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Abstract. We prove L2-decay rates of suitable weak solutions to the Navier-
Stokes equations in exterior domains. The results for the order of decay are the
same as for the solutions to the Cauchy problem of the Navier- Stokes equations.
Finally in the case oϊΩ = R3 the decay rate order is sharp in the class of solutions
considered by us.

1. Introduction

Recently, the problem of the asymptotic behaviour of the kinetic energy of an
incompressible viscous fluid, governed by the Navier-Stokes equations, when the
region of motion is unbounded in all directions, has been studied by several authors,
cf. [3,4,7,13,14,16,19,20,23,24]. Formally, this question is reduced to the
asymptotic behaviour of the L2-norm of solutions to the Navier-Stokes equations.
The results of [3,4,7,13,14,16,19,20,23,24] can be essentially devided in two
groups. In [3,4,13,14,16] the asymptotic behaviour of the L2-norm of solutions
is obtained when the region Ω of motion of the fluid is an exterior domain, while
the other works concern the asymptotic behaviour of the L2-norm of solutions to
a Cauchy problem for the Navier-Stokes equations. As regards the case of an
exterior domain, in [13] the asymptotic behaviour of the L2-norm of weak solutions
to the Navier-Stokes equations is proved when the weak solutions verify the
energy inequality in the "strong" form:

|v(ί)|2 + 2j |Vv(τ)|2^τ^|v(s)|2 V ί ^ s and a.e. for s ^ 0, (I)
s

(| | is the L2-norm of solution v). However, relation (I) is not an a priori estimate
for weak solutions to the Navier-Stokes equations on exterior domains. This fact
makes formal the results obtained in [13] except that in the particular cases of a
Cauchy problem and of initial-boundary value problem in exterior domains, where
the initial data of the solutions are "small" in a suitable sense (global solution of
the type furnished in [5, 9]). Subsequently, in [4] the relation (I) is determined for
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a suitable class of weak solutions. However the initial data v0 of the weak solutions
must verify some hypotheses of summability v o e l , where X is a suitable Banach
space. The condition v o e l implies in particular that voeL5/4(/2). In [4], if we
assume yoeX nU(Ω), for some qe(l9 5/4), then there exists a weak solution v to
the Navier-Stokes equations, which verifies relation (I) and

|v(f)| = O ( r ' ) , where β = (2-q)/4q. (II)

If we compare the above results, concerning exterior domains, with the one concern-
ing the three-dimensional Cauchy problem of the Navier-Stokes equations,
obtained in [7,14,20], we can notice two differences: the former concerns the
choice of the initial data, the latter the asymptotic behaviour of the L2-norm of
solutions. In fact, for the Cauchy problem in [7, 20,24], it is possible to choose
γ0eL2(R3)nLr(Ω) for some re[ l , 2), therefore there is not the bound r g 5/4. More-
over, for y0eL2(R3)nΠ(R3) it is possible to furnish a weak solution v to the
Navier-Stokes equations such that

|v(ί)| = O(Γβ), where β = 3(2 - r)/4r. (Ill)

This order of decay is better than the order established in (II), when for v0 re(l, 5/4],
Finally if \oeL2(R3), then a weak solution corresponding to v0 is such that

lim|v(ί)| = 0. (IV)
ί - * CO

The aim of this work is to bridge the difference between the case of the three-
dimensional exterior domain and the Cauchy problem. We prove that for an
initial-boundary value problem in exterior domains for the Navier-Stokes equa-
tions, we can obtain weak solutions v corresponding to an initial data
vQeL2(Ω)nΠ(Ω\ for some ge(l,2), such that

\y(ή\ = O(ΓβX where β = 3(2-q)/4q. (V)

If voeL2(ί2), then there exists a weak solution such that

Moreover, we prove that for the three-dimensional Cauchy problem the behaviour
(III) and the limit (IV) are sharp, in the sense that if we choose \0eL2(R3)nLq(R3),
for some qe(l,2], the exponent β cannot be improved to β -f μ, for any μ > 0.
This result is obtained by the help of a result due to G. H. Knightly in [10]. We
like here to note explicitly that in [10], although for a particular class of solutions
to the Navier-Stokes equations, the asymptotic behaviour of the L2-norrn of solu-
tions of a three-dimensional Cauchy problem is obtained for the first time. The
order of decay obtained for |v(ί)| in [10] is the same as the one found in (III).

We conclude this introduction with the following remark. The estimate (III)
obtained in [7,20,24] is uniform with respect to time (that is Vί^O), there is a
constant C depending only on the L2 and Π norms of the initial data. Instead,
our estimate (V) holds uniformly only for t ^ To (for a suitable To > 0) and we
determine a constant C depending on the L2 and LP norms of the initial data and
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also on several norms of derivatives of the solution computed for t^T0. In fact
our solutions becomes regular for ί ^ To.

Some results of this work were communicated by the author in [13], others
are here improved.

