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Abstract. We consider families of maps of the circle of degree 1 which are
homeomorphisms but not diffeomorphisms, that is maps like

x-+x + t+ —- sin (2πx) (modi)
2π n ;

with c = l. We prove that the set of parameter values corresponding to
irrational rotation numbers has Lebesgue measure 0. In other words, the
intervals on which frequency-locking occurs fill up the set of full measure.

1. Introduction and Formulation of the Theorem

We study one-parameter families of maps of the circle of degree 1, which are
differentiable homeomorphisms, but not diffeomorphisms. The subject of our
investigation is dependence of rotation number on the parameter. The problem
interested both mathematicians and physicists. The families like x-*x

c
+ -—sin(2πx)-r-f were studied for various constants c. For c<\ the maps are

2π
diffeomorphisms and there is a result of [2], which says that rotation number is
absolutely continuous as function of ί. When ol the maps are non-
homeomorphisms and have no rotation number. However, there is a result of [6]
about endpoints of rotation interval. It is quite different from the result for
diffeomorphism just mentioned above - both endpoints of rotation interval are
rational almost everywhere in the sense of Lebesgue measure. The case of c = 1 is
covered by the present work. It was also studied numerically - the results strongly
suggested that rotation number should be rational almost everywhere (see [3]).

We give a mathematical proof of this. In many aspects it is the continuation of
[6]. Our main analytic tool is cross-ratio. Given four points a<b<c<don the real
line, we define their cross-ratio by

^ < v, * (b-a)(d-c)
Cr(α, b, c, d) = Γ7J-TV

(c-a)(d-b)
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Suppose also that h : IR ->R is an increasing function. The distortion D of the cross-
ratio by that function is given by

iv *, A MD(α, b,c,d',h)=
Cr(a,b,c,d)

It is known that if h has no flat critical points then it is possible to D estimate the for
h and, which is more interesting, for large order iterates of h. The estimations of
that kind are used in [4] and [7] and prove to be useful there. We make the general
assumption that all critical points of our maps are non-flat. We shall give precise
formulation of that later. We need also differentiability with respect to the
parameter in order to ensure that our maps change regularly, in particular near the
critical points.

Throughout all our work we shall deal with a continuous family / of lifts of
homeomorphisms of the circle of degree 1 . The parameter space will be denoted by
U, so that we have /: U χ]R->R. Parameter values will be denoted by t, while
arguments on the real line by x. We also refer to particular lifts, denoted by ft and
defined by /f(x)=/(ί,x).

Now we shall formulate 2 sets of hypotheses.

Hypothesis 1. The family f is real analytic with respect to both variables and the
Λ Γ

derivative — - is positive everywhere in U x IR. Each ft has at least one critical point.
ct

Hypothesis 2. The family f is of the form f ( t , x) = h(x) + r, where the function
/z:R->R satisfies:

a) It is at least C3.
b) It has at least one critical point and in the neighbourhood of each critical point

there exists the derivative of some order vanishing nowhere in that neighbourhood.

The Claim, which holds under any of these hypotheses says that: The Lebesgue
measure of the set of parameter values for which the rotation number is irrational is
zero.

2. The Technical Version of Assumptions

Now we shall formulate the set of assumptions which are in fact a result of
localisation of the hypotheses given in the previous section. Thus we shrink the
parameter space U to a compact interval T and assume that the following
conditions are satisfied:

1 ° There exist m, with 1 g m < oo, functions kt : T—>R, of class C1 such that kt(i)
is always a critical point of ft and all critical points offt modulo 1 are represented in
this way. Moreover, we suppose that:

a) kt(t) are distinct modulo 1 for every ί,
b) for each i there is an open neighbourhood V{ of the curve (ί, k^t)) in T x IR and a

5li
natural number I such that —-r exists, is continuous and is non-zero everywhere in V.

dxίl

ι,-
) = 0 for each i and tεT.
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2° The function f is of class C3 with all derivatives bounded simultaneously and
uniformly by a constant L.

3° There is a positive constant σ such that — ^σ everywhere in TxIR.

Then we claim that

The rotation number is irrational only on a set of zero measure.

Corollary. // Hypothesis 1 or Hypothesis 2 from the previous section holds, then for
any t e U there is a neighbourhood of t in U, which, possibly with an exception of
countably many points, can be covered by compact intervals on which the assumptions
of the technical version are verified.

