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Abstract. We consider eigenvalues Eλ of the Hamiltonian Hλ= — Δ+ V+
λW, W compactly supported, in the / -> oo limit. For W ̂  0 we find monotonic
convergence of Eλ to the eigenvalues of a limiting operator H^ (associated with
an exterior Dirichlet problem), and we estimate the rate of convergence for
1-dimensional systems. In 1-dimensional systems with W^09 or with W
changing sign, we do not find convergence. Instead, we find a cascade
phenomenon, in which, as Λ,->oo, each eigenvalue Eλ stays near a Dirichlet

eigenvalue for a long interval (of length 0(^/1)) of the scaling range, quickly
drops to the next lower Dirichlet eigenvalue, stays there for a long interval,
drops again, and so on. As a result, for most large values of λ the discrete
spectrum of Hλ is close to that of H^, but when λ reaches a transition region,
the entire spectrum quickly shifts down by one. We also explore the behavior
of several explicit models, as λ-+ oo.

1. introduction

In quantum mechanics one frequently encounters Hamiltonians of the form
Hλ — H0 -f λW, where H0 describes a well-understood system (the "background"
or "free" Hamiltonian), W describes any of various interactions in the system (e.g.
interacting particles, and external fields, etc.), and / (the "coupling constant")

measures the strength of the interaction W. In this paper we consider Hamiltonians
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HQ — — A -\- V(x) on R v and compactly supported perturbations W(x), in the λ -> oo
limit. In particular we consider the behavior of specific eigenvalues Eλ of Hλ as a
function of λ for large λ.

Large-coupling problems (sometimes called "singular perturbations"), have
appeared in a variety of context. We give some examples.

Harrell [12] studied the large-coupling limit of the Hill operator Hλ =
— A + λW(x\ with periodic W on R. (This is, strictly speaking, not an eigenvalue
problem at all, as Hλ has a continuous spectrum made of bands and gaps.) He
showed that, as /t->oo, all the bands shrink at an exponential rate to certain
limiting expressions, which coincide with eigenvalues of a harmonic oscillator.

Another class of operators, studied by Ashbaugh and Harrell [4], are
Schrodinger operators of the form Hλ= — A + V + λW on Rv, where the support
of W is restricted to the exterior of a bounded region in Rv. It was shown (under
certain regularity assumptions on the behavior of W at oo) that each eigenvalue
Eλ of Hλ converges to a limiting value E0, an eigenvalue of the interior
Dirichlet problem. Moreover, Eλ was shown to admit a Puiseux-type expansion
Eλ = ̂ anλ~rn in certain negative fractional powers of λ.

n

Operators of the form H0 + λW9W compactly supported, have appeared as
mathematical models of semiconductors with impurities [23, 33]. The background
Hamiltonian here is a Hill (Bloch) operator H0 = — Δ + V on Rv or Zv with a
periodic or quasiperiodic potential V, reflecting the periodic or quasiperiodic
arrangement of atoms in a crystalline lattice. W represents the effect of an localized
impurity, λ measures the "depth of impurity levels" (see [33]).

In this last case, the spectrum of the Hill operator H0 is well known to exhibit
a band and gap structure, characterized by continuous energy intervals separated
by gaps. Adding a perturbation λW typically results in eigenvalues Eλ appearing
in the gaps, and one is interested in the behavior of Eλ as / varies in R. One
interesting question is whether the range of Eλ covers the spectral gaps oϊH0. This
question was recently addressed by Deift and Hempel (see [2,8, 10, 13,20]).

In many of these examples of large coupling, it was demonstrated that each
Eλ converges as λ -+ oo to a limiting value E^ , and that the limiting values ("pinning"
or "trapping" levels) are eigenvalues of a limiting operator H^. In the case of
interest to us, namely localized perturbations λW of Schrodinger operators — A + V
on Rv, the natural candidate for H^ is — Δ + V restricted to RV\Σ (Σ denoting
the support of W) with a Dirichlet condition on the boundary of Σ. We call the
set of eigenvalues of this Dirichlet operator {E^}.

In this paper, we ask whether each Eλ converges to an E^ as Λ-^ oo, and if so
at what rate?

In Sect. 2 we show that, for repulsive potentials W Ξ> 0, the eigenvalues of Hλ

do converge to those of H^, as a consequence of the monotonic convergence in
norm of the resolvent (Hλ — z)~1 to the pseudoresolvent (H^ — z)-1©0. In Sect. 3
we narrow our scope to 1 -dimensional problems, and calculate the rate at which

In Sect. 4 we see that, for W attractive or of mixed sign, resolvent convergence
fails in any meaningful sense. Instead we see a new and intriguing phenomenon
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Fig. 1.1. The cascade phenomenon

of cascading eigenvalues. This cascade phenomenon, shown in Fig. 1.1, is defined
precisely in Sect. 5, but roughly it means that each eigenvalue Eλ as a function of

λ spends most of the scaling range (increasing intervals of length 0(^/λ)) in the vicinity
of Dirichlet levels {E^}. These almost flat regions (plateaus) on the curve E = Eλ

are followed by relatively short intervals of rapid transition, where Eλ drops down
from one Dirichlet level to the next lower one. The pattern repeats itself (and
becomes asymptotically more pronounced as λ->oo) until Eλ hits the lowest
(ground state) Dirichlet level, or reaches the bottom of a spectral gap, after which
it goes to — cc or disappears. This phenomenon may be roughly understood as a
partial decoupling of the interior and exterior problems, together with the
no-crossing rule for eigenvalue trajectories.

It should be noted that a special case of the cascade phenomenon was first
observed by ZeΓdovich [36] in a different context (energy levels in a distorted
Coulomb potential), and is known in the physics literature as the ZeΓdovich
phenomenon [11,21,24].

For semiconductors with deep level impurities, the cascade phenomenon could
provide a possible mechanism for experimentally observed pinning of energy
eigenvalue levels as λ-»oo [23,33], and would identify these levels as exterior
Dirichlet eigenvalues. Although the eigenvalues Eλ do not in fact converge to
anything, the large size of the plateaus compared to the transition regions indicates
that experiments at large λ are likely to find eigenvalues near all the Dirichlet levels,
and nowhere else.

In Sect. 5 we study in detail various features of the cascade phenomenon in
attractive potentials W. This analysis includes the size and location of the plateaus
and transition regions, approximate shapes of the eigenvalue trajectories, and
separations at near-crossings of neighboring eigenvalue trajectories. In Sect. 6 we
extend this analysis to the entirely new case of potentials W that change sign.

After the detailed study of Schrδdinger operators with localized perturbations
in Sects. 2-6, we turn to some other examples and models. In Sect. 7 we consider
a perturbation of point support, W = ± δ(x)9 on the periodic background of the
diatomic Kronig-Penney model [27]. In this example the cascade phenomenon
disappears, and we get norm-resolvent convergence of Hλ to a limiting operator,
for both cases W = ± δ(x). This is consistent with the results of Sects. 5-6, in which
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we see that all essential features of the cascade phenomenon (rates of convergence,
location of the transition regions, etc.) depend on a certain integral that vanishes
as W-*±δ(x\ The dependence is such that, as the integral goes to zero, all
transitions move to oo, so the first plateau stretches over the entire range [0, oo)
of the scaling parameter λ.

In Sect. 8 we consider Dirac operators. Under certain circumstances eigenvalue
trapping occurs, but the cascade phenomenon is never seen.

The different parts of this paper use very different methods to treat somewhat
different cases. Sections 2 and 4 treat resolvent convergence in v dimensions utilizing
mostly functional analytic tools. Sections 3,5, and 6 treat 1 -dimensional systems,
with H0 = - d2/dx2 + V and supp(P^) - [0, /], and exploit WKB machinery. (The
general v-dimensional case of attractive and mixed perturbations remains open,
largely due to technical difficulties involved in a multidimensional WKB approach).
Sections 7 and 8 deal with specific models and involve explicit calculations.

We tried to organize this paper so that these various parts could, in principle,
be read independently.

2. The Repulsive Case in v Dimensions

In this section we consider the case W^ 0, A-> oo. Our main hypotheses read:
(H.2.1) FeL°°(Rv) real-valued, veN.
(H.2.2) 0 ̂  VFeLGO(Rv) with Σ0:= {xeRv | W(x) Φ 0} bounded.

Given (H.2.1) and (H.2.2) we define in L2(RV):

H0=-Δ + V, Hλ = H0 + λW, λeR, (2.1)

where A denotes the usual Laplacian on the standard L2-Sobolev space H2(RV).
Next we introduce the Dirichlet Laplacian on an arbitrary set Jί c R v as

follows: Let H1(RV) denote the standard L2-Sobolev space and introduce

(2.2)
and

tf £ = Q(-Δf) (2-3)

Now the Dirichlet Laplacian — Δ^9 as an operator in Jf^, is defined as the
operator with quadratic form domain Q( — Δp) and form

h(g):= \\Vg\\l gεQ(-Δ *). (2.4)

We also define in jf *v°

and

on ^ * 0 ® {L2(Rv)n(^°)J-}, zeC\σ(HJ.
(2.6)

Under minimal regularity conditions on ΣQ, e.g. \dΣQ\ = 0 and Rv\^0 obeying

a cone condition, one can show that Co>(Rv\Σ0) is dense in Q( — Δ*^Σ°) and
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one gets equality with the more conventional Dirichlet Laplacian [26].
The following is essentially in Kato [18]:

Theorem 2.1. Assume (H.2.1) and (H.2.2). Then, as λ-» oo, the resolvent (Hλ — z)~ 1

converges in norm to the pseudoresolvent R^fy

zeC\σ(HJ. (2.7)
λ-» oo

Proof. By the monotone convergence of forms [19], slightly generalized [29,30],
we obtain strong convergence of (Hλ — z)"1 to jR^z) since

β( - 4 5 o ) = {gεH*(R*)\(g, Wg) = 0}. (2.8)

Next let - c> 0 be large enough such that HQ^c + l. Define in L2(RV)

Cλ^(Hλ~cΓl~R^(c\ λ^O. (2.9)

Then
O^C λ ^C 0 , λ^Q. (2.10)

Norm convergence now follows from two facts:

(i) C0 is compact as follows from standard arguments [5, 18].
(ii) Let C be a compact operator in a (separable, complex) Hubert space and

[An}neN a sequence of operators satisfying 0 g An ^ C, neN and s — lim >4n = A.