The plan of the work is as follows. In Sect. 2, after introducing some mathe-
matical preliminaries and notations, we give the statement of the theorems. In
Sect. 4 we give the proof of the theorems, after proving some preliminary lemmas
in Sect. 3.

2. Preliminaries and Statement of the Theorems

In this work, Ω is a domain of the three-dimensional Euclidean space R3, exterior
to v (v ^ 0) compact subregions, whose boundaries are supposed C3-smooth. For
pe[l , oo], with LP(Ω) we denote the Lebesgue space of functions on Ω. The norm
of a function of U (Ω) is indicated by | | p, in the case p = 2 we put | 12 = | | Wm>p (Ω)
denotes the usual Sobolev space of (m,p)-order of functions on Ω and \ \mp is its
associated norm. ^0(Ω) denotes the set of functions Φ on Ω with vector values in
R3, with components ΦteCQ{Ω) (ί = 1, 2, 3) and such that V Φ = 0. The following
completion spaces are considered: JP(Ω) = completion of %>0(Ω) in LF(Ω); JljP(Ω) =
completion of %0(Ω) in WUp(Ω). Finally, by LP((09s);X) we denote the set of

s

functions Φfrom (0, s) into X, where X is a Banach space, such that J | Φ{τ)\p

xdτ < oo
o

(| |x is X-norm); analogously, by C((0,s);X) we indicate the set of functions Φ
from (0, s) into X which are continuous from / into X, with norm | Φ\c = max| Φ\x.[0,s]
By the symbol (Φ, Ψ) we mean

(Φ,Ψ} =

for any Φ, Ψ such that the integral is finite. By Φn = J1/n*Φ we mean a spatial
"mollification" of a function Φ. In this work the symbol C denotes a generic
constant whose numerical value is inessential to our aims, and it may have several
different values in a single computation.

By a weak solution of the initial boundary value problem of the Navier-Stokes
equations,

vt(x, t) + v(x, ί) Vv(x, ί) = - Vπ(x, ί) + 4v(x, t) in βχ(0, T),

V v(x,ί) = 0 in Ωx(0, T\

v(x,0) = vθJ v(x5ί)|ββ = 0 and v(x,ί)-»0 for |x|->oo, (2.1)

we mean a function v(x, ί) defined as follows.

Definition 1. A field \:Ωx(0, T)^R3 (VT > 0) is such that

i) veL2((0, Γ); J 1 2(ί2))nLαo((0, T);J2(Ω)) VT>0,

|v(ί)|2 + 2 f I Vv(τ)|2 dτ < |vo | 2 Vί ^ 0;
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j ), Φτ(τ))-(Vv(τ), VΦ(τ)) - (v(τ) Vv(τ), Φ(τ))}dτ
o

= (v(f),Φ(t))-(vo,Φ(0)) Vί^O

and VΦeC([0, T); J12{Ω)) with ΦreL2((0, Γ);J2(ί2));

(iii) lim | v(ί) — v01 = 0 .

Remark 1. As is well known, Hopf, [6], has furnished an existence theorem of weak
solutions to system (2.1) for a general I.B.V.P. by the well known Faedo-Galerkin
method. However, in this work, to prove the asymptotic behaviour of the L2-norm
of solutions, we construct weak solutions by a suitable approximation. This process
of approximation was introduced by Leray in [11], and retaken in [1,4,22]. If
we settle the initial and boundary conditions a priori in (2.1), our weak solution
v cannot be assumed to coincide with another weak solution w to system (2.1),
since a uniqueness theorem for these solutions is not known.

Theorem 1. Let be \0eJ2(Ω). Then there exists a weak solution v to system (2.1) such
that

a)
ΎEL2({T0,T);W2 2(Ω)nJ1 2(Ω)\ and \teL2((T0,T);J2(Ω)) VT^T0, where
To ^ (C |v o | 4 exp(C |v o | 2 + 1)), moreover v verifies system (2.1) a.e. for t^T0;

b) V6IΓ((O, T); JS(Ω)) V T ̂  0, Vs ̂  2 with 1/r + 3/2s > 1;
c) If \OEJ2(Ω)ΓΛJP(Ω) for some pe(l,2), then veL°°((0, T); JP(Ω)) VT^O if

pe(l, 3/2], otherwise veLr((0, T); JP(Ω)) V T ̂  0 /or 1/r + 3/2/? > 1.

Theorem 2. Let be \0eJ2(Ω)nJp(Ω) for some pe(l,2). T/zen ί/zere exisis α wβα/c
solution to system (2.1) corresponding to v0, such that

(2.2)

Theorem3. Let be v0eJ2(Ω). Then there exists a weak solution v to system (2.1)
corresponding to v0, such that

lim|v(ί)|=0. (2.3)

Theorem 4. Let be Ω = R3. Then VpG(l, 2] there exists an inΐίiaZ rfata v 0GJ 2(i^ 3)n
JP(R3) such that a unique solution v to system (2.1) corresponds to v0 with

|v(ί)| ^ Kί-(3(2-ί)/4p + μ) Vμ > 0 and t sufficiently large.