Proof. The only difficult point is to show that Hypothesis 1 of Sect. 1 implies that
critical points of / can be locally represented as claimed in assumptions 1° of TV
(the abbreviation of ς'the technical version"). In order to demonstrate this we fix
some IQ in U and we are going to show that some neighbourhood of ί0 can be
covered, except for countably many points, by intervals on which TV is satisfied.
Let the critical points of/ ί o be kl9...,km with orders / l 5 . . . , / w respectively. We
assume that there exist natural numbers λλ r g / t , . . .,/m^/m and analytic functions
z!, . . . , zm defined on some neighbourhood V of Γ0 with values on the real line such
that z (ί0) = ki and the derivatives λb ..., / t of ft vanish at zt(t) for all i between 1 and m

dλlf
and t from V. We also assume that in this way we obtain all the zeros of --j— in

o lx
neighbourhoods of (ί0, fef) in U x 1R for each i respectively. Observe that it is always
possible to obtain such a situation for every t by the implicit function theorem. We

m

shall proceed by induction with respect to £ λv If it is m, which is the least possible
i — 1

value, then 1° is evidently satisfied in some neighbourhood of t (possibly finer than

F). Otherwise we consider some i such that λ , > 1. The function „ , _ 1 (z, (ί)) is real
dxλl

analytic in F Hence it is either 0 identically in some neighbourhood V of t or it is
non-zero in F+ and V~ one-sided neighbourhoods of ί. In the first case we can
reduce /,,- by 1, in the second case we can do the same in one-sided neighbourhoods
of t using the implicit function theorem. By induction we obtain easily that each
point in a punctured neighbourhood of t has a neighbourhood, which can be
covered by intervals on which TV holds with exception of only countably many
points. The corollary follows. Π

Observe now, that using the corollary the theorems mentioned in Sect. 1 follow
immediately from the technical version of the theorem. Indeed, every point of U
has a neighbourhood on which the set of parameter values corresponding to
irrational rotation numbers has measure zero, hence that point cannot be a density
point of this set.

Now we just assume the technical version and begin the proof of its claim. The
words "technical version" will be abbreviated to TV.

We begin the proof with presentation of our main technical tool.
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Cross-Ratio Inequality. Let us consider a system of fours of points of the real line
covering the circle by a canonical projection. We denote the points by ab bb cί9 d{

with ai<bi<cί<dί for i = l , . . . , n . We assume further that the intervals (abd^
projected onto the circle by the canonical projection cover each point of it at most
k times. For every ί 6 T there is a constant Q, independent of l, n, and the choice of
points such that the following inequality holds:

i= 1

Before we prove the inequality we shall demonstrate several lemmas.

Lemma 1. There exists such w>0 such that intervals Wίίt = (ki(t} — 2w,kί(t)Jr2w)
satisfy the following conditions for every teT and i with 1 ̂ i^m:

a) For different i and fixed t the intervals Wiit are disjoint modulo 1.
b) The Schwarzian derivative of /„ which is defined by

f(3) o / f"\ 2
CIS Jt 3 Jt \

Jt f 2 \ fJt L \Jt /

is negative in W ί t t .
c) There are numbers Aiιt, uniformly bounded by a constant A with the property

~l for xeWίt.

Proof. The condition a) will be satisfied if only w is small enough. Next, we fix i and
consider a function

The function at(x) is a continuous function of 2 variables defined in V^ We have

where |x7— fc^l^lx-fc^f)! for 7 = 1,2, 3.
Since at(ki(t)) is non-zero for every ί, the condition c) follows easily from the

continuity of at. In order to prove b) we calculate the Schwarzian derivative as
follows:

- l ) ( - 2 ) . a ) 3 - l 2 ( x

Since the ratios —.—- as well as ——- are uniformly close to 1 when w is small
flf(Xl) «ί(Xl)

enough, the negativity of Sft follows from

(ί ί-l)(/ ί-2)<|.(/ ί-l)2. QEΌ

For each t e T we consider the set
m

U (fc;(ί)-
= l
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and define E= (j ({t} x Et). It is easy to see that — - ̂  ξ on E for some positive
ίeΓ UX

constant ρ. Indeed, E is a compact set which does not contain points like (ί, kt(t)).
Let α, b, c be any three points of the real line such that b lies between a and c.

Then we denote -

Note that D(a,b,c9dιft) = Dh(a,b9c',ft) Dh(d,c9b , f t ) .

Lemma 2. For any a, b, c eR swc^i ί/zαί ί/ze quantity Dh(a, b, c\ ft) is defined it is not
greater than a constant K2 independent of t.

Proof. We fix a parameter value t and we are going to remove it from further
notations in this proof. It will suffice to consider Dh(a,b,c',f) when a<b<c. We
consider three cases:

a) (a9c)cEt.
b) (α, c) C Wt for some i.
c) Neither a) nor b).

It is very easy to resolve a) - we immediately obtain Dh(a, b,c;f)^^. Observe

also, that c) implies c — a > w. Now a simple compactness argument shows that

is bounded by an absolute constant. So does — ; - , which is
b-af(c)-f(a)

bounded by L. Now we shall concentrate on b).
We substitute * = a — ki(t\ b = b-ki(t), c = c-ki(t). We also denote ht(x) = xl1.