Then lim \\An-A\\=Q (see, e.g. [19], p. 455).
n-> oo

Remark 2.2. The pseudoresolvent (cf. e.g. [15, 32]) R^z) formally is the resolvent
of an improper operator of the type H00@{co}. These improper operators
are the mathematical realization of the physicists' notion of operators with hard
cores (in our case the hard core is Σ0). The standard calculus of self-adjoint
operators and quadratic forms can be extended to improper ones, as discussed in
[16,17,25,29,30].

Remark 2.3. By using the ideas of [5] (who consider the case W=χΣ ,x^
being the characteristic function of the subset J\r c Rv), one can show that
e~tHλ - — > e~tH^®Oin trace norm.

λ-»oo

Theorem 2.1 then yields our main result for this section. Let σess( ) and σd(-)
denote the essential and discrete spectra, respectively.

Theorem 2.4. Assume (H.2.1) and (#.2.2), and choose an interval [α, b] c R\σess(H0).
Let ^oo := σ(H ^ ) n (α, b) denote the set of all (discrete) eigenvalues ofH^ in (α, b). Then

(i) σ(Jfί 0 0 )=limσ(H A ). (2.11)
λ~* 00

(ii) σm(Ha))= lim σm(Hλ) = σess(H0). (2.12)

(iii) For any £^6^^, there exist £Ae(α,£00)nσd(Hλ) such that E^E^ as λ]ao. If
m^ denotes the multiplicity ofE^ then, for λ>0 large enough, there are precisely
m^ eigenvalues Eλ of Hλ (counting multiplicities) near E^.
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Proof, (i) and (ii) simply follow from the strong spectral mapping theorem [26]
together with Theorem 9.5 of [35]. The second equality of (2.12) is a consequence
of the fact that W is relatively compact with respect to H0. The assertions in (iii)
are a simple consequence of (2.7): First of all we recall that all eigenvalues of Hλ

in (α, b) are monotonically increasing with respect to λ. Moreover, by (2.7), spectral
projections PH ((c9d)) of Hλ converge in norm to the projection PH ((c, <f))©0
associated with H^ 0 {00} as Λ,-> oo by choosing c9d sufficiently close to E^ such
that σ(HJn(c,d) = {E^

\\PHλ((c,d))-PHgo((c,d))®0\\ .0. (2.13)
λ-» oo

In particular, for λ > 0 large enough,

rank [PH/M))] - rank [PH JM))] = m^ (2.14)

concluding the proof.

Remark 2.5. By a standard procedure one could relax the conditions V, WeLco(Rv)
and admit local singularities [26].

Remark 2.6. As λ -» oo, the eigenvalues of Hλ either converge to elements of $'x or,
if ̂  = 0, σ(Hλ}r\(a,b} = φ for λ > 0 large enough. In either case the Birman-
Schwinger kernel W1/2(H0 - E)'1 W1/2, Ee(a,b) has only a finite number of
negative eigenvalues. (By compactness it has infinitely many positive eigenvalues
accumulating at zero.) This is only apparently in conflict with the completeness
result in [2,8,13,20] (see also [10]), where for all Ee(a9b) an infinite sequence
λj-+co (depending on E) with the property Eeσd(Hλj),jeN has been established.
The reason is that our condition W ̂  0 explicitly violates the crucial assumption
VF_(x)^μ>0 for x in some open ball of radius ε>0 in [2,8,10,13]. (Here
W±(x):= [\W(x)\ ± W(x)']/2 denote the positive and negative parts of W.)

3. The Repulsive Case in One Dimensions

In this section we illustrate the results of the foregoing section by means of
one-dimensional considerations. We also estimate the rate at which the eigenvalues
of Hλ converge to those of H^.

Example 3.1. Let FeL°°(R) be real-valued and define H0 = - d2/dx2 + V in L2(R).
Assume E^φσ^HQ) and E^ >inf(σess(H0)). By WeyΓs limit point/circle clas-
sification there exist two (linearly independent) real solutions fQ>±(E^9x) such that

HO/O± = ^oo/o ± (distributional sense), /0±eL2([R, ± oo)), for all ReR.
(3.1)

Since E^ > inf (σess(H0)), oscillation theorems [9] imply that both /0± have
infinitely many zeroes on R. Choose x+ such that /0t + (Eao,x + ) = 0, let x _ < x + ,
and define W(x) = χΓ x_> x + ](x) and Hλ = H0 + λW, λ > 0 in L2(R). Then obviously
Theorem 2.1 applies. In particular, we have the direct sum decomposition
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where

//± = -^'±co)-f V, (3.3)

_^±,±cc)=_^_? ®(-Δfr>±^) = {geH2((x±,±co)Mx±) = 0}. (3.4)

Define /±:=/0,±l (x+,±oo) BY construction, H + f +=£„/+, f+e®(H+). If, by
accident, we also have /_(£«,, x _ ) = 0, then #_/_ =E 0 0/_,/_e^(fί_), and so
E^Eσά(H^} has multiplicity two. Otherwise (i.e. if /_(£,„, x _ ) ?*0), E^tσd(H^} is
simple. In either case Theorem 2.6 applies.

Remark 3.2.

a) Clearly the above construction fails if E^ <inf(σ(/f0)) since then both
/0±(£00,.x),xeR have no zeroes at all.

b) If V is periodic, (i.e., for some a > 0, V(x + α) = V(x), for all x), then Floquet
theory implies

f0t±(E^x) = e^P±(x)9 α>0, P±(x + α) = P±(x) (3.5)

and generically #0 has infinitely many spectral gaps.
c) Although H^ might have degenerate eigenvalues as explained above, Hλ has

only simple eigenvalues since Theorem II.1.5 of [28] applies.
d) Instead of the projection χΣ in Hλ, we may take any 0 rg WeLco(R) of suitable

compact support. For simplicity assume that supp(W) consists of a finite union
of compact intervals with x _ := inf (supp(tΦO), x + := sup(supp(J/F)). Then simply
translate W as a whole to the left or right (keeping the background potential
V fixed) such that x_ or x+ coincide with one of the (infinitely many) zeroes
of /0>+ (or /o,-) Then again E^σd(H^) and the above construction works.

e) At first sight one might think that the above example extends to v ̂  2 dimensions
by choosing a spherically symmetric potential. However, the results of [14]
show that the spectral gaps of the radially symmetric, one-dimensional operators
on the half-line (0, oo) associated with a fixed angular momentum, disappear in
the full Schrodinger operator in L2(RV) (the direct sum over all angular
momenta).

f) The condition FeL°°(R) in Example 3.1 is too restrictive. It can be replaced by
KeL1

1

oc(R) and the additional assumption that the differential expression
— d2/dx2 + V is in the limit point case at ± oo.

We add a few remarks on Dirichlet operators in one dimension. Consider in
;),<Σ = [x_,x + ] J x _ <x+ the Dirichlet Hamiltonian

(3.6)

) = V}, (3.7)

in L2(Σ\ £° = (x_,x + ). (3.8)

Define
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/W*) = (ffαo,D-*Γ1, zeCWH^), (3.10)

where W(f9g) = fg' — f'g denotes the Wronskian o f / and g. Then, by Krein's
theory [9], the corresponding integral kernel of R^iD(z) satisfies

R t X ) t D ( z 9 x 9 x f ) = R0(z9x9x')- Σ ly^^Ro^x^Ro^Xj^l (3.Π)
7,/=±

where
Γ#0(z,x_,.x_) #0(z,x+,;x_)1

y(Z)~LR0(z,x-9x + ) R0(z9x+9x + )]'

In spectral gaps of HQ9W(fΌt-(E)9 f0ί + (E))^Q,EeR\σ(H0) and the eigenvalues
of #00,0 in R\σ(H0) are given by

— / + (£,x + )/ _(£,X-)} — 0. (3.13)

Clearly /0 ±(£,x+) = 0 yields the eigenvalues of H±, whereas {•••} =0 in (3.13)
is responsible for those of H_,+ in R\σ(H0). Krein's theory implies that H^ D can
have at most two eigenvalues (counting multiplicity) in each spectral gap of H0.
(Since H^^ ^ H0, there are no eigenvalues of H^ D below inf (σ(H0)).)

In the special case where x _ , x + ->x0, i.e. where the support of W shrinks to
the point x0 (cf. Sect. 7), one considers

H^-ΛJ^ + K

Let

then

Ώ (7 γ γ/\ _ I? /« v γ /\ 0 0 0 ^ X 0 ^K^^ZjX,^ j - K0(z, x,x j — . (3.16)
K0(z, X 0 ? XQ)

Thus the eigenvalues of H^ in R\σ(H0) are given by

^0(£5x0,x0)-0^>/0,_(£,x0)/0j + (£,x0)-0. (3.17)

Since W(f0^(E)9f0t + (E)) ^0 for £eR\σ(H0), (3.17) is equivalent to

either /0 >_(£,x0) = 0 or /0> + (£,x0) = 0 but not both. (3.18)

(In particular, if V is reflection symmetric about x0 then /0 <_(£,x0) = 0 =
/0>+ (£9x0)5£eR\σ(H0) would violate (3.18). Thus σp(# Jn[R\σ(Ή0)] - 0 in this
special case.) In general, Krein's theory shows that H^ has at most one, simple
eigenvalue in each spectral gap of H0 (except in (- oo, inf [σ(//0)]), since H^^H0).
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These remarks can easily be generalized to the case where spectral gaps of H0

are replaced by essential spectral gaps of HQ using the Weinstein-Aronszajn
formulas [19].

