms Bk is much simpler to deal with.
To its terms we apply the formulas (3.6), (3.7) [I], and next we localize the obtained
expressions. The localized expansion is over domains Yo e Dfc having nonempty
intersections with Λk + 1. Terms of this expansion can be extended [as in (1.3.13)] to
analytic functions defined on the corresponding spaces (3.43). Notice that on the
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domain Ωc

k+ι there is no regularity improvement of the configuration Uk + ι on the
other hand we have to use a part of the analyticity domains of terms in Bfc for the
function Hk. This is the reason for putting the powers of 1/2 in the conditions
(2.36)-(2.39). The analyticity domains become smaller after each step, but the
difference is very small and exponentially decreasing in the number of steps. The
localization of the fluctuation field, and the exponential decay of the minimizing
function Hk imply that this difference is still much greater than bounds on this
function. The terms of the expansion can be estimated as in (2.42), but with the
additional factor O(εk) arising from the bound of the fluctuation field. The last
expression in the curly bracket in (3.27), or in (3.15), is at first localized by the
decomposition of unity {ζD} introduced into the sum over plaquettes in the Wilson
action. We obtain a sum of terms localized in Zfc, because supp(gk

2( •)— gk

2)
aZk . These terms contribute to the boundary terms only, and they are treated as
above. Notice that the large values of the function gk

2( ) — gk

2 are suppressed by
the exponential decay of H k . Finally, the expression V(k)(Sk+i) arises as the sum of
all the expressions discussed above, but expanded with respect to the pexturbatrve
terms in the transformations (1.22). These expressions have at least one localization
in Sk + l9 and are treated again as the boundary terms.

The expressions in the expectation values in (3.26), (3.28), (3.37) are expanded
and localized in the same way as the corresponding expressions in the actions
discussed above.

The final step in constructing localized expansions of the expectation values is
the exponentiated cluster expansion of Sect. 7 [I], or rather its appropriate
generalization. Let us start the construction for the last expectation value in
(3.37) again. The normalization factor in it, which is the integral in the logarithm
on the right-hand side of (3.28), is expanded in exactly the same way as in
Sect. 7 [I]. The differences, like the restriction of the integration to Λk + ί, or the
larger class of localization domains, do not matter, and the factor is represented as
expE(Λ + 1)(yl fc+1). The expression E(k + 1)(Λk + 1) in the exponential is given by
(1.7.12), with terms given by (1.7.13), but with the localization domains Z{eΌk,
Xe Dfc + 1 having nonempty intersections with Λk + 1. The integral in the nominator
of the expectation value is expanded in the following way. We take the expansion of
the integrated function, and we obtain the sum of integrals of the localized terms. In
each integral we apply the Mayer expansion (1.7.1). To each term of the obtained
sum we apply next the constructions of Sect. 7 [I], described between (7.2) and
(7.10) there. We obtain

[the nominator of the expectation value in (3.37)]= £ Hf(Z0) \..H(Zn) ,
{Zo,..,Zn}

(3.44)

where the localization domains Z O , . . . . ,Z Π satisfy all the conditions described in
Sect. 7 [I] in connection with the formula (7.11), and the above conditions too. In
addition the domain Z o contains the bond b (or the point z). We can have n = 0, for
n > 0 the factors //(Z f) are the same as in the expansion of the denominator. The
factor H' (Zo) is different it is given by an integral with trie integrand including, as
one of the factors, a localized term from the expansion of the integrated function in
the expectation value in (3.37). Although different, it satisfies the same bound as the
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other factors. In the sum (3.44) we separate the summation over Z o , and for a fixed
Z o we consider the remaining sum over {Z1,....,Zn}. It has the form (1.7.11), with
the additional condition that the domains Z f do not intersect Z o along a cube, or a
wall of a cube. This condition can be formulated as Zi c Zc

0, where ZQ is the union of
all cubes from πk9 such that they do not intersect Z o , or intersect it along a two-
dimensional edge at most. The sum is exponentiated, and the exponent is
represented by (1.7.12), with the additional restriction on the polymers Z t . We
denote the exponent by E ( k + 1)(Λfc + 1,Zo), and we have

[the expectation value in (3.37)]= ^ //'(Z0)exp [E(fc + 1)(Λ.k + 1,Zo)
Z0Db

frik + l ) / A λ~ι C\ Λ ς\
— JL \Λk + i)\ . (^:>.4OJ

The difference in the exponential has the representation (1.7.12) with (Zl9....,Zn)
satisfying the additonal condition that at least one of the localization domains
intersects Z o along a three-dimensional wall at least. Resumming the terms of this
representation according to (1.7.13), we obtain

[the expectation value in (3.37)]= £ # ' (Z 0 )exp - £ E(k + 1)(Λk + ί, Y) .