Therefore the order of decay determined in (2.2) and the limit property (2.3) are sharp.

Remark 2. Point a) of Theorem 1 ensures that a weak solution becomes sufficiently
smooth for ί ̂  To. We deduce the result of point a) by "a priori estimates." The
result of point a) is analogous to the result stated in the "Theorem de structure"
[5,11]. Actually, the "Theoreme de structure" holds if we prove relation (I) for
weak solutions and we can prove relation (I) only for particular initial data v0

when Ω is an exterior domain ([4,22]), while we now assume only voe J2(Ω).
Point b) of Theorem 1 is a new estimate for weak solutions; however, this
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estimate is not sufficient to inform us on the regularity of a weak solution. Point
c) is the sufficient condition to deduce the results of Theorem 2 and Theorem 3.

Remark 3. Theorem 2 and Theorem 3 furnish the asymptotic behaviour of the
L2-norm of a weak solution v. Relation (2.2) is the same as the one we can deduce
for weak solution to the Cauchy problem of (2.1) (cf. [7,20,24]).

Theorem 4 makes sharp the order of decay obtained in (2.2) and the limit
property (2.3) in the following sense. In the class of solution considered by us or
in [7,20,24], we cannot to improve the exponent 3(2 — p)/4p to exponent
μ + 3(2 — p)/4p Vμ > 0. The result of Theorem 4 is connected only to the chosen
of the initial data. That is, it is not connected either to the fact that we consider
weak solutions, or to the fact that we consider solutions to the Navier-Stokes
equations. In fact Theorem 4 also holds for solutions to the heat equation. For
this equation and (2.3) see also [20].

Theorem 4 is also an answer to the following question. VvoeLP(ί2)nL2(ί2), for
some pe[ l ,2] , is it possible to prove for a corresponding solution \(x,t), that
v(x, t) belongs to 13 with q < p in a certain instant t > 0? This problem was posed
also in [8] Remark 1.1. Theorem 4 gives a negative answer to the above question.
In fact if we assume that in an instant t v(x, t)eLq(R3) for some q<p,we have by
Theorem 2 | v(ί)| = O (r3(2-q)/4q) with 3(2 - q)/4q > 3(2 - p)/4p, which is absurd by
virtue of Theorem 4. By these considerations we can deduce that the dissipation
of the fluid works in the time but not in the space.

3. Preliminary Results

As is well known LP(Ω) = JP(Ω)@GP(Ω) for p > 1, where

Gp(Ω) = {Vp:VpeII(Ω) and peLfoc(Ω)}.

By Pp we denote the projection operator from Π(Ω) into JP(Ω). For p — 2 we set
p2 = p. We have V ΦeJp(Ω), y-(Φ) = 0, where yκ is the trace operator of Φ ~n to
dΩ and

(φ 5 Vp) = 0 VVpeGq(Ωl if q is such that 1/p + ί/q = 1.

For the elementary properties of the space introduced above, we refer the reader
to [18,21].

Let ΦeW2, 2(Ω)nJ1'2(Ω), then

(3.1)

|VΦ| 3 ^ C ( | f M Φ | 1 / 2 | V Φ | 1 / 2 + |VΦ|). (3.2)

For inequalities (3.1)—(3.2) cf. [5] Lemma 1.
Let ΦeC^{R3\ \^q,r^oo,j and m two integers such that 0 ^ j ^ m. Then

\DJφ\p^C\DmΦ\a

r\Φ\\-a for ae[j/mM (3.3)

where

ί/p=jβ + ail/r-2β) + (l-a)ί/q,

provided that m —j — 3/r < 0, otherwise a =j/m, cf. [2] Theorem 9.3.
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The following lemma proves that ^0(Ω) is dense in Jp(Ω)c\Jq(Ω). The result
of the lemma is trivial when Ω is bounded. In the case in which Ω is an exterior
domain the proof of the lemma is a consequence of standard arguments we use
to prove that CQ(Ω) is dense in LP(Ω) n U(Ω). Professor G. P. Galdi communicated
to the author that he found an analogous result.

L e m m a 1. ^0(Ω) is dense in Jp(Ω)nJq(Ω)for any p,q>l.

Proof. Let ΦeJp(Ω)nJq(Ω). We consider the function Φ defined a.e. in R3 by

W [0 if XER3-Ω,

to define the functions ΦM(x) = j J1/n(x —y)Φ(y)dy. Now, we consider r and s
R3

such that ί/r + l/p = ί/s + l/q = 1. We have for VπeΠ(R3) and VqeΠ(R3\

j Φ(x) Vπ(x)ώc = (Φ, Vπ) = lim (Φ'n, Vπ) - Iί9

R3 n

j Φ(x) Vtf(x) dx = (Φ, Vg) - lim (Φ;r, Vςr) = J 2,

where {Φή}«eiv — ̂ o(^) a n < i Φ J , ^ Φ in JP{Ω\ {Φn}neN^^o{Ω) and Φ"n-^Φ in
Jq(/2). Integrating by parts we have J x = / 2 = 0. Therefore Φ(x) is divergence free
in the distributional sense, and since ΦeLp(Ω)r\Lq(Ω), it follows that Φ(X)E
Jp(R3)nJq(R3). Consequently Φn(x) also is divergence free VneN. In fact, since
Φ{x)eJp(R3)rΛ Jq(R3) there exists a sequence {Φk}keN £ ^0{R3) such that Φk^Φ
in J^OR3) or in J9(i^3), therefore

