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Abstract. The main facts about complex curves are generalized to super-
conformal manifolds. The results thus obtained are relevant to the fermion
string theory and, in particular, they are useful for computation of determi-
nants of super laplacians which enter the string partition function.

introduction

The computation of fermion string amplitudes in the Polyakov formalism [1]
reduces to integration over a finite-dimensional superspace, the space of classes of
superconformal manifolds [2]. Superconformal manifolds were introduced in [2],
and after that in an independent paper [3] they were introduced under the name
"super Riemann manifolds." (Note that we reserve the name "super Riemann
manifold" for a different usage, following the terminology of [4]. Reference [4]
contains also a detailed account of part of the results of [2] and of later work
[8, 9].) In [2] the space of classes of superconformal manifolds was described. It
was shown also that in computing the fermion string partition function a measure
arose on this superconformal moduli space which was written in terms of
determinants of certain operators analogous to the Laplacian. In [8] these
determinants were expressed via a super analog of Selberg's zeta-function. (See [9]
for details. The corresponding expression for the bosonic string was obtained first
in [2].) Our purpose is now to study analytical properties of string measure on the
moduli superspace and to find formulae for determinants of superlaplacians and
for this measure. It is worthwhile to note that the analytical properties of the
fermion string measure are essential in establishing the connection of this theory
with the superstring theory of Green and Schwarz (see [12]) and with the heterotic
string theory. (Note also that a supermoduli space relevant to the heterotic string
was considered in [5].)

The background for our considerations will be the geometry of super-
conformal manifolds which is the subject of the present paper. Applications to
string theory will be given in a following paper [13], the results of which are
recapitulated below.
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A superconformal manifold is a (l|l)-dimensional complex supermanifold
composed of superdomains glued together by superconformal transformations
(that is to say, by transformations preserving the operator D — d/dζ + ζ d/dz up to a
factor). We consider holomorphic line bundles over a superconformal manifold
yfΛ Among such bundles an important one is the bundle ω, as well as its tensor
powers ωk, such that the field Dφ is a section of ω if φ is a scalar function. Let us
denote by s$(L] the space of holomorphic sections of a bundle L. If the
superconformal manifold Λf is simply connected, then every ψe^(ω) can be
represented as ψ = Dφ for a holomorphic function φ. For a non-simply connected
Jf such a representation is possible only in terms of universal covering. (In other
words, one has to consider the multivalued function φ.) The differences of the
values of φ between various pairs of points in the universal covering, such that
both points in a pair correspond to the same point of ,/Γ, are called the periods of
ψ E £#(ω). If φ is a meromorphic section of the bundle ω, then over a portion of Jf
it can be considered as a holomorphic section, and so one is able to consider the
periods of a meromorphic section. The periods that correspond to the changes of φ
when turning around the poles of ψ are called (up to a factor of 2πi) the residues of
ψ. (Here ψ = Dφ as before.) One can prove some statements about the periods and
residues analogous to the case of algebraic curves, in particular, Riemann relations
and Weil reciprocity law (see Sect. 2). It turns out that these proofs are easier to
derive not in terms of the above definition of periods, but using anothwr one based
on a relation (Sect. 1) between the fields considered above and differential forms on
a superconformal manifold. Taking the quotient of j/(ω)* by the period lattice one
constructs the Jacobi manifold J(ΛO for a compact superconformal manifold J f .
By a divisor on Ji a formal linear combination, £ ntPh of the points P^Jf with
integer coefficients ni is meant. The sum of coefficients nί is called the degree of a
divisor. A point P e Jf is called the principal zero of a meromorphic section s if
s(P) = 0 and Ds(P) = 0. A principal zero of s~l is called a principal pole of s. If a
section s possesses only simple zeros Qt and poles Pt, then the divisor of this section
is Σ Qί ~ Σ PI- The set of divisors is divided in classes of linear equivalence. (The
divisor of a meromorphic function is referred to as a divisor linearly equivalent to
zero.) One can prove that topologically trivial holomorphic line bundles over Ji
can be described by means of J(Jf\ or by means of the group made up of classes of
divisors which have zero degree (Sect. 4). These statements can be thought of as a
superanalog of the Abel-Jacobi theorem. In Sect. 5 the cohomologies with
coefficients in a line bundle are computed and an analog of the Riemann-Roch
theorem is proved. The paper ends with an Appendix where the basic definitions
used are made more accurate. In a following paper [13] the results of the present
work are applied to a study of string measure on superconformal moduli space.
That paper begins with a consideration of holomorphic hermitian bundles over a
superconformal manifold Jf. A super Riemann metric on ^K", according to one of
possible definitions, is a hermitian structure on the bundle ω. If L is an hermitian
bundle over a super Riemann manifold, then one is able to define an inner product
in the space, Γ(L), of sections of L and by means of this inner product to construct
the Laplacian QL = D + D, where D = d/dζ+ζd/dz is considered as an operator
acting from Γ(L) into Γ(L(x)ώ). The following expression for detΠL can t>e
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considered as our main result [13]:

(1)
L j

Jf

Here dv is the volume element corresponding to the super Riemann metric1, L is an
arbitrary hermitian line bundle over a normal super-Riemann manifold Jf (see
Sect. 2), Θ is a trivial line bundle with the direct product metric. We assume that an
even holomorphic section s of Lis given such that sred has only simple zeros. Let us
denote the principal simple zeros of s by Q1? ...,QN. We suppose that j/(L) and
j/(L*®ω) can be considered as superspaces. (This terminology is explained in the
Appendix.) Here L* is the dual bundle. That is to say, one can choose bases
{α1? ...,αm} in j/(L) and {/?1? ...,/?„} in ^/(L*(x)ω). We shall prove that m^l and
n^g. The frame (αj is picked so that s = αm, while a frame (ω 1 ? . . .,ω g} in j/(ω) is
required to obey: ωg^n+1 =s/? l 5 ...,ωg = sβn. In Eq. (1) NL, N'L, and N'φ denote the
matrices of inner products of elements of frames chosen in J3/(L), j2/(L*®ω), and
e£/(ω) respectively. Namely, (NL)ij = <αf, 00 = j (αf, α^ ) dt;, (^VL)/J = <jSf, ̂ 7 >
= j (βh βj) dv, (N'^ij = <ωt , ω; > = j (ωfj ω; ) dt;, where (,) is the hermitian product in
the fibres of bundles L,L*(x)ω, and ω respectively. R@ L(s,σ) in Eq. (1) denotes

/ A \ ,
detl ! I, where

(2)

'

resωjs ... resω^s resC11^!/^ ... ΐQsζ(N}ωl/s
Qί : to: β l : to: | . (3)

n/sresζ(ί}ωg^n/s ... res C(N)ω
Qi QN Qi QN

Here it is supposed that in a neighbourhood of each point <2f one has chosen a
superconformal coordinate system (z(l\ ζ(l)) with the origin in Qt and a trivialization

4- oo

of L. Then ΐQsy = b^1 if 7= £ (z(l))Λ[βk + C(/)&k] Finally, σin Eq. (1) denotes an
Qi k=-K

even meromorphic section of ω, such that σ(Qi) = 1 for every i. Then {s, σ} is defined
by

{s,σ}=expαΛ-log| |s | |-Σlog| |σ(β ί)| |), (4)

where K is the curvature of the super Riemann manifold, that is the curvature of
the hermitian bundle ω. (For an arbitrary hermitian bundle, the curvature F is
defined by the expression F = DD log \\s\\, where s is an arbitrary local holomorphic
section.)