(3.46)

The sum in the exponential is over the localization domains Y satisfying both
conditions relative to Λk + l9Z0. Finally, the exponential on the right-hand side of
(3.46) is expanded into the Mayer expansion, as the action density (1.7.1). This, after
the proper resummation, yields the representation

[the expectation value in (3.37)]= £ Έ$ + ί)(Λk + 1,X9b) . (3.47)
XeΌk+uXDb

There is also the dependence on the variable t, suppressed in the above formula. The
terms of the sum above satisfy the bounds (2.42), with the constant Bo replaced by
O(pl(gk)). Of course the integration with respect to t preserves the form of the
representation, and the multiplication by gk yields small bounds.

The second integral on the right-hand side of (3.37) is treated in the same way as
above, but it is simpler because there is only the Gaussian action. Thus we start with
the expansion (1.7.3), taken with Γo = 0, for the denominator, and with this
expansion taken with Yo = Π, D is the cube containing b, for the nominator. Next we
repeat the steps from (1.7.3) to (1.7.13), and the above from (3.44) to (3.47). We
obtain an expansion of the form (3.47), with terms satisfying the bounds (1.1.18).
Finally, the operators in the first integral on the right-hand side of (3.37) are
represented by the generalized random walk expansions. After the integration we
get a representation of the form (3.47), with terms satisfying (2.42).

Summing up the above expansions we obtain the representation (3.47) for
Έ§ + 1)(Λk + ί9b)9 and the corresponding representation for Έ§ + ί)(Λk + ί,z). The
important remark is that the terms Έ$ + 1)(Λk + l9 X, z) of this representation, for
XczΛk + ί9 do not depend on Λk + l9 and coincide with the corresponding terms
arising from the expressions defined on the whole lattice, i.e. in the framework
of [I]. Now we can define the expressions in the formulas (2.26), (2.27) ϊoxj —
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We put Eik+1)(X,z) = Eg + 1)(Ak + i,X,z) for zeA°k + ι , XaΛk + ί, and we define
E(fc + 1)(ΛΛ + 1 ,z), E(k + 1)(Ak + 1) by the formulas (2.27), (2.26) correspondingly. This
ends the construction of the regular part of the effective action after A: H- 1-st
renormalization transformation. The remaining terms in the expansions (3.47) are
included into the boundary term B{k + 1).

The other expectation values in (3.26), (3.28) are treated in exactly the same way.
We have discussed already the localized expansions for the actions defining the
corresponding measures, and for the integrated expressions. Having these expan-
sions we proceed with the cluster expansions, and with the operations described
above in (3.44)-(3.47). In effect we get representations of the type (3.47). Let us
describe briefly special features of these representations for various expectation
values. This in (3.28) is almost identical to the one in (3.37), but the expressions
integrated have localized expansions with localization domains always intersecting
Ωk + ί\Λk + 1, hence this whole expectation value is included into the boundary term
B(/c + 1). Similarly, the first expectation value in (3.26) is included into this boundary
term, too. The expansion (3.47) for the second expectation value in (3.26) is divided
into two parts. The terms with localization domains contained in Λk + 1 have the
same important property as the corresponding E(/c + 1)-terms, namely they do not
depend on Λk + 1. We denote them by R"(k + ί\ and we include them into the term
j£(/c + i) J J ^ r e m a m m g terms are included again into the boundary term.

Thus we have finished the decomposition of the logarithm of the fluctuation
field integral in (3.25) into the sum of the three terms: E(fc + 1), R"(k + 1\ and B(k + 1).
These terms satisfy all the conditions of the inductive assumption. Let us remark
that they are not the terms in the k-\-l-st effective action, because we have to
perform yet the R-operation, which will change many features of the action.
Obviously in general new terms will be included into R(/c + 1). To complete the
procedure in this step, we have to renormalize the new terms. The vacuum energy
renormalization is performed by subtracting the values of E(fc + 1 ) and R"(k + 1) at the
configuration Uk + ί = l from the corresponding terms, and adding these values to
E$\ This yields the term E{k\ and we define —Ek + E{k)= — Ek + ί . The coupling
constant renormalization is performed by subtracting βk + 1(gk)A(φk + 1,Uk + 1)
from E(/ί + 1 )—E ( / ί + 1 ) (l), and by replacing the function gk

2(') in the action
Λ(gk

2( ), ί/fc + i) by gk~+x ( ) defined by the equation (2.24) withy = fc + 1. After this
we obtain Tρk represented exactly in the form described by the inductive assumption
with k + \ instead of k. This ends the inductive proof of this representation.