Finally we describe the rate at which eigenvalues of Hλ converge to those of
H^, employing quassi-classical methods. We introduce

(H.3.1) Assume FeC°(R) with the differential expression -d2/dx2+V in the
limit-point case at ± oo.

(H.3.2) 0<e^HfeC 2((0,/)), Σ:= supp(W) = [O,/], / > 0 (i.e. square-well-like
potentials W\ or

(H.3.3) 0<ε^eC2((0,0), />0, W(x) = x(l- x)W(x\xe(UJ), Σ:=supp(W) =
[0, /] (i.e. potentials W with simple turning points at x = 0, /).

Given (H.3.1) and (H.3.2) or (H.3.1) and (H.3.3) we define HQ,Hλ,λ > 0 in L2(R)
and H^ in L2(R\Σ) as in Example 3.1. Finally, we introduce

(H.3.4) Assume [α,b] c=R\σess(H0) and let <$ ̂ \= σ(H^}r\(a,b] be the (possibly
empty) set of (discrete) eigenvalues of the Dirichlet operator H^ in (a,b).

Theorem 3.3. Assume (H.3.1), (H.3.2) or (H.3.3), and (H.3.4).

(i) Suppose E^eS^ with multiplicity m^ (7^ = 1,2). Then, as /l|oo,HA has
precisely m^ distinct and simple eigenvalues Ejtλ below E^ such that,

EjΛ = Ex-Cjλ-« + 0(λ-z«\ l ^ j g m ^ . (3.19)

Here oc = 1/2 in the square-well-like case (H.3.2), while a — 1/3 in the turning-
point case (H.3.3). (The positive coefficients Cj are described in the proof.) Except
for these eigenvalues Ejfλ near Eao,Hλ has no other eigenvalues in (a,b) for
λ > 0 large enough (cf. Fig. 3.1).

(ϋ) // <f ̂  = 0? then σ(/f λ)n(α, b) = 0 for λ > 0 sufficiently large.

Proof. The convergence Eλ]E^ follows from Theorem 2.5 and Remark 3.2c. What
remains to be proven is (3.19).
a) Assume (H.3.2) (i.e. the square-well-like case). An eigenfunction ψ(E,x,λ) of Hλ

must take the form:

ψ(E, x9λ)=< A(E, λ) Φ+ (E, x, μ) + B(E, λ) Φ_ (E, x, μ)9 0 < x < /, (3.20)

(c + (E,λ)f+(E9x), x>l

where Φ± are linearly independent solutions of the Schrodinger equation on [0, /].
By WKB theory [22] we can take

φ_ =

where μ — ̂ /I, with A, B, C+ appropriate constants and /+ (E, x) as in Example 3.1 .
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Define

W0:= lim W(x)9 Wf

Q:= lim W'(x\ (3.22)

Wt:= lim W(x\ W\\= lim W'(x}.
x-*l- χ-+l-

Setting ψ = h_ψ' atx = Q and ψ = h+ ψ' at x = / gives the system of linear equations

+ (0) — Λ_Φ / +(0) Φ_(0)-/2_Φ / _(0)\/
I I

+ (/) — h+ Φ'+(l) Φ_(/) —/ί + Φ / _(/) / \ 5 y

Setting the determinant equal to zero gives

(3.24)

) (3.25)
or

h + (E) = μ' 1 P^Γ 1/2 + 0(μ-2). (3.26)

(This can be alternately understood from the fact that either A »Be~μL, in which
case (3.25) holds, or B»Ae~μL, in which case (3.26) holds.)

In the first case, E must be close to an eigenvalue E^^ of H_ (cf. (3.3)), and
hence by analyticity of /± (£, x) with respect to £,

h_(E} = d_(E-E^} + 0((E-E^}2\ (3.27)

whereas in the second case E must be close to an eigenvalue £00j + of # + (cf. (3.3))
and hence

0, + )2). (3.28)

as μ~» oo, where L:= j ^/W(f) at. Consequently, either
o

By general principles, d+ < 0 < d _ , as taking the Wronskian W+(x):= W(f+(E),
f+ (E^ ))(x) and integrating the identity W\ (x) = (E-E^> + )f+ (E, x)f+ (£«,, + , x)
from / to oo yields

f (F γ
+ ro + ' -^,.)2), (3.29)

F .
+Woo, + ̂  +

i.e., d+ < 0. Similarly, one shows that d_ > 0. Thus we infer that, as μ-» oo, either

£(μ) = JB0 0,_-[μd_^2]-1 + 0(μ-2) (3.30)

or
), (3.31)

where E(μ) = Eλ. In the case of a degenerate Dirichlet eigenvalue E^- =£0^ + ,



Trapping and Cascading of Eigenvalues 607

both possibilities in (3.30) and (3.31) are realized. This proves (3.19) with α = 1/2.
b) Assume (H.3.3) (i.e. the turning-point case). The procedure here is similar to the
previous case, but the analysis is more involved, as the WKB approximation (3.21)
is no longer valid near the turning points x = 0 and x = l. Near 0 and I we must
approximate Φ± by Airy functions (solutions of the Airy equation y" = xy\ and
match these to the interior solutions (3.21). This procedure is standard [22], and
we merely quote the results:

Φ_(x) =

2^/πλ113 WQ-1/6 Ai([APF0]
1 / 3x)(l -f 0(λ~1/3)) near x - 0

/ * \

^(xΓ1/4exp( -μ\Jw }(l + 0(λ~112)) away from 0 and/, (3.32)

)) near x = /

near x = 0

W'lΓ
ll6B\(\λW'l\

1/3(l-x))(l

--- { W(x) ^exp( -μ\Jw\l
X /

away from 0 and /, (3.33)

near x = i

where Ai (z) and Bi (z) are Airy functions of the first and second kind, respectively
[1,22]. The Wronskian matrix of the Airy functions at 0 is

Bi(0) \ /l/{32/3Γ(2/3)}
(3.34)

As with the square-well-like case, we get a system of linear equations (3.23),
and we may set the determinant of the matrix equal to zero, getting

^

-1/3}

3 ~2μL

where ω - 3~1/3Γ(^)/Γ(f). This implies that either

or

(3.35)

(3.36)

(3.37)

(If A»Be~μL, then h _ « Φ+ (0)/Φ'+ (0), and (3.36) applies. Otherwise, B»Ae~μL,
so h+ « Φ+(0/Φ + (0 and (3.37) applies.)

In the first case E must be close to an eigenvalue E^,- of H_, (3.27) applies,
and as A -KX) we have

ω
E - Ϊ7 Γ 2 W Ί ~ 1/3 _ι Γ\( 2 ~ 2/3 \ /"3 -JQ\A ~ ^ O O , - — 7 ) — L ^ ^ o J -r C/(Λ j, (j.joj

whereas in the second case E must be close to an eigenvalue EM<+ of H+9 (3.28)
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applies, and as λ -> oo we have

C0,+ ^

In the case of a degenerate Dirichlet eigenvalue E^^ = E^ _ , both possibilities
in (3.38) and (3.39) are realized. This proves (3.19) with α = 1/3, and completes the
proof of Theorem 3.3.

Remark 3.4. Without going into detail, we point out that Ejtλ in (3.19) has an
asymptotic series with respect to A" 1 / 2 (respectively λ~1/6} in the square-well-like
case (H.3.2) (respectively turning-point case (H.3.3)).

Remark 3.5. Analyticity of Eλ with respect to certain negative fractional powers
of λ has been derived in [4] for another large coupling problem, for a special class
of potentials W with support exterior to some bounded region in Rv.

4. Some Negative Results for Attractive Potentials

The main purpose of this section is to show that there is no norm resolvent
convergence of Hλ to H^ or any other limiting operator for the case W^.0,
λ-> — oo.

Theorem 4.1. Assume (H.2.1) and (H.2.2). In addition suppose that W^μ>Q on
some open ball Bε c R v of radius ε > 0. Then (Hλ — z)~ 1 does not converge in norm
as λ-* — co.

Proof. Fix an arbitrary E0< - \\V\\ 00. Ey commutation [7],

σ(Wll2(H,~E,}^W^2}^σ((H,~E,Γll2W(HQ-E,Γll2\ (4=1)

Moreover,

(H0-E0Γ
1/2W(H0-E0Γ

1/2^(Ho-E0Γ
1/2μχBε(

H°-EoΓ1/2 (4.2)

Using commutation again and the fact that χB (H0 — E0)~lχB ^ χB ( — A +
|| K || oo — E0)"1χβ , and that the latter is not of finite rank, the minimax principle
[26] guarantees the existence of a sequence λn < 0, λn -» — oo as n -» oo such that

(4.3)

or equivalently,
(4A)

Next assume that (Hλn — z)~ l, zeC\R converges in norm as n -> oo and denote the
limit by R^(z\ Obviously R^(z) is a pseudoresolvent and hence there exists an
orthogonal projection P^ such that Rao(z) = (Hao — z)~lP^ for some self-adjoint
operator H^ in P00L

2(RV). By Theorem VIII.23 of [25], E0Eσd(HJ. Since
^o < — II ̂ 11 oo was arbitrary, we get the contradiction

(-^HIKIUcσΛHJ. (4-5)

Remark 4.2. In the proof of Theorem 4.1 we used Theorem VIII. 23 of [25],
although our limit is an improper operator of the type H^ © {oo}. However, the
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corresponding proof in [25] with the limit resolvent replaced by a pseudoresolvent
goes through in the same manner.

Remark 4.3. The proof of Theorem 4.1 does not immediately extend to the case
where W changes sign since it is not a priori clear whether W\1/2sgn(W)(H0 —
E0)\W\1/2 (which is isospectral to (HQ - E0Γ

II2W(H0 ~£0)~1 / 2) has infinitely
many negative eigenvalues. However, using the technique of [10], one can indeed
derive a corresponding negative result (assuming FF_ ^ μ > 0 on some open ball
of radius ε).