1 One has to take such a super Riemann metric on J\r that J dv is an invertible element of the

Grassmann algebra. For example, this can be the super-Poincare metric [9] with

dv= I Imz+ -ζΓ) dz dz dζ dζ or the metric given in [12]
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The formula (1) leads immediately to the following important relation:

i L . d e t Π M . ^ - i (5)

where L, M are arbitrary hermitian bundles. If M has an even holomorphic section
s with simple principal zeros and if ̂ (L), j</(L*(χ)ω), &0(M\ j/(M*(χ)ω), t

j/(L*(χ)M*(x)ω) can be considered as superspaces, then

D-l v t V L 1 > L(g)M > α v ι ' 1 > L ^^L-^^M ' (j ^^) ' 1-^0,LV5' σ)l (s \
*-'L,M j _ , A T / ι^> AT 1^4. AT j , A T / I r> /„ ^.\|2 ' ^ ^

In a general case, the expression for BL

1

M becomes more complicated. Equation (6)
yields readily an expression for string measure. In fact,

2 detpω = " -ι -t
2d e t Π d e t Π

In string measure we need the following combination:

= £ω,ω#ω,co2 (8)

Thus we obtain an expression for the string measure on moduli space in terms of
holomorphic fields and their zeros. Moreover, we obtain some information about
analytical properties of this string measure (a super-analog of the Belavin-
Knizhnik theorem). This information can be extracted from the analyticity of
RL M(s, σ) with respect to moduli.

This work is intimately connected with papers [10, 12], In [10] a super-analog
of the so-called Mumford form was constructed. The Mumford superform yields
(as its bosonic counterpart does) a measure on moduli space. Reference [10]
contains an expression for this measure which is analogous to one suggested by
Beilinson and Manin in the bosonic case [7]. The relation (5) was established in
[12], where on this basis it was shown that the measure constructed in [10]
coincides with the string measure. The results of [10] will be reproduced in [13]
using a different language. The above considerations show that Eq. (5) and, hence,
all the basic formulae of [12] follow from (1). Let us remark that some arguments in
[12] (in particular, the formulation of an analog for the Belavin-Knizhnik theorem
in terms of extended moduli superspace) employ the results of the present work.

This work is dedicated to the memory of Vadim Knizhnik whose talent evoked
our profound admiration. His brilliant scientific activity resulted in great progress
in resolution of many problems of theoretical physics and particularly in string
theory.

1. Super conf or mal Manifolds and the Fields on Them

Let us consider a domain in (1 l)-dimensional complex superspace (C1'1 and the
operators of spinor derivatives acting on functions in this domain,

ζd/dz,

D = d/dζ+ζd/dz
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(from now on, z denotes a complex bosonic coordinate, while ζ denotes a complex
fermionic one). A transformation from coordinates (z, ζ) to coordinates (z, ζ) is
called a superconformal transformation if it preserves the spinor derivatives up to
a factor:

D = F D, D = F D. (2)

Every superconformal transformation can be written in the following form:

z = w(z)-w'(z)ε(z)£,

where u(z) [respectively ε(z)] is a bosonic (respectively fermionic) holomorphic
function.

A superconformal manifold is a manifold which is composed of (1|1)-
dimensίonal superdomains glued together by means of superconformal transfor-
mations. That is to say, a superconformal manifold can be covered by coordinate
patches connected by (3). The underlying manifold, ^Kred, for a superconformal
manifold can be considered as a one-dimensional complex manifold provided with
a spinor structure. Let us recall that to consider an underlying manifold amounts
to discarding all the nilpotents. This reduction (when one discards all the
nilpotents) is designated by the subscript red above. The underlying manifold is
thus glued up by means of holomorphic transformations z = u(z). The fact that the
underlying manifold receives a spinor structure means that a choice of sign of

J/V(z) is fixed consistently for every gluing. A supermanifold is said to be compact
if its underlying manifold is compact. The genus of a superconformal manifold is
defined as the genus of its underlying manifold.

To every one-dimensional complex manifold N provided with a spinor
structure one can assign a superconformal manifold, J/\ with help of the following
construction. If N is glued up by means of transformations z = u(z) then the

superconformal manifold J\f is to be glued up by means of z = u(z\ ζ= j/u'(z) ζ. The
resulting superconformal manifold can be called a superconformal manifold
without odd (i.e. fermionic) parameters.

A field of type (p, q) on a superconformal manifold is given by functions which
are defined for every coordinate system and obey

under superconformal coordinate changes. [Here F is a factor entering Eq. (2).]
Let us denote by ^p>q the space of type (p,q) fields.

The operator D can be regarded as an operator acting from ^°'^ to ^1/2'^.
Analogously, D acts from ^Pt° to ^Pί 1/2. This defines holomorphic fields of type
(/?,0) as fields annihilated by this action of D. If a holomorphic type (1/2,0) field,

is defined in a simply connected domain, then it can be represented in the form
φ = Dip, where
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and dA(z)/dz = a(z). The field ψ is defined by the condition Dψ = φ up to an additive
constant. A field of type (1/2,1/2) can be integrated over the superconformal
manifold. Let us denote the integral of such a field v over Jf as

$vd2zd2ζ.
N

Since the product of type (1/2,0) and type (0,1/2) fields is a field of type (1/2,1/2) we
can define an inner product of type (1/2,0) fields:

<ω, ω'> — J ω'ώ d2z d2£.

One can consider differential (r, s)-forms on a superconformal manifold, in the
same way as on any complex manifold. [Remember that an (r,s)-form on a
complex (super) domain with holomorphic coordinates zf (even and odd) is such a
differential form which is a homogeneous polynomial of order r(s) with respect to
dzi(dzi).'] In the standard way one defines the operators d which makes an (r +1, s)-
form from an (r, s)-form, d which makes an (r, s + l)-form from an (r, s)-form, and
the operator d = d + d. For example, if ω = dz - p + dζ ρ, then

dω = dζ dz(dζp — dzρ) — d2ζ dζρ,

dω = — dz dz d^p — dζ dz d^ρ + dζdz d-ζp — dζ dζd-ζρ .

A connection between the fields of types (1/2,0), (0,1/2), (1/2,1/2) and the forms
of types (1,0), (0,1), (1,1) respectively will be of importance for what follows. To a
field σ of type (1/2,0), let us assign a (l,0)-form Σ = a,(σ) as follows:

σ^-^Σ = dζ'σ + e-Dσ, (4)

where e = dz-dζ ζ. Similarly, a field σ of type (0,1/2) is connected with a (0,1)-
form Σ = α(σ). It can be proved that these definitions are correct (that is, they do not
depend on the coordinate choice). One has the following simple, but useful
propositions.

If σ is a holomorphic type (1/2,0) field, then the corresponding (l,0)-form Σ
obeys dΣ = 0 (i.e. it is closed). If σ can be represented asσ = Dh with holomorphic h,
then Σ = dh (i.e. Σ is exact). For an arbitrary field of type (1/2,0) the form Σ satisfies
dΣ = ϋ (i.e. it is 3-closed). Moreover, the map α is a one-to-one map of ^1/2'° onto
the space of δ-closed (l,0)-forms.

The proofs can be given in the following way. An arbitrary (l,0)-form S can be
written in coordinates (z, ζ) in the form S = dζ σ + e p. Taking the coefficient σ in
the term containing dζ we obtain the map from the space of (1,0)-forms into ̂ 1/2'°.
Let y denote this map. [To verify that σ is a field of type (1/2,0), one can use the
relations e = F2e and dζ = F~l dζ + Ge, where F is a function entering (2), and G is
some other function.] It is easy to check in local coordinates that there exists a
unique (l,0)-form Σ satisfying γ(Σ) = σ, dΣ = Q, and that this form is given by
Eq. (4). This immediately implies that the form Σ is defined correctly by (4) and that
the map α is one-to-one. Furthermore, if σ is holomorphic, so is the form Γ, hence
dΣ = 0. The last equation together with dΣ = 0 implies dΣ = 0.