V Φn(x) = lim J VJ1/Λ(x - y) Φk(y)dy - 0.
k R 3

Now, we consider a sequence {J£/,}Λejv of compacts expanding in Ω, with Kh^ Kh + 1

and (J K,, = Ω. to define
ΛeTV

>B(x) if

if

ΦnfheJp(R3)nJq(R3\ since V Φ n ^ = 0 Vxe,R3 and Φn,heLp(R3)nLq(R3). Therefore
there exists {Φnthti}ieN^^o(R3) such that ΦnXi-^ΦnM in J p ( # 3 ) or in J^(^ 3 ). We
set, VjeiV such that 1/; < dist(KΛ, dΩ)9

Then ΦnthtJeV0(Ω)9 since Φn > / l JeCJ(ί2) and

V Φ B W (x) = J VJ lλ/(x - )̂ ) ΦΠ,Λ(y)^ = lim j VJ1/7 (x - y)'Φnthti(y)dy = 0.
i?3 i R3

Now, it is very simple to verify that ΦnXj -• Φ in Lp(Ω)nΠ{Ω). Therefore, the lemma
is completely proved.

We consider the linear Navier-Stokes system:
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4w(x, t) + Vp(x, t) = wf(x, t) in βχ(0, T),

V w(x,ί) = 0 in βχ(0, T),

w(x,0) = wo6<ίfo(β)5 w(x5ί)|aβ = 0 and w(x,ί)->0 for |x|-»oo. (3.4)

The following theorem holds for system (3.4).

Theorem 3.1. Let Yίoe^o(Ω). Then there exists a unique solution w(x, t) Vί^O to
the system (3.4) with

w(x, t)eD((0, T); W2>q(Ω)cΛjι>q(Ω)\ and wf(x, r)etf((0, Γ); J«(β)) \/q > 1,
(3.5)

moreover for q^.p> 1 we

Vί^O. (3.6)

Proof. For any fixed g, existence and uniqueness of solution w is proved in [21]
Theorem 4.1. Property (3.5) is proved in [4] Lemma 1.2. Property (3.6) is proved
in [21] Lemma 5.1.

Lemma 2. Let be Φ(t)eCι{t0, + oo) (ί0 ̂  0) with Φ(t) ̂  0. Let us assume that

moreover g(Φ) ^ aΦ2 for Φrg /?, w/ί̂ w oc, β >0 are given real numbers. Let us assume
OO

ί t o J Φ(ί)dί g M. Then for t ^ (M/j8) exp (αM) we /zαt β
ίo

Φ(ί) ^ (exp (αM) - l)/αί Vί ̂  ίo

Proof, cf [5] Lemma 6.
The following system is important for our aims:

vt(x, ί) - Δy(x, t)=- J1/n(y) Vv(x, ί) + Vp(x, ί) in βχ(0, T),

V v(x,ί) = 0 in βχ(0, T),

v(x,0) = uo, v(x,ί) |aβ = 0 and v(x,ί)-^0 for |x|->oo. (3.7)

Lemma 3. Let uoe^o(ί2). Then there exists Vf Ξ̂ O a unique solution v to system
(3.7) for any fixed n, with

yeL2((O,T);W2 2(Ω)nJ1 2(Ω)) and vreL2((0, T); J2(Ω) VT^O, (3.8)

moreover

|v(ί)|2 + 2j|Vv(τ)|2rfτ-|v(s)|2 V ί ^ s ^ O . (3.9)

Proof. The existence of local (in time) solution v, verifying (3.8)—(3.9), can be proved
by the well known Galerkin method, in the way suggested in [5] for exterior
domains. As proved in [5], to obtain a global (in time) solution it is sufficient to
prove that |v(ί)| + |Vv(ί)| is uniformly bounded in time. The boundedness of |v(ί)|
is a consequence of (3.9). To obtain the boundedness of | Vv(ί)|, we multiply (3.7)!
by PΔv in L2(Ω); integrating by parts, we obtain:
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d , „ , , ,,,
j ^ i τ 'v*vi ' i-"• i - > T w i v i / « w T T, Λ ^_-v i n (U, i J.