The results of Sects. 5 and 6 provide many examples where Hλ does not even
converge in strong resolvent sense to H^ as A-» — oo.

5. The Cascade Phenomenon in One Dimension, W < 0

In this section we start to look at the "cascade" phenomenon which occurs in
one-dimensional systems whenever W ̂  0, λ > 0. The simpler case where W ̂  0 is
treated in this section, and the case where W changes sign is treated in Sect. 6.
We will assume (H.3.4) throughout.

The cascade phenomenon is exhibited in Fig. 5.1, and may be described as
follows: For a typical value of λ > 0, the spectrum of Hλ is approximately that of
Hn That is, there is one eigenvalue of Hλ near each non-degenerate eigenvalue
of HOO, two eigenvalues of Hλ near each (twice) degenerate eigenvalue of H^, and
there are no other eigenvalues of Hλ. As λ varies over a long interval, the eigenvalues
of Hλ change very slowly, and remain near the eigenvalues of H^ We call these
intervals of slow change "plateaus."

However, near certain values of λ, the spectrum of Hλ changes drastically, as
each eigenvalue of Hλ shifts down by one. We call these intervals of rapid change
"transition regions." Usually, each eigenvalue of Hλ shifts from one Dirichlet
eigenvalue to the next lower one. However, near a degenerate Dirichlet eigenvalue,
there are two eigenvalues of Hλ. The lower one shifts down to the next Dirichlet
eigenvalue, and the higher one takes the place of the lower one. In Fig. 5.1, El9E2ί

E

λ

Fig. 5.1. The cascade phenomenon with a degenerate level
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and £4 are nondegenerate Dirichlet eigenvalues, and E3 is a degenerate Dirichlet
eigenvalue.

The lengths of the plateaus grow like ^fλ as λ -> oo. The lengths of the transition
regions, by contrast, at most grow as λδ, where δ < \ depends on the specific system.
(For square-well-like potentials W, δ = 0; for continuous potentials with simple
zeroes ("turning-point" potentials), δ = 1/6; for potentials with n-th order zeroes,
δ = ̂ —l/n + 2.) Thus, as λ-> oo, the system spends more and more time near the
Dirichlet eigenvalues.

We make the notion of a cascade precise with the following definition:

Definition 5.1. A system is said to exhibit the cascade phenomenon on the (energy)
intervals (a, b) if, given a small number ε > 0, we can choose closed intervals
T l5 T2,... and constants 0 < δ < \ and A > 0 such that, for all λ > /I,

1. The size of the transition regions Tn is bounded by a constant times λδ, and the
number of transition regions below a certain value of λ is bounded by a constant
times λ1/2.

Let the plateau Pn,(n^ 2) be the open interval between Tn_1 and Tn, and let
P1 be the open interval between 0 and T1.

2. For λe^J Pn, there is one eigenvalue of Hλ within ε of each nondegenerate
neN

element of $^ there are two eigenvalues of Hλ within ε of each degenerate
element of d?^, and there are no other eigenvalues of Hλ in (α, b). (S1^ was defined
in (H.3.4) to be (α,b)n(point spectrum of H^}.)

3. Given a specific eigenvalue trajectory £m?A, and given λ1ePn,λ2εPn + 1, and
λ3εPn + 2. By (2) Emtλί is within ε of an element Et of S>

00. Let Ei + 1 be the next
lower element of $^, if it exists.
a. If Ei is nondegenerate, and if Ei+ί exists, then Em>λ2 is within ε of Ei+1. If
Ei + ί does not exist, then Emtλ2 does not exist in (a,b).
b. If E{ is degenerate, and if £ί+1 exists, then either £m>λ2 or £m l3 is within ε
of Eί + 1. If Eί + 1 does not exist, then Em^3 does not exist in (a,b).

With this definition in hand, we can state our results for the purely attractive
potential. First we have the square-well-like case:

Theorem 5.2. Assume that Hλ= - d2/dx2 + V + λW9λ>0 satisfies (H.3.1\ (H.3.2),
and (H.3.4). Then the system exhibits the cascade phenomenon on the interval
(α, b) with δ — 0. The n-th transition region Tn is centered at λ = (ππ/L)2, where

W\ dx. Moreover,

πeN

C

(i) On the plateau regions { λe(J Pn\ the eigenvalues Eλ of Hλ are given by

~£J2) (5.1)
/λ

near each nondegenerate Dirichlet eigenvalue E^, and by
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(5.2)

Ϊ/EQO is (twice) degenerate. Here a,b, and c are positive parameters, independent
of λ, that may depend on the eigenvalue E^.

(ii) On the n-th transition region Tn we have

l2\ (5.3)

where the functions £_,£+, and S are given below ((5.4) and (5.6)).

Remarks 5.3. Given (5.1), (5.2) and (5.3), the cascade phenomenon follows.
Properties (1) and (2) are obvious. As for property (3), first suppose there are no
degenerate Dirichlet eigenvalues. Equation (5.1) describes how, in the course of a
plateau Pn, each eigenvalue trajectory Eλ goes from slightly above a Dirichlet
eigenvalue E^ to slightly below E^. At the beginning of Pn + 1,£λ must be slightly
above a (possibly different) Dirichlet eigenvalue (call it E'x), if it exists at all. By
monotonicity, E'X)<E00, so in the transition region Tn Eλ must drop from a
neighborhood of E^ to a neighborhood of E'^. This drop is described by (5.3).
Since #_,£+, and S are single-valued functions of energy, and since every
eigenvalue trajectory Eλ drops in Tn,E'^ must be the Dirichlet eigenvalue
immediately below E^. This establishes (3a). A similar argument involving
degenerate eigenvalues and (5.2) establishes (3b).

Proof of Theorem 5.2. We use the notation of Theorem 3.3, letting f±(E,x) be
solutions of (-d2/dx2 + V)f± = E/±in L2((/, oo)) and L2((- oo,0)), respectively.

We let μ = ̂ /I, we let W0,Wh W0, and W\ denote boundary values of W and W as
in Sect. 3, and we define

F. m W- \ 1 / f (F A U/' \
(5.4)

We shall construct an eigenfunction ψ of Hλ. On (— oo,0) and (/, oo) φ must
be a multiple of /_ and /+', respectively. On (0, /) we shall construct ψ using the
WKB approximation [22]. The matching conditions at 0 and / will give (5.1), (5.2)
and (5.3) near a nondegenerate eigenvalue of H^, near a degenerate eigenvalue of
HK, and away from an eigenvalue of H^, respectively.

On the interval [O,/],^ is a linear combination of

(5.5)
"± 4ΓW\ I M o J

where

T/^-V(x ) + T7
W"(x)\ \

~ 7τ77Γ^ ' S = J α il ό V ^ W y 4w/(x)/
(5.6)
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Taking a real trigonometric form of (5.6) we get

C _ ( £ , Λ ) / _ ( £ , x ) χ < 0

A
cos j μ V + + ̂ ^ί^ + ̂ o^) 0 < x < / ,

y ψ r v-^ i N " N μ

(5.7)
where the phase-shift 00(£) and the amplitudes C± (E9 λ) and A(E, λ) are parameters,
independent of x.

Matching ψ'/ψ at x = 0 gives

-+0(μ-2), (5.8)

while matching at x = / gives

μ tan (Θ0 + μL-h S/μ-f-0(μ~2)) = -B++O(μ~2). (5.9)

Combining these two conditions we get our desired matching condition

μL+ S/μ = ten~1(B-./μ) — ta.n"ί(B+/μ) + 0(μ~2) (modπ), (5.10)

or equivalently

Ϊ)) = £τ/i"".f+/μ2- (5 H)

α Dirichlet Eigenvalue. The poles of B± occur precisely at the zeroes
of /+(-,/) and /_( ,0)5 i.e. at the eigenvalues of Jtf^. Away from these eigenvalues
B± are bounded, so, for λ large,

). (5.12)

Thus (5.10) reads

μL + S/μ = (β_ - B + )/μ + nπ + 0(μ"2), (5.13)
so

L J μL

Since λ = μ2, rfA = 2μdμ, and (5.3) follows.

a Nondegenerate Dirichlet Eigenvalue. Let E^ be a nondegenerate Dirichlet
eigenvalue. Then either /_(£00,0) = 0 or f+(EQOJ) = Q, but not both (or else E^
would be degenerate).

Suppose /_(£Q O,0) = 0. Since f+(E00J) ^0,β+ is bounded in a neighborhood
of EQO, so tan~1(B+/μ) is 0(μ~1), and (5.10) becomes

tan' 1 (B./μ) = μL -f 0(μ" x ) (mod π), (5.15)

or equivalently

-~-μ-1cot(μL+0(μ"1)). (5.16)
£>_
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B- has a pole at E^, so

(5.17)

with A\— Eλ — E^ and c_ = -v/|ΐ^(7) 1 d _ , where d_ is the same positive constant
that appeared in (3.27). As a result,

- Eaon (5.18)

confirming (5.1).
If instead /+ (E^ , ί) = 0 / /_ (E^ , 0), a similar argument yields

(5.19)

with c+ < 0, again confirming (5.1).

Near a Degenerate Dirichlet Eigenvalue. At a degenerate Dirichlet eigenvalue both
B+ have poles, so we can write

(5.20)

Equation (5.11) then reads

tan(μL + 0(μ-1)) = —-— 2̂—r + remainder terms, (5.21)

where the remainder terms either can be absorbed into the 0(μ~1) error in the
phase, or contribute only 0(Δ2) to Eλ. Ignoring these terms gives a quadratic
equation in μΔ:

\=Q, (5.22)

with solution

= + - _
μ ~ c+c_

-I- remainder terms. (5.23)

Since c+ < 0 < c _ , and since the remainder terms will contribute only Δ2 to Eλ,
we get (5.2), with

c+ — C- — 4c+c_
a = ̂  >0; b=- ^T2>0. (5.24)

2c + c_ (c + -c_) 2

By Remark 5.3, this concludes the proof of Theorem 5.2.