Now let us assign to every type (1/2,1/2) field v a (1, l)-form N = β(v):

(5)
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It is easy to verify that this form is correctly defined. The construction of the form
in Eq. (5) is connected with that in Eq. (4). Namely, if an odd holomorphic type
(1/2,0) field σ^ is connected with a (l,0)-form Z'1 = α(σ1)? whereas an odd anti-
holomorphic type (0,1/2) field σ2 is connected with a (0, l)-form Γ2 = ά(σ2), then the
type (1/2,1/2) field σ2σ1 is connected with (l,l)-form Σl/\Σ2. That is to say,
β(σ2σ1) = tt(σί) Λ α(σ2). One can check that a (1, l)-form M = β(μ) corresponding to
a field μ of type (1/2,1/2), satisfies dM = 0. That is, M is a closed 2-form, and hence
it can be integrated over a (210)-dimensional submanifold of the considered
superconformal manifold Jf, the integral being unchanged under continuous
deformations of this submanifold. Let us pick for this role such a closed (2|0)-
dimensional (real) submanifold N which has the underlying manifold identical to
that of J f . [There always exists a smooth (2|0)-dimensional submanifold N in Jf
with JV red = ̂ red. On the other hand, one sometimes cannot choose such N to be a
complex analytic submanifold of ΛΛ] Then we get the relation

1 „ Λ, , (6)
j t~ w ~ w * f\
jf 2ι „

[The integral of the field μ over the superconformal manifold Λf coincides with the
integral of the closed 2-form (2/)"1 β(μ) over the (2|0)-dimensional submanifold
N.] The proof of this relation is obvious in the case when the field μ is non-zero in
one coordinate chart only and the submanifold N is defined in this chart by the
equation ζ = ζ= 0. The general case can be obtained from the above by use of a
partition of unity and by coordinate changes. Remember that if a manifold is
covered by charts % one can always choose functions ft in such a way that 1 = £ /)
and that the support offt is in %. Then the proof of (6) amounts to the proof of this
relation for the fields μf = /fμ.

Later on we shall need also the following simple fact about (2,0)-forms. If a
(2,0)-form Ω is d-closed, i.e. dΩ = Q, then it always is δ-exact, i.e. it can be
represented as Ω = dτ for some globally defined (1,0)-form τ. Indeed, if Ω is written
in the form

then dΩ = 0 amounts to ρ = Dp. In this case we have Ω = θτ, where τ = e p.

2. Periods and Residues2

Let us consider a holomorphic type (1/2,0) field σ on a superconformal manifold
Jf . The period of σ with respect to a one-dimensional cycle c in the underlying
manifold can be defined as the integral of the (l,0)-form Σ = cn(σ) over a closed
(1 |0)-dimensional (real) submanifold in j\f , the underlying manifold of which
coincides with the cycle c. Since the form Σ is closed, the period so defined depends
only on the homology class of c. If Jf is a compact superconformal manifold of
genus g, all the periods of σ are represented as linear combinations of its periods
with respect to a standard basis α1,...,^, fol5...,ί? in the one-dimensional

1 Some results of this section have been independently obtained by A. M. Levin
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homology group of the underlying manifold of Jf . Another definition of periods
can be given with help of the universal covering, ^Γ, of JΛ The fundamental group
of the underlying manifold of Jf acts on Jf . For a field σ on jV there is a
corresponding field σ of type (1/2, 0) on <Λr. Since Λf is simply connected the latter
field can be represented in the form σ = Dh. The field σ remains unchanged under
the action of the fundamental group. Hence h changes by an additive constant
under each of such transformations. These constants are called the periods of σ:

(Σ = h(άl(Z))-h(Z),

(7)
SΣ = h($i(Z))-h(Z).
bτ

Here {ά\ £j are the generators of the fundamental group, (αl, foj is the
corresponding homology basis, Z is a point in Jf . Equation (7) follows from the
relation Σ = dh, where Σ is the lift of Σ = oί(σ) to Jf .

One can prove a relation for periods of fields of type (1/2,0) on a
superconformal manifold generalizing the Riemann bilinear relations for differen-
tials on a complex curve. The proof can be obtained by reducing to the case of
ordinary two-dimensional manifolds. Namely, let ω, ω' be holomorphic type
(1/2, 0) fields while Ω = α(ω) and Q' = α(ω') are the corresponding closed (1 , 0)-forms
on a compact superconformal manifold Jf of genus g. Let A\B^ A'\B'j
(ij = 1, . . . , g) denote the periods of ω, ω' with respect to a standard homology basis
a\bj in Λ^red. Then, as we shall see shortly, one gets the following relations:

AΉ'i-BiA'^Q, (8)

A'ίBi-B'iΆ
i = 2i(-l)ΰ>' <ω,ω'>, (9)

where ώ' denotes the parity of ω'.
Indeed, consider a (2 1 0)-dimensional smooth submanifold N in yΓ, such that

JV r e d = </Γred. On N, in the same way as on an ordinary two-dimensional closed
manifold, one has then

On the other hand, a closed (2, 0)-form, Ω A Ωf, is always exact on N (see the end of
the preceding section). Therefore one has also

thus proving Eq. (8). In a similar way, Eq. (6) together with the relation β(ω'ώ)
= ( - 1 f α(ω') Λ α(ω) implies Eq. (9) :

2f<ω, ω') = 2/ J co'ώ d2z d2ζ = J β(ω'ώ)
jV N

As we shall see later on, in a most important case (the normal case as it will be
referred to) the dimension of the space of holomorphic type (1/2,0) fields equals
(0|g). Let J3/1/2 denote this space taken with inverse parity. [Thus
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= ΠH°(Λr, ω) in the notation of Sect. 3; see also Appendix.] In the normal
case dimj/1/2 = (g|0) and the inner product in this space is non-degenerate.
Therefore one can pick a basis ω1? ...,ωg in j/1/2, such that

fα(ω;) = <5j. (10)
a1

Equations (8), (9) imply, as in the usual case, that the period matrix,

τ ι v =fα(ω,), (11)

is symmetrical, τij = τjh and that

<ωί,ω</> = Imτ ί ι /. (12)

The definition of periodics can be used to generalize the definition of the
Jacobian to the case of a compact superconformal manifold of genus g. The
periods of holomorphic type (1/2, 0) fields with respect to a cycle c define a linear
functional on the space j/1/2. The linear functional corresponding to all possible
cycles form a lattice V in (,s/1/2)* called the period lattice. Let us define the Jacobi
manifold (or the Jacobian) for a superconformal manifold Jf as a coset space of
(j/1/2)* with respect to V, i.e.

J(Λr} = (^1/2)*/V. (13)

In the normal case the Jacobian is a g-dimensional torus. The inner product in
j/ 1//2 defines a measure in it and, hence, in J. Let us prove that the volume of the
Jacobian with respect to this measure equals 1. For this aim let us consider a basis
{a1} in (j/1/2)* dual to the basis {ωj in ^/1/2 which has been defined by
Eqs. (10)-(12) above. The inner product in (j/1/2)* corresponding to that in j/1/2

yields [cf. (12)]

<αί,α /> = (Imτ)~ l ί / . (14)

The period lattice, F, in (<£/1/2)* is generated (over the integers) by 2g vectors a\ bt

= τ ί j α
 7'. Now the volume of the Jacobian (13) equals the volume of the

parallelepiped spanned by {a\ bj} which, in turn, equals the determinant of the
following 2g x 2g matrix:

<α'Λ>

(Here Re appeared for we dealt with an hermitian inner product < , >.) Then we
have (in matrix notation)

(ImτΓ1 (ImτΓ^Reτ \

~ "1 Reτ (Imτ)"1

(ImτΓ1 0\ /I Reτλ

Imτ)'1 \) \0 I m τ '

and, thus, (volume of J) =
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Using inner product in j/1/2 one can, in the normal case, identify its dual,
(j/1/2)*, with its complex conjugate, j/1/2. This allows one to consider the
manifold J(i.e. Jacobi manifold with the complex structure conjugated) as a coset
space of j</1/2 by a lattice. (This will be used in [13].) More precisely, J can be
regarded as a torus dual to the torus J.

Let us discuss now meromorphic functions on a superconformal manifold Ji*\
a function / on Jf is called meromorphic if locally it can be written in the form

f = h/g,

where h,g are holomorphic, provided gred does not vanish identically. (Here gred

denotes the numerical part of g and can be regarded as a function of «yΓred.) First of
all, we note some simple properties of an even meromorphic function / near a
point where / vanishes. Suppose that f(P) = 0 and that /red has a simple zero at
Pred e J^ed Then / vanishes on a (0| l)-dimensional submanifold in Jf lying over
Pred. It is easy to see that there exists a unique point P0 in this submanifold, such
that

/(P0) = 0, Df(P0) = 0 (15)

(and, of course, P0 red = Pred). Such a point P0 will be called a principal simple zero
of/. It is also easy to see that a function / near its principal simple zero P0 takes the
form (z — z0 — ζζ0)u(z,ζ), where (z0,ζ0) are the coordinates of P0 and u is a
holomorphic function which does not vanish near P0. [In this case, / vanishes on
the (0|l)-dimensional manifold {z — z0 — Cζ0 = 0) containing P0.]