On the other hand | J1/Λ(v(x, ί))l ^ C(w)|v(ί)|2 Vxe# 3 and Vί^O. Therefore
employing the Schwartz inequality and the Cauchy inequality we obtain

~IVv(ί)12 + IPΔy(t)12 ^ C2(n)\uo\
2\Vv(ί)|2 in (0, T),

which implies | Vv(ί)|2 ύ |Vuo |2 + C 2 (n) |u 0 | 4 Vί ^ 0.
The uniqueness of solutions is a consequence of energy equality written for

the difference of two solutions and of the regularity of the solutions.
Let y0eJ2{Ω)nJp(Ω) for some pe(l,2]. We denote by {Φn}neN^^0(Ω) a

sequence such that Φn->v 0 in J2(Ω)nJP(Ω) and | Φ n | ̂ 2|vo |VnεJV. VneN
Lemma 3 ensure, set vw(x, 0) = Φn(x% the existence of the solution \n to system (3.7)w.
System (3.7)w is the system obtained from (3.7) varying n for Jljn. However, Lemma 3
does not give the validity of (3.8) uniformly with respect to n. The following lemma
gives a partial result in this sense. The proof of the lemma is the standard proof of the
"Theoreme de structure" in the case of the exterior domain, (cf. [5]), however for the
sake of completeness we propose it.

Lemma 4. For any neN, let \n be the solution to the system (3.7)n assuming as initial
data yn(x, 0) = Φn(x). Then

K ( t ) | 2 + 2 j I V v π ( τ ) | 2 d τ = | Φ n \ 2 ^ 2 | v o | 2 V ί ^ 0
o

and uniformly with respect to n; (3.10)

moreover, there exists an instant To, with To g C |v o | 4 exp(C|v o | 2 + 1), such that

vneC((Γ0, oo); J1 2(Ω))nLco((T0, oo); J 1 2(/2)),

D2\ni vwίeL2((T0, oo); J2(Ω)) uniformly with respect to n. (3.11)

Proof. Let yn be the solution corresponding to Φn. Inequality (3.10) is an immediate
consequence of (3.9) and of the choice of Φn. To obtain (3.11), we multiply (3.7)M

first by PΔsn in L2(Ω), then by ynt in L2(Ω). Last, integrating by parts, we obtain

(1/2)^ I Vv,(ί)|2 + |P4vn(ί)|2 = (Ji/Λ(vn) Vvπ, PΔyn\ (3.12)

(1/2)^ IVvn(ί)|2 + IvΛt(ί)l2 = (Jiι«(ynYVvn, v j , (3.13)
at

Applying the Holder inequality with exponents 1/6 + 1/3 -f 1/2 = 1 to the right-
hand side of (3.12) and (3.13), we obtain

1 We recall that from (3.8) it is possible to deduce that veC((0, T); P 2(Ω))\ this fact is tacitly assumed.



L2-Norm of Suitable Weak Solutions to the Navier-Stokes Equations 393

Since \J1/n{yn)\6 g | v j 6 , from (3.2) and (3.3), we have

2, (3.14)

/n(vJ|6 |Vvn |3 |vπί | g C|Vvπ|6 + CIVvJ4 + l/6\PΔvn\
2 + l/2|vnί |

2, (3.15)

where increasing we have employed the Cauchy inequality with a suitable factor.
Summing (3.12) and (3.13), and increasing by (3.14)—(3.15), we deduce the following
differential inequality:

jt\Vvn(ί)|2 + \PΔyn(t)\2 + ivnί(ί)l2 ύ C|Vvn(ί)|6 + C|Vvn(ί)|4. (3.16)

Since f |Vvn(τ)|2dτ ^ 2 | v o | 2 = MVneN, set α = C + 1/M and β=l/MC9 from
o

Lemma 2 we have \¥\n(ή\^K (K suitable constant) V ί ^ T 0 . From this last
inequality, after integrating with respect to time (3.16), we deduce (3.11).

Lemma 5. Let y0eJ2(Ω)nJp(Ω), for some pe(l,2], and {Φn}neN^^0(Ω) with
Φn-+y0 in J2(Ω)nJp(Ω). We denote by yn the solution to system (3.7)n corresponding
to Φn, VneiV. Then

ify0eJp(Ω)for some pe(l, 3/2] vneL°°((0? T); JP(Ω)) V T > 0

uniformly with respect to n\ (3.17)

ify0eJp(Ω)for some pe{3/2,2) vneLr((0, T); JP{Ω)) with 1/r + 3/2p > 1,

V T > 0 uniformly with respect to n; (3.18)

ify0eJ2(Ω) yneLr{{0, T); Π(Ω)) with 1/r + 3/2s > 1 s ^ 2 and

V T > 0 uniformly with respect to n. (3.19)

Proof. For /?e(l, 3/2], it is possible to obtain (3.17) modifying in a suitable way
the proof of Lemma 3.2 of [4]. Therefore we omit the proof. Now, let p > 3/2 and
consider the solution w(x, t) to system (3.4) corresponding to w(x, 0) = w0E^0(ί2).
Set θ(x, τ) — w(x, h — τ). By the properties of regularity of w, we can multiply (3.7)w

by θ in L2(Ω) and integrating by parts over Ωx(0, h\ we obtain

(v(Λ), w0) = (Φn, w(Λ)) + } (J1/n(vπ) Vvπ, ®)Λ. (3.20)
0

Applying the Holder inequality with exponents 1/6 -f 1/2 +1/3 = 1, from (3.3) and
(3.6), it follows for ί/q + 1/p = 1