We compute

~~ 9

lf'(x)dx

l f ' ( x ) d x

1 \f(b)-f(a)\
2 ' \ f ( c ) - f ( a ) \ '

itThe inequality here follows by Lemma Ic). Since evidently — ,
\b-a\ |b-a|

follows that Dh(a, b,c; f):g2 Dh(a,b,c;ht). Further we observe that Dh(ar,br,cr;ht)
= Dh(sL, b, c; hi) for any r different from 0. Hence we may assume a = 1 and consider
Dh as a function of two variables c and b. It is clear that if |c| is large enough (not less
than /j), then Dh(\, b, c; h^ < 1. Since Dh also has finite limits when b or c tends to 1, it
has a bound independent of both, as well as ί, by the compactness argument. This
constant may be done independent of i too, by taking maximum with respect to f.

QED

Proof of the Cross-Ratio Inequality. We divide the set M= {1,..., n] into 3 subsets
M l 5M2,M3 in the following way:

1° A number i belongs to M1 if and only if (abdt) is contained in some W j t t .
2° The number i belongs to M2 if and only if (ab dt) is contained in Et.
3° M3 = M\(M!uM2).
We shall prove that each of the products
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s = 1 , 2, 3 is bounded by a universal constant, which will clearly yield the cross-ratio
inequality.

1° We define Mla a subset of M j in the following way:

M l α = {ieMΐ: (ab dt) contains a critical point of ft} .

Since the cardinality of this set is bounded by m fe, we obtain by Lemma 2 that

Π D(ai9bi^dl'Jt)^Kikm.
j e M l α

If ίeMί\Mla, then the Schwarzian derivative of ft is negative on (a^d^ by
Lemma Ib). it is a well-known fact (see for example [5] that it implies
D(abbbcbdί'J^<\.

2° Since the derivative of / with respect to x is bounded away from 0 by ξ

uniformly in E, the variation of log// over Et is bounded by — for every t. The
classical distortion argument gives us the estimation.

Q
for every t. i

3° Since W^ t and Et overlap, ί e M3 implies that di — at > w. There are at most —
vv

such intervals and their contribution to the distortion of the cross-ratio can be
bounded by Lemma 2.

This concludes the proof. QED

3. Basic Notions, Notations, and Ideas

First we shall briefly present the formalism of Farey series. It is described in an
elementary way in [1], / , \

A Farey interval is an interval A= \--,-}(q,qf> 0) with pq — qp' = \. We shall

quote without proofs several properties of Farey intervals.

A) The rational in A with smallest denominator is

B) There is no other rational in this interval with denominator less than
2 mm(q, q'} + max(g, q').

We shall usually work with good Farey intervals, that is Farey intervals
satisfying max(g,<?')<2 min(g,g'). The notations A,p,p',q,qr will be used in the
sense given above throughout the whole work. For technical and notational
simplicity we shall usually assume that q' > q, which implies also p' > p. We shall
call such Farey interval a normalised one. We note that for r = p' — p and s — q' — q

the interval I -,- 1 is a Farey interval containing A. That fact holds also if- < —
\s qj q q

with ordering of endpoints of the intervening Farey intervals consequently
reversed.

The main subject of our interest is the function which ascribes to every
parameter value t the rotation number of ft. It is denoted by ρ. It is well-known that
ρ is continuous and, as a consequence of the assumption 3°TV, non-decreasing in
T.
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Now we shall briefly sketch a scheme of our proof. We fix a good normalised
Farey interval A and consider functions ft for t e ρ ~ ̂ (A). Notice that the results will
be valid for not normalised intervals as well because of the following trick. By an
affine change of parameters we can make Tbe the interval [—1,1]. We consider a
family of maps ft' defined by ft'(x)= —f-t( — x) and the corresponding function
ρf. It is easy to verify that /' satisfies the hypotheses of TV if only / does so. There

is also an equality Qr(t) = l — ρ(ί)modl. Hence if A=\ --,- I is not normalised we

may consider // for teρ' ,—.— with the last interval already
VL 4 4 J/

normalised. Any results concerning proportion of the set of parameter values
with rational rotation numbers obtained for /' on that interval imply the same
estimates for / on ρ"1^)- Namely, we shall show that independently of A the

-K }P ( }Pproportion of the measure of ρ 1 1 < — >, <-> I to the measure of ρ ^^l) is not

smaller than some positive constant. This will easily yield the claim of the
technical theorem.

In Sect. 4 we begin with simple considerations concerning the link between
arithmetic properties of rotation numbers, expressed in terms of Farey series for-
malism and ordering of orbits of the maps. In Sect. 5 we thoroughly study peri-
odic orbits of a critical point of ft for various rotation numbers from A, namely

either of the form un= - - or v= --- . These sequences tend to the
nq + q1 q + nq'

endpoints of A. We shall examine how much orbits of the critical point for those
rotation numbers differ from orbits with periods q and q'. We measure this
difference in a geometrically transparent way by taking the distances between
points and their q-th (respectively q'-ih) images. The result is that the differences

between periodic orbits of the critical point for rotation numbers un and -, vn and —

P' P . q q/

and between — and - are all comparable by uniform constants, independent of A
q1 q

and, what is more interesting, of n. The idea of Sect. 6 and Sect. 7 is to show that
this implies that analogous distances between parameter values are also compar-
able, which clearly gives the desired estimation. This can be done directly though
the calculations involved are fairly complicated. Section 8 is an easy conclusion.