Remark 5.4. The condition μL&nπ, which marks the n-th transition region Γπ, is
a resonance condition which marks the threshold for the existence of the n + 1st

bound state of the well. If and only if this resonant condition is met, the wavefunction
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ψ in the region (0,/) is 0(1). Thus, by the Feynman-Hellman theorem [31]

dE>
\2dx, (5.25)

dEJdλ is 0(1). If the resonant condition is not met, ψ is 0(λ~ i / 2) on (0, /), and so
dEJdλ is 0(λ~l\ as indicated in (5.1) and (5.2).

With a turning-point potential W (H.3.3), the resonances are not as sharp as
with a square-well-like potential (H.3.2). As a result the transition regions are wider
(0(/11/6)), and even away from the transition regions Eλ — EσD is larger (0(/~1/3))
than in the square-well-like case (O(λ~ί/2)). Also, instead of encountering tangents
and cotangents of μL, we see the trigonometric functions

n ( \ 2cot(α)
β+(α):= - 7 - r- = - τ=. (5.26)

Theorem 5.5. Assume that Hλ= - d2/dx2 + V + λW9 λ>0 satisfies (H.3.1), (H.3.3),
and (H.3.4). Then the system exhibits the cascade phenomenon on the interval (a, b)
with δ = 1/6. Moreover,

(i) On the plateau regions the eigenvalues Eλ of Hλ are given by

0(λ~1/3)) + 0((Eλ - EJ2) (5.27)

if Ex is a nondegenerate Dirichlet eigenvalue, and

±

+ 0((Eλ-EJ2) (5.28)

ifE^ is (twice) degenerate. Here a,k, and c are positive parameters, independent
i

of λ, that may depend on the eigenvalue E^, and L — J ^/\ W\, as in Theorem 5.2.
o

(ii) The n-th transition region Tn is centered at / = ((n + ^)π/L)2, and has width
0(λllβ).

Proof. The proof follows the pattern of the proof of Theorem 5.2, and we use
much the same notation. f± (£, x), μ, Δ, W'Q, and W[ are as in Theorem 5.2. Our
boundary data B+(E) are now defined as

(5.29)

(Note that these functions have zeroes rather than poles at the Dirichlet eigenvalues

£«, •)
As with Theorem 5.2, we construct an eigenfunction ψ of Hλ. The wavefunction
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must be a multiple of/_ and /+ on (— oo,0) and (/, oo), respectively. On (0, /) we
again use the WKB approximation [22], but (5.6) is no longer valid near the
turning points 0 and /. Near those points we must interpolate with Airy functions,
as in Theorem 3.3. Our wavefunction on (0,/) is

1/3) for x near 0

-f 0(μ ~1)) x away from 0, /,

ί) + 0(λ~1/3) for x near /
5.30)

where p±,q±9 and A are constants.
We recall some facts about Airy functions [22]. For large negative arguments,

the Airy functions take the asymptotic form

(5 31)

where ξ = 2z3/2/3, z > 0. The behavior of these functions near zero is given by
the Wronskian matrix

= /l/{32/3Γ(2/3)} l/{31/6Γ(2/3)}\

VAi'(0) Bi'(0) V-V{3 1 / 3Γ(l/3)} 31/6/{Γ(2/3)} / [ '

To relate Θ0 to β_, we must first relate Θ0 to p _ / g _ , and then relate p _ / g _ to
β_ . The first part is easy, given (5.31).

p-/q- = -tan(θo). (5.33)

Relating p-jq~ to B_ is a bit trickier. By (5.30) we have

0 VAi(0) Bi(0)VP_
(5.34)

V - V W / \v ~\'*yvQ\' / \^J W Γ>1 \\J)J \ 6 / _ J

SO

« ,^ Λ _ ι ; , t a n ( ^ 0 + 0(/Γ1 / 3))-

(5.35)
where ω = 3^1/3_Γ(^-)/Γ(f). This may also be inverted to give

tan (Θ0 + 0(λ~1'3)) = v/3 ί^±^L\ (5.36)
\CO D _ A j

If we define Q{~ μL +- π/2 H- Θ0, a similar calculation near x ~ I yields

0(^^Δt (5.37)-
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or equivalently,

(5.38)

All that remains is to analyze these expressions in the various regimes.

Away from a Dirichlet Eigenvalue. B+ are both bounded away from zero, so by
(5.36) and (5.38) we have

Θ0/l = tan'1 (+ ,/3 + 0(λ~1/3)) + 0(λ~1/3) = + - + 0(λ~1/3) (mod π), (5.39)
3

and so

μL= θl ~ ΘQ -~ = (n + £)π + O(λ~^\ (5.40)

and

This establishes the location and width of the transition regions.

Near a Nondegenerate Dirichlet Eigenvalue. Let E^ by a nondegenerate Dirichlet
eigenvalue with JB_(E 0 0) = 0. Since B+(E) is bounded away from zero for E near
E^, we have θt = (n + ̂ )π + 0(A~1 / 3). Thus Θ0 = - μL- π/6 + 0(λ~1/3) and

(5.42)

Since J3_(E) has a zero at E^ we can write

B_ (E) = c_ A + 0(Δ2). (5.43)

Since c_ > 0 we then have

ω „

confirming (5.27).

l l 3 ) ) 9 (5.44)
c_

Near a nondegenerate Dirichlet eigenvalue with B+ (E^) — 0, a similar argument
yields

- - (5.45)

with c+ < 0, again confirming (5.27).

Near a Degenerate Dirichlet Eigenvalue. We note that
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By (5.36) and (5.38) this becomes

P' j

Defining Z= - tan(μL + π/2 + 0(A"1 / 3)) - cot(μL+ 0(A~1 / 3)) and eliminating
the denominator, this becomes

B+ 5_ A2 / 3(Z - ^3) 4- 2ω(B+ - £_μ1 / 3 - ω2(Z + ^3) = 0. (5.48)

At a degenerate Dirichlet eigenvalue both B± = 0, so we can write

5±(£) = c ± Λ-hO(zi 2 ). (5.49)

Plugging this into (5.48) gives a quadratic equation in (λlβΔ):

c+c_(Z- ^/3)(λ1/3Δ)2 + 2ωZ(e + - c_}(λ^A) - ω2(Z + ^3)

-f remainder terms = 0, (5.50)

with solution

- + - _ x + ~ _ + _ -
= ω- — i^_XΛ_± ' ±—^ >. + remainder terms,

(5.51)

Since c+ < 0 < c _ , since Z/(Z ± Λ/3) = ̂ Ωτ(μL + 0(A~ l / 3)), and since the re-
mainder terms only contribute 0(Δ2) to Eλ, this gives (5.28) with

a = ω(c+-C-)>(); fe= Zf±f_>α (5_52)

This concludes the proof of Theorem 5.5.

Remark 5.6, The formation of plateaus and transition regions in Theorems 5.2 and
5.5 is independent of the particular shape of the background potential K V merely
determines the Dirichlet eigenvalues E^ and the constants c±. W, on the other
hand, determines the location and size of the transition regions, and the shape of
the eigenvalue trajectories. In particular, if the support of W shrinks to a point
and W is replaced by a <5-function, the cascade phenomenon disappears, and the
spectrum of Hλ approaches that of H^ as λ-+ ± oo. We study an analytically
solvable example in Sect. 7.

Remark 5.7. The condition for being in a transition region (μL^=nπ for square-
well-like potentials W or μL^=(n+^)π for turning-point potentials) is the same
as the condition for the existence of threshold (zero energy) resonances of
— d2/dx2 + λW. The well known fact that square-well-like potentials produce more
pronounced resonances than turning-point potentials accounts for the wider
transition regions and slower approach to E^ in Theorem 5.5 compared to 5.2.
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Remark 5.8. The cascade phenomenon for square-well-like potentials was first
observed by ZeΓdovich [36] (see also [11,21,23,24,33]). He studied the system

0 ^ Mx)-!-1 r = d (553)., , rr \ Λ I — Λ , I J. J.J I

— r l r > d [ 0 r> d

d > 0, on the half-line (0, oo). This case is covered by our methods by simply
demanding /z_(E) = 0, £eR. (Indeed, choosing appropriate boundary conditions
at r = 0+ [6], our formalism easily generalizes to spherically symmetric potentials
in v ̂  2 dimensions.) While ZeΓdovich exhibits the resonance behavior mentioned
above, he is somewhat vague about the significance of the Dirichlet boundary
condition at r = d. Since he is merely interested in the case d« 1, he essentially
replaces H^ with the Coulomb Hamiltonian on (0, oo), and identifies the asymptotic
eigenvalues as Coulomb levels.

6. The Cascade Phenomenon for JPs of Indefinite Sign

This section extends the results of Sect. 5, in that we now consider perturbations
W which change sign. For such a W, we call the intervals where W < 0 "wells,"
and the intervals where W > 0 "barriers." The goal of this section is to show that
all perturbations W that change sign give rise to the cascade phenomenon of Sect. 5.

To treat these more complicated functions, we introduce additional hypotheses.
For the square-well-like perturbations, we require:

(H.6.1) W is a function, supported on [0, /], that is C2 except at 0, /, and a finite
number of points (p l5 . . . ,pn}, where it may have a jump discontinuity. W
is bounded away from zero on (0, /), and is not positive semi-definite (i.e.
I W(x)\ > ε > 0 for all xe(0, /), and W(x) < 0 for some xe(0, /)\{p l 9 . . . ,p2}).