The Proof of Theorem 2. Here we want to achieve a more extensive goal than just the
proof. We want to describe an approach to renormalization, which is alternative to
the one described in Sects. 3-5 [I]. It will clarify also some of the issues barely
mentioned only in the above analysis.

The basic expression to analyze, either in the proof of Theorem 2, or in the
analysis of renormalization, is the difference Έij)(Aj9 Uk,z)—Eij)(Aj, l,z). The field
Uk may depend on the fluctuation field, as in the exponential in (3.15). Let us assume
that z E Ajn(Ωn\Ωn + 1)9 and let us take the cube Πeπn such that zeΠ. We represent
the function E ω (Λ 7 ,z) as the sum (2.27) over the localization domains XeΌj,
X<=Aj9 zeX. Consider the two cases (1.3.5): Xc=π~2, Xn(D~ 2 ) c φ0 (the ~-
operation is in the L""-scale). In the second case the function E ( j ) ( I 5 z ) is already
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very small by the bound (1.1.18):

\E(j)(X,z)\^E0exp(-KiUL'")-1)exp(-^κdj(X)) . (3.48)

In the proof of Theorem 2 we simply estimate all these terms using the above bound,
and the sum over Xis bounded by O(\)txv(-κ(lJL--n)-ι)^O(\)(lJLΓn)5. This is
an admissible error contributing only to the constant on the right-hand side of
(2.43). For the complete analysis we apply the formulas (3.3), (3.6)—(3.13) [I]. We
may use also the simpler representation E(j)(X, exp iηHUk+1, z), and then to replace
the background configuration by the corresponding complex variables.

Consider the basic first case now. We keep the same notations as in Sect. 3 [I],
and we apply the formulas and transformations (3.3), (3.18)—(3.28) [I]. They have a
bit different meaning now, because the configuration C/k, or C/k+1, restricted to
Ωn\Ωn + 1 coincides with a £/M-type confiuration, but the difference is seen in bounds
only. Notice also that for the proof of Theorem 2 we put Hk(B') = 0 in (1.3.28), or
A = 0 in (1.3.30), and we replace L~1ηHk + ι by ηiik. The function UηA, where A is
defined by (1.3.30), satisfies the bound (1.3.32), but in the L~"-scale instead of the
f7-scale. Next we apply the expansion (1.3.34). The last term in it satisfies the bound
(1.3.54), the right-hand side of which can be further bounded by (1.3.35), again with
η replaced by L~n. To the sum on the right-hand side (1.3.34) we apply the
considerations of Sect. 4 [I], with two differences only. We do not differentiate with
respect to tπ yet, hence all the factors B in the sum are the same, and applying the
Ward-Takahashi identities (1.4.14), (1.4.15), and other operations of that section,
we move the factors B to the point z instead of the point x. The final formula we
obtain is slightly different from the formula (1.4.34). We have

Σ < ( , ) , > Σ \
= 1 * μ,v,κ,λ \_x,y

+ (the irrelevant terms) (3.49)

As in Sect. 4 [I] we have dropped the superscript (/) in the symbols above, the
superscripts written denote the functional derivatives with respect to B. In
particular

δ* ) | β = 0 . (3.50)

This implies E(

μ

2

v

}(X, x, y, z) = Eί?J(X, y, x, z). We prove the following antisymmetry
property

Σ E£XX,x,y,z)(xκ-zκ)= - Σ Έ.%(X,x,y,z)(xμ-zJ . (3.51)
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Let us suppress the other symbols and denote the left-hand side above by E μ κ . We
decompose it into the symmetric and antisymmetric parts :

F = E ( S ) + F ( β ) F ( 5 ) —1/2 (F 4-F ϊ

We have to prove that the symmetric part is equal to 0. Take the scalar product with
an arbitrary matrix A, tr AΈis) = tr A ( s )E, where A(s) is the symmetric part oΐA. Thus

^=Σ E%>(X,x,y,z) £ Aj*(xκ-zκ) . (3.52)
x,μ K

Take the function

Kχ)=\ Σ Ό * , -z»)(χ

κ -^ - Σ Ό * μ ~ZJ (3-53)
μ,κ μ

Of course (^l)(x) = Σ ^ μ ΐ ί ^ - ^ ) . h e n c e

K

= Σ (aμ2)(x)E<2

v>(Z.x,j,z)=0 (3.54)

by the first identity (1.4.15). Because 4̂ is an arbitrary matrix, so the above equalities
imply E ( i ) = 0, which is the property (3.51). Denoting by ΈμVffcλ(X,z) the sum over
x,y in the square bracket in (3.49), we have