We finish this section with some notations.

Definition 3.1. For any continuous function z from the parameter space to the real
line and an integer / we define the function g f( ;z): T-»R by the formula g f(ί;z)

=/Λ*(0).
Definition 3.2. For a function z as above and a Farey interval A we define points in
the parameter space as follows:

The interval (E(z,A),H(z,A)) will be denoted by I(A\z\
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The above definition makes sense if the sets mentioned are both non-empty.
We assume that it is the case.

Once and for all we choose one of the functions k{ defined in 1°TV. We shall
denote it by k and refer to its values as the critical point.

4. Rotation Numbers Determine Orbits

We fix a good Farey interval A = I — , - 1 as usual.
W V

Lemma 3. Suppose that the function z from definitions of Sect. 3 is a constant P.
Then the intervals gf((£(P, A\ H(P, A); P) for i ̂  1 and i rg max(g, q') when projected
onto the circle cover each point of it at most twice.

Proof. Suppose the contrary. To simplify notations we shall remove A and P from
them. Let π be a canonical projection. We can find z\, z'2, ι'3 natural numbers not
exceeding q" = max(q,qf) such that

Since ft are increasing with t it is easy to see that it implies also

π(gίl +J{H)) 6 π(gί2 + /£, H))nπ(gί3 + /£, fl))

for any natural). In particular, it implies that there are parameter values t2 and f 3

in I(A\P) such that P is periodic with period i2 + q" — iί and z'3 + q" — il for ft2 and
/ί3 respectively [if q" = q' one should choose zΊ,^^ so to have

in order to obtain this corollary]. Suppose that i2 + q" — il=q + q\ which is the
least possible value, then i^ + q" — z\ must be at least q + q' + mm(q,q')>2q"
because A is a good Farey interval. We obtain a contradiction. QED

Lemma 4. Lei A be a Farey interval, not necessarily a good one and ρ(ί) 6 A. Then,
for any point P on the circle the positively oriented arcs ( π o f t

q o n ~ 1 ( P ) , P ) and
(P, π o f t

q ' o π~1(P)) contain no point of the form π ° f t

l ° π ~ * ( P ) for Q^i

Proof. Suppose for example that there exists such i as above and π ^ f t

l o n ~ 1 ( P )
belongs to the second of the intervals mentioned above. Consider the family ft on
the interval (£(P, A), t) (P here means the constant function equal to P). Since for
E(P,A) f\P) does not belong to [P,/^] (which degenerates to the single point),
there must exist some intermediate parameter value T such that either fγ(P)
= P (mod 1) or fγ(P) =/τ'(P). In either case there is an orbit of fτ of period less than
q + qf, but in A there are not rotation numbers with denominators less than
q + q'. QED

Lemma 5. Let o(t) e A. We assume as usual that the endpoints of A are - and ~~ with

P P' q q

q' — q = 5, but now instead of - > —we assume that q' > q. Let P be any point of the

circle. By I we denote the arc (π °/f*(P), π <>/f

s(P)) and Γ is (π °ft

q~\P\ ft

s(P}}. We claim
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that arcs I,π°ft°π~l(I\ ...,πo/ ί

ί~1 o π ~ l ( I ) cover each point of the circle at most
twice and so do the arcs /', ...,π°ft

s~l(Γ\

Proof. In both cases it suffices to consider only points of / or /' because ft is a
homeomorphism. By Lemma 4 there is no iterate of/ of order less than qf + q other
than q' by which the image of P belongs to /. Thus the only iterate of order less than
q by which and endpoint of/ comes to / is the q — 5th, which proves the first part of
the claim. The second assertion follows in the same way when we consider a Farey

r p — r
interval with endpoints - and - and apply Lemma 4 to it. QED

s q — s

Finally we shall consider the case when the function z of definitions of Sect. 3 is
no longer constant, but may be one of the functions kt defined in 1°TV. We choose
once and for all one of those functions and shall denote it by fe.

Lemma 6. Let z be either a constant function or k. Then, for every positive i the
dg (t;z)

derivative — l—^ — is not less than the pos
at

Proof. We compute for every positive i:

dg (t;z)
derivative — l—^ — is not less than the positive constant σ mentioned 3°TV.

at

In the situation of the lemma, the second term vanishes for i=l. The first term is
then not less than σ, in particular positive. The second term is always non-negative
by induction and the lemma follows. QED

A function z satisfying the hypotheses of Lemma 6 will be referred to as a
variable point. We introduce the notation j(A) = ρ~ l(A) for a good Farey interval
A.

In the following proposition we shall use simplified notations. We shall remove
function z whenever it will be the function fc and for £(z, A) and //(z, A) we shall
write just E and H.

Proposition 1. Suppose that _• -. Then there is a constant N independent of A
such that the intervals ' ^ ''

when projected onto the circle cover each point of it at most N times.