In the turning-point case, we want a function, supported on [0, /], that oscillates,
but with only simple zeroes. To get this, we introduce

(H.6.2)
fO x < 0 or χ>l(X)~

where W(x) is a C2 function with no multiple zeroes, and with simple zeroes
at 0 and / (and perhaps elsewhere). We also assume that W(x) < 0 for some

Notice that hypotheses (H.3.2) and (H.3.3) are special cases of (H.6.1) and (H.6.2),
respectively.

We also introduce a special case, shown in Fig. 6.1, which we shall study in
detail. This case is covered by the hypothesis.

(H.6.3) W(x) satisfies (H.6.2), with the zeroes of W coming at 0,α,j3,y, and /, with
0 < α < β < y < /, and with W(x) < 0 for all xe(0, α).

In each of these cases, we define H0,Hλ in L2(R) and H^ in L2(R\^) as before.

We consider λ > 0, and define μ — v/l. Our main result is
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Fig. 6.1. A mixed-sign potential

E '

Fig. 6.2. The casecade phenomenon with a mixed-sign potential

Theorem 6.L Let Hλ= - d2/dx2 + V + λW, λ > 0 satisfy (H.3.1), (H.3.4) and either
(H.6.1) or (H.6.2). The system then exhibits the cascade phenomenon on the interval
(a,b). Moreover,

(i) If (H. 6.1) is true, then the size of the transition regions Tn remains 0(1) as λ —> oo.
// (H.6.2) is true, some of the transition regions may grow as λ116.

(ii) If there is an exterior barrier on the left-hand side (i.e. if lim sgn(W(x)) = 1),
χ->0 +

then, for all λ sufficiently large, there is at least one eigenvalue of Hλ within c
of each eigenvalue of H _ in (a,b). That is, in each transition region, as one
eigenvalue trajectory approaches the neighborhood of a Dirichlet eigenvalue E^
and another departs, the arrival occurs before the departure. (This is shown in
Fig. 6.2, near the Dirichlet eigenvalue E2 )

(Hi) If there is an exterior barrier on the right-hand side (i.e. if lim sgn(FK(x)) = 1),
x^l~

then a similar result applies at the eigenvalues of H ^ .
(iv) If there are exterior barriers on both sides, then for all λ sufficiently large, there

are at least two eigenvalues ofHλ within ε of each degenerate eigenvalue of

Remark 6.2. The cascade phenomenon requires that eigenvalue trajectories descend
from Dirichlet eigenvalue to Dirichlet eigenvalue. Unlike the purely attractive case,
however, this descent need not be monotonic. On some plateaus dEλ/dλ may be
positive, as in Fig. 6.2.

Remark 6.3. If the perturbation W contains N wells, then there exist periods L
and phase-shifts φ{, (i=l,..., N), such that each well contributes its own transition
regions T®, located near the points λ = (nπ + φ^/Lf, (n = 1, 2, . . . ), independent
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of the other wells. The widths of the transition regions corresponding to interior
wells remain 0(1) as λ->oo, but the transition regions corresponding to exterior
wells may grow as λ.1/6 if (H.6.2) holds.

Remark 6.4. The assumptions of Theorem 6.1 may be relaxed somewhat, in that
we may allow functions W that have both square-well-like and turning-point
zero-crossings (e.g. Fig. 6.3). In such cases, the size of the transitions regions Tn

remain 0(1) if the crossings at 0 and / are square-well-like; otherwise, some transition
regions may grow as Λ1 / 6.

The proof of this theorem involves considering a large number of cases. The
arguments are essentially the same for all cases, but the calculations differ somewhat.
We will prove the specific case (H.6.3) in detail, and then explain how to handle
other cases.

Proof of case (H.6.3). We refer to the intervals (0, α), (α,/?),(/?, y), and (y, /) as "well
1," "barrier 2," "well 3," and "barrier 4," respectively. We define the periods

and the boundary values

W'p = dW/dx\x=p; pe{0,α,/?,y,/}. (6.2)

We also define the ratios

For pe{0, /} we have

hQ(E) - f- (E, 0)//'_ (£, 0); ht(E) = f+ (E, ί)//'+ (E, /), (6.4)

which depends on external data, and so are functions of E only.
Finally, we note that in each barrier there are two linearly independent solutions

to the Schrόdinger equation, one exponentially increasing and one exponentially
decreasing. Let Φ+\-) be the increasing (decreasing) solution in barrier #ί. Define

- W? 9β '' ' -t- \fjι * -t- v r / j //- r\
( 4 ) / / Λ Λ „ v^C4Wί\ / r f U 4 Λ / / n (~ J)- (y)> 9ι —

Fig. 6.3. A more general potential W
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From the analysis of Sect. 5 we know that
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l J

where ω - 3-1/3Γ(l/3)/Γ(2/3).
Solving the Schrodinger equation on the interval (0, α) provides a matching

condition for h0 and hΛ. Similarly, solving the Schrodinger equation on the interval
(α,j8) provides a matching condition for hΛ and hβ, and so on. (These calculations
were essentially done in the proofs of Theorems 3.3 (for the barriers) and 5.2
(for the wells), and so need not be repeated.

For the barriers we have that

and that
(hy —

As a result we have that either

k
or

and that either

or

For the wells we have that

and

where

tan $0 = ~/3

tan θn =.

ω + fcoUW3

π

"2

tanθ = -J3
ω-hΛ\λW'Λ\u3

w
i

(6.7a)

(6.7b)

(6.8a)

(6.8b)

(6.8c)

(6.8d)

(6.9a)

(6.9b)

(6.

Fig, 6.4. A potential with several interior wells
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Equation (6.9b) means that, unless μ^(n + i)π/L3, Eqs. (6.8b) and (6.8c) cannot
both hold. Therefore, either (6.8d) holds, or (6.8a) holds, or μϊz(n + ^)π/L3. We
examine these possibilities, one at a time.

(Notice that Eqs. (6.8) and (6.9) apply a condition on ht or a condition on hΛ

(and hence on h0 via Eq. (6.9a)), or on L3, but not on any two together. The
repulsive potentials effectively decouple the right-hand, left-hand, and interior
problems. In a more complicated case, e.g., that shown in Fig. 6.4, we would have
a right-hand problem, a left-hand problem, and one problem for each of the interior
wells, all decoupled. A solution to the whole problem would be a solution to any
one of these sub-problems.)

If Eq. (6.8d) holds, we proceed as in the proof of Theorem 3.3. E must be close
to an eigenvalue E^ί+ of H+, so

Eao. + )2l (6.11)
and so

Eλ = E^++~\λW[Γ^ + 0(λ-^). (6.12)
dt

This provides the plateaus near the eigenvalues of H + . Since dl < 0, in these plateaus
Eλ is increasing, not decreasing.

If instead Eq. (6.8a) holds, we proceed as in the proof of Theorem 5.5. From
(ό.lOa) we have ΘΛ = (n + χ)π, so Θ0 = nπ — μL{ . By (5.35) we have

Near an eigenvalue E^,- of H_,

so
f<Λ i^r\(ιιJ -L. Γl( 1 ~ 1/3 ̂  _L / X

(6.15)

This provides the plateaus near the eigenvalues of H_ as well as describing some
transition regions, which occur when μLί &(n + %)π. The size of the transition
regions may be calculated precisely as in the proof of Theorem 5.5.

Finally, there is the possibility that (6.8b) and (6.8c) both occur. In this case
both θβ and θy are congruent to π/2 (mod π), giving us a condition,

(6.16)

that is utterly insensitive to external data. Equation (6.16) describes a whole new
set of transition regions. The location of these regions is only specified to 0(λί/6).
However, the width of these regions is 0(1). (The reason is that (6.16) essentially
describes bound states of well 3, with ψ large in well 3 and decaying exponentially
in barriers 2 and 4. The Feynman-Hellman theorem [31] then implies that dEJdλ
is negative and 0(1), so the width of these regions must be 0(1).)

We now have equations for all three types of solutions; namely, the solutions
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to the right-hand problem (Eq. (6.12)), the solutions to the left-hand problem
(Eq. (6.15)), and the solutions to the interior problem (Eq. (6.16)). To get a complete
picture, we merely include all three types.

The generic situation is shown in Fig. 6.2, where El and £3 are eigenvalues of
EM,-, and E2 is an eigenvalue of H+. Because of the no-crossing rule, a given
eigenvalue trajectory cannot go directly from £1 to E3, but must first stop at E2

Solutions to Eq. (6.16) appear as nearly vertical lines. By the no-crossing rule,
neither these (nearly) vertical lines nor the nearly horizontal lines coming from
Eq. (6.12) describe single trajectories; each describes a series of curves which are
separated by exponentially small gaps, as at point A in the figure. Each eigenvalue
trajectory is, at various points, described by Eq. (6.12), (6.15), and (6.16).

A (twice) degenerate eigenvalue E^ ± of H^ is an eigenvalue of both the right
and left Dirichlet operators H+ and / / _ . Near such an energy, Eqs. (6.8a) and
(6.8d) may both be satisfied. This gives rise to two eigenvalues of Hλί one given
by Eq. (6.12) and one given by Eq. (6.15). At a transition region, only the lower
of the two trajectories may leave the vicinity of E^ ±, because of the no-crossing
rule. As a result, each trajectory stays near the Dirichlet eigenvalue for the length
of two plateaus, as required.

In short, away from the transition regions T(

n

1} given by λ = (n +1)2 π2/Ll +
0(λ1/6\ and away from the transition regions T(2} given by λ = (n + ̂ )2π2/Ll + 0(1),
the spectrum oίHλ is essentially that oΐH^. At each transition region the spectrum
shifts down by one. Near the eigenvalues of H+, the eigenvalue trajectories come
exponentially close to crossing (e.g. at point A in Fig. 6.2), so there is always at
least one trajectory within ε of E^ + (There are near-crossings elsewhere, e.g. at
B, but at the eigenvalues of H_ there are also small (0(1)} gaps, as at C). Thus
the conclusions of Theorem 6.1 are satisfied in the special case (H.6.3).