K\κχ(X>z)= - E ^ μ λ ( X , z ) = -Έ$tKV(X9z) . (3.55)

This property allows us to antisymmetrize the derivatives in (3.49) in the indices μ, K
and v, λ. Denoting Fκμ(z) = (dκBJ(z)-(dμBκ)(z) + i[Bκ(z),Bμ(z)]9 we have

« = 1 ^ ! κ<μ,λ<v Z

+ (the irrelevant terms) . (3.56)

Let us recall that (the irrelevant terms) above, and in (3.49), denotes the sum of
terms which can be bounded by O((LjL~n)5~β) exp (-κdj(X)), where β is a positive
number. The identities (3.56) hold for the localization domains X satisfying the
condition J c u p 2 . We sum up the identities over all such domains, and we extend
the sum on the right-hand side to all domains XeΌj for the space L~jZd,X
containing the point z. The difference between the two sums contributes to the
irrelevant terms only, by the bounds (3.48). Thus we obtain the identity (3.56)
resummed over the domains X, but with the first expression on the right-hand side
replaced by

\ Σ Π^κλtτFκμ(z)Fλv(z) . (3.57)

Here Πμ{\κλ = Σ Πμ

J

v\x9>', z)(xκ -zκ)(yλ - z λ ) , and the function Πμ{\x,>', z) is given

by the formula (3.50), but with Έ{j)(X. Uj9 z) replaced by EU)(£/,-> z) defined on the
whole lattice L~jZd. This function is translation invariant, hence Π(

μ

j

v

]

κλ is
independent of z. Let us describe its other properties. The most important one is the



282 T. Balaban

Euclidean covariance following from (2.29). It can be reformulated as

E{j)(Uj(QxpίrBlrz) = EU)(Uj(expiBlz) , (3.58)

where rB represents the configuration (rB)μ(x) = (rB)μ(r~1x). The notation here is
confusing, the symbol r on the left-hand side denotes the transformation of the
vector field on the lattice Z d , generated by the Euclidean transformation r of this
lattice. On the right-hand side r denotes the matrix of the corresponding rotation,
and r~ιx denotes the point obtained by the application of r~ι to x. We must also
take into account the convention B((x, x + eμ}) = Bμ(x). For example, if r is the
reflection in the hyperplane xμ = 0, then

Thus rx = (..., —xμ,...)—eμ, which is equal to rx—eμ, where in the last expression rx
denotes simply the reflection applied to the point x. Keeping in mind these different
meanings of the symbol r, we write the following conclusion of the covariance (3.58)

((r-1^r-1)Πi%v(rx,ry9rz) = Π^(x9y,z) . (3.59)

For the number Π{

μ

j^κλ these different interpretations of r disappear, and the above
covariance together with the first Ward-Takahashi indentity (1.4.15) imply

ΛπA Πμ{\κλ . (3.60)
/ Jμv,κλ

Here r denotes the matrix of the Euclidean rotation r. This invariance has the usual
implications, analyzed already in Sect. 5 [I]. Let us describe them for the indices
satisfying the restrictions κ<μ, λ<v occurring in the sum (3.57). Considering
reflections we conclude that in this case the coefficients in the sum are different from
0 only if μ = v and κ = λ. Considering permutations we conclude that then they are
all equal, e. g. they are equal to their values for μ = v = 2, κ = λ = l. Thus we obtain

; Σ v j \ . (3.61)
^ μ< v

The last identity can be considered as a possible definition of the ^-function. Now
we prove that it coincides with the definition (1.1.22). Using the translation
invariance and the identity (1.4.15) again we have

βj = Σ Πg(x,y,0)xiyi=~ Σ ΠiίKx,y,0)(x1-yι)
2

x,y Z x,y

= -~ Σ Πg(z-y, 0, -y)(Xι -y,f = - \ Σ π ® ( χ > ° ' z ) x l ( 3 6 2 )
^ x,y ^ x,z

From the equality (2.26) for Λj = L~jZd, and from the definitions (1.1.20), (1.5.1), we
obtain

(3.63)
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Thus the representation (1.5.16), or (1.5.37), implies

β'i = -\ Σ

This is the required equality.
Consider now the term -βjA(φj9Uk). We decompose it into the sum of

localized expressions

A(φj,Uk)= Σ Λ(KΦpUk) , (3.65)

where hz is defined as in (3.40), but on the lattice TL-J, and with
A(0 = max{l —1/|,0}. For zeΛ? we have hzφj = hz, and the function A(hz, Uj) is
Euclidean covariant. Analyzing A(hz, Uk) in the same way as above, we obtain