V/z^O and w0E^0(ί2),

which implies

| v n ( / ι ) | ^ C | v 0 | p - f c } | V y n ( τ ) | 2 | / 2 - τ r ^ - ^ 2 ^ τ VΛ^O. (3.21)
o

Since |Vvn(τ)|261/(0, oo), we deduce (3,18) from (3.21). To prove (3.19) we reason
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in the same way up to relation (3.20). We increase the right-hand side of (3.20) by
the Schwartz inequality and with (3.6) applied to the first term, while the integral
term is treated in the same way shown above. From (3.6) we have for 1/q + 1/p = 1,

|v π (Λ)| p ^C|v 0 | f t- 3 ( 2 " 9 ) / 4 9 + Cf|Vv n(τ) | 2 |A-τΓ ( 3-« ) / 2«dτ Vft ^ 0. (3.22)
o

Now, it is easy to deduce (3.19) from (3.22).

4. Proof of Theorems

Lemma 4 and Lemma 5 ensure the existence of a sequence of solutions {yn}neN to
system (3.7)w, with integral estimates for yn uniform with respect to n. Therefore,
if voe J2{Ω)c\ JP{Ω\ for some pe(l, 2], it is routine to deduce the existence of a weak
solution v to system (3.1) with properties a)-c) of Theorem 1. Theorem 1 can be
considered acquired.

Remark 4. For our weak solution v it is possible to deduce results of partial
regularity in the sense of [1], However, since we are in a different context, we omit
for the sake of brevity these results and we refer the reader to the works of [ 1,15,22].

If we take into account the regularity results of a solution to the Navier-Stokes
equations obtained in [5] (cf. Theorem 3 and Theorem 5), we can consider the weak
solution v sufficiently smooth Vί > To, in such a way that we can consider the
L2-norms of derivatives of v, Dk

tD
h

x\ ft = 1,2 and VKeiV and Vί > To. This last
regularity of solution v we take into account in the next lemmas.

We must preface the proof of Theorem 2 by some lemmas.

Lemma 6. Let v be a weak solution to system (2.1) determined by Theorem 1.
Assume that |v(ί)| = O(t~a) for some α ̂  0 and ί ^ To. Then

|Vv(ί)| = O(ί"α" 1 / 2) V ί ^ Γ ^ Γ o , (4.1)

^ T o . (4.2)

Proof. Since v is sufficiently smooth for t > To, we can consider system (2.1) in
ordinary sense. Multiplying (2Λ)1 by v in L2(ί2), we obtain, after integrating by parts,

^-|v(ί)|2 + |Vv(ί)|2 = 0 V ί ^ T 0 , (4.3)

at

which implies the following

|Vv(ί)|2g|v(ί)| | v t ( t )I^Cr β | v t ( t ) | V ί > T 0 , (4.4)

where we have taken into account that |v(ί)| = O(t~a) Vί ^ To. Deriving (2.1)! with
respect to time and multiplying by PΔ\t we obtain

(l/2)~ I Vvf(ί)|2 + I JMvf(t)|2 = (v Vvf, PΔvt) + (vf • Vv, PΔvt). (4.5)
at

Applying the Holder inequality we have
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(v Vv f,P/lv ί)|gsup|v| |Vvr| \PΔ\,
Ω

Since sup |v| ^ C( |£ 2 v | + |Vv|), from (3.2) and (3.3) we can deduce
Ω

|(v Vvt,P4vt)| + |(vf Vv,P4vt)| g C{\PΔ\\ + |Vv|)|Vvt| \PΔvt\. (4.6)

Increasing the right-hand side of (4.5) by (4.6) and applying the Cauchy inequality,

holds. Integrating the last inequality from Tι > To, we obtain

vteL°°((T1,oo);L2(fl)). (4.7)

Now, we multiply (2.1)! by vt in L?(Ω), after integrating by parts, we deduce

1 tl dtl (4.8)

From (4.8), by application of the Schwartz inequality and the Holder inequality with
exponents 1/3 + 1/2 + 1/6 = 1, it follows that

|v f |
2^|Vv(ί) | |Vv fH-|v t |3 |Vv t | |v | 6,

which we can increase by (3.3) and (4.7) with

that implies by virtue of (4.4)

|v t |
3 ^Cί~α |Vv t |

2 Vi>7\. (4.9)

Deriving (2.1)! with respect to time and multiplying by \t in L2(ί2), after integrating
by parts, we obtain

^ | v f |
2 + |Vv f |

2^|(v t Vv,vf)| Vί>7\.

Applying the Holder inequality with exponents 1/3 4-1/2 + 1/6 = 1, (3.3) and the
Cauchy inequality, we have

— |vf
at

| V v f |
2 ^ C | v f |

2 | V v | 4 V ί > T 1 .