Proof. Whenever we do not specify a variable point we mean the function k. The
notation A will be also omitted. Let us choose points P l 5 . . ., Pn in the closure of/ in
such a way that E = Pi<P2< ... <Pn = H. Then we consider intervals Ip

7 = l , . . . ,n defined by Ij = I(A;k(Pj)), where k(Pj) is regarded as the constant
variable point. We shall prove that if the points P are sufficiently close to each
other, then g^ ; fe(Pj)) and g t.(/j+1;/c(Pj+1)) intersect for every positive i and

n

7 = 1, ..., ft— 1. It means that the sets Ut = (J g^Ip k(Pj)) are all connected. Since we
j = ι

have assumed that Pί=E and Pn = H, each Ui contains both gt(E) and gι(H). Thus
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it contains the whole gf(J). It is a simple corollary to Lemma 3 that U l 5 . . . , Uq + s

cover each point of the circle at most 2n times. The proof is finished by the
following.

Auxiliary Lemma. Under the assumptions of Proposition 2 there exists a positive
constant <5, independent of A, such that if P,ReI and \P — R\<δ - 1/|, then the
intervals gf(/(τ4;k(P));/c(P)) and gί(/(y4;fe(^));fc(^)) intersect for every positive i.

Proof. We begin with the following simple observation:

while

It implies the inequality

), H(k(R))) - max(E(fc(P)), E(k(R))) ^ \j(A)\ .

We shall prove that choosing δ appropriately we can ensure that the following
inequalities hold:

gl(H(fc(P));

and

gl(H(k(R));k(R))>gl(E(k(P)) k(P)).

We shall prove only the first one - the proof of the other is practically the same.
We estimate:

gl(H(k(P)) ,k(P))-gl(E(k(K));k(P))^σ \H(k(P))-E(k(R))\

where the successive inequalities follow from Lemma 6, ® and the assumption of
Proposition 1. On the other hand:

: ί e T > which is

); k(R)) - gl(E(fc(K)); fc(P)) ̂ f(E(k(R)), k(R}) -f(E(k(P}\ k(P))

^L \k(R)-k(P)\^B L \P-R\,

' dk
~dt

where we have used 2°TV and by B we have denoted sup

finite provided 1 °TV holds. Thus if— |/(,4)| >BL-\P — R\,WQ obtain the inequality

we desire. The above condition must hold if we put δ = v^y-.
2BL

Now we shall prove that g;(#(/c(P)); fc(P))>gί(E(fe(R)); k(Rj) for every i positive
integer, once more the proof of the inequality

; k(P))
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is quite similar. It is a simple induction:

gί + ι(E(k(R))', k(R)) =f(E(k(R}\ gi(E(k(R)); k(R))

< f(H(k(P}\ gi(H(fc(P)); k(P}}} = gi + ̂ (/cCP)); k(P)}

- we have only used (x) and the fact that / is increasing with respect to the first
argument and non-decreasing with respect to the second one.

It is clear that the inequalities we have proved yield the claim of the
lemma. Π

The proof of Proposition 1 is also finished - the Auxiliary Lemma ensures that

for every A we can choose no more than - + 2 points Pt with the desired
UJ

properties. We get N = 2 ( -̂ - + 2 ). Π
\L2βLJ /

We have assumed that 7,7-777 ^ ̂  in Proposition 1 - it is an immaterial

restriction, since our aim will be to prove that this ratio cannot be too close to 1.
We shall not explicitly verify this when using Proposition 1 in the future.

5, Periodic Orbits of the Critical Point

In this section we shall study periodic orbits of the critical points for maps ft with t
in l(A, k\ moreover with ρ(t) e A. Our objective is to find a sense in which these

orbits are geometrically far from those with rotation numbers - or —.
q q'

It will be usually more natural to consider things on the circle instead of the real
line. A map ft then projects to a circle homeomorphism, denoted by G. Lengths of
arcs, their ratios and cross-ratios have the obvious meaning on the circle. Our
main tool will be the Cross-Ration Inequality. Observe that constants Ck are
independent of the particular choice of G. All other constants found in this section
are of this type, which we shall mark by referring to them as "universal constants."
As the result, our estimations are independent of A.

The Farey interval A is assumed to be a good one. We shall use letters p, q, p', q',
r, s in the sense defined in previous sections with the convention q' > q. Images of a
point by iterates of G will be written as the point marked with the appropriate
superscript - for example zq for Gq(z). The critical point will be denoted by z.

We assume that G is chosen so that z is periodic with rotation number of the

form un = — for some natural n. The geometric shape of the resulting orbit is
nq + q

shown on Fig. 1. We also furnish Fig. 2, which illustrates the situation for the

rotation number of the form vn= -, however we shall not solve that case
qi ncf

explicitly, but reduce it to the situation with u. It is possible that orientations on
both figures should be actually reversed.
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Fig. 2

Fig. 3

We consider intervals with endpoints at neighbour points of the orbit of z. The
set of such intervals is denoted by X. In other words, X consists of images by
iterates of G of the arc (zq, z). The maps G induces a permutation of X.