A(hz,Uk) = - X tri^ v(z) + (the irrelevant terms) . (3.66)
^ μ < v

Thus the first expression on the right-hand side of the expansion of —βjA(hz, Uk)
cancels the expression on the right-hand side of (3.61), and we are left with the
irrelevant terms only. To get the expressions needed in the fluctuation field integral,
we differentiate these terms with respect to the parameter tπ multiplying the
fluctuation field. For the expressions considered in the proof of Theorem 2, we have
the following conclusion:

E^(ApUk,z)-E^(Apl,z)-βjA(hz,Uk) = O((LJL-")5-e) , (3.67)

for z e A® n(Ωn\Ωn + 1), β>0. Summing over zeA^nΩ w get the inequality (2.43) in
Theorem 2 (with 1 — β, β > 0, instead of β < 1). Thus we have proved the first part of
Theorem 2, concerning the functions E 0 ) .

The inequality (2.44) for the functions R (^ can be proved in an almost
identical way. We analyze these functions as above, but we stop at the identity
(3.49), where E ( 2 )(Z, x,y, z) is replaced by R(2)(X, x,y), and z is an arbitrary
point from X. Now all the terms on the right-hand side can be bounded by
O{\)(LjL-nfgftx^{-κdj{X)\ and this yields the inequality (2.44). The proof of
Theorem 2 is completed.

Finally, let us sketch briefly another proof of Theorem 2. It is interesting
because we do not use the Ward-Takahashi identities, but directly the gauge
invariance. As in the previous proof we want to analyze the difference
EU)(Λj, Uk,z)-E(j)(Λj, l,z) for zeΛ^n(Ωn\Ωn + ί). Now we take the cube Beπj
containing z, zeD, and the cube Π~"~J. We divide the localization domains
X into two classes: I c Π ^ " j , or In(D~""" J ' )V0. For X in the second
class the difference of the corresponding expressions can be estimated by
2E0exp(-(1/2)>φ -j))exp (-(l/2)κd j(X)l and e x p ( - ( l / 2 ) / φ -j)) <(Z/ZΓ")5,
hence these terms can be treated as before. Consider the terms with localization
domains in the first class. Take the cube D0 = ίlΓ"~'7 + 1 and the representation Uk

= [/j D o ( M (Uk)). Now we repeat the construction of Sect. F [15], and we
introduce the axial gauge for the field Mj(Uk) on Πo, considering Πo as one block
with center at z. We denote the argument in the representation by V\ i.e., V
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= M\Uk), and V is a small field, more precisely we have

V'-\\ < 11 d2εn(LjL-n)2 + dM(n -j + 2)

<3dM(l+logLjL-")εn(LjL-n)2 . (3.68)

We write V = exp IB', and we expand the terms up to the third order in B''. The third
order terms are already irrelevant by the above bound, hence

j (3.69)

In the quadratic form above we restrict B' to Π~n~\ and we replace the function
Ujf D o by Uj, the differences contribute to the last term only. Summing over X we get

+ O(l)(LjL-n)5 , (3.70)

where the summation over x,y is restricted to Π~"~j, and

B'(b)=UogUl(ΓZtb_ubuΓb + ιZ) . (3.71)

Now we take the cube Πi e πn containing z, and we repeat the construction
before (3.68), but for the representation Uk = UnίΠ~ (M \Uk)). We write Uk

= (exp iL~nHn D~ (1/z) log M (Uk)))Uk , and using the gauge invariance of the trace
in (3.70) we can replace the variables B' by

y log(exp/β J .(L-"H Ϊ I f D Γ))(Γ)=y log(exp/Λ)(Γ)

Σ i[B{b\B(b>)}
b,b'CΓ,b<b'

)3 (3.72)

where Γ = Γzb_ubuΓb+ z. The contour variable B(Γ) is represented as (dB)(Σ),
where Σ is a minimal surface with the boundary Γ. This assures that both terms on
the right-hand side above are of the order 0{{LjL~n)2). We move the plaquette
variables in the first term, and the bond variables in the second term, to the point z.
The main term equals £ (xκ —zκ)Fκμ(z), if b = (x, x + eμ}, the remainder can be

K < μ

estimated by O(l)(LjL~n)3. Thus we obtain the representation (3.70), but with the
first term on the right-hand side replaced by the expression (3.57). The remaining
arguments are as in the first proof.

The above proof can be also elaborated to a complete renormalization
procedure, as the one in Sects. 3-5 of [I], but it is important to notice that it works
only if we have the representation (2.26), (2.27) with the corresponding properties,
similarly as the first proof.
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