By virtue of (4.4), (4.11) and | Vv(ί)| ^ C we deduce the differential inequality

d

Jt

Without loss of generality, we can assume that 7\ is such that Ct~<x^C~ί fβ, so we
obtain
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A|V t | + c

which implies

\yt\ = O(r1-*) Vί^TV (4.10)

Inequalities (4,4) and (4.10) imply (4.1). To obtain (4.2), we observe that multiplying
(2.1)! by PΔy in L2(Ω\ we have

I PΔy{t) 12 S I (v Vv, PΔy) | + | (vt, PΔy) |.

Applying the Schwartz inequality for (vί5 PΔy) and reasoning in the same way of
(3.14) for |(v Vv,P4v)|, we obtain

which implies (4.2) by (4.1) and (4.10).

Lemma 7β Let v be a weak solution determined by Theorem 1. Then

\Vπ\PfΩ^C(\yVy\p + \D2y\PiΩnω pe(l,6/5) V ί ^ Tl9 (4.11)

where ω is enclosed in Ω with δΩr\dω = φ and meas {ω} < oo.

Proof. From (2Λ)1 we deduce for π the following Neumann problem:

^ π = V (v Vv) in Ω V ί ^ T l 5

dπ

dΈ
= (rotrotv) 7Γ — (v Vv) Tz.

ΰΩ

Inequality (4.11) is a consequence of Lemma 2.1 of [21] and Prop. 1.5 of [18]. In
[21] there is the solution to the problem Δqί=0 with dq1/d~n =(rotrotv) 7ϊ
with \Vqx\p^ C|D2v|L P ( ω )forpe(l,6/5). In [18] there is the solution to the problem
Δq2 = V f a n d dq2/dn = f n w i t h \Vq2\p ^ C | f \p.

Remarks. We can consider the boundary condition dπ/dn = (rot rot v)-
~n — (v Vv) 7f, in the Neumann problem of π, by virtue of the regularity of v proved in
[5]. In fact by the Remark on p. 665 of [5], we have veC 2 if dΩeC3. As regards these
properties of regularity see also [25].

We can increase (4.11) in the following way:

+ \Wy\) Vpe(l,6/5). (4.12)

We obtain (4.12) applying the Holder inequality to the right-hand side of (4.11)
with exponents p/2 4- (2 — p)/2 = 1:

and

taking into account of (3.3) for the norm \y\2pf{2-p) a n c * the mean (ω) < oo.
The following lemma improves an analogous lemma proved in [13]. However,
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both the lemmas have as a starting point the estimate in IF of solutions to the
Navier-Stokes equations given in the works by Galdi-Rionero (cf. [9]).

Lemma 8. Let yoeJ2(Ω)nJp(Ω) be, for some pe(l,2) and v be a corresponding
weak solution to system (2.1) of Theorem 1. Assume that |v(ί)| = O(f ~α)(α §: 0). Then
there exists an instant T2 such that \\(T2)\P < oo and for a

where jS = ( l - α p - p / 2 ) and W ^ T 2 , (4.13)

and for α = (2 — p)/2p

KOI, ύ C(\y(T2)\p) + C(|v 0 | ) log^(ί/T 2) W £ T2. (4.14)

Proof. Since veL°°((0? T); U{Ω)\ if pe(l, 3/2] and veLs((0, Γ), U{Ω)) for pe(3/2,2)
with 1/5 + 3/2p > 1 VT > 0, we can choose an instant T2 > Tx such that |\(T2)\ p <
oo. We multiply (2.1)x by Φ(r)v/(v2(x, ί) + σγ~pl2 in L2(ί2), where Φ(r)GC°°(0, oo)
is a cut-off function such that Φ(r) = 1 if r ^ JR and Φ(r) = 0 if r^2R for
R > diam(jR3 - ί2), with | VΦ(r)| g C/JR and |4Φ(r) | ^ C/Λ2, finally σ - 1/Λ4. We
integrate by parts over Ω:

τ ί (v2(x? t) + σ)fΦ(r)dx + J Vv(x, ί):Vv(x, ί)(v2(x, t) + a) f~^(r)i/x

+ (p - 2) J(Vv(x, ί)'v(x, 0)2(v2(x, ί) + σ)f~2Φ(r)dx

j (v2(x, ί) + σ)\ΔΦ{r))dx + j (v2(x, ί) + σfy{x, tyV(Φ(r))dx
Ω Ω

+ J Vπ(x, ί) v(x, ί)(v2(x, t) + σf~ιΦ(r)dx = £ /* Vί ^ T2.
Ω i = l

Since

Vv(x9 ί);Vv(x, ί)(v2(x, ί) + σ ) ^ 1 + (p - 2)(Vv(x, O'v(x, ί))2(v2(x, ί) + σ) f~2 > 0

V(x, ήeΩx(T2, oo),

we neglect the integrals with these terms. Now, applying the Holder inequality
with suitable exponents, we have