Remark 6.5. The potentials that satisfy (H.6.1) or (H.6.2) can be divided into four
classes. First come the potentials with barriers at both ends, and with one or more
wells in between (e.g. Fig. 6.5a). Next come the potentials with a barrier at one
end, a well at the other end, and possibly some interior wells (e.g. Fig. 6.5b). Third
come the potentials with wells at both ends, and possibly some interior wells
(e.g. Fig. 6.5c). The final class, covered in Sect. 5, consists of the purely attractive
potentials, where a single well governs both the right- and left-hand problems. The
qualitative dependence of Eλ on λ for the three classes is shown in Figs. (6.6a, b,
and c), respectively. In each of these figures, E1 and £3 are eigenvalues of H+ί

while E2 and £4 are eigenvalues of H-.
In the first class of potentials (with barriers at both ends), equations similar to

(6.15) govern both the left- and right-hand problems, generating plateaus near
all the Dirichlet eigenvalues. Equations similar to (6.16) govern the interior wells,
and generate transition regions. The apparent intersections of the solutions to the
various equations are actually exponentially close near-crossings. Notice that there
are eigenvalue trajectories near all the Dirichlet eigenvalues for all large values of λ

The second class of potentials (with a barrier at one end) has already been
discussed, in the specific example (H.6.3). In general, suppose that the exterior well
is on the left and the exterior barriers is on the right (the other case is identical,
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Fig. 6.5. Three classes of mixed-sign potentials

b λ

c λ

Fig. 6.6. Three classes of eigenvalue trajectories
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by symmetry). Then an equation similar to (6.12) governs the left-hand problem,
generating both plateaus (at the eigenvalues of # _ ) and transition regions. An
equation similar to (6.15) governs the right-hand problem, and generates the
plateaus near the eigenvalues oϊH+. Equations similar to (6.16) govern the interior
wells, and generate further transition regions. There are eigenvalues trajectories
near the eigenvalues of H+ for all values of /, but near the eigenvalues of H_
there are some gaps.

For the third class of potentials (with wells at both ends), equations similar to
(6.12) govern both the left- and right-hand problems, generating both plateaus and
transition regions. The interior wells contribute additional transition regions via
equations similar to (6.16).

7* Potentials of Point Support

As mentioned in Remark 5.6, the cascade phenomenon depends on the support
of W. In particular, if W has point support the effect vanishes. For example, in a

square well of width ε and depth 1/ε the period L = $ ^/\W\ = ε1/2. The first
transition region occurs at λ « π2/L2 = π2/ε. Taking the ^-function limit (i.e. ε->0),
the first plateau extends to infinity, and the cascade phenomenon disappears.

The purpose of this section is to treat an analytically solvable model where W
has point support. Formally, this model has a background potential

V(x) = oί^δ(x-aή) + oί^δ(x-ap-an)9 αeR\{0}, pe[0,l], α>0 ? (7.1)
neZ neZ

representing a diatomic Kronig-Penney model [27] and a perturbation

W(x) = λδ(x)9 λeR, (7.2)

describing a substitutional impurity. A precise definition of this model in L2(R) reads

^- α(l + δQp + δ l p ) g ( ( n + φ), τe{0, p}, neZ},

αeR\{0}, pe[0,l], α > 0 (7.3)

and

p)})\g'((n + τ)α+) - g'((n + τ)α_)

+ δ0p + δlp) + λ(δ0nδ0τ + δ.lnδlτ)M(n + τ)α), TG{O, p}, neZ},

αeR\{0}, /?e[0,l], AeR,α>0. (7.4)

We also introduce in L2(R)
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αeR\{0}, pe[0,l], α > 0 (7.5)

and obtain the obvious decompsition

+ (p\ pe[0,l], (7.6)

where H±(p) act in L2((0, ± oo)). We first state

Lemma 7.1. Let αeR\{0}.

σ(H0(p))=σ(H0(ί-p)), pe[0,l], (7.7)

σ(H + (p)) = σ(H.(l-p)), pe[0,l]. (7.8)

(ii) For all λεR,Hλ(p) has at most one eigenvalue in any spectral gap of HQ(p\
pe[0,l].

(Hi) a(Hx(p)) = a(H0(p)) for p = 0,l. (7.9)

In particular,
= φ for p = 0,^,1. (7.10)

(iv) n-lim(Hλ(P)-zΓ1 = (H00(P)-zy-\ pe[0, 1], zeCX/fJp)). (7.11)

(v) σess(ίf0(p)) = σess(/ίA(p)) = σess(/ico(p)), pe[0, 1], AeR, (7.12)

α// singular continuous spectra are empty.

Proof. Let P denote the unitary parity operator (Pg)(x) = g( — x),geL2(R) or
^eL2((0, oo)), then

PHoWP-^HoV-p), PH + (p)p-ί=H.(p) (7.13)

proves (i). Let ^(p, z, x, x'), J^0(/>, z9x, x') and R00(p, z, x, x') denote the integral
kernels of (Ή^-zΓ1, (HQ(p}-z}~\ and (H^ίp)-^"1, zeC\R respectively.
Then

Ώ , >\ * , /^ λΛλ(p, 7, X, X ) - R0(p, Z, X, X7

z6C\(σ(Hλ(p))uσ(H0(p))), pe[0,l], xeR9 x,x'eR (7.14)

proves (ii). Taking the limit λ -> ± oo in (7.14), observing (3.16), proves (iv). Relation
(iii) follows from reflection symmetry with respect to x = 0 as discussed after (3.18).
Clearly (7.14) also proves (v).

Next we briefly describe the spectrum of H0(p).

Lemma 7.2. Let αeR\{0}, pe[0, 1]. Then H0(p) has purely absolutely continuous
spectrum

0(p)) = σac(H0(p))= [αM(p),fem(p)], am(p) < bm(p) ^ am + 1(p\ meN.
m = 1

(7.15)
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The discriminant associated with H0(p) reads

(X 9£
cos (θa) = cos (kά) + - sin (ka) -f —y sin (/cap) sin [ka(l — p)], θe [ — π/a, π/a].

/C ZrC

(7.16)

Let km(θ,p) be the solutions of (7.16) and introduce Em(θ,p) = [km(θ,p)~]2, meN
(ordered in magnitude). Then

£m(0,p), modd

r ,fl ϊ(J £n(θ,p), meven
0e[-π/«,0]

' meN (7.17)

For a// pE[0,1], H0(p) has infinitely many open gaps (unless B w e f ^ J s.t. cot[?7πp/
(1 — 2p)] = — aa(l — 2p)/2nπ, a// possible gaps are open; whereas for p — 1/2 βi βrj;
second gap closes).

Proof. An operator similar to H0(p) has been analyzed in [27] using Green's
function methods and constructing the Floquet solutions explicitly. Here we sketch
an alternative possibility based on finite difference methods (see [3] and the
references therein). The (generalized) eigenvalue equation

H0(p)φ(k) — k2ψ(k), /c2eR,

is equivalent to

I m / c ^ O (7.18)

MNΦj=Φj+l9 N M Ψ j = Ψ j + 1 , eZ, (7.19)
where

M(/c, p) =

N(k,p) =

a. sin (kap) sin (kά)

k ' s inCMl-p)]

1

α sin [/cα(l — p)] sin (kά)

k ' sin(fcαp)

1

sin (/cap)

sin[/ca(l — p)]

0

sin[/ca(l — p)]

sin (kap)

0

, (7.20a)

(7.20b)

and

By Floquet's theorem, Φy.+ J1 =eiθaΦj. Thus

= 2cos(θα),

(7.21)

(7.22)

which is equivalent to (7.16). The rest of the assertions are standard (cf. e.g. [26]).
Next we describe the point spectrum of H^(p).

Lemma 7.3. Let αeR\{0},pe(0, l)\{l/2}, m<Ef\ l ,mp^fU Then H^(ρ) has precisely
one simple eigenvalue in the m-th spectral gap ofH0(ρ). H^(ρ) has no eigenvalues in
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the zeroth gap (i.e. the gap starting at — oo). The corresponding eigenvalue equation
for these eigenvalues E00(p) = k2 reads

k sin (ka) + α sin (kap) sin [feα(l - p)] =0, Im fc ̂  0. (7.23)

Hoΰ(p) has no other eigenvalues. More precisely,

σp(H^(p}) = σd(H^(p}} = σd(H.(p))vσd(H + (p)). (7.24)

(For p = Q, 1/2, 1 cf. Lemma 7.1}.