Now a function / will be said to have a principal simple pole at P'0 if the
function f~l has a principal simple zero at that point. These definitions can be
extended in an obvious way to (even) meromorphic fields of type (p,0) (or to
sections of line bundles to be considered later on). We have not made any
definitions concerning the case when /red has multiple zeros or poles. This will be
discussed later on in this paper, but for the time being it will not be needed.

Let us define the residue of a meromorphic type (1/2,0) field ω at the point
P e Λ^red as (2πi)~1 times the period of this field with respect to a cycle encircling p.
That is to say, if ω is represented in the form (2πf)~ l Dh for a multivalued function
h, then the residue equals to a change of h when turning once around p.
Equivalently, we can write

resω=-—foc(ω), (16)
P 2πί c

where C is a closed loop [i.e. a (1 |0)-dimensional submanifold with an obvious
orientation] in «yΓ, such that Cred encircles p (and provided there is inside Cred no
other point over which ω is singular). A meromorphic field ω can be locally
represented as a power series

ω = Σ° U8k + (ί-ίo)W-Zo-ίfo)k (I?)
k= -n

Then it is easy to check that the residue of ω at p = (z0, (o)red equals fc_ 1 and that
fc_! depends only on the point ρe^Γred and not on the choice of (z0,£0) over it.
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The sum of residues of a meromorphic type (1/2, 0) field ω equals zero, just as in
the ordinary case. (Indeed, if yTr'ed denotes the manifold yKred with all the points
over which ω is singular removed, then the sum of cycles encircling all the singular
points is homological to zero in Λ^'ed )

We have considered above Riemann relations for holomorphic fields only.
Analogous, though somewhat more complex, relations can be written also for
meromorphic fields. In fact, let ω (respectively ω') be a holomorphic (respectively
meromorphic) odd field of type (1/2, 0) on ΛΛ The periods of ω and ω' with respect
to cycles a1,...,a?,bί)...,bg will be denoted by A\ Bj and A'\ B'j respectively. Let C
be a closed loop in Jf such that Cred bounds a simply connected domain ^red in
«/Kred (i.e. Cred = δ^red) containing all the points over which ω' is singular. Finally,
let us represent ω in the form ω = Dh in the superdomain 3> over ^red. Here h is a
holomorphic function in £^ which can be chosen, for instance, as follows:

h(P)= j α(ω)
PO

for some fixed point P0 in @). Then we have

A^-B^^lφω'). (18)
c

One can verify this in a way analogous to the way of proving Eq. (8). Note that the
ambiguity h-+h + const does not matter in Eq. (18), for J α(ω') = 0 (i.e. the sum of
residues of ω' vanishes). Moreover, c

where the sum is over all the points p e Λ^TQά over which ω' is singular. Let us put
(18) in a different form. For this aim we pick up a single point P in jV over each
point p, that is Pred = p, and in a neighbourhood of each P we choose local
coordinates Z = (z, ζ) with the origin in P. Then

ω(Z)= Σ W*(P) + &k(P)-]zk

9 (19)
k = 0

00

. (20)

In this case we have, by virtue of facts pointed out above,

nOP)

βk_

(21)

Note that, in particular, resω'^έ/.^P) and Σ&/-ι( jp) =

P p
By the same methods one can prove that a super analog of Weil coupling is

symmetric. (It plays an important role in computing the determinants of
Laplacians on superconformal manifolds.) Let φ,φr be even meromorphic
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functions on Ji satisfying the following restrictions. All the zeros and poles of φ, φ'
are simple and principal and the set of zeros and poles of φred does not intersect
with that of φ'TQd. Let us denote by Nk, Pk the points of principal zeros and poles of
φ and by N'n, P'n analogous points for φf. The coupling of φ and φ' is defined as
follows:

[Φ>] = ΠφWMn) (22)
k

(An extension of this definition to arbitrary meromorphic functions φ, φ' with still
nonintersecting sets of zeros and poles of φred and φ'TQd can be obtained, in
particular, by means of expressions for [φ', φ] used below.)

Let us prove that

[φ, <P'] = [>', φ] (23)

For this aim let us pick two closed loops C, C in Λr such that Cred bounds a simply
connected domain %red(CrQd = Wred) in ̂ red, which contains all the points (JVΛ)red,
(Pk)red; and similarly for C"red. Then using a relation analogous to Eq. (18) we find:

log[φ',φ]-log[>,φ']

= Σ\ res (logφ' D logφ) + res (logφ'Dlogφ)]
k l(Nk)red (Pk)red J

" es (log <pZ> logφ') + res (logφDlogφ']
ή)red TOred

= jα(logφ'Dlogφ) — j oc(\ogφDlogφ')
C C'

Z), (24)

where A\Bj (respectively A\B'j) are the periods of Dlogφ (respectively Dlogφ');
each of these, however, always being 2πi times an integer, hence, the last equality in
(24). We have also used here, that logφ is singlevalued near C (and, analogously, is
logφ' near C) and that a residue res (fD logφ) equals f(P) if φ has a principal

Pred

simple zero at P, and it equals —f(P) if φ has a principal simple pole at P. (This can
be proved by a direct verification of definitions.)

3. Line Bundles. Cohomology

A line bundle L over a complex supermanifold is called a holomorphic bundle if it
is glued up from trivial bundles with the fibre (C110 by means of holomorphic
transformations. These transformations must have the following form:

(25)

where Z,Z are local coordinates in the base; /,Γare coordinates in (C110; /,g are
holomorphic functions. The functions g are called transition functions of the
bundle L. A section of such a line bundle is specified by a set of functions h given in
local coordinate charts and related by transformations h(Z) = g(Z)h(Z). Let us
define the holomorphic bundle ω on a superconformal manifold as a bundle glued
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up by means of transformations

(Z,ί)-(2,1) = (/(Z),F-1(Z)l), (26)

where / is a superconformal transformation and F is the corresponding conformal
factor defined by the relation D = FD (cf. Sect. 1). Then the fields of type (p,q)
considered in Sect. 1 can be regarded as sections of the bundle ωpώq, the tensor
product oίp copies of ω times q copies of the antiholomorphic bundle ώ (complex
conjugate of ω).

Let us denote by $0> k(L) the space of (0, fe)-forms taking values in a line bundle L
on a complex supermanifold Ji. If L is a holomorphic line bundle, then we have a
well-defined operator d acting from <ί°'k(L) to S>0'k+ί(L). Using this operator one
defines in a usual manner the cohomology groups Hk(^, L) as 3-closed (0, fc)-forms
modulo δ-exact forms. Then H°(^, L), in particular, coincides with the space j/(L)
of holomorphic sections of L. If, moreover, Jf is a superconformal manifold, one
can describe H0(yK, L) also as the space of sections φ of L satisfying the condition
Dφ = 0. (This follows from D2 = d/dz.} Then the group Hl(J^, L) can be described
as the space of fields of type (0,1/2) with values in L (i.e. sections of L® ώ) modulo
the image of the operator D. [Since L is a holomorphic bundle we have a well-
defined operator D acting from the space, Γ(L), of sections of L to the space,
F(L® ώ), of sections of L® ώ.] In order to verify that this description of H1^, L)
is correct, one must observe that the correspondence between fields of type (0,1/2)
and (0, l)-forms (see Sect. 1) can be extended to fields taking values in L. [Every
type (0,1/2) field σ with values in Lis related to a δ-closed (0, l)-form Σ = dζσ + eDσ
with values in L; if σ = Dφ, then Σ = dφ; and vice versa.] Furthermore, one can
check that R\Jf, L) = 0 for k ̂  2. (We shall not use this and therefore omit the
proof.)