J
j dx ^ (C/R2)R3i2-p)/2\y(t)\p + CR/R2p

\x\^2R

*ς C(R)(\y(t)\p + 1) with C(K)-»0 for

J

C(R)(|(ί)|'ί} + l) with C(R)-*0 for i?->oo;
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Set Eσφ(ή = j> 2(x, ή + σfφ(r)dx, taking into account of (4.12) and of (3.3) for
Ω

|v(ί)|6, we obtain

~Eσ,φ(t)^C\Vy(t)\p + C\V\(t)\p + 1 + C\PΔv(ή\ IVvίOI*"1

Integrating with respect to time and making jR-> oc, we deduce

Since p + 1 > 2 and p - 1 > 0, from (4.1)-(4.2) we obtain Jι+J2^C Vί ^ T2,
while J 3 ^ [ 2 C / ( 2 - p - 2 α p ) ] ( ί / ? - Γ f ) , where β=l-ap-p/2 if α#(2-p)/2p
and J 3 ^ Clog(ί/Γ2) if α = (2 - p)/2p.

We are now in a position to prove Theorem 2. We obtain the result by Lemma 8.
Set α = 0 in Lemma 8, from estimate (4.13) we deduce by interpolation the following
estimate:

v(ί)|2 S- \y(t)\l~θ\υ(t)\θ

6 g [C1 + C2{tβ - Tβ

2)
1/py~θ\v(ή\θ

6 (4.16)

with θ = 3(2 — p)/(6 — p) Vί ^ T2. Taking into account the energy equality verified
Vί ^ T2, (4.16) and (3.3) for |v(ί)|6, we obtain the differential inequality

I w,/fΛ I 2 <-" /^ I %rίf\ I 2 / θ Γ / ^ _ι (^ (+1 — p12\11p~\ — 2(\ — θ)/θ u < - N . T //I 1 H\
VI t ι ^ Ks \ j\Li\ L ^ l ' ^ 2 1 ^ / J V L =z * 2r> \*'*- ')

at
where we have taken into account that 1 — p/2 > 0 pe(l, 2). On the other hand for
pe(U 2) (2 - p)(l - θ)/pθ = 2/3, therefore from (4.17) we deduce

v(t)\ = O(t(2~p)/4p) V ί ^ T 2 .

If we consider now (4.13) for α = (2 — p)/4p, (4.17) becomes

dt = In i L i 2 J = 2»

where we have taken into account that (2 — p)/4>0 pe(1.2). On the other hand
it holds Vpe(l,2) (2-p)(l - θ)/2pθ = 1/3. Therefore, we deduce by analogous
arguments that

Since in (4.17) α = (2 — p)/2p we can consider (4.14), which implies

|v(ί)| = O(ί"α) V ί ^ T 2 and α>(2-p)/2p.

Now for α > (2 — p)/2p, (4.13) is uniformly bounded, therefore (4.17) becomes

d , , ,,o ^
i -vvi ~ - i -\">i Vί ^ T 2 a n d 0 = 3(2 — p)/(6 — 0),

at

integrating this last differential inequality, we obtain (2.2).
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The proof of Theorem 3 is quite analogous to the proof of Theorem 1.1 of
[13], therefore it is omitted.

For the proof of Theorem 4 is important to premise the following theorem due
to Knightly:

Theorem. Let g{x) = Arot(0, F(x), H(x)) with

2y(1+s»2 if s e [0,2),

( l / s ) ( l+ |x |T s / 2 if 56(0,2),

A is a suitable constant. Then there exists a unique solution g(x, t) to system (2.1)
corresponding to g(x) and defined Vί ^ 0, such that for /?e(l, 2] Dk

xD
h

t%(x, t)eJ2{R3)n
JP(R3) V/c, heN ifse((3 - p)/p,2). Moreover

sup|g(x,f)| ^ |g(0,ί)| ^ CΓ{l+s)l2for t sufficiently large. (4.18)

Proo/. See [10] §.5 pp. 239-240.
We assume now that VvoeJ2(JR

3)n JP(R3), for some fixed ps(l, 2], there exists
a weak solution v corresponding to v0, such that

I V(ί) I = O(Γ μ~3(2 " p)/4p) for some μ > 0.

By virtue of Lemma 6 we have | PΔ\(t) \ = \ Δ\(t) \ = O(Γ1~μ~3{2r p)l4p) and | Vv(ί) | -
O{t~μ~ll2~^{2~p)IArP). Now, we consider (3.3) forj = 0, p = oo,m = 2, r = 2&ndq = 6.
Therefore

Since |D2v(ί)| = \Δ\{t)\ and |v(ί)|6 ^ C\ Vv(ί)|, we can deduce

4 (4.19)

If we observe that it is always possible to determine a s = ε + (3 — p)/p such that
ε/2 < μ and g(x)eJ2(R3)nJp(R% then from (4.18) and (4.19) we have

c r i / 2 ( * 4 3/p) ^ c r (μ + 3/2P) for f s uff i ciently large,

which is absurd. This fact completes the proof of Theorem 4.
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