Proof. Because of (7.14), all eigenvalues of H^(ρ] are simple and discrete. They
are given by the solutions EeR\σ(H0(p)) of

R0(p9E,Q,Q) = Q. (7.25)

Moreover, because of (7.6), an eigenvalue oϊH^p) is either an eigenvalue of H_(p)
or of H+(p)9 but never of both simultaneously, since this would contradict its
simplicity. By (7.8), it suffices to study H+(ρ). In principle we can study (7.25)
directly, but we prefer to use again finite difference methods. The eigenvalue
equation

k2εR\σ(HQ(p)\ I m / c ^ O (7.26)

is equivalent to the coupled difference equations

sin [ka(l - p)] φj+p(k) + sin (kap)ψ}- ί+p(k) = A(p, k)φj(k),

where

sin [/cα(l - p)]<Mk) = Λ(p,k)ιl/J+p(k),

+ τ)α), τe{0,p}, ;eN0, {^(k),^
(7.27)

A(p, k) = sin (ka) + γ sin (kap) sin [feα(l - p)J. (7.28)

A careful analysis of (7.26) reveals the fact that {^.(/c),^.+p(/c)}7.6No^
2(N0), and

hence \l/ + (k)φL2((0, oo)) unless A(p9k) = 0, i.e. unless (7.23) holds. Setting the
right-hand side of (7.27) equal to zero then yields

.̂
Thus, defining _v(p, fe):= sin (fcαp)/sin [kα(l - p)], we have

(</0+p(fc)W2(N0) iff | y ( p , f c ) l < l - (7.30)

Similarly

H_(p)φ.(k) = k2φ_(k), ψ_(k)e®(H.(p)), k2eU\σ(H0(p)),

I m f c ^ O if f \ y ( p , k ) \ > \ . (7.31)

Given all these results we can finally describe the point spectrum of Hλ(p).
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Theorem 7.4. Let α, AeR\{0} and pe[0,1]. TTzen Hλ(p) has precisely one simple
eigenvalue in the zeroth gap if λ < 0 and no eigenvalue in the zeroth gap if λ > 0.
FormeN,mpφN,p ^0, Hλ(p) has precisely one simple eigenvalue in the m-th spectral
gap ofH0(p). The corresponding eigenvalue equation for these eigenvalues Eλ(p) = k2

reads

< sin (ka) + - sin (/cap) sin [/ca(l — p)]
[ k

4k2 f a 2 a 1 2 4fe2

— -7^2) cos(fea) H 2" sin (/cap) sin [/ca(l — p)] -f-sin(/ca) > — -̂, Im/c^O.
/t / -Z/C /C J Λ

(7.32)

Each eigenvalue Eλ(p) of Hλ(p\ pe(0, l)\{l/2},mef^J,pm^ί%] converges to the cor-
responding eigenvalue E00(p) of Hao(p) in the m-th spectral gap ofH0(p) as λ-+ ± oo
(from below for A-> oo and from above as λ-> — oo), wzfn one exception: the ground
state of Hλ(p) converges to — oo as λ-> — oo. For p — 0,1/2,1 all eigenvalues of
Hλ(p) are absorbed into the (absolutely continuous) spectrum of H0(p) as Λ,-» + oo,
except that the ground state of Hλ(ρ) again converges to — oo as l-> — oo. For
mpef\J ,p ^0,^r, l,/fA(p) nas no eigenvalues in the m-th spectral gap of H0(p).

Proof. Because of (7.10) and (7.11) it only remains to derive (7.32). Using again
the difference scheme one arrives at

cos (θa) = cos (ka) -f —^ sin (/cap) sin [/ca(l — p)] + - sin (/ca),

λ ( . a . . 1 (7'33)

sin (θa) = —< sin (/ca) + - sin (/cap) sin Γ/ca(l — p)] >.
2ki [ k }

Remark 7.5. Theorem 7.4 thus serves as a "counterexample" to Sect. 5 in that, in
contrast to the cascade phenomenon, there exists a norm resolvent limit to a
Dirichlet operator H00(p) as /ί-> ± oo, and a corresponding convergence of the
spectrum. However, since supp(PF) = {0} in this special case, λW can at most
support one additional bound state in each spectral gap of H0(p) for all ΛeR. As
a consequence, this additional eigenvalue simply converges to the (unique) Dirichlet
level of H^(p) in any spectral gap of H0(p) (except the zeroth one).

Remark 7.6. The basic equation (7.14) actually holds for any real-valued back-
ground potential FEL°°(R) as long as we keep λW(x) = λδ(x - XQ) of point support.
In obvious notation (cf. Sect. 3) one gets

x,x'εR (7.34)
and

(7.35)
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In particular this implies

n - Hm(Hλ - z)~ x = (H^ - z)~\ zeC\σ(tf J, (7.36)
;.-»±oo

and hence convergence of the point spectrum (i.e. no cascade phenomenon).

Remark 7.7. One could easily repeat this section for other potentials of point
support (e.g. for the analog of δ'(x — x0)-potentials discussed in great detail in [3]).

8. Eigenvalue Trapping for Dirac Operators

In this section we consider Dirac operators on the half-line R+:=(0, oo), in the
large-coupling limit. In contrast to the Schrodinger case discussed before, we do
not see the cascade phenomenon. Instead, as /l-»oo, the eigenvalues Eλ of the
Dirac Hamiltonian Hλ either approach an asymptotic value or do not converge,
depending on whether a particular integral is zero or not.

Our hypotheses are:

(H.8.1) Assume FeC1(R + ) to be real-valued with F(0 + )| < oo and V(r] - 0(1) as
r~> oo.

For square-well-like potentials we have

(H.8.2) Let W be real-valued with support [0,/],/>0 and C1 except at a finite
number of points {0,p l s . . . ,p n ,/} c= [0,/], where it may have a jump
discontinuity. Moreover, we assume W(r)\ ^ ε > 0 for all re(0, /).

For turning-point potentials we introduce

(H.8.3)

W(r) = < ~ Γ > ' / > 0, where Mr) is C1 and real-valued with | W(Q+ )| < oo.
[ W(r) r ̂  /,

In addition we suppose that W has a finite number of zeroes, including
one at r = /, all of which are simple.

Given (H.8.1) and either (H.8.2) or (H.8.3) we define the Dirac Hamiltonian Hλ

in L2(R + )2 to be

^o ~ιy (\+λw v
; l - Λ I ι l v -\ + λw

A ^ O . (8.1)

For later purposes we also remark that for real-valued, locally absolutely
continuous solutions Ψ,

(8.2)



Trapping and Cascading of Eigenvalues 631

is equivalent to

Θ'(JE, r) = E - λW(r) + cos [2Θ(E, r)] - V(r) sin [2Θ(E9 r)], (8.3a)

p'(£,r) = p(£:,r){sin[2θ(£,r)] + F(r)cos[20(£,r)]}, £eR, r > 0, (8.3b)

where (cf. the Prϋfer transformation in [34])

/ /I7 Λ /Z7 Λ Γn/ ϊ-1^2 (E, r) - p(£, r) cos [0(e, r)],

Remark 8.1. Hypotheses (H.8.1) and either (H.8.2) or (H.8.3) ensure that σess(Hλ) =
( - oo, - 1] u [1, oo), λ ̂  0 [34]. They also guarantee that #0 is in the limit point
case at oo [34]. Thus, given EE(— 1, 1) we can find a real-valued f such that

#0f =Ef (distributional sense), f = ( 6//1(R + )2. (8.5)
\/2

We take, in analogy to (8.4),

/1(£,r) = p0(£,r)βin[β0(£,r)]

/2(£,r) = Po(£,r)cos[β0(£,r)],

Then

θo(-l + ,r) = 0, r>0, (8.7)

and Θ0(£,r),r >0 is monotonically decreasing with respect to £e(— 1,1). (To see
this, note that (8.3) implies that Θ0(E, oo) = -^cos"1 (- £), a decreasing function
of £. Thus if we let - 1 < E1 < E2 < 1, we have ΘΌ(E1 , r) > θ0(E2,ή for all r > 0
sufficiently large. Now suppose that 90(El9r0) = θ0(E2,r0) for some r0 and that
Θ0(E1 , r) > θ0(E2,r) for all r > r0. However, (8.3a) states that θ'(E2,r0) - Θ'(E1 , r0) =
E2-E1> 0, so Θ 0 ( E 2 , r ) > 00(

£i^) for r e( ro?

ro -f e) for some ε > 0. This contra-
diction shows that r0 does not exist, and so θ 0 ( E 9 r ) is monotonically decreasing
with respect to £e(- 1,1).)

Our main result then reads

Theorem 8.2. Assume (H.8.1) and either (H.8.2) or (H.8.3).
i

(i) // J W(r)dr ~ 0, then, as λ-+ oo, the eigenvalues Eλ ofHλ converge to solution(s}
o

E^ of the equation

EI = Θ0(EJ) (modπ), (8.8)

if such solutions exist. In this case Eλ - E^ = 0(λ~*\ where α = 1 if(H.8.2) holds
anda=\/2 if (H. 8. 3) holds.

i
(ii) // J W(r)dr ^ 0, then Eλ does not converge as λ-+ oo. Rather, Eλ satisfies

«) = θ Q ( E λ , l ) (modπ) (8.9)
o

as λ-> oo.
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Proof. We consider solutions Ψ of HλΨ= EΨ on (0, /) and match them to the
exterior solutions f of H0f = £f (cf. Remark 8.1) at the point /. Then (8.3) implies

Θ(E9 r) = Er-λ] W(s)ds + f cos [2Θ(E, s)] ds - 2 ] V(s) sin [2Θ(E, s)] ds,
0 0 0

l,l), 0 < r ^ / . (8.10)

Iterating (8.10) once, then taking r = /, it is not difficult to show that

Θ(E, I) - El + λ ldsW(s) = 0(/Tα) (8.11)
o

as λ ->oo with α as above. In the square-well-like case (H.8.2), one need only
integrate by parts dividing (O,/) into (Q,Pι)v(pl9p2)v- u(pnJ). In the turning-
point case (H.8.3), one must also employ a truncation technique at the turning
points. Setting Θ(EJ) = Θ0(EJ) (modπ) then establishes (8.9). Since Θ0(E,1) is a
decreasing function with respect to Eε(— 1, 1) by Remarks 8.1, the 0(/l~α) errors
in the phase (8.9) give rise to 0(λ~a) errors in the energy. This proves (8.8) if

Remark 8.3. Theorem 8.2 could be extended to W's that have mutliple zeroes. In
fact, if W has n-th order zeroes, then α becomes (n+ I)"1.

Remark 8.4. In the free case (V(r) = 0 for r > I) one has

l,l), (8.12)

whereas in the Coulomb case (V(r) = — l/r for r > /) one has

1,1). (8.13)

In both cases (8.8) always has a solution (even for arbitrarily small / > 0).

Remark 8.5. As can be read off from Theorem 8.2, Hλ does not converge to a
i

limiting operator H^ as λ-»oo. Instead, if j dr W(r) = 0, Eλ converges to the

/O -1\ /!-£ F \
solution(s) of the eigenvalue problem Λ r Ή τ/ _ f ^ O in\ι oy \ v -i-Ej
L2((ί, oo))2 with the energy dependent boundary condition El = 00(E,/ + ) (modπ).
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