Let us show now that the space jF/^/f", L) can be identified with the space of
linear functionals on H0(J^,L*®ω) = tβ/(L*®ω); namely,

Hl(Λf,L) = ΠHQ(Λ\L*®ω)*. (27)

Here Π indicates that this identification relates the elements with opposite parities.
[To say more on the notation, if £ is a linear space, then £* denotes its dual, i.e. the
space of linear functionals on E; if Lis a line bundle, L* is the dual line bundle; and
finally, if A is a linear operator acting from Eλ to E2, then A* is the (dual)
conjugated linear operator which acts from £* t° £*•] Now, we can define a scalar
product of a section of L*®ω and a section of L®ώ, since sections of the bundle
ω®ώ [i.e. the fields of type (1/2,1/2)] can be integrated over Λr. This scalar
product allows us to identify Γ(L®ώ)* with Γ(L*®ω). In a similar way, Γ(L)* can
be identified with Γ(L*®ω®ώ). Let us denote by DL the D-operator that acts from
Γ(L) to Γ(L®ώ). Its conjugate, D%, can be viewed on as an operator acting from
Γ(L*®ω) = Γ(L®ώ)* to Γ(L*®ω®ω) = Γ(L)*. With help of integrating by parts,
one sees that D% coincides up to a sign with DL*®ω. This allows Hl(J^,L) (i.e. the
cokernel of DL) to be identified with #%/F,L*®ω)* (i.e. the space dual to the
kernel of DL*®ω). Since the operator DL changes the parity, one gets the opposite
parities of elements identified in both spaces, hence, Π in Eq. (27).

Besides the constructions of the group Hl(Λr,L} described above it is often
convenient to make use also of the following construction. Let us fix a covering of
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Jf by open superdomains ^1?...,^π. It can be proved that the result of the
construction below doesn't depend on the choice of covering {Φj, provided, for
instance, tyt^Jf for all i. A 0-cochain (in the sense of Cech) is defined as a set of
holomorphic sections, φΐ,...,φn,oϊL over the domains °U l , . . . , Wn. A 1 -cochain is a
set of holomorphic sections φtj over the domains ^n^ satisfying φίj= — ψβ. A
1 -cochain is called a cocycle if

on ^n^ n^. A 1 -cocycle is said to be cohomologous to zero if it can be
represented in the form φΓj = ψi — ψj for a 0-cochain φ f. The group H l ( J f , L) (in the
sense of Cech) is defined as the quotient of the group of 1-cocycles by the subgroup
of 1-cocycles cohomologous to zero. The equivalence of the last definition and the
definitions above follows easily from the elementary sheaf theory. Without going
into details of the proof let us show only how a type (0, 1/2) field ρ defines a
1 -cocycle in the sense of Cech. Pick in every domain % a solution, φb to the
equation (here we have to require each 6Ui to be simply connected)

Dφ + ρ-0. (29)

This equation may have no solution on the whole of Ji , but in 6Ui it always has
solutions and any two of such solutions differ by a holomorphic function. Define a
Cech 1 -cocycle by taking fij = φi — φj. In the case when ρ = 5α, the equation (29)
has a solution on Jf and f^ is cohomologous to zero. We find that the group
Hl(^Ϋ\L) defined firstly is mapped into Cech's #1(«yK,L). This map happens, in
fact, to be an isomorphism.

Let us use the last description of Hί(^,L) to find the tangent space of the
superconformal moduli space Jίφ that is to the space of equivalence classes of
superconformal manifolds of genus g. Remember that a superconformal manifold
has been viewed on as a manifold glued up from (l|l)-dimensional complex
superdomains ύUi by means of superconformal transformations. In order to
describe an infinitesimal variation of this superconformal manifold, one has to
consider an infinitesimal variation of transformations which glue ύlii and <%}
together. Every such variation is given by an infinitesimal superconformal
transformation of ^-n^ , that is it is given by a superconformal vector field on
^r^U'y Such a field can be represented by a holomorphic even field vtj of type
( — 1,0) on ^n^ . [A field v(z,ζ) is related to an infinitesimal superconformal
transformation δz = v — \ ζDv, δζ = ̂  Dv.~\ The set of fields vtj can be thought of as a
1 -cocycle defining a cohomology class v e H^(Jf, ω~ 2). If the fields vίp ι/ί; define the
same cohomology class, that is v'^ — vtj = vt — ΌJ for holomorphic type ( — 1,0) fields
v{ on ΰllb then the corresponding variations of our superconformal manifold are
equivalent. (Superconformal transformations of % defined by the fields i^ just give
the required equivalence.) Thus we can identify the tangent space to the moduli
space Jίq with H\Λ^,ω~2). By virtue of the duality (27) the cotangent space oίJ^g

(i.e. dual of the tangent space) gets identified with ΠHQ(^, ω3). As we shall see later
on (Sect. 5), if g>l then H%/F,ω3) is a (2g — 2|3g — 3)-dimensional complex
superspace. Therefore, dim^^ = (3g — 3 1 2g — 2). [Since ΠHQ(^\ ω3) is a complex
linear manifold, Jίg becomes naturally a complex supermanifold.]
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4. Classification of Line Bundles

A formal linear combination of a finite number of points in a superconformal
manifold Jf with integer coefficients will be called a divisor on J f . The set of all
divisors forms an abelian group with respect to an obvious addition law. A divisor,
say ΣriiPi, is said to be linearly equivalent to zero if there exists an even
meromorphic function / on Jf satisfying the following conditions. Let ̂  be a
superdomain in Jf sufficiently small for a local coordinate system (z, ζ) covering fy
to exist. If °U contains no points of the divisor in view, then / must be holomorphic
in m and /red must have no zeros in ̂ red.

Suppose now that some points, P ί l ? . . . , Pίκ, of the divisor are contained in όU.
Then / must take in °U the following form:

f = h Π (z-Zfc-ζζ*)1"*, (30)
k = l

where (zfc, ζk) are coordinates of Pik in ̂ , and h is a holomorphic function in ̂ , such
that /zred has no zeros in ̂ red. For example, if / is a meromorphic function on <Λr

and has only principal simple zeros Nt and principal simple poles P£, then /
corresponds to the divisor ^Nt— £P; which is thus linear equivalent to zero. It
must be pointed out, however, that in general two different divisors, each being
linearly equivalent to zero, may be related to the same meromorphic function. This
follows from the fact that expansion (30) may be ambiguous. In fact, if a is an even
constant satisfying α2 = 0, then, for instance, the following function can be
expanded in two different ways: z(z + 2α) = (z + α)2. On the other hand, we notice
that not every possible meromorphic function on Λf corresponds to some divisor.
[If/red nas> sav>a multiple zero at Pred e ̂ red, then it is possible that, nevertheless, /
cannot be represented in °tt in the form (30).] There exists however an alternative
definition of divisors which allows one to consider arbitrary meromorphic
functions / with /red φ 0 (see the Appendix).

Now, two divisors are said to be linear equivalent if their difference is linear
equivalent to zero. The group of classes of linear equivalent divisors on Jf will be
denoted by Ci(Jf\ Let us show that every holomorphic line bundle on Ji can be
related to some element of C\(Jf\ so that isomorphic bundles correspond to the
same element. Conversely, every element of Cl(Ji] will correspond to some
isomorphism class of holomorphic line bundles. Indeed, let us consider a
holomorphic line bundle L and pick a meromorphic section s of L which possesses
only principal simple zeros and poles. (Thus, in particular sred, a section of Lred on
yΓred, must have only simple zeros and poles. The definition of a principal simple
zero for sections of L is in fact the same as for meromorphic functions; it is defined
by the conditions s = 0, Ds = Q. A principal simple pole of s is defined also as a
principal simple zero of s"1, a section of the dual bundle L*.) The divisor
corresponding to such a section s is defined as £ Nt — £ Pp where Nt(Pj) are
principal simple zeros (poles) of s. If s l 5 s 2 are two sections obeying the above
constraint, then their divisors differ by a divisor related to the meromorphic
function sjs2. Thus we see that every holomorphic line bundle is related to a
definite divisor class in Cl(J^}. Conversely, if a divisor is of the form P, for a single
point P in J^, then it is related to a line bundle &(P) defined in the following way.
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Let Z = (z, ζ) be coordinates in a superdomain °liv containing P = (z0, ζ0) and ̂ 2 be
a second domain not containing P such that ^1;^2 cover JΛ Then 0(P) can be
glued up from trivial bundles over UU1 and ̂ 2 by means of the transformation over

The bundle 0(P), so defined, possesses a holomorphic section given by the
functions T(Z)=ί in ̂ 2 and /(Z) = z — z0 — ζζ0 in ̂ . The divisor of this section
equals P, as required. In general, a divisor £ n^ corresponds to a bundle defined

as the tensor product (x)^(Pt-)"1. [Here L"1 for nt<0 means (L*)""1.] It is easy to
j

verify that the bundle corresponding to a divisor depends up to isomorphism only
on its class and that we get thus a one-to-one correspondence between the group
Cl(Jf) and isomorphism classes of holomorphic line bundles on ,Λr.