We fix the orientation of the circle by the demand that (z, zs) should be
positively oriented.

Lemma 8. Let 1± and I2be different arcs from X having a common endpoint. There is

a universal constant K8 with K 1 ̂  -~-

Proof. Let us consider 7 t and 72 as in the hypothesis, such that the ratio of lengths

—^- is minimal. We shall denote that ratio by S. Let a, b, c, d be 4 consecutive in the
IMI
sense of the ordering on the circle points of the orbit of z, such that b and c are
endpoints o f / ^ Obviously we have Cr(α,b,c,d)^S. There is also i less than the
cardinality of X, such that (bl, c1) is the shortest interval of X, which implies that
Cτ(a\b\c\d1)^. We may choose minimal such i and then, since H induces the
permutation of X, we may also use C-RI with fe = 3. Thus K8 = 4 C3 will
work. Π

Lemma 9. Let J be an arc of the form (z1, zl+s] for some i and let J' be J shifted by one

L ̂  —- rgK9 with K9 a universal
Ml

interval from X, as shown on Fig. 3. Then
constant.

Proof. The arc J contains at least 2 arcs from X, as provided by the properties of
Farey intervals. Thus we obtain in notations of Fig. 3:

_ £ _ _ _ = 1 _ _ _ _ ^ 1 _ _ > 1 -
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Since —- can be estimated in the same way, we may put Kg1 equal to that
\J I

constant. Π

Lemma 10. Let us consider intervals J and J' of the form J = (z\zl + s) and

J' = (zl+s,zί + 2s) for some i. There is a universal const ant K10 withK^Q ^ —- - ^Kί0.
\J\

Proof. The present lemma is analogous to Lemma 8 and the idea of the proof is also

similar. We pick J' and J like in the hypothesis and with —- = S and minimal. We
\J I

also choose points a, b, c, d like in the proof of the lemma and makej be minimal
such that (bj,cj) is the shortest of intervals (b,c\ ...,(bq~ί,cq~1) - of course j<q.
The first observation is that by Lemma 7a the number fc from CR-I for those
intervals is 3. Another point is that they constitute "almost a partition" of the circle
- it would actually be a partition if the period of z were q or, in other words, if
(bq ~s,cq~s} = (bq ~s, bq) were shifted by 1 arc from X. Thus, if j is different from both 0
and q — s, the argument of Lemma 8 applies - otherwise it works after shifting (fc, c)
or (bq~s, cq~s) by 1 arc from X. We may put K10 = K9 - K8 in any case.

Lemma 11. Let us consider points zl+q, z\ zs + q + \ zs + l for some i. Let j^q. Then

with K!! being a uniform constant.

Proof. We denote zί + q = a, zl = b, zί+q + s = c, zs + ί = d. Let D(a,b,c,d;Gj) = S. By
CR-I and Lemma 7, we obtain that D(aj, bj, cj, djι Gq~j) ^ C3, thus D(a, b, c, d; Gq)
^ S C3. The points aq, bq, cq, dq are shifted by 1 arc from X with respect to α, fc, c, d.
By the above inequality we obtain that either

\(a,b)\

or

|(M)Γ

We are going to consider the first case only, because the second one is analogous.
\(aq,cq)\

Since ——— ^K9 by Lemma 9, we obtain
|(α, c)\

and, by Lemma 8, K8

 1 ̂  j/S C3 K9. Hence we may put

1

^8 * ^9 '

Now we want to make a comment. Lemma 11 reveals surprising rigidity of
action of G on arcs from X. Of course, we have also the inequality with the sense



122 G. Swiξitek

opposite to that in Lemma 11, as provided by CR-I and Lemma 7. It is clear that
such rigidity must impose restrictions on G and X near the critical point which
usually distorts cross-ratios by large amounts. Such restriction is proved in
Lemma 12. It is worth noticing that the proof of that lemma is the only point in the
whole work, where we need existence of a critical point.

Lemma 12. There is a universal constant K λ ? with T—Γ^TΊΓ^ >Kλ 7.

Proof. We know by Lemma 11 that Z)(z«,z°,z«',zs;G)^Xu. By Lemma

It follows that DΛ(z",z°,z9; 0)^X2 l KU. By Lemma Ic we obtain that

<
|G(zV)l = \\(z°,z"'

where / is of the order of the critical point. It follows that lengths of (zq, z°) and
(z°, zq') are comparable by a universal constant, which implies the claim of the
lemma. QED

Lemma 13. There is a universal constant K13 such that

Proof. By Lemma 10 we obtain

\(zq + 2s,z2s)\
Multiplying both sides by '2 - — , and using Lemma 1 1 we get

^

1-

,
from which we obtain s

 ?