The integer d= £ nt is called the degree, d = deg^, of a divisor 3} — £ Π f P j . The
degree of a divisor equals degL, the topological number of the corresponding line
bundle L on ,/Γ, as one can readily see by descending to Λ^red. (degL is defined
simply as degLred.) In particular, for a divisor Q) linearly equivalent to zero one gets
deg^ = 0, as one can also check directly by considering the divisor of /red on ̂ red,
where / is a meromorphic function corresponding to Q). Now holomorphic line
bundles of degree zero (i.e. topologically trivial holomorphic bundles) are
described by the superspace C/0(yK>) of classes of divisors of zero degree.

If L is a topologically trivial bundle, that is a bundle topologically isomorphic
to the direct product Jf x (C1 ' °, then the ^-operator in this bundle can be written in
the form dL = d + A, where ^corresponds to a holomorphically trivial bundle (i.e. it
acts on functions in the standard way) and A is an even ^-closed (0, l)-form on Jf .
Conversely, every δ-closed (0, l)-form on J/* corresponds to a topologically trivial
holomorphic bundle. If u is an even (regular) invertible function (i.e. ureά nowhere
vanishes), then two (0, l)-forms A' and A, connected by the relation

A = A + u~ldu, (31)

correspond to isomorphic bundles. [This follows from d + A' = u~~ l(d + A)ύ, where
M is the operator of multiplication by u which sets up the isomorphism of bundles.]
If w = expΛ,5 Eq. (31) takes the form A' = A + dλ. The latter means that A' and A
generate the same even element in Hl(jV,&] where Θ is the trivial bundle.
Consequently, the superspace of classes (i.e. moduli space) of topologically trivial
holomorphic line bundles can be represented as a quotient of Hl(^V,G) with
respect to an additional equivalence [for the cohomological equivalence A~A
+ §λ doesn't include (31) in the case when logu cannot be made single valued].

We could get the same result by dealing with the D-operator in L, that is
DL = D + ρ, where ρ is an odd field of type (0, 1/2) on Ji . Analogously to Eq. (31), ρ
and ρf correspond to isomorphic bundles iff

ρ' = ρ + u~lDu (32)

for an invertible function u. In particular, we come again (cf. the last section) to an
equivalent description of Hl(Ji,Θ] as the space of classes of type (0, 1/2) fields
modulo the fields of the form Dλ. Similarly, the moduli space of topologically
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trivial line bundles gets a description as the space of cohomology classes from
H\J^,Θ) modulo the classes of the fields u~lDu. Further, Hl(Jf,(9] can be
identified according to Eq. (27) with (j3/1/2)*, for ̂ ί/2 = ΠHQ(^,ω\ the space of
holomorphic type (1/2,0) fields on Jf . Thus our moduli space of bundles gets
identified with a quotient of (j/1/2)* by a subgroup. Let us show that this subgroup
coincides with the period lattice V in (j/1/2)*. For this aim, we must prove that the
linear functionals on j/1/2,

d2ζ (33)

[which set up the equivalence H\Ar,(9} = (^ll2}*~] belong to the lattice V if
ρ = u~lDu for an invertible u. Using the methods of Sect. 2 [cf. Eq. (6)], we choose
a (2|0)-dimensional submanifold N in Jf , so that

(u~lDu,σ)=- ίu-1Du σd2zd2ζ=^- \β(u~lDu σ).
π jr 2πi N

Then, noticing that β^'^Du σ) can be replaced in the integral by α(σ) Λu~ldu, for
they differ by an exact 2-form, as one can check directly [namely, by
— d(e u~lDu-σ\ where e = dz + ζdζ as before], we find

(u~lDu, σ)= -1- f α(σ) Λ u~1du= — {AB^
2πi N 2πί

where A\ Bj are the periods of α(σ) and A'\ B'j are the periods oίu'^'du. Since all the
periods of the latter 1-form, u~ίdu, are integer (times 2πf), we conclude that the
linear functional σ ι-> (u~1Du, σ) belongs to the period lattice V as desired. Thus we
have seen that the moduli space of topologically trivial holomorphic line bundles
is isomorphic to the Jacobian J(.yΓ) = (j/1/2)*/V

Now we have two different descriptions of the above moduli space of bundles :
in terms of C70(ΛO and in terms of J(Jf\ Therefore C/0(yK) and J(Jf) must be
isomorphic. One can find this isomorphism explicitly. Let us first construct a map

N

C70(ΛO->J(«ΛO. Let 2= Σ nPi be a divisor of zero degree; £n. = 0. Let us fix
ί= 1

some point P0 in J\^ and connect it by (l|0)-dimensional real submanifolds
C l 5 . . . , CN with the points JP1? . . . , PN. Then this divisor yields a linear functional on
j/1/2 as follows:

j/ 1 / 2aσh->χ?ι. Jα(σ) . (34)
cl

Under a change of curves Ci this functional may change only by an element of the
period lattice V. Hence, every divisor & with deg^ = 0 defines a unique point in
J(ΛO = (eS/1/2)*/F. (Note that this doesn't depend also on the choice of P0 by virtue
of the condition £ n{ = 0.) Moreover, one can see that divisors linearly equivalent
to zero are mapped into zero of 3(Jf\ Thus, we get a map C/0(yK)-> J(JΓ). In fact,
let ̂  be a superdomain containing all the points P1; ...,PN, such that ί^1 red is
simply connected, let C be a closed loop in Jf such that Cred = dύUv red and let ̂ 2 be
the rest of Jf . Then the functional (34) can be rewritten modulo V as follows:

X nMP^T^S^hφ-^Dφ), (35)
ϊ = ι 2πι c
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where σe j/1/2, ^= ΣnΛ deg<^ = 0, h is a holomorphic function in ̂ 1 with
D/z = σ, and φ is an arbitrary meromorphic function in ̂  corresponding to ̂ . [If,
for instance, ̂  is covered by a local coordinate system (z,C), then one can set
φ = [](z — z(Pf) — £ C(Pi))"1. Note also that logφ is singlevalued near C owing to
Σ W i = 0.] If now Q) is linear equivalent to zero, this means that there exists such a
function φ defined on the whole of ,λf , so that φ~lDφ is a field regular in ̂ 2. Then
by virtue of the relation (18) one has lΰL(hφ~lDφ) = AlB'i — BiA'\ where A\Bj are

the periods of σ and A\ B'} are some integers, the periods oίφ~lDφ. Consequently,
we have proved that the functional (35) equals zero modulo V if 3) is linear
equivalent to zero.

In order to prove that the map C/0(yί/')->J(.yί/") constructed above is an
isomorphism, we have to construct an inverse map J(yΓ)-^C/0(y(/'). Let us take a
point in J(Jf] and let ρ be a (0, l/2)-field representing it and L be the corresponding
line bundle over Jf . [Thus DL = D + ρ and ρ is defined up to equivalence (32) as
before.] Let us consider a meromorphic even section s of L which possesses only
principal simple zeros and poles making up a divisor & with deg^ = 0. (Remember
that L is topologically trivial.) In order to show that this map J(yί/")-^C/0(.yΓ) is
inverse to the above map Cl0(Λr)->J(Λ/') we must check that the linear functional
(35) defined by 2 coincides up to the period lattice V with the functional on to/1 / 2

defined by the field ρ [see Eq. (33)]. In a topological trivialization of L, when
DL — D -f ρ, its meromorphic section is represented by a function s satisfying, away
from its singular points, the equation (D + ρ)s = Q. Thus, ρ= —s'lDs outside the
divisor Q). Collecting all the notations and facts used above we observe that, in ̂ ,
s can be represented in the form s — φu for an invertible function u and
meromorphic function φ which agrees in ̂  with 3). Then we have ρ = —Dlogu in
<^l. Finally, defining Ni =Nr\όίί^ N2 = Nr\όίl2 and assuming, additionally that C
is contained in A/", we obtain:

d2ζ= f β(ρσ)+ f
Λ N, N2

Then

j β(ρσ)=- J j8(Dlogκ σ)=fα( logt t σ),
Λ Γ i J\ι C

and

J β(ρσ)=- I j8(s-1Ds σ ) = - f α ( l o g s . σ ) + . . . s
^V2 V 2 C

where the dots denote 2πi times an integer linear combination of periods of σ. This
implies that

2πi(ρ,σ)= J [α(logw σ) — α(logs σ)]-f ...
c

- - Jα(logφ σ)+ ... = \u(hφ
c c

for σ = Dh in ^/t. Consequently, the functional σt->(ρ, σ) coincides with that of
Eq. (35) modulo the period lattice. Q.E.D.
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We have thus constructed the required isomorphism J(Jf] = C/0(yΓ) Note that
this proves, in particular, the following useful criterion. A divisor 2 = £ n^ with
deg^^O corresponds to a meromorphic function on Jf (i.e. Si is linearly
equivalent to zero) if and only if

p,

equals zero up to periods of σ, for arbitrary holomorphic type (1/2, 0) field σ. This
can be, of course, shown also directly, using a technique similar to what was done
above,

The manifold of isomorphism classes of holomorphic line bundles is called the
Picard manifold. As we have seen, the part of the Picard manifold corresponding
to topologically trivial bundles can be identified with the Jacobi manifold J(Λ^)
and with the group C70(ΛO. It is easy to see also that the operation of the tensor
product of bundles corresponds then to the addition of divisors. (It is sufficient to
note that the divisor of a product of two sections equals the sum of their divisors.)

5. Computation of Cohomology Groups. Riemann-Roch Theorem

Let us discuss first the case when all odd parameters of a superconformal manifold
Λr and of a bundle L over it are zero. That is to say, we suppose that there is a one-
dimensional complex (ordinary) manifold N with a spin structure and with a
holomorphic line bundle L0 given on it. Then the superconformal manifold Λ" and

the bundle L can be constructed by means of gluing (z, ζ) = (u(z\ ]/u'(z) ζ) and (z, ζ, Γ)

= (w(z), j/i7(z) C, g(z) l\ where z = u(z) are the transformations which emerge in
gluing up the manifold N and g(z) are the transition functions of L0. The spin
structure on N defines a line bundle by the following rules of gluing:

This bundle will be denoted by ω0. It is easy to see that a holomorphic section s of
the bundle L over Λr can be written in components as follows:

where s0 is a section of L0 and Sj is a section of L0(χ)ω0 on N. Consequently,
f/%/r,L) is a superspace, with H0(N,L0) being its even part and H°(N,L0®ω0)
being its odd part. Similarly, using a component calculation or by means of duality
(27), one can verify that the superspace Hl(^, L) is a direct sum of Hί(N, L0) and
ΠH1(N,L0®ωQ). Let g be the genus of Jf . If the degree of the bundle L0 is
negative, L0 has no holomorphic sections, i.e. H°(N, L0) = 0. On the other hand, if
the degree ^ g, then L0 does have a non-zero holomorphic section. The degree of
ω0 equals g — 1 and the cases H°(N, ω0) = 0 and H°(N, ω0) φ 0 both are possible. In
the first case the manifold N with spin structure will be said to be normal. (In
algebraic geometry the term "theta characteristic" is used instead of "spin
structure." A theta characteristic is called even or odd depending on the parity of
the number of linear independent holomorphic sections of ω0. The generic case for
an even theta characteristic is the case when this number is zero. It is this case
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which we call the normal case. Usually one says "non-degenerate even theta
characteristic".) It follows that if N is a normal manifold, then H°(Λ^, L) = 0 in the
case when L$ is non-trivial and possesses a non-zero holomorphic section (in
particular, when the degree of L0 is less than — g + 1). This statement is valid also
when odd parameters are turned on, that is to say, when Jf is a normal compact
superconformal a manifold (i.e. a supermanifold with underlying manifold being
normal) and the bundle L*ed is non-trivial and possesses a non-zero holomorphic
section. Roughly speaking, the appearance of odd parameters cannot increase the
dimension of a cohomology group. (Under a sufficiently small variation of an
ordinary even parameter this dimension also never increases. A variation of odd
parameters always can be considered, in a sense, as being infinitesimally small.)
Furthermore, in the case considered one can assert that H^(Jf,L) is a complex
superspace of dimension (g — d — l\—d\ where d is the degree of Lred:

^,L) = (g-d-\\-d). (36)

For vanishing odd parameters this follows from the ordinary Riemann-Roch
theorem,

dim/f°(]V,M)-dimH1(]V,M)-degM-g + l , (37)

by taking M = L0 and M = L0(χ)ω0 (N = ̂ τed). In the general case one has to
consider the operator D acting from Γ(L) to Γ(L(χ)ώ). By the above arguments, the
kernel of this operator, j/(L) = H°(Λ\ L), equals zero. Since the dimension of the
kernel remains unchanged when varying odd parameters, the same holds for the
cokernel, that is for H\J^,L).

On the other hand, using again Eq. (37) we obtain also the following statement.
If Jf is a normal compact superconformal manifold, whereas Lred(x)ωfed is non-
trivial and possesses a non-zero holomorphic section, then H l ( J f , L ) = Q and
H0^, L) is a complex superspace of dimension (d + l — g \ d ) :

dim#Vr,L) = (d+l-g |d). (38)

Let us point out that according to above arguments Eq. (38) [respectively
Eq. (36)] is valid also without assuming that Jf is normal, if, however,
f/1(«yK5L) = 0 [respectively H°(«yK,L) = 0]. These results can be applied to the
bundle L=ω*, degω f c-fc(g-l). Noticing that H°(^ΓredJ ωjed) = 0 for rc<0, we find
that #VΓ,ωk) = 0 for fe^-2 and that dimH1(^Jω

k) = ((l-fc)(g-l)|/c(l-g)).
Using Eq. (3 8) we find also that, for k ̂  3, dim H°(yΓ, ωk) - ((/c - 1 ) (g - 1 ) | /c(g - 1 )),
whereas Hl(J/ \ ωk) = ΰ. In the case of a normal superconformal manifold Jf one
can compute also cohomology groups HP(J/ \ ωk) for fc = 0, 1. (That is to say, when
either L is a trivial bundle @ = ω° or it is ω.) In this case one has dimH°(tΛ

r,&)
= (1|0) and dimH0^, ω) = (0|g). Indeed, for vanishing odd parameters, holo-
morphic functions on Λf (i.e. sections of the trivial bundle &] are related to
holomorphic functions on Λ^ed and holomorphic sections of ωred. The former ones
are constants, for J^red is compact, while the latter ones are necessarily zero, for Jf
is normal. The constants continue to be holomorphic sections of (9 in the presence
of non-vanishing odd parameters as well. This means that the dimension (1 10) of
H°(J^, Θ) doesn't decrease and, hence, remains the same after turning on odd
parameters. Since the dimension of the kernel, //°(yK, Θ\ of D acting from Γ(θ] to
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Γ(ώ) is thus independent of odd parameters, so are dim//1^, Θ) and, hence,
dimH0^, ω) by virtue of the duality (27). It remains to observe that for vanishing
odd parameters the group HQ(Jf, ω) reduces to a trivial group, #°pΓred, ωred), (by
virtue of Jί being normal) and to the group /ί°(«Λ^ed, ωr

2

ed) of dimension g. [Note
that holomorphic sections of ω^ed are nothing but holomorphic (1,0)-forms, that is
abelian differentials.] All this implies, in particular, that a holomorphic type (1/2,0)
field on a normal manifold can be specified completely by its periods with respect
to the cycles a1,...,a9 (i.e. by its ^4-periods). Thus, if all the ^-periods of a
holomorphic type (1/2,0) field on a normal manifold vanish, then the field itself
equals zero.