2 — ^.Kil K^Q. On the other hand, by Lemma 12
|(zβ,z°)| '^z 'z "

^K}2. Finally we observe that by Lemma 10 the lengths of (zs, z2s) and

(z°,z2s) are comparable and the same for (zq,zq + s) and (zq,zq + 2s}. The lemma
follows. QED

g + s s

Lemma 14. There is a universal constant K14 with
(z^,z')j -

Proof. First we note that Cr(z9~s,z"s,zί+s,zs)^^13 C^1. It follows from
Lemma 13 by Lemma 6 and the Cross-ratio Inequality. It implies in particular
inai i / π _L ^ Q\ i

hencealso VO- ̂ Γ^KU CΣ QED
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We sum up the results of this section in the following proposition:

Proposition 2. // the rotation number of ft is of the form un and the critical point z is
periodic, then Cτ(zq+1,z1,zq + s+1,zs+1)^Q2, for Q2 an absolute positive constant.
In the similar situation when the rotation number is vn, then

It should be stressed that Q2 is independent of n.

Proof. If the rotation number is un we first note that Cΐ(zq, z°, zq+s, zs) is not small by
Lemma 12 compared with Lemma 14. Then the first inequality follows by
Lemma 11. In order to prove the second one we consider a good Farey interval

with endpoints — and - - instead of A . Numbers un for the new interval are of the
form *

np _ _

' ~ n

Then we obtain Cr(zq' + \z\zq+q' + \zq + 1)^Q2, but this is written by the
assumption that (z, zq) is positively oriented. If we want to follow the convention
that (z, zs) is positively oriented, we have to reverse the order of points obtaining the
second inequality claimed in Proposition 2. QED

6, How Does a Small Change of Parameter Disturb Orbits of the Critical Point?

From now on we assume that A is a good normalised Farey interval (see the
discussion in Sect. 3). We fix some natural n and the corresponding rotation
numbers un and vn. We choose h so that the critical point is periodic for fh with
rotation number un and e so that it is periodic for fe with rotation number vn. The
notations E(k,A) and H(k,A) will be abbreviated to E and H respectively. We
denote

H-h e-E
— - ,- — -
H — e h-E

From now on, without mention to the contrary, the function z used to define gt will
always be k. The main result of this section is the following proposition:

Proposition 3. There is a constant Q3 independent of A and n such that

Proof is quite complicated and will be divided into several lemmas.

N
Lemma 15. The inequality (q + s) \I(A)\^ — is satisfied independently of A.

σ

Proof. By Lemma 6 the total of lengths of intervals g^/04)), g 2 ( I ( A ) ) , . . . , g q + s(I(A))
is at least (q + s)- \I(A)\ - σ. On the other hand, it does not exceed N by
Proposition 1. The claim of the lemma easily follows. Π
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Now we introduce some notations. Images of points in the parameter space by
function gz will be denoted by the same letters as points themselves printed in
boldface and marked with the superscript ϊ, for example gt (£; fe) = El. Further, let B

mean supremum over all parameter values of the derivative — — - it is finite, since
g1 is of class C1. Finally, dt

Zi = max(D(E'', e1', h1', H< fe\ D(E\ e', h', H<; /,)) .

Lemma 16. For positive i there is an inequality:

i- l T
max M;, 2-~ (Hj-

j= 1 \ \ σ

Proof. The proof will follow by induction with respect to i. For i= 1 it is trivial to

obtain CrίE^e^hSH^rgα σ"1 •#. Since — is greater than 1, the inequality
holds. °

Let it hold also for some i. We denote fe(Έf), fe(έ\ fe(tt\ fe(W] by E,e,h9H
respectively. We consider zt as the first approximation of the ratio between

Cr(Eί + 1,e ί + 1,h ί + 1,H ί + 1) and Cr(E\e\h\H1}.

Our task now is to estimate how much the actual value of that ratio can exceed z{.

By the theorem of Lagrange we get eί + 1 — Eί + 1 =e ^-
ot

, y1)(e — E) and

for suitably chosen y^ and y2. Thus we obtain

v.
- -£ί <-
L i + l T Γ i + 1 ^maX

e-E L e-E e-E L

In further reasonings we assume that the inequality

e'^-E'+1 £-£

is verified - if it is not the case, then obviously

--σ

and the inequality for / + 1 holds.
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TTi + 1 _ ui + 1

The estimation of the ratio τj^π - ΓΓΓ *s more complicated. We define

numbers JD1,D2,/)3 by = h/ + 1-fi"

D3 = Ήί+1-H-D1-D2.

Observe that D{ and D2 are necessarily positive, while D3 may be negative. The
following relations hold:

, and ei + 1=

Using them we compute

H~h D2+D3ό<max
H-eDl+D2

It will be enough to bound — — - - ̂ — -, since otherwise we obtain by (*) that
L) i -f- 1/2 ~f~ ̂ 3

in which case the inequality for i + 1 is obviously satisfied. We consider 2 cases:
1° D2^D3, then we have

where the last inequality follows easily from the hypotheses of TV by the mean
value theorem. Thus in this case the inequality for i + 1 is also satisfied.