The results proved above can also be derived from a general theorem, the super
analog of the Riemann-Roch theorem. This gives the following. If H0(J^, L) and
Hγ(Jf, L) can be considered as super spaces, then

dimH°(^,L)-dimίΓ1(^Γ,L) = (d + l-g |d) 3 (39)

where a is the degree of L, g is the genus of the superconformal manifold Ji. In the
absence of odd parameters this follows from the ordinary Riemann-Roch theorem.
In the general case, one has to use the fact that the index of the operator D remains
unchanged under variation of parameters. (Remember that the index of an
operator is defined as the difference of dimensions of its kernel and cokernel.)

Appendix

Let Λ be a real Grassmann algebra. An even yi-point of the (p \ ^-dimensional
superspace IRpk means a row of p even and q odd elements of A. An odd Λ-point is
given by a row of p odd and q even elements of Λ. Taking Λ to be a complex
Grassmann algebra we obtain similarly the definition of a yl-point of the complex
(p I ^-dimensional superspace (Cp|ί. The set of even yi-points of Rp|β or, respec-
tively, of U7k will be denoted by R^k, <C$q. For a superspace E we denote a
superspace with inverse parity by ΠE. ΠE possesses the same set of yi-points
except for their parities which are renamed. Those points which were even in E are
called odd in ΠE and vice versa. Thus, for instance, ΓΠRp\q = lRq\p. If ̂  is a domain
in Rp, then the subset of R^k consisting of rows (x * , . . . , xp, ξ1,...,^) with
(m^1), ...,m(xp))e^ will be called a yi-superdomain tflq

Λ. [We have used here the
notation m(x) for the numerical part of x e Λ.~] For a complex domain °U C Cp, the
corresponding yi-superdomain ̂ C(C^k is defined analogously. A Λ-map of R^k

into R^]5 means a map of the following form:

/ γ i Y*V«i £**..α,ΛΛ •> " 9 Λ )<* • • • < • > ?
(A 1 j

of parity equal to the parity of the number /c, and g£t αk is a Λ -function of parity
opposite to that of k. (A Λ-function is by definition a linear combination of
ordinary smooth functions with coefficients in A and with even elements x1, . . . , xp

of A substituted for their arguments.) One can define analogously yl-maps of
complex superspaces and yl-maps of superdomains. A yl-manifold can be
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understood as a manifold glued up from yl-superdomains by means of yl-maps. In
the text of this paper supermanifolds can always be understood as Λ-manifolds,
their points can be understood as even Λ-points, and maps can be understood as
/[-maps for a fixed Grassmann algebra A. Another approach to the definition of a
supermanifold implies consideration of a family of /1-manifolds for all yfs, every
two of them being related in a certain way (cf. [16]). As a matter of course, all the
main results remain valid for the latter definition as well.

A yl-manifold can be singled out in IR^ (or (C^|ήf) by a system of equations, say,

/(z) = 0, (A2)

where / is a Λ-map of Rp|ήr into JR/^^-s Equation (A2) defines, in general, an
(r I ^-dimensional Λ-manifold. It is worth pointing out, however, that this is not
always the case. For example, a system of linear equations,

with z = l, . . . ,/?; y = \,...,q; n = l, . . . , / ? — r; μ = l,...,q — s, defines an (r s)-
dimensional /ί-manifold only if the numerical parts of the matrices (a"), (bty are of
maximal rank [i.e. rankm(α") = p — r, rankm(^ίj) = q — s]. In the case of a non-linear
system of equations similar constraints must be imposed on principal linear parts.

From every /ί-map / of superdomains one can make a map /red of ordinary
domains by reducing all the nilpotents, that is replacing all the elements of
Grassmann algebra by their numerical parts. To every Λ -manifold 3C one can
relate an ordinary manifold ̂ red called the underlying manifold of 9C. The manifold
S"red can be obtained also by reducing the nilpotents. More precisely, if ?£ is glued
up from Λ-superdomains by means of some /ί-maps, then ff red must be glued up
from ordinary domains by means of corresponding reduced maps. Moreover, for
every /ί-map / of Λ-manifold 3C into yl-manifold ̂  there is a corresponding map
/red : <^red~^red One has also a natural map ̂ f -> r̂ed. A point of ̂ red, which results
under this map from a /[-point P of 2£, will be denoted by Pred.

3

In this paper we deal, in particular, with cohomology groups H° (</¥", L) and
H^(jV, L) with coefficients in a bundle L over a superconformal manifold Jf . These
groups we regard as /[-manifolds (or superspaces, according to the terminology
used mainly in the text). Such a treatment, however, may sometimes be impossible,
for the equation Dφ = 0, which distinguish elements of H°(^9 L) (i.e. holomorphic
sections of L) from an infinite-dimensional superspace of all sections, may not
satisfy the conditions described above. In the latter case we say that /f °(yΓ, L)
cannot be considered as a superspace. An analogous situation may also take place
for Hl(^V, L). In other words, the groups HP(^,L) always are //-modules, but
these /1-modules may not be free in some cases. If not pointed out otherwise, all the
cohomology groups considered are understood to be superspaces,

In the text of this paper we often say "manifold" instead of "supermanifold" (or,
more accurately, instead of "yl-manifold"), "space" instead of "superspace," and so

3 Note that this set-theoretical map, ^— >όΓred> cannot be considered as a /1-map of supermanifolds,
since it maps Λ -points of 3C into R-points of ^Γred. This means, in particular, that the map 5Γ-> r̂ed

does not induce a map of functions on ^'red into /i-functions on 3C
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on. The term "determinant" always means the superdeteπninant (i.e. the
Berezinian).

In Sect. 4 we have to put certain constraints on the meromorphic functions to
be considered. This restriction could be avoided if one used a more general
definition of divisors. On an arbitrary (m|n)-dimensional complex algebraic
supermanifold Jf a divisor is defined (according to Cartier) by the following set of
data. Let {%} be a covering of Jf by open superdomains, φt be even meromorphic
functions on % such that ((Pi)red φ 0 and that gtj = φjψj are holomorphic functions
on ^n^ with nowhere vanishing (g^ )red. The corresponding divisor is defined
then as a class of sets {φj with respect to equivalence Φi^g/φ,- if gf are
holomorphic functions in όUί with (g£)red φ 0 in (̂  )red. Such a divisor represents,
roughly speaking, a linear combination of (m —l|n)-dimensional submanifolds
with integer coefficients. Note also that every such divisor is related to a line bundle
defined by transition functions gίp which appeared above, and that the classes of
divisors are in one-to-one correspondence with isomorphism classes of line
bundles. If Λr is a (1 1)-dimensional superconformal manifold, then Cartier
divisors may correspond to (0|l)-dimensional complex submanifolds. Had we
used in this case Cartier divisors, we get, in fact, the same results as in Sect. 4. This is
indicated, in particular, by the following correspondence. Every divisor defined as
in Sect. 4 (i.e. a linear combination of points) corresponds to a certain Cartier
divisor. If, for instance, the former is a single point P = (z0, C0), then the latter is
defined by the function (z — z0 — ζζ0) in a domain containing P and by functions
equal to one in other domains. In other words, this Cartier divisor corresponds to a
(0| l)-dimensional submanifold (z —z0 —ζ£0 —0}. Conversely, if some Cartier
divisor is given locally, for example, by an even holomorphic function φ, such that
φΐeά has a single simple zero [or by a (01 l)-dimensional submanifold {φ = 0}], then
the corresponding divisor in the sense of Sect. 4 contains the point defined by
equations φ = 0, Dφ = 0, i.e. the principal zero of φ, with the unit coefficient. (Note
that although we have no complete correspondence between the divisors of two
kinds, this is inessential, for the groups of classes of linear equivalent divisors are
isomorphic. Indeed these groups are both isomorphic to the group of classes of line
bundles.)

The above connections between divisors in the sense of Cartier and divisors in
the sense of Sect. 4 is analogous to the correspondence between (l,0)-forms and
fields of type (1/2,0) described in Sect. 1. Thus, for example, one could define the
periods as the integrals of type (1/2,0) fields over (11 l)-dimensional real cycles. In
this case, to derive bilinear relations (8), (9) in Sect. 2 one had to use the Stokes'
theorem for integral forms instead of differential forms.
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