2° D3^D2. We calculate D3:

fh(W] -H- (/Λ(h') - Λ) = (y , HO - (y , ho dy

on T x R. Further we obtainwhere L bounds

(**\ < "L ' ~6 <9 3 <9 (W h^
V**/ ΈiT+1 ^+T = Ti ΓTΛ Γ7^Γ - Z ' 7Ί~~ Z V^ ~ ^ 'ιy i u

Then we may repeat the same reasoning interchanging roles between H and E and
between e and ft, considering /&(£), /Λ(e), fh(h), fh(H) instead of E,e,K,H and
carrying out analogous estimations. The result will be that either the inequality for
i +1 is satisfied or the inequality
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holds. Multiplying both sides by (**) we get

Γ \ 2

2 -

The inequality for i + 1 follows. QED

Proof of Proposition 3. From Lemma 16 we obtain in particular that

Cr(Eq> + \eq' + ̂ W' + \Hq' + l)^2J3]^ f] max(l,z,( 2 -(Hj-Ej)
σ 7=1 V σ

We need to prove that the right-hand side of this inequality is bounded by a
uniform constant. By Proposition 1 and the Cross-ratio Inequality we obtain that

j=

(we need the square since zj are distortions of cross-ratios for 2 different maps - fe

and fh). Further we use

L
max l,2'-(Hj~Ej)) ^

V σ /

(7

2L

2 — otherwise .
σ

By Proposition 1 the second possibility can occur for at most -- numbers j.
The proposition follows. QED L σ J

Even if Proposition 3 holds, we emphasize that functions g have not, as a rule, a
negative Schwarzian derivative, even if the functions ft are quite nice and depend
on the parameter in a simple way. Hence it would not be enough to assume that the
cross-ratio Cr(E,e,h,H) is small in order to obtain the claim of Proposition 3.

7. Why α Cannot be Too Small

We prove in this section that Proposition 2 implies that the number α of the
previous section cannot be very small. In merging the results of Sect. 5, which was
done on the circle, and the rest of our work, which applies to the situation lifted on
the real line, we meet some notational problem. We introduce the following
convention: X° = gl(X;k) where X should be replaced with E,e,h,H,

Using the new notation we need not to trouble whether we use points of the
circle or from the real line. Please note, however, that points with superscript 0
mean critical values now.
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Lemma 17. The following inequalities are satisfied:

\(eq, e°)\ ^σ (h-e) and |(/z°3 h
q')\ ^σ-(h-e).

Proof. We shall concentrate on the proof of the first inequality only, since the proof
of the second one is quite analogous. We consider the function G : T->Sl defined by

) = gq + 1(t;k(e)) — p, where k(e) means the constant function. Then we have:
a) G(e) = eq,

b) G(h) < β° - it is so because ρ(h) < -,
4

AC*
c) — — > σ by Lemma 6.

dt ~
The lemma follows immediately. QED

By Proposition 2 the sizes of (eq, e°) and (e°, eq'} are comparable, as are the sizes

All possible ratios between them are bounded by Q2

 1 . There is also an obvious
relation \(e°,h°)\^L'(h — e). From this and Lemma 17 we obtain further

(*) \(eq>, hq')\ ^ \(e°, Λ°)| + |(h°, hq')\ ̂

Using now the corollary from Proposition 2 we get

(**) \(h*', hs)\ ^ Q2 - |(Λ°, h*')\ ^ Q2 ( 1 + L] ' \(e«', hq')\ .
V σ/

On the other hand we have \(eq,hQ)\^\(hq,h°)\, because hq>eq. Hence

\(eQ, eq')\ ^ Q2\(e\ e°)\ ̂

- the last inequality is implied by Lemma 17. Further we get

\(hq, h°)| ̂  β2|(Λ°, ̂ ')| ̂  β2 Y l + L] ' \(eq\ hq'}\

\(e°,eq')\
by (*). It follows that the ratio - — r-—r-- is bounded away from 0 by an absolute

//?y fay \\
constant. '̂  'n j l

Recalling also (**), we see that Cΐ(eQ,eq\hq\hs)^QΊ with QΊ being a positive
absolute constant. The more Cr(E°,eq',hq',Hs)'^.QΊ. Now Proposition 3 implies
that α^6 7 -β^" 1 .

8. Completion of the Proof

Since the lower bound for α obtained in the previous section is independent of n,
the result of the previous section may be stated as follows:

For any good Farey interval A a part oϊI(A) consisting of not less than QΊ Qΐ1

of its whole length is occupied by parameter values corresponding to rational
rotation numbers.
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Suppose now that the set ρ~ ^IRXQ) has a positive Lebesgue measure. Then it
contains a point of density y. There exists a descending sequence An of good Farey

00 00

intervals such that f| An = {ρ(y)}. Then also f] (An) = {y}, since every irrational
n = l n = l

rotation number corresponds to only 1 parameter value, as follows for example
from Lemma 6 and the density of orbits of a homeomorphism with an irrational
rotation number proved in [7]. We see that y is not a point of density of ρ~ J(R\Q),
hence the Lebesgue measure of the latter is 